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Collaborative Estimation of Gradient Direction by a Formation of AUVs
under Communication Constraints

Lara Briñón-Arranz, Alexandre Seuret and Carlos Canudas-de-Wit

Abstract— This work deals with the source-seeking problem
in which the task is to locate the source of some signal using a
fleet of Autonomous Underwater Vehicles (AUVs). The present
paper proposes a distributed solution in which a group of
vehicles uniformly distributed in a fixed circular formation,
estimates the gradient direction of the signal propagation. The
distributed algorithm takes into account the communication
constraints and depends on direct signal measurements. Our
approach is based on the previous results in formation control
to stabilize the fleet in a circular formation with time-varying
center and in a collaborative source-seeking algorithm. The
results are supported through computer simulations.

I. INTRODUCTION

Cooperative control problems and multi-agent systems
have received much attention in recent years. The field
includes consensus algorithms for multi-agent systems [1],
[2], flocking [3], distributed sensor networks [4], [5], and
autonomous systems as underwater and unmanned air ve-
hicles (AUVs and UAVs) [6], [7]. Cooperative formation
control and motion coordination have been extensively stud-
ied, see [8], [9], [10], [11], among many others. Control
laws have been provided to make a fleet of agents (vehi-
cles) obtain circular and parallel formations [6], [12]. Many
extensions based on these works have been developed: three-
dimensional formation control [13], [14], planar circular
formation control in a flow-field [15], and stabilization of
a fleet to other closed forms [16], [17].

In [18], a new control law is proposed to translate a
circular formation following a desired external reference
trajectory of its center. Designing a collaborative reference
to move the formation is a first step to achieve the source
location of some signal. The source could be a point of
chemical contamination and the signal would be that chem-
ical’s concentration in the environment, for example. The
objective of the source- seeking problem is to obtain the
direction to steer the formation towards the source by a
cooperative algorithm using the concentration measurements
of the agents.

There exist many different approaches to resolve the
source-seeking problem in the literature. The extremum
seeking problem is solved under different hypotheses using
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a single nonholonomic vehicle, [19], [20]. In this case all
the measurements would come from a single vehicle as
it changes position over time. Another strategy consists in
approximating the gradient value of the signal using concen-
tration measurements of multiple vehicles at different loca-
tions [4]. Some collaborative methods have been proposed,
based on distributed estimation of the concentration plume
[21], [22]. In theses cases, the function signal is estimated
or approximated and the source localization becomes a
distributed optimization problem.

The work presented in [23] deals with a collaborative
multi-agent algorithm to solve the source seeking prob-
lem using only direct signal measurements by a circular
formation of agents. This new approach considers all-to-
all communication (i.e., every agent talks to every other
agent) between the vehicles and the control law needs the
information of all the agents to converge. Our objective now
is to design a distributed algorithm based on this previous
one but considering restricted communication. The present
paper addresses an other possible solution to the source
localisation problem. We show how a group of vehicles
uniformly distributed in a circular formation, is able to
approximate the gradient direction of the signal propagation
to steer the formation towards the source location. In order
to achieve this objective under limited communication, each
agent estimates its own direction based on its neighbors’ con-
centration measurements. We include a consensus algorithm
to converge to the same desired gradient direction. In liter-
ature there are some results in the field of consensus filters
and sensor fusion [2], [5] which deal with the consensus
problem of a sensor network measuring a signal corrupted
by noise. These approaches could be applied to reduce the
noise propagation and to cooperative exploration missions.

This paper is organized as follows. First, Section II recalls
previous work on translation control of a circular formation.
Section III presents a result on gradient approximation and
the problem formulation. In Section IV we propose a first
algorithm that combines standard consensus tools, and show
its limitations both by theoretical convergence analysis and
simulations. Then, Section V presents an improved estima-
tion algorithm based on averaging. Conclusions and future
works are presented in Section VI.

