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Abstract

Audio rendering systems are always slightly nonlinear. Their non-linearities must be modeled and mea-
sured for quality evaluation and control purposes. Cascade of Hammerstein models describes a large class
of non-linearities. To identify the elements of such a model, a method based on a phase property of
exponential sine sweeps is proposed. A complete model of non-linearities is identified from a single mea-
surement. Cascade of Hammerstein models corresponding to an electro-dynamic loudspeaker are identified
this way. Harmonic distortion is afterward predicted using the identified models. Comparisons with clas-
sical measurements techniques show that harmonic distortion is accurately