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A new type of approximating curve for finding a particular zero of the sum of two maximal monotone operators in a Hilbert space is investigated. This curve consists of the zeros of perturbed problems in which one operator is replaced with its Yosida approximation and a viscosity term is added. As the perturbation vanishes, the curve is shown to converge to the zero of the sum that solves a particular strictly monotone variational inequality. As an offspring of this result, we obtain an approximating curve for finding a particular zero of the sum of several maximal monotone operators. Applications to convex optimization are discussed.

1 Problem statement A central problem which arises in various areas of nonlinear analysis and its applications is the inclusion problem find

x ∈ zer(A + B) = z ∈ H | 0 ∈ Az + Bz , (1.1) 
where A and B are maximal monotone operators from a real Hilbert space H to its power set 2 H , e.g., [START_REF] Attouch | A general duality principle for the sum of two operators[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Mercier | Inéquations Variationnelles la Mécanique[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II/B -Nonlinear Monotone Operators[END_REF]. In many instances, (1.1) admits multiple solutions and one can select a particular point x 0 ∈ zer(A + B) by solving the variational inequality

x 0 ∈ zer(A + B) and (∃ v 0 ∈ V x 0 )(∀z ∈ zer(A + B)) x 0 -z | v 0 ≤ 0, (1.2) 
1 where V : H → 2 H is a strictly monotone operator referred to as a viscosity operator. Bringing into play the normal cone operator (see (1.8)), we can conveniently rewrite (1.2) as 0 ∈ N zer(A+B) x 0 + V x 0 .

(1.3)

We shall investigate the problem of solving (1.3) under the following standing assumptions (see Section 1.1 for notation).

Assumption 1.1

(i) A and B are maximal monotone operators from H to 2 H such that A+B is maximal monotone and zer(A + B) = ∅.

(ii) V : H → 2 H is a maximal monotone operator which satisfies the following properties.

(a) V is uniformly monotone in the sense that there exists an increasing function c : [0, +∞[ → [0, +∞[ that vanishes only at 0 such that lim t→+∞ c(t)/t = +∞ and (∀(x, u) ∈ gr V )(∀(y, v) ∈ gr V ) x -y | u -v ≥ c( x -y ).

(1.4) (b) V maps every bounded subset of H into a bounded set.

It follows from [START_REF] Combettes | Approximating curves for nonexpansive and monotone operators[END_REF]Theorem 3.10] that, under Assumption 1.1, the solution x 0 to (1.3) is uniquely defined and so is the approximating curve (x ε ) ε∈]0,1[ defined by

(∀ε ∈ ]0, 1[) 0 ∈ Ax ε + Bx ε + εV x ε . (1.5) 
Moreover, x ε → x 0 when ε ↓ 0 (historically, the earliest result in this direction was obtained in [START_REF] Bruck | A strongly convergent iterative solution of 0 ∈ U (x) for a maximal monotone operator U in Hilbert space[END_REF] with A = 0 and V = Id, in which case x 0 is the zero of B of minimum norm). The asymptotic behavior of approximating curves plays a central role in proving the convergence of parent discrete or continuous dynamical systems for solving (1.3), e.g., [START_REF] Ya | A new approach to investigation of evolution differential equations in Banach spaces[END_REF][START_REF] Attouch | A dynamical approach to convex minimization coupling approximation with the steepest descent method[END_REF][START_REF] Bruck | A strongly convergent iterative solution of 0 ∈ U (x) for a maximal monotone operator U in Hilbert space[END_REF][START_REF] Chidume | Approximation of solutions of nonlinear equations of Hammerstein type in Hilbert space[END_REF][START_REF] Reich | Constructing zeros of accretive operators II[END_REF]. However, inclusions involving, as in (1.5), several set-valued operators are not easily dealt with and neither are the associated dynamical systems. A common relaxation of Problem (1.1) is obtained by replacing A with its Yosida approximation (see (1.7)), which is a better-behaved, single-valued, Lipschitz continuous operator. In the context of discrete dynamical systems, such relaxations lead to splitting algorithms that have been studied in several places, e.g., [START_REF] Bauschke | The asymptotic behavior of the composition of two resolvents[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Mahey | Partial regularization of the sum of two maximal monotone operators[END_REF][START_REF] Mercier | Inéquations Variationnelles la Mécanique[END_REF]. The objective of the present paper is to investigate the asymptotic behavior of an approximating curve obtained by replacing A with Yosida approximations in (1.5). More precisely, our main result (Theorem 3.1) establishes the strong convergence to the solution x 0 to (1.3) of the inexact approximating curve

(x ε,φ(ε) ) ε∈]0,1[ defined by (∀ε ∈ ]0, 1[) 0 ∈ φ(ε) Ax ε,φ(ε) + Bx ε,φ(ε) + εV x ε,φ(ε) + e ε , (1.6) 
under suitable conditions on the function φ : ]0, 1[ → ]0, 1[ and the error process (e ε ) ε∈]0,1[ . The outline of the remainder of the paper is as follows. In Section 2, we provide the preliminary results that will be required to obtain our main result on the asymptotic behavior of (1.6) in Section 3. Finally, in Section 4, we address the case of more than two operators. Applications to convex optimization are discussed.

Notation

Throughout, H is a real Hilbert space with scalar product • | • , norm • , and identity operator Id. The symbols → and ⇀ denote, respectively, strong and weak convergence.

Let M : H → 2 H be a set-valued operator. Then dom M = x ∈ H | M x = ∅ is the domain of M , ran M = u ∈ H | (∃ x ∈ H) u ∈ M x its range, zer M = x ∈ H | 0 ∈ M x its set of zeros, and gr M = (x, u) ∈ H × H | u ∈ M x its graph. The inverse of M is the operator M -1 : H → 2 H with graph (u, x) ∈ H × H | u ∈ M x , the resolvent of M is J M = (Id +M ) -1 , and the Yosida approximation of M of index φ ∈ ]0, +∞[ is φ M = 1 φ (Id -J φM ). (1.7)
Moreover, M is γ-strongly monotone for some γ ∈ ]0, +∞[ if M -γ Id is monotone. For background on monotone operators, see [START_REF] Aubin | Set-Valued Analysis[END_REF] and [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II/B -Nonlinear Monotone Operators[END_REF].