Notation. Let G = (V,E) be an undirected graph with an
adjacency matrix A = [akj ] that specifies the communication
topology of the multi-agent system: akj = 1 if agents k and j
∈ V communicate, else akj = 0. The set of nodes (agents) is
denoted by V = {1, . . . , N}. Let Nk = {k ∈ V : akj ̸= 0}



the set of neighbors of agent k and Jk = Nk ∪ {k}. The
Laplacian matrix L of graph G is defined as L = ∆ − A
where ∆ is the diagonal matrix which contains the degree
of each agent, i.e.,∆kk = dk =

∑
j akj . In the sequel, ⊗

denotes the Kronecker product and, for simplicity, we define
M2 = M ⊗ I2 where M is a square matrix and IN is the
identity matrix of order N . Moreover, Rπ

2
∈ R2×2 denotes

the rotation matrix counterclockwise through an angle π
2 .

II. BACKGROUND

The algorithm to estimate the gradient direction of a signal
distribution presented in this paper builds on the previous
result on formation control from [18]. Consider a group of
N agents modeled as kinematic unicycle vehicles of the
following form, for each vehicle k:

ẋk =vk cos θk (1a)
ẏk =vk sin θk (1b)

where rk = (xk, yk)
T is the position vector, θk is the

heading angle, and the control inputs are the vehicle’s
forward velocity vk > 0 and turning rate θ̇k, see [18].
With appropriate limits on the control inputs, this model
can provide a reasonable approximation for many air and
underwater vehicles.

Stabilization of a fleet of N agents to a circular formation
around its center of mass was developed in [6]. In [18] a
control law which asymptotically stabilizes the vehicles to
a circular formation around a dynamic center point c(t) =
(cx, cy)

T with a uniform distribution (i.e., with the agents
evenly separated on the circle by 2π/N radians each) is
presented. The center of the formation c(t) is an external
reference known for all the agents. With a fixed radius R >
0, desired rotational velocity ω0 and the control parameters
κ > 0 and K, the control law of [18] is given as:

vk =
∥∥R|ω0|(cosψk, sinψk)

T + ċ
∥∥

θ̇k =

(
1− ṙTk ċ

v2k

)
ψ̇k −

ṙTk Rπ
2
c̈

v2k

ψ̇k = ω0(1 + κR|ω0|(cosψk, sinψk)(rk − c))− ∂U

∂ψk

U(ψ) = −K
N

⌊N/2⌋∑
m=1

1

2m2
aTmL2am (2)

where ⌊N/2⌋ is the largest integer less than or equal to N/2,
am = (cosmψ1, sinmψ1, . . . , cosmψN , sinmψN ), L is the
Laplacian matrix associated with the communication network
of the vehicles, and ψk(t) is an inner state of the dynamic
controller, and initialized to

ψk(0) = arctan
ẏk(0)− ċy(0)

ẋk(0)− ċx(0)
+ ϵkπ

where ϵk = 0 if ẋk(0)− ċx(0) > 0 and ϵk = 1 otherwise.
Assuming that c(t) is twice differentiable, has bounded

first and second time-derivatives, and satisfies supt≥0|ċ(t)| <
R|ω0|, then the control law above drives the vehicles to tra-
jectories that lie on the circle with radius R and whose center

ω0

r1 − c

r2 − c

r4 − c

r3 − c

SOURCE

u
∗

Fig. 1. Problem formulation

follows the time-varying external reference c(t). Moreover,
if K > 0 and a geometric ring communication graph (i.e,.
each agent is linked to its two closest neighbors on the circle)
is assumed, then the vehicles will be uniformly distributed
on that circle.

Consider now the stable circular formation described by a
center point c, a radius R and an angle ϕ which is linearly
increasing with time (i.e., ϕ = ω0t for some angular speed
ω0 > 0. Therefore, the position of each agent k is given by
the following equation:

xk = cx +R cos

(
ϕ+ k

2π

N

)
yk = cy +R sin

(
ϕ+ k

2π

N

)
(3)

This equation describes a formation where the agents are
uniformly distributed on a circle of radius R. In the context
of source-seeking problem, the objective is that the center of
the formation c(t) follows a trajectory which converges to
the maximum of a signal, that is usually its source. Using
this previous work on formation control, a first result in
collaborative source-seeking is accomplished in [23]. The
authors consider here a stable circular formation of N
mobile agents in the plane. The agents are stabilized by the
previous control law (2). The authors provide an outer- loop
control that steers the formation by determining ċ(t) in a
collaborative way. This control law allows the formation to
move such that its center converges to the source location, if
the signal distribution decreases around the source in such a
way that level sets are circles or ellipses centered on source
location. The main constraint of the algorithm of [23] is the
all-to-all communication assumption.