The projection operator onto a nonempty closed convex subset C of H is denoted by P C , its distance function by d C , and its normal cone operator by N C , i.e.,

N C : H → 2 H : x → u ∈ H | (∀y ∈ C) y -x | u ≤ 0 , if x ∈ C; ∅, otherwise. (1.8) A function f : H → ]-∞, +∞] is proper if dom f = x ∈ H | f (x) < +∞ = ∅; in this case, its subdifferential is ∂f : H → 2 H : x → u ∈ H | (∀y ∈ H) y -x | u + f (x) ≤ f (y) . (1.9) Moreover, f is γ-strongly convex for some γ ∈ ]0, +∞[ if f -γ • 2 /2 is convex. The class of proper lower semicontinuous convex functions from H to ]-∞, +∞] is denoted by Γ 0 (H). Now let f ∈ Γ 0 (H). The conjugate of f is the function f * ∈ Γ 0 (H) defined by f * : u → sup x∈H x | u -f (x)
and the Moreau envelope of index φ ∈ ]0, +∞[ of f is the finite and continuous convex function

φ f : x → inf y∈H f (y) + x -y 2 /(2φ).
For every x ∈ H, the function y → f (y) + x -y 2 /2 admits a unique minimizer, which is denoted by prox f x. We have prox f = J ∂f and [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] 

(∀φ ∈ ]0, +∞[) ∇ φ f = φ (∂f ) = 1 φ (Id -prox φf ) = prox f * /φ (•/φ). (1.10)
For background on convex analysis, see [START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF].

Preliminary results

Lemma 2.1 Let u and v be points in H, and let φ and ρ be real numbers in [0, +∞[. Then

φu -ρv | v -u ≤ 1 4 φ v 2 + ρ u 2 .
(2.1)

Proof. We have 0 ≤ 2u -v 2 = 4 u 2 -4 u | v + v 2 . Hence, φu | v ≤ φ( u 2 + v 2 /4). Likewise, ρv | u ≤ ρ( v 2 + u 2 /4
). Adding these two inequalities yields (2.1).

Lemma 2.2 Let M : H → 2 H be a maximal monotone operator and suppose that Assumption 1.1(ii) is satisfied. Then the inclusion 0 ∈ M x + V x possesses exactly one solution.

Proof. Assumption 1.1(ii)(b) implies that V is locally bounded. Consequently, it results from [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II/B -Nonlinear Monotone Operators[END_REF]Theorem 32.G] that V -1 is surjective. Thus, 

dom M ⊂ dom V = ran V -1 = H (2.
(ε n ) n∈N in ]0, 1[ such that ε n ↓ 0, x εn ⇀ x and 1 M εn x εn → 0 ⇒ (∀ε ∈ ]0, 1[) x ∈ zer M ε . (2.3)
The following result is an extension of [14, Theorem 3.10] which allows for inexact inclusions.

Theorem 2.4 Let (M ε ) ε∈]0,1[ be a family of maximal monotone operators from H to 2 H such that C = ε∈]0,1[ zer M ε = ∅, and suppose that Assumption 1.1(ii) is satisfied. Then there exists a unique point x 0 ∈ C such that 0 ∈ N C x 0 + V x 0 . Moreover, the inclusions

(∀ε ∈ ]0, 1[) 0 ∈ M ε x ε + εV x ε + e ε , where e ε ∈ H, (2.4) 
define a unique family (x ε ) ε∈]0,1[ . Now suppose that e ε /ε → 0 as ε ↓ 0 and that (x ε ) ε∈]0,1[ is A-focused with respect to (M ε ) ε∈]0,1[ . Then x ε → x 0 as ε ↓ 0.

Proof. By maximal monotonicity of the operators (M -1 ε ) ε∈]0,1[ , the sets (zer M ε ) ε∈]0,1[ are closed and convex [START_REF] Aubin | Set-Valued Analysis[END_REF]Proposition 3.5.6.1]. Thus C is nonempty, closed, and convex, and N C is therefore maximal monotone [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II/B -Nonlinear Monotone Operators[END_REF]Example 32.15]. Consequently, it follows from Lemma 2.2 that x 0 is uniquely defined. Since the operators ε -1 (M ε + e ε ) ε∈]0,1[ are maximal monotone, it also follows from Lemma 2.2 that the family (x ε ) ε∈]0,1[ is uniquely defined. The same argument also shows that the auxiliary family of inclusions

(∀ε ∈ ]0, 1[) 0 ∈ M ε y ε + εV y ε (2.5)
defines a unique approximating curve (y ε ) ε∈]0,1[ . Moreover, [14, Theorem 3.10] asserts that

(y ε ) ε∈]0,1[ is A-focused with respect to (M ε ) ε∈]0,1[ ⇒ y ε → x 0 as ε ↓ 0. (2.6)
It follows from (2.4) and (2.5) that, for every ε ∈ ]0, 1[, there exist points

v ε ∈ V x ε and w ε ∈ V y ε such that -εv ε -e ε ∈ M ε x ε and -εw ε ∈ M ε y ε . (2.7)
Using the monotonicity of the operators (M ε ) ε∈]0,1[ and the uniform monotonicity of V , we obtain

(∀ε ∈ ]0, 1[) 0 ≤ x ε -y ε | w ε -ε -1 e ε -v ε (2.8) and (∀ε ∈ ]0, 1[) c( x ε -y ε ) ≤ x ε -y ε | v ε -w ε , (2.9) 
respectively. Adding (2.8) to (2.9), and then using Cauchy-Schwarz, we obtain

(∀ε ∈ ]0, 1[) c( x ε -y ε ) ≤ - 1 ε x ε -y ε | e ε ≤ x ε -y ε e ε ε .
(2.10)

Now suppose that e ε /ε → 0 as ε ↓ 0. Then it follows from (2.10) that there exists β ∈ ]0, +∞[ such that

(∀ε ∈ ]0, 1[) x ε = y ε ⇒ c( x ε -y ε ) x ε -y ε ≤ β. (2.11)
Hence, since lim t→+∞ c(t)/t = +∞, we infer from (2.11) that ( x ε -y ε ) ε∈]0,1[ is bounded and, in turn, from (2.10) that x ε -y ε → 0 as ε ↓ 0.

(2.12)

In addition, since the operators

( 1 M ε ) ε∈]0,1[ are Lipschitz continuous [7, Theorem 3.5.9(ii)], we obtain 1 M ε x ε -1 M ε y ε → 0 as ε ↓ 0. Altogether, if (x ε ) ε∈]0,1[ is A-focused with respect to (M ε ) ε∈]0,1[ , (y ε ) ε∈]0,1[ is likewise.
In view of (2.6) and (2.12), we conclude that x ε → x 0 as ε ↓ 0.

The following theorem, which is of interest in its own right, will also be required. It is a natural extension of the well-known Brézis-Crandall-Pazy condition [START_REF] Brézis | Perturbations of nonlinear maximal monotone sets in Banach space[END_REF]. Theorem 2.5 Let M 1 and M 2 be maximal monotone operators from H to 2 H . Suppose that Assumption 1.1(ii) is satisfied and consider the inclusions

(∀ρ ∈ ]0, 1[) 0 ∈ ρ M 1 z ρ + M 2 z ρ + V z ρ .
(2.13)

Then the following hold.

(i) The family (z ρ ) ρ∈]0,1[ is uniquely defined.

(ii) The following conditions are equivalent:

(a) There exists a unique point

z 0 ∈ H such that 0 ∈ M 1 z 0 + M 2 z 0 + V z 0 . (b) The family ( ρ M 1 z ρ ) ρ∈]0,1[ is bounded. (iii) If one of the conditions in (ii) is satisfied, then z ρ → z 0 as ρ ↓ 0.
Proof. (i): It follows from [7, Theorem 3.5.9] that the operators ( ρ M 1 ) ρ∈]0,1[ are maximal monotone with domain H. In turn, [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II/B -Nonlinear Monotone Operators[END_REF]Theorem 32.I] asserts that the operators ( ρ M 1 +M 2 ) ρ∈]0,1[ are maximal monotone. Thus, we obtain the desired conclusion through Lemma 2.2.

(ii): We first suppose that there exists a point z 0 ∈ H such that

0 ∈ M 1 z 0 + M 2 z 0 + V z 0 . (2.14)
Note that, since M 1 + M 2 + V is strictly monotone, this point is necessarily unique. Now fix ρ ∈ ]0, 1[. We deduce from (2.14), (2.13), and (i) that there exist u 0 ∈ M 1 z 0 , v 0 ∈ V z 0 , and

v ρ ∈ V z ρ such that -u 0 -v 0 ∈ M 2 z 0 and -ρ M 1 z ρ -v ρ ∈ M 2 z ρ . (2.15)
Hence, the monotonicity of M 2 yields

z ρ -z 0 | u 0 -ρ M 1 z ρ ≥ z ρ -z 0 | v ρ -v 0 , (2.16) 
and, in view of the monotonicity of V , we obtain

z ρ -z 0 | u 0 -ρ M 1 z ρ ≥ 0. (2.17)
On the other hand, the inclusions u 0 ∈ M 1 z 0 and ρ M 1 z ρ ∈ M 1 (J ρM 1 z ρ ), together with the monotonicity of M 1 , lead to the inequality

z 0 -J ρM 1 z ρ | u 0 -ρ M 1 z ρ ≥ 0. (2.18) Adding (2.17) to (2.18) results in 0 ≤ z ρ -J ρM 1 z ρ | u 0 -ρ M 1 z ρ = ρ ρ M 1 z ρ | u 0 -ρ M 1 z ρ 2 . (2.19) 
Consequently, Cauchy-Schwarz yields

ρ M 1 z ρ ≤ u 0 . (2.20)
Conversely, suppose that (ii)(b) is satisfied, i.e., there exists β ∈ ]0, +∞[ such that

sup ρ∈]0,1[ ρ M 1 z ρ ≤ β. (2.21)
It suffices to show the existence of a point z 0 ∈ H such that 0 ∈ M 1 z 0 +M 2 z 0 +V z 0 as its uniqueness will follow from the strict monotonicity of M 1 + M 2 + V . Let us first prove that z ε -z ρ → 0 as ε ↓ 0 and ρ ↓ 0. To this end, take ε and ρ in ]0, 1[. By (2.13) and (i), there exist

v ε ∈ V z ε and v ρ ∈ V z ρ such that -ε M 1 z ε -v ε ∈ M 2 z ε and -ρ M 1 z ρ -v ρ ∈ M 2 z ρ . (2.22)
On the one hand, the monotonicity of M 2 and the uniform monotonicity of V yield

c( z ε -z ρ ) ≤ z ε -z ρ | ρ M 1 z ρ -ε M 1 z ε . (2.23)
On the other hand, it follows from the monotonicity of M 1 and the inclusions

ε M 1 z ε ∈ M 1 (J εM 1 z ε ) and ρ M 1 z ρ ∈ M 1 (J ρM 1 z ρ ) that 0 ≤ J ρM 1 z ρ -J εM 1 z ε | ρ M 1 z ρ -ε M 1 z ε . (2.24) c( z ε -z ρ ) ≤ ε( ε M 1 z ε ) -ρ( ρ M 1 z ρ ) | ρ M 1 z ρ -ε M 1 z ε ≤ 1 4 (ε + ρ)β 2 . (2.25)
Thus, z ε -z ρ → 0 as ε ↓ 0 and ρ ↓ 0.

(2.26)

Now let (ρ n ) n∈N be an arbitrary sequence in ]0, 1[ such that ρ n ↓ 0 as n → +∞. We deduce from (2.26) that (z ρn ) n∈N is a Cauchy sequence. Hence, there exists a point z 0 ∈ H such that 

z ρn → z 0 as n → +∞. Let us show that 0 ∈ M 1 z 0 + M 2 z 0 + V z 0 . First,
v ∈ V z 0 . (2.28) Likewise, since -v ρ kn -ρ kn M 1 z ρ kn ⇀ -v -u,
0 ∈ M 1 z 0 + M 2 z 0 + V z 0 .
(iii): Suppose that there exists z 0 ∈ H such that 0 ∈ M 1 z 0 + M 2 z 0 + V z 0 and let ρ ∈ ]0, 1[. Then there exist u 0 ∈ M 1 z 0 , v 0 ∈ V z 0 , and v ρ ∈ V z ρ such that (2.15) holds. In turn, (2.16) is satisfied and the uniform monotonicity of V leads to

c( z ρ -z 0 ) ≤ z ρ -z 0 | u 0 -ρ M 1 z ρ .
(2.30)

Adding this inequality to (2.18), and then using Cauchy-Schwarz and (2.20), we obtain

c( z ρ -z 0 ) ≤ z ρ -J ρM 1 z ρ | u 0 -ρ M 1 z ρ ≤ ρ ρ M 1 z ρ u 0 -ρ M 1 z ρ 2 ≤ ρ u 0 2 . (2.31)
We conclude that z ρ → z 0 as ρ ↓ 0. 3 The visco-penalization approximating curve Theorem 3.1 Suppose that Assumption 1.1 is satisfied. Then there exists a unique point x 0 ∈ zer(A + B) such that 0 ∈ N zer(A+B) x 0 + V x 0 .