III. PROBLEM FORMULATION

The objective of this work, is to estimate the gradient
direction of the source distribution based on the concen-
tration measurements obtained by a circular formation of
agents, taking into account the communication constraints.
This estimated direction will be the reference velocity of the



formation center in order to steer the group of agents to the
source location.

Consider a fleet of N vehicles uniformly distributed along
a circular formation. The position of each agent k is de-
scribed by equation (3). Our approach considers that the
circular formation is not moving. Only the estimation of
gradient direction is addressed here.

Assumption 1 In the sequel, we suppose that the center of
the circular formation c is fixed and known to all the agents.

The distribution of the signal strength in the environment
will be described by an unknown positive spatial mapping ρ :
R2 → R+, and so agent k measures the signal strength at its
position as ρ(rk). Our approach deals with the approximation
of the gradient direction of this signal distribution ρ by a
circular formation of agents at a given location c, see Fig. 1.

A. Gradient Approximation

Consider a fleet of agents given by (3) taking mea-
surements of a signal distribution ρ. Let ∇ρ(c) =
(∇xρ(c),∇yρ(c)) denote the gradient of function ρ in the
center of the circular formation. The following lemma is
proposed:

Lemma 1 Let ρ be a bounded function and ρ(rk) the
measure obtained by agent k where rk is its position vector
given by (3). If Assumption 1 is satisfied and the agents are
uniformly distributed along the circle centered at c, then:
(i) Considering a fleet of N > 2 agents the following
equation is satisfied:

1

N

N∑
k=1

ρ(rk)(rk − c) =
R2

2
∇ρ(c)T + o(R2) (4)

(ii) Considering a limitless number of agents along the
circular formation (N → ∞) the following equation is
satisfied:

1

2π

∫ 2π

0

ρ(rk)(rk − c)dϕ =
R2

2
∇ρ(c)T + o(R2) (5)

Proof: In both cases (i) and (ii) the uniform distribution
of the agents along a fixed circle is assumed, then

∑N
k=1(rk−

c) = 0 and
∫ 2π

0
(rk − c)dϕ = 0 respectively. By definition of

gradient of the function ρ at a fixed location c the following
equation holds:

ρ(rk)− ρ(c) = ∇ρ(c)(rk − c) + o(R) (6)

Multiplying this previous equation by the relative vector
(rk − c) and summing over k = 1, . . . , N , it yields:

1

N

N∑
k=1

ρ(rk)(rk−c) =
1

N

N∑
k=1

[∇ρ(c)(rk−c)](rk−c)+o(R2)

Analyzing in terms of components and using (3) to express
the position of the agents rk, the right-hand side of the

previous equation is given by:

R2

N

N∑
k=1

(
∇xρ(c) cos

2 ϕk +∇yρ(c) cosϕk sinϕk
∇xρ(c) sinϕk cosϕk +∇yρ(c) sin

2 ϕk

)
where ϕk = ϕ+ k 2π

N . Thanks to the uniform distribution if
N > 2 then

∑N
k=1 cos (2k

2π
N ) = 0 (the same equality also

holds for the sinus) and trigonometric properties ensure that:

1

N

N∑
k=1

[∇ρ(c)(rk − c)](rk − c) =
R2

2
∇ρ(c)T

Thus, the equality (4) is satisfied.
A similar analysis can be applied to second case (ii). Using

trigonometric properties, integrating along the circle (in the
interval [0, 2π]) and thanks to the equality

∫ 2π

0
cosϕdϕ =

0 (the same equality also holds for sinϕ) we obtain the
following equation:

1

2π

∫ 2π

0

[∇ρ(c)(rk − c)](rk − c)dϕ =
R2

2
∇ρ(c)T

and equality (5) is straightforwardly obtained.
This result provides an approximation of gradient of the
signal distribution at the center of the circular formation.