(3.1)

Moreover, given φ : ]0, 1[ → ]0, 1[, the inclusions

(∀ε ∈ ]0, 1[) 0 ∈ φ(ε) Ax ε,φ(ε) + Bx ε,φ(ε) + εV x ε,φ(ε) + e ε , where e ε ∈ H, (3.2) 
define a unique family (x ε,φ(ε) ) ε∈]0,1[ . Now suppose that c is continuous, that (φ(ε) + e ε )/ε → 0 as ε ↓ 0, and that one of the following holds:

(i) x 0 ∈ int dom A. (ii) x 0 ∈ int dom B.
(iii) A and B satisfy the "angle property"

(∃ σ 1 ∈ R)(∃ σ 2 ∈ [0, +∞[)(∃ σ 3 ∈ [0, +∞[)(∀ρ ∈ ]0, 1[)(∀(x, u) ∈ gr B) ρ Ax | u ≥ -σ 1 ( ρ Ax) + σ 2 u -σ 3 , (3.3) 
and one of the following holds:

(a) dom B is bounded.

(b) V is Lipschitz continuous and strongly monotone.

Then x ε,φ(ε) → x 0 as ε ↓ 0.

Proof. The set zer(A + B) is nonempty and, since (A + B) -1 is maximal monotone, it is also closed and convex [7, Proposition 3.5.6.1]. Hence, N zer(A+B) is maximal monotone [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II/B -Nonlinear Monotone Operators[END_REF]Example 32.15]. The existence and uniqueness of x 0 in (3.1) therefore follow from Lemma 2.2. On the other hand, arguing as in the proof of Theorem 2.5(i), we obtain the maximal monotonicity of the operators ε -1 ( φ(ε) A+B+e ε ) ε∈]0,1[ and, in turn, the existence and uniqueness of (x ε,φ(ε)

) ε∈]0,1[ via Lemma 2.2.
Using once again Lemma 2.2, we observe that the inclusions

(∀ε ∈ ]0, 1[) 0 ∈ (A + B)y ε + εV y ε + e ε (3.4)
also define a unique approximating curve (y ε ) ε∈]0,1[ . Now suppose that e ε /ε → 0 as ε ↓ 0. Then, upon setting M ε ≡ A + B in Theorem 2.4, we get

y ε → x 0 as ε ↓ 0, ( 3.5) 
since the A-focusing property of (y ε ) ε∈]0,1[ follows at once from the sequential closedness of gr(A+B) in H weak × H strong , which is guaranteed by the maximal monotonicity of A + B [7, Proposition 3.5.6.2]. Next, we shall show that there exist η ∈ ]0, 1] and τ ∈ ]0, +∞[ such that

(∀ε ∈ ]0, η[) c( x ε,φ(ε) -y ε ) ≤ τ φ(ε) ε . (3.6) 
For this purpose, take ε and ρ in ]0, 1[. As seen above, there exists a unique point

x ε,ρ ∈ dom B such that 0 ∈ ρ Ax ε,ρ + Bx ε,ρ + εV x ε,ρ + e ε . (3.7) 
It follows from (3.7) and (3.2) that there exist points v ε,ρ ∈ V x ε,ρ and w ε ∈ V x ε,φ(ε) such that

-ρ Ax ε,ρ + εv ε,ρ + e ε ∈ Bx ε,ρ (3.8) 
and

-φ(ε) Ax ε,φ(ε) + εw ε + e ε ∈ Bx ε,φ(ε) . (3.9)
Consequently, the monotonicity of B yields

0 ≤ x ε,φ(ε) -x ε,ρ | ρ Ax ε,ρ -φ(ε) Ax ε,φ(ε) -ε x ε,φ(ε) -x ε,ρ | w ε -v ε,ρ , (3.10) 
and we deduce from (1.4) that

εc( x ε,φ(ε) -x ε,ρ ) ≤ x ε,φ(ε) -x ε,ρ | ρ Ax ε,ρ -φ(ε) Ax ε,φ(ε) . (3.11) 
On the other hand, the inclusions ρ Ax ε,ρ ∈ A(J ρA x ε,ρ ) and φ(ε) Ax ε,φ(ε) ∈ A(J φ(ε)A x ε,φ(ε) ), (3.12) and the monotonicity of A lead to the inequality

0 ≤ J ρA x ε,ρ -J φ(ε)A x ε,φ(ε) | ρ Ax ε,ρ -φ(ε) Ax ε,φ(ε) . (3.13) 
Adding (3.11) to (3.13), and then using Lemma 2.1, we obtain

εc( x ε,φ(ε) -x ε,ρ ) ≤ φ(ε)( φ(ε) Ax ε,φ(ε) ) -ρ( ρ Ax ε,ρ ) | ρ Ax ε,ρ -φ(ε) Ax ε,φ(ε) ≤ 1 4 φ(ε) ρ Ax ε,ρ 2 + ρ φ(ε) Ax ε,φ(ε) 2 . (3.14)
Note that, since V satisfies Assumption 1.1(ii), so does V ε = εV + e ε . Hence, applying Theorem 2.5 with M 1 = A, M 2 = B, and V ε instead of V , we deduce from the existence of y ε in (3.4) that the family ρ Ax ε,ρ ρ∈]0,1[ is bounded and that

x ε,ρ → y ε as ρ ↓ 0. (3.15)
More precisely, it follows from (3.4) that there exists a point u ε ∈ Ay ε such that

-u ε ∈ By ε + εV y ε + e ε (3.16)
and, proceeding as in (2.15)-(2.20), we obtain

(∀ρ ∈ ]0, 1[) ρ Ax ε,ρ ≤ u ε . (3.17)
We shall now show that if one of conditions (i)-(iii) holds, then

(∃ η ∈ ]0, 1])(∃ τ ∈ ]0, +∞[) sup ε∈]0,η[ sup ρ∈]0,1[ ρ Ax ε,ρ 2 ≤ 4τ. ( 3.18) 
(i) Suppose that x 0 ∈ int dom A. Then, by [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II/B -Nonlinear Monotone Operators[END_REF]Proposition 32.33], A is locally bounded at x 0 and, therefore, there exists a bounded neighborhood X 1 of x 0 such that A(X 1 ) is bounded. On the other hand, it follows from (3.5) that there exists

η ∈ ]0, 1] such that (∀ε ∈ ]0, η[ ) y ε ∈ X 1 . Hence, (∀ε ∈ ]0, η[) u ε ∈ Ay ε ⊂ A(X 1
). We thus obtain the boundedness of (u ε ) ε∈]0,η[ and therefore (3.18) via (3.17).

(ii) Suppose that x 0 ∈ int dom B. As in (i), there exists a bounded neighborhood X 2 of x 0 such that B(X 2 ) is bounded. However, by (3.5), there exists η ∈ ]0, 1] such that (∀ε ∈ ]0, η[ ) y ε ∈ X 2 . On the other hand, (e ε ) ε∈]0,η[ lies in some bounded set U and, by Assumption 1.1(ii)(b), V (X 2 ) is bounded. Altogether, we derive from (3.16) that -(u ε ) ε∈]0,η[ lies in the bounded set B(X 2 ) + ε∈]0,η[ εV (X 2 ) + U . In view of (3.17), we obtain (3.18).

(iii) Suppose that (3.3) holds. We deduce from (3.3) and (3.8) that

ρ Ax ε,ρ | ρ Ax ε,ρ + εv ε,ρ + e ε ≤ (σ 1 -σ 2 )( ρ Ax ε,ρ ) -σ 2 (εv ε,ρ + e ε ) + σ 3 . (3.19) 
Therefore, using Cauchy-Schwarz and setting ω = sup ε∈]0,1[ e ε , we obtain

ρ Ax ε,ρ 2 ≤ ρ Ax ε,ρ εv ε,ρ + e ε + |σ 1 -σ 2 | + σ 2 εv ε,ρ + e ε + σ 3 ≤ ρ Ax ε,ρ ε v ε,ρ + κ 1 + σ 2 ε v ε,ρ + κ 2 , (3.20) 
where κ 1 = ω + |σ 1 -σ 2 | and κ 2 = σ 2 ω + σ 3 . We now consider two cases. (b) Suppose that V is β-Lipschitz continuous (hence single-valued) and γ-strongly monotone, for some β and γ in ]0, +∞[. Fix z ∈ dom A ∩ dom B, v ∈ Bz, and set w = V 0 and

r ρ = ρ Az. Then v ε,ρ ≤ v ε,ρ -w + w ≤ β x ε,ρ + w . (3.21) Moreover, r ρ + v ∈ ( ρ A + B)z and we derive from (3.7) that -(εv ε,ρ + e ε ) ∈ ( ρ A + B)x ε,ρ .
Hence, by monotonicity of ρ A + B,

r ρ + v + εv ε,ρ + e ε | x ε,ρ -z ≤ 0. (3.22)
Now let r 0 be the element of minimal norm in Az. Then r ρ ≤ r 0 [7, Theorem 3.5.9]. Hence, upon setting κ 5 = r 0 + v + ω and κ 6 = κ 5 z , we deduce from (3.22) and the Cauchy-Schwarz inequality that

ε x ε,ρ | v ε,ρ ≤ κ 5 x ε,ρ + ε z v ε,ρ + κ 6 . (3.23)
On the other hand, the γ-strong monotonicity of V yields

γ x ε,ρ 2 ≤ x ε,ρ | v ε,ρ -w ≤ x ε,ρ | v ε,ρ + w x ε,ρ . (3.24)
By first combining (3.23) and (3.24), and then using (3.21), we obtain

γ(ε x ε,ρ ) 2 ≤ ε 2 x ε,ρ | v ε,ρ + w (ε x ε,ρ ) ≤ κ 5 (ε x ε,ρ ) + z (ε v ε,ρ ) + w (ε x ε,ρ ) + κ 6 ≤ κ 5 (ε x ε,ρ ) + β z (ε x ε,ρ ) + z w + w (ε x ε,ρ ) + κ 6 . (3.25)
In other words, there exist constants κ 7 and κ 8 in [0, +∞[, which are independent from ε and ρ, such that

(ε x ε,ρ ) 2 ≤ κ 7 (ε x ε,ρ ) + κ 8 . (3.26)
Accordingly, sup ε∈]0,1[ sup ρ∈]0,1[ ε x ε,ρ < +∞ and, in view of (3.21), we have

sup ε∈]0,1[ sup ρ∈]0,1[ ε v ε,ρ < +∞. (3.27)
Therefore, it follows from (3.20) that there exist constants κ 9 and κ 10 in [0, +∞[, which are independent from ε and ρ, such that ρ Ax ε,ρ 2 ≤ κ 9 ρ Ax ε,ρ + κ 10 . This shows that (3.18) holds with η = 1.

To complete the proof, let us observe that (3.14) and (3.18) yield

(∀ε ∈ ]0, η[)(∀ρ ∈ ]0, 1[) c( x ε,φ(ε) -x ε,ρ ) ≤ τ ε (φ(ε) + ρ). (3.28)
In view of (3.15), if c is continuous, passing to the limit when ρ ↓ 0 in (3.28) yields (3.6). Thus, if φ(ε)/ε → 0 as ε ↓ 0, we obtain x ε,φ(ε) -y ε → 0 as ε ↓ 0 and, in view of (3.5), we conclude that x ε,φ(ε) → x 0 as ε ↓ 0.