B. Problem Formulation

The objective of this paper is to develop a distributed
algorithm to estimate the gradient direction of the signal
distribution ρ at the center of a circular formation of agents.

The communication constraints are taken into account
through a communication graph G. Due to these commu-
nication restrictions each agent estimates its own gradient
direction zk using the information of its neighbors according
to the communication topology. The objective is to make
all estimated directions zk converge to the mean direction
defined as:

u∗ =
1

N

N∑
k=1

uk; uk = ρk(rk − c) (7)

where uk is the relative position vector of agent k weighted
by its concentration measurement ρk = ρ(rk). Thanks
to Lemma 1 (i), this mean vector u∗ approximates the
gradient direction of the signal distribution at the center of
the formation c. A consensus algorithm is implemented to
obtain the same estimated gradient direction of the signal
distribution for all the agents.

IV. COLLABORATIVE ESTIMATION OF GRADIENT
DIRECTION

A. Consensus algorithm

Consensus filters for sensor networks are developed in [2].
In this work, the authors consider a sensor network of size
N with information flow (communication graph) G. Each
sensor k measures the same signal that is corrupted by noise.
Based on this approach for sensor networks, we propose the
following consensus algorithm for the multi-agents system



to estimate the gradient direction of the signal propagation
by a fixed circular formation in a collaborative way:

żk = κ
∑
j∈Nk

akj(zj − zk) +
∑
j∈Jk

akj(uj − zk)

where κ > 0 is a control parameter which is introduced to
make the algorithm more flexible. The consensus variable is
the vector zk ∈ R2 which represents the estimated gradient
direction by agent k. The input uk = ρk(rk − c) ∈ R2,
depends on the concentration measurements and the position
of the agent in the formation. Therefore, the input of the
algorithm is not the same signal corrupted by noise, but a
different vector for each agent. This is the main difference
with respect to the consensus filter algorithm.

Using the Laplacian matrix of the communication topol-
ogy of the multi-agents system the previous equation can be
rewritten in a matrix way:

ż = −κL ⊗ I2z + IN ⊗ I2(u − z) +A⊗ I2u −∆⊗ I2z
= −(IN +∆+ κL)2z + (IN +A)2u

where z = (zT1 , z
T
2 , . . . , z

T
N )T and u = (uT1 , u

T
2 , . . . , u

T
N )T

are vectors of dimension 2N , and IN the identity matrix of
order N . Let Aκ = (IN +∆ + κL)2, and B = (IN + A)2.
Note that by definition, Aκ is a positive definite matrix. Then,
the previous equation becomes:

ż = −Aκz + Bu (8)

Consider the vector of dimension 2N , u∗ = 1⊗u∗, where
1 = (1, . . . , 1)T ∈ RN is the vector of ones that is always
a right eigenvector of L corresponding to the eigenvalue
0. Then the error equation is η = z − u∗. Using (8), the
dynamics of the error can be written as:

η̇ = −Aκη + B(u − u∗)− u̇∗

The stability of this algorithm is analyzed using the Lya-
punov function V = 1

2η
T Aκη. Differentiating this function

we obtain:

V̇ = −ηT AT
κ Aκη + (u − u∗)T BT Aκη − u̇∗T Aκη

Let ∥u̇∗∥ ≤ ν, due to the soft variation of the concentration
levels of the signal distribution considered here, then

V̇ ≤ −λ2min(Aκ)∥η∥2 + ν
√
N(1 + dmax)∥η∥

+∥(u − u∗)T BT Aκη∥

This is because

u̇∗T Aκ = 1T ⊗ u̇∗T (IN +∆+ κL)2
= (1 + d1, . . . , 1 + dN )⊗ u̇∗T

and thus

∥u̇∗T Aκ∥ ≤ ∥u̇∗∥

√√√√2
N∑

k=1

(1 + dk)2 ≤ ν
√
N(1 + dmax)

It is plausible to assume that a bound on maximal signal
concentration is known from the problem setting. Therefore,