Remark 3.2 (infeasible case) Suppose that Assumption 1.1 is satisfied, except that we now assume that zer(A + B) = ∅. In addition, suppose that φ(ε) + e ε → 0 as ε ↓ 0 in (3.2). Then

x ε,φ(ε) → +∞ as ε ↓ 0. (3.29)
Proof. Suppose that (3.29) is not true. Then there exists a decreasing sequence (ε n ) n∈N in ]0, 1[ that converges to 0 and such that (x εn,φ(εn) ) n∈N is bounded. In view of (3.2), there exists a sequence (v εn ) n∈N in H such that (∀n ∈ N) v εn ∈ V x εn,φ(εn) and -(ε n v εn + e εn ) ∈ ( φ(εn) A + B)x εn,φ(εn) .

(3.30)

Since Assumption 1.1(ii)(b) implies that (v εn ) n∈N is bounded, we have

ε n v εn + e εn → 0. (3.31)
On the other hand, we can extract a subsequence (x ε kn ,φ(ε kn ) ) n∈N such that By setting V = Id and e ε ≡ 0 in Theorem 3.1, we obtain our first corollary.

x ε kn ,φ(ε kn ) ⇀ x, (3.32 
Corollary 3.4 Suppose that Assumption 1.1(i) is satisfied, let φ : ]0, 1[ → ]0, 1[ be such that φ(ε)/ε → 0 as ε ↓ 0, and set x 0 = P zer(A+B) (0). Then the inclusions

(∀ε ∈ ]0, 1[) 0 ∈ φ(ε) Ax ε,φ(ε) + Bx ε,φ(ε) + εx ε,φ(ε) (3.33) 
define a unique family (x ε,φ(ε) ) ε∈]0,1[ , and x ε,φ(ε) → x 0 as ε ↓ 0 if one of the following holds:

(i) x 0 ∈ (int dom A) ∪ (int dom B).
(ii) A and B satisfy (3.3).

Remark 3.5

(i) In [START_REF] Moudafi | On the regularization of the sum of two maximal monotone operators[END_REF]Theorem 3], the convergence of (x ε,φ(ε) ) ε∈]0,1[ in Corollary 3.4 is announced without any additional hypothesis such as (i) or (ii). However, it is not clear to us how (3.18) can be satisfied without such an hypothesis.

(ii) Suppose that A = 0 in Corollary 3.4. Then we obtain the strong convergence of the approximating curve (x ε ) ε∈]0,1[ defined by

(∀ε ∈ ]0, 1[) 0 ∈ Bx ε + εx ε (3.34)
to the zero x 0 of B of minimum norm as ε ↓ 0. This classical result is due to Bruck [START_REF] Bruck | A strongly convergent iterative solution of 0 ∈ U (x) for a maximal monotone operator U in Hilbert space[END_REF]. When B = ∂f with f ∈ Γ 0 (H), we recover the standard Tikhonov regularization setting [START_REF] Tikhonov | Solution of Ill-Posed Problems[END_REF].

Our second corollary deals with a visco-penalization method for finding a specific minimizer of the sum of two convex functions. We require the following notion of an inexact minimizer. Definition 3.6 Let f : H → ]-∞, +∞] be a proper function and let e ∈ H. Then Argmin ≈e f =

x ∈ H | -e ∈ ∂f (x) .

Corollary 3.7 Let f and g be functions in Γ 0 (H) such that the set Z of minimizers of f + g is nonempty and such that the cone generated by dom f -dom g is a closed vector subspace. Let h ∈ Γ 0 (H) be a finite function that maps every bounded subset of H into a bounded set, and which is uniformly convex in the sense that there exists an increasing function c : [0, +∞[ → [0, +∞[ that vanishes only at 0 such that lim t→+∞ c(t)/t = +∞ and

(∀x ∈ H)(∀y ∈ H)(∀α ∈ ]0, 1[) h αx + (1 -α)y + α(1 -α)c( x -y ) ≤ αh(x) + (1 -α)h(y). (3.35)
Then h admits a unique minimizer x 0 over Z. Moreover, given φ : ]0, 1[ → ]0, 1[, the inexact minimization problems

(∀ε ∈ ]0, 1[) x ε,φ(ε) ∈ Argmin ≈eε φ(ε) f + g + εh , where e ε ∈ H, (3.36) 
define a unique family (x ε,φ(ε) ) ε∈]0,1[ . Now suppose that c is continuous, that (φ(ε) + e ε )/ε → 0 as ε ↓ 0, and that one of the following holds:

(i) x 0 ∈ int dom f .
(ii) x 0 ∈ int dom g.

(iii) f and g satisfy

(∃ σ 1 ∈ R)(∃ σ 2 ∈ [0, +∞[)(∃ σ 3 ∈ [0, +∞[)(∀ρ ∈ ]0, 1[)(∀(x, u) ∈ gr ∂g) g(prox ρf x) ≤ g(x) + ρ σ 1 prox f * /ρ (x/ρ) + σ 2 u + ρσ 3 , (3.37)
and one of the following holds:

(a) dom g is bounded.

(b) h is strongly convex and differentiable with a Lipschitz continuous gradient.

Then x ε,φ(ε) → x 0 as ε ↓ 0.

Proof. Set A = ∂f , B = ∂g, and V = ∂h. Our hypotheses on f and g, [START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF]Theorem 3.1.11], and the sum rule for subdifferentials [START_REF] Attouch | Duality for the sum of convex functions in general Banach spaces[END_REF] (see also [25, Then it follows from (1.10), (1.9), and (3.37) that

(∀ρ ∈ ]0, 1[) ρ (∂f )x | u = x -prox ρf x | u /ρ ≥ g(x) -g(prox ρf x) /ρ ≥ -σ 1 prox f * /ρ (x/ρ) + σ 2 u -σ 3 = -σ 1 ( ρ (∂f )x) + σ 2 u -σ 3 , (3.38) 
and we obtain (3.3). Finally, if dom g is bounded, so is dom ∂g ⊂ dom g, while the conditions in (iii)(b) imply that V = ∇h is Lipschitz continuous and strongly monotone. (ii) V : H → 2 H is a maximal monotone operator which is γ-strongly monotone for some γ ∈ ]0, +∞[, and which maps every bounded subset of H into a bounded set.