∥(u−u∗)∥ ≤ α where α depends on the radius of the circular
formation and on the greatest concentration measurement
obtained by the agents. For simplicity, let γ be a bound
of the following matrix norm

∥∥BT Aκ

∥∥ ≤ γ. Taking these
considerations into account the following equation holds:

∥(u − u∗)T BT Aκ∥ ≤ αγ

The derivative of the Lyapunov function is bounded by:

V̇ ≤ −λ2min(Aκ)∥η∥2 +
(
ν
√
N(1 + dmax) + αγ

)
∥η∥

Based on the proof of Proposition 2 from [2] a closed ball
Bβ centered at η = 0 is defined with radius

β =
ν
√
N(1 + dmax) + αγ

λ2min(Aκ)

Let Ωm = {η : V (η) ≤ m} be a level set of the Lyapunov
function V (η) with m = 1

2λmax(Aκ)β
2. Then, Bβ is

contained in Ωc because

∥η∥ ≤ β =⇒ V (η) =
1

2
ηT Aκη ≤ 1

2
λmax(Aκ)β

2 = m,

and thus η ∈ Ωm. As a result, any solution of (9) starting
in R2N\Ωm satisfies V̇ < 0. Thus, it enters Ωm in some
finite time and remains in Ωm thereafter. This guarantees
global asymptotic ϵ-stability of η = 0 with a radius ϵ =
βλmax(Aκ)/λmin(Aκ). To show this, note that

1

2
λmin(Aκ)∥η∥2 ≤ V (η) ≤ 1

2
λmax(Aκ)β

2

Thus, the solutions enter the region

∥η∥ ≤ β

√
λmax(Aκ)

λmin(Aκ)

which implies the radius of ϵ-stability is

ϵ =
ν
√
N(1 + dmax) + αγ

λ2min(Aκ)

√
λmax(Aκ)

λmin(Aκ)

The ϵ-stability of η = 0 implies ϵ-tracking of the mean vector
u∗ by every agent, therefore ϵ-consensus is asymptotically
reached.

After the previous detailed analysis this result can be
presented as a theorem:

Theorem 1 Consider a circular formation of N agents
defined by (3) with a connected communication graph G
and Assumption 1 is satisfied. Let ρ : R2 → R+ be a
bounded function and the mean vector u∗ defined in (7)
satisfies ∥u̇∗∥ ≤ ν. Then, z∗(t) = 1 ⊗ u∗ is a globally
asymptotically ϵ-stable equilibrium of the dynamics of the
distributed algorithm given by

ż = −κL2z − L2u + (IN +∆)2(u − z) (9)

with u = (ρ1(r1 − c)T , . . . , ρN (rN − c)T )T and

ϵ =
(ν
√
N(1 + dmax) + αγ)λ

1
2
max(Aκ)

λ
5
2
min(Aκ)
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Fig. 2. Simulation of a circular formation of five agents centered at c =
(2, 2)T . The function ρ representing the signal distribution centered at the
origin has circular level sets. The consensus algorithm of Theorem 1 is
implemented with κ = 50.

where the matrix Aκ and the constants α and γ are previ-
ously defined.

Remark 1 Analyzing the linear system (8) it seems evident
that the control parameter κ has an important role in the
convergence velocity of the algorithm. The simulation results
show that taking κ >> 1 the amplitude of oscillations of the
estimated gradient directions zk are smaller. Therefore, the
error η is also reduced. However, the analysis of this property
is still under investigation.

B. Simulations

In this section we present simulations results of the pre-
vious algorithm. All simulations show a circular formation
of five agents with radius R = 1m and angular velocity of
ω0 = 1rad/s. The communication graph is a ring.