Theorem 4.2 Suppose that Assumption 4.1 is satisfied. Then there exists a unique point

x 0 ∈ zer( m i=1 A i ) such that 0 ∈ N zer( P m i=1 A i ) x 0 + V x 0 . (4.2)
Moreover, given φ : ]0, 1[ → ]0, 1[, the inclusions

(∀ε ∈ ]0, 1[) 0 ∈ m i=1 φ(ε) A i x ε,φ(ε) + εV x ε,φ(ε) + e ε , where e ε ∈ H, (4.3) 
define a unique family (x ε,φ(ε) ) ε∈]0,1[ . Now suppose that (φ(ε) + e ε )/ε → 0 as ε ↓ 0 and that x 0 ∈ int m i=1 dom A i . Then x ε,φ(ε) → x 0 as ε ↓ 0.

Proof. We reformulate our m-operator problem as a 2-operator problem in a product space (similar setups are considered in [START_REF] Pierra | Decomposition through formalization in a product space[END_REF] and [START_REF] Spingarn | Partial inverse of a monotone operator[END_REF]). Let H be the Hilbert space obtained by endowing the Cartesian product H m with the scalar product 

A : H → 2 H : x → m × i=1 A i x i , (4.4) 
D = (x, . . . , x) ∈ H | x ∈ H , and 
V : H → 2 H : x → 1 m m × i=1 V x i . (4.5) 
It is easily checked that A is maximal monotone with Yosida approximations

(∀φ ∈ ]0, +∞[) φ A : x → φ A i x i ) 1≤i≤m . (4.6) 
Moreover, since D is a closed vector subspace of H, (1.8) yields 

(∀x ∈ H) N D x = D ⊥ = u ∈ H | m i=1 u i = 0 , if x ∈ D; ∅, otherwise. ( 4 
(∀ε ∈ ]0, 1[) 0 ∈ φ(ε) Ax ε,φ(ε) + N D x ε,φ(ε) + εV x ε,φ(ε) + e ε ;
(4.9) (c) the strong convergence of (x ε,φ(ε) ) ε∈]0,1[ to x 0 as ε ↓ 0 if φ(ε)/ε → 0 as ε ↓ 0 and x 0 ∈ int dom A. 

∈ N Z x + V x ⇔ (∃ v ∈ V x) -v ∈ N Z x ⇔ (∃ v ∈ V x) - m i=1 v i ∈ N Z x and m i=1 v i ∈ V x ⇔ 0 ∈ N Z x + V x. (4.11) 
In view of (a), we therefore have x 0 = (x 0 , . . . , x 0 ), where x 0 is the unique solution to (4.2). Next, we observe that (4.9) and (4.7) imply that (x ε,φ(ε) ) ε∈]0,1[ lies in D. Hence, (∀ε ∈ ]0, 1[)(∃ x ε,φ(ε) ∈ H) x ε,φ(ε) = (x ε,φ(ε) , . . . , x ε,φ(ε) ). (4.12)

Let us show that the inclusions (4.9) in H are equivalent to the inclusions (4.3) in H. We derive from (4.9), (4.6), and (4.7) that, for every ε ∈ ]0, 1[, there exists (v ε,i ) 1≤i≤m ∈ (V x ε,φ(ε) ) m such that φ(ε)

A i x ε,φ(ε) + εm -1 v ε,i + m -1 e ε 1≤i≤m ∈ D ⊥ , i.e., m i=1 φ(ε)

A i x ε,φ(ε) + εm -1 m i=1 v ε,i + e ε = 0 or, equivalently, -m i=1 φ(ε)

A i x ε,φ(ε) -e ε = εm -1 m i=1 v ε,i ∈ εV x ε,φ(ε) since V x ε,φ(ε) is convex. This shows that (x ε,φ(ε) ) ε∈]0,1[ satisfies (4.3). Conversely, arguing along the same lines, we deduce that, if (x ε,φ(ε) ) ε∈]0,1[ satisfies (4.3), then (x ε,φ(ε) ) ε∈]0,1[ = (x ε,φ(ε) , . . . , x ε,φ(ε) ) ε∈]0,1[ satisfies (4.9). Therefore, we derive from (b) the existence and uniqueness of the curve (x ε,φ(ε) ) ε∈]0,1[ in (4.3). Finally, if φ(ε)/ε → 0 as ε ↓ 0 and x 0 ∈ int m i=1 dom A i , then x 0 ∈ int dom A and (c) yields x ε,φ(ε) -x 0 2 = m -1 |||x ε,φ(ε)x 0 ||| 2 → 0 as ε ↓ 0.

Corollary 4.3 Let (f i ) 1≤i≤m be functions in Γ 0 (H) such that the sets (dom f i ) 1≤i≤m are open and satisfy m i=1 dom f i = ∅, and such that the set Z of minimizers of m i=1 f i is nonempty. Let h ∈ Γ 0 (H) be a finite function that maps every bounded subset of H into a bounded set, and which is γ-strongly convex for some γ ∈ ]0, +∞[. Then h admits a unique minimizer x 0 over Z. Moreover, given φ : ]0, 1[ → ]0, 1[, the inexact minimization problems Proof. Arguing as in the proof of Corollary 3.7, we learn that this is a special case of Theorem 4.2 with (∀i ∈ {1, . . . , m}) A i = ∂f i and V = ∂h. Note that the hypotheses on (f i ) 1≤i≤m imply that x 0 ∈ m i=1 dom f i = m i=1 int dom f i = int m i=1 dom A i .

Remark 2 . 6

 26 In particular, if V = Id -h, where h ∈ H, then Assumption 1.1(ii) is satisfied and Theorem 2.5 reduces to the Hilbert space version of results found in [9,Section 2].

≤ κ 3 ρ

 3 (a) Suppose that dom B is bounded. Then (3.7) implies that sup ε∈]0,1[ sup ρ∈]0,1[ x ε,ρ < +∞ and Assumption 1.1(ii)(b) yields sup ε∈]0,1[ sup ρ∈]0,1[ v ε,ρ < +∞. Consequently, it follows from (3.20) that there exist constants κ 3 and κ 4 in [0, +∞[, which are independent from ε and ρ, such that ρ Ax ε,ρ 2Ax ε,ρ + κ 4 . Thus, (3.18) holds with η = 1.

Remark 3 . 3

 33 ) for some x ∈ H. Moreover, it follows from Assumption 1.1(i) and [3, Proposition 5.3] that the sequence ( φ(ε kn ) A + B) n∈N graph-converges to A + B. Consequently, (3.30), (3.31), (3.32), and [2, Proposition 3.59] force x ∈ zer(A + B), which contradicts our assumption. Condition (i) in Theorem 3.1 is satisfied in particular when dom A is open. For instance, if A = ∂f , where f ∈ Γ 0 (H), then int dom f ⊂ dom ∂f ⊂ dom f [25, Theorem 2.4.9] and therefore dom A is open if dom f is open. Regarding Condition (iii) in Theorem 3.1, the "angle property" (3.3) was first used in [10, Section 2.3] with σ 1 = σ 2 = 0.

Remark 3 . 8 1 (

 381 Consider the special case of Corollary 3.7 in which the following additional assumptions are made: f is the indicator function of a nonempty closed convex subset C of H, g is Lipschitz continuous on H, h = • 2 /2, e ε ≡ 0, and φ : ε → ε θ , where θ ∈ ]1, +∞[. Then(3.36) becomes(∀ε ∈ ]0, 1[) x ε = argmin y∈H 1 2ε θ d 2 C (y) + g(y) + ε 2 y 2 ,(3.39)and Corollary 3.7 asserts that the unique curve (x ε ) ε∈]0,1[ thus defined converges strongly to the minimizer of g over C of minimal norm as ε ↓ 0. This result was established in[START_REF] Attouch | A dynamical approach to convex minimization coupling approximation with the steepest descent method[END_REF] Example p. 531].4 The case of m operatorsIn this section we derive from the results of Section 3 a visco-penalization approximating curve for the problem find x ∈ zer i) (A i ) 1≤i≤m is a finite family of maximal monotone operators from H to 2 H such that zer m i=1 A i = ∅ and int m i=1 dom A i = ∅.

. 7 )

 7 Now let us set Z = zer A + N D and Z = zer( m i=1 A i ). Then it follows at once from (4.4) and (4.7) that Z = D ∩ Z m . (4.8) Consequently, Assumption 4.1(i) implies that Z = ∅ and that dom N D ∩ int dom A = D ∩ int dom A = ∅. In turn, it follows from [26, Theorem 32.I] that A + N D is maximal monotone. Thus, Assumption 1.1(i) is satisfied by A and N D . On the other hand, it follows from Assumption 4.1(ii) that V satisfies Assumption 1.1(ii) with c : t → γt 2 /m in (1.4). Now suppose that e ε /ε → 0 as ε ↓ 0 and set (∀ε ∈ ]0, 1[) e ε = m -1 (e ε , . . . , e ε ). Then |||e ε |||/ε = m -1/2 e ε /ε → 0 as ε ↓ 0 and we can apply Theorem 3.1 in H to the operators A, N D , and V to obtain: (a) the existence and uniqueness of a point x 0 ∈ Z such that 0 ∈ N Z x 0 + V x 0 ; (b) the existence and uniqueness of the curve (x ε,φ(ε) ) ε∈]0,1[ defined by

  Now let x = (x, . . . , x) be an arbitrary point in Z. Then (1.8) and (4.8) yieldN Z x = u ∈ H | (∀z ∈ D ∩ Z m ) zx | u ≤ 0 = u ∈ H (∀z ∈ Z) m i=1 z -x | u i ≤ 0 = u ∈ H m i=1 u i ∈ N Z x .(4.10)Note that, by maximal monotonicity of V , the set V x is convex [7, Proposition 3.5.6.1]. It therefore results from (4.10) and (4.5) that 0

(

  ∀ε ∈ ]0, 1[) x ε,φ(ε) ∈ Argmin ≈eε m i=1 φ(ε) f i + εh , where e ε ∈ H,(4.13)define a unique family (x ε,φ(ε) ) ε∈]0,1[ . Now suppose that (φ(ε) + e ε )/ε → 0 as ε ↓ 0. Then x ε,φ(ε) → x 0 as ε ↓ 0.

  Let (M ε ) ε∈]0,1[ be a family of maximal monotone operators from H to 2 H and let (x ε ) ε∈]0,1[ be a family in H. Then (x ε ) ε∈]0,1[ is A-focused with respect to (M ε ) ε∈]0,1[ if, for every x ∈ H and every sequence

	2)
	and, since [26, Theorem 32.I] implies that M + V is maximal monotone, the conclusion follows from
	[14, Lemma 3.8(ii)].
	Definition 2.3 [14, Definition 3.1]

  since the sequence ( ρn M 1 z ρn ) n∈N is bounded, there exist a point u ∈ H and a subsequence (ρ kn ) n∈N of (ρ n ) n∈N such that ρ kn M 1 z ρ kn ⇀ u. Since z ρ kn → z 0 , using the fact that ( ρ kn M 1 ) n∈N graph-converges to M 1 (see[2, p. 360]) and applying [2, Proposition 3.59], we obtain

u ∈ M 1 z 0 .

(2.27) Furthermore, since (z ρn ) n∈N is bounded, so is (v ρn ) n∈N in the light of Assumption 1.1(ii)(b). Therefore, passing to a further subsequence if necessary, we assume that v ρ kn ⇀ v for some v ∈ H. Since V is maximal monotone, gr V is sequentially closed in H strong × H weak [7, Proposition 3.5.6.2] and therefore, recalling that z ρ kn → z 0 , we get

  Theorem 2.8.7]) imply that Z = zer(A + B), and that A and B satisfy Assumption 1.1(i). Moreover, we infer from [25, Theorem 3.5.10] and[START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF] Theorem 2.4.13] that V satisfies Assumption 1.1(ii). Next, it follows from [25, Theorem 2.9.1] that a point x 0 ∈ H minimizes h over Z if and only if 0 ∈ N Z x 0 + ∂h(x 0 ), i.e., if and only if (3.1) holds. Since int dom f = int dom ∂f and int dom g = int dom ∂g [25, Theorem 2.4.9], this is clearly the case for (i) and (ii). Next, let us show that (3.37) ⇒ (3.3). To this end, fix (x, u) ∈ gr ∂g.

	Furthermore, it follows from Definition 3.6, [25, Theorem 2.8.7], and (1.10) that (3.36) reduces to
	(3.2). To apply Theorem 3.1, it remains to check that items (i)-(iii) imply their counterpart in
	Theorem 3.1.

  • | • : (x, y) → m i=1 x i | y i , where x = (x i ) 1≤i≤m and y = (y i ) 1≤i≤m denote generic elements in H. We shall denote by |||•||| the associated norm on H. Now set
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