In Figs. 2 and 3, the source-seeking consensus algorithm
(9) from Theorem 1 is implemented with κ = 50. For
these simulations, the function ρ representing the signal
distribution centered at the origin has circular level sets,
ρ(x, y) = 100e−(x2+y2)/10. Therefore, the gradient vector
∇ρ(c) provides the adequate direction to steer the formation
to the source location. Both figures (a) show two snapshots.
The void circles represent the initial conditions and the
black dashed lines the initial estimated direction zk of each
agent. The red circles represent the position of the agents
at t = 50s and the red lines are the estimated gradient
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(a) Estimated directions zk for t = 0s (black
dashed lines) and for t = 50s (red lines)
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Fig. 3. Simulation of a circular formation of five agents centered at c =
(0, 0)T . The function ρ representing the signal distribution centered at the
origin has circular level sets. The consensus algorithm (9) is implemented
with κ = 50.

directions at that time. The blue line is the real direction
of the gradient at center c. Both figures (b) show the
components of the consensus variable zk and the mean vector
u∗. The estimated directions zk oscillate around the vector
u∗ which approximates the true gradient direction for any
initial conditions.

In Fig. 2 the circular formation is centered at c = (2, 2)
and the oscillations of the estimated gradient directions zk
are smaller than in Fig. 3 where the formation is centered
at source location. In this second case, as the mean of the
directions is equal to zero, the convergence region of radius
ϵ leads to completely wrong gradient direction estimations.

C. Conclusions and limitations of the algorithm

The final gradient direction zk estimated by each agent
oscillates with period T = 2π/ω0. The amplitude of these
oscillations depends on the concentration measurements ρk.
When the formation is closer to the source location, the
measurements are greater, thus, the amplitude of oscillations
are greater as well. Moreover, as the gradient is closed to
zero in the neighborhood of the source (at least with the
Gaussian profile we use), a ball of radius ϵ around 0 leaves
the gradient direction essentially unknown; thus Theorem 1
does not guarantee good behavior in the neighborhood of the
source.

Another limitation of the previous consensus algorithm
(9) is that the radius ϵ depends on the constants α and γ
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Fig. 4. Simulation of a circular formation of five agents centered at c =
(2, 2)T . The function ρ representing the source centered at the origin has
circular level sets. The mean input consensus algorithm (9) is implemented.

which cannot necessarily be small values. In order to avoid
these problems, an averaging approach is presented in the
following section.

V. REFINED COLLABORATIVE ESTIMATION OF
GRADIENT DIRECTION RESULT

The previous section presents a collaborative algorithm,
which uses the concentration measurements obtained by a
formation of agents to estimate the gradient direction of a
signal distribution in its center.

The agents describe a periodic movement, it means that
rk(t) = rk(t + T ) with T = 2π/ω0. Therefore, the
measurements ρk obtained by agent k is a periodic map
because ρ(rk(t)) = ρ(rk(t + T )). In conclusion, the input
variable of the consensus algorithm uk = ρk(rk − c) is a T -
periodic function with T = 2π/ω0. Estimated directions zk
obtained by the consensus algorithm (9) shown in Figs. 2
and 3 are also periodic. The average of these solutions
approximates the gradient direction of the source. Thanks
to these observations, an analysis of the average properties
of the input variable uk seems adequate. In this section, the
previous distributed consensus algorithm is improved using
the periodic properties of the measurements ρ(rk).

A. Estimation Algorithm using time-average inputs

We present an improved estimation algorithm based on the
periodic properties of the input uk. The input vector uk in
previous consensus algorithm is replaced by its mean value
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Fig. 5. Simulation of a circular formation of five agents centered at
c = (0, 0)T . The function ρ representing the source centered at the origin
has circular level sets. The mean input consensus algorithm of (12) is
implemented.

over one period T = 2π/ω0 which is defined as:

uk =
1

T

∫ t

t−T

ρk(rk(τ)− c)dτ (10)

Therefore, thanks to Lemma 1 (ii) the new mean vector u∗

approximates the gradient of the signal propagation ρ in the
center of the circular formation:

u∗ =
1

N

N∑
k=1

uk (11)

The new input variable of the improved algorithm based
on (9), is the mean vector u = (uT1 , u

T
2 , . . . , u

T
N )T , and

the objective is defined as u∗ = 1 ⊗ u∗. Following the
analysis developed in section IV-A, let us assume that the
following inequality ∥(u−u∗)∥ ≤ α is satisfied. Using these
considerations, a new algorithm is proposed in the following
corollary:

Corollary 1 Consider a circular formation of N agents
defined by (3) with a connected communication graph G
and Assumption 1 is satisfied. Let ρ : R2 → R+ be a
bounded function and the mean vector u∗ defined in (11)
satisfies ∥u̇∗∥ ≤ ν. Then, z∗(t) = 1 ⊗ u∗ is a globally
asymptotically ϵ-stable equilibrium of the dynamics of the
distributed algorithm given by

ż = −κL2z − L2u + (IN +∆)2(u − z) (12)



with

ϵ =
(ν
√
N(1 + dmax) + αγ)λ

1
2
max(Aκ)

λ
5
2
min(Aκ)

Remark 2 Considering Assumption 1 (the circular forma-
tion is fixed) by definition, the mean input u is a constant
vector after a time period T . Therefore, the input variable u
converges to the mean vector u∗ and moreover, its derivative
is equal to zero. Then, ν → 0 and α→ 0. It implies that the
radius of the convergence region ϵ converges to zero after
a period T , the consensus is achieved and all the agents
estimate the mean vector u∗ which approximates the gradient
direction at the center of the formation. Moreover, thanks to
this result, the parameter κ has less influence in the improved
algorithm, thus we can consider κ = 1.

Remark 3 The gradient direction estimated by the agents
will be the velocity reference of the formation center to steer
the fleet of agents to the source location. If the formation is
moving, the gradient of the signal distribution in the circle
center is also moving and the concentration measurements
does not satisfy the periodic properties anymore. Therefore,
the consensus algorithm makes that the agents would esti-
mate the gradient direction before a period T . A detailed
investigation of our algorithms when the formation moves
along the estimated gradient direction towards the source
location is our next research goal.

B. Simulations

The simulations show the same circular formation of five
agents from the previous simulations. In Figs. 4 and 5 the
improved distributed algorithm (12) from Corollary 1 is
implemented with κ = 1 by a circular formation centered
at c = (2, 2)T and at source location, respectively. The
measured signal is the same as in previous simulations.
Due to the circular level sets of the signal propagation the
gradient vector ∇ρ(c) provides the adequate direction to
steer the formation to the source location. Both figures (a)
show two snapshots, the initial conditions and the stable
situation at t = 50s. Both figures (b) show the components
of consensus variable zk. This algorithm allows to remove
the oscillations and the final vectors zk (red lines) are parallel
to the gradient direction for all the agents (blue line). The
problem of oscillations when the formation is centered at
source location is also solved and the final directions zk are
equal to zero, i.e., the formation decides to stay in the desired
location. The estimated directions zk converge to the gradient
direction approximated by the mean vector u∗ for any initial
conditions.

In Fig. 6 the same algorithm (12) is implemented
with an elliptical signal distribution defined by ρ(x, y) =
100e−(x2/10+y2/2)/10. The estimated directions zk converge
to the gradient direction ∇ρ(c). In this case, this direction
will not directly steer the formation to the source location,
but a formation moving along the respective gradient direc-
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Fig. 6. Simulation of the distributed algorithm (12) by a circular formation
of five agents centered at c = (2, 2)T . The function ρ representing the
source centered at the origin has elliptical level sets.

tion will be progressively steered towards the source over
several consecutive steps.

VI. CONCLUSIONS

This paper presents a cooperative multi-agent algorithm to
estimate the gradient direction of a signal distribution. This
distributed algorithm uses the concentration measurements
of the signal obtained by a group of vehicles uniformly
distributed in a fixed circular formation. Our approach takes
into account the communication constraints of the network,
avoiding the case of all-to-all communication. To achieve
this objective, a first distributed consensus algorithm based
on instantaneous sensor measurements is presented. Then, we
propose an improved algorithm based on the average inputs.
We note that if the formation is fixed, this second algorithm
reaches exact consensus and converge to the gradient direc-
tion at the formation center.

This analysis requires that formation is fixed. Our final
objective is to use this estimated direction to locate the
source. Then, our next research aim is to analyze and
improve these algorithms when the formation moves along
the estimated gradient direction towards the source location.
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[19] M. Krstić and H.-H. Wang, “Stability of extremum seeking feedback
for general nonlinear dynamic systems,” Automatica, vol. 36, pp. 595–
601, 2000.
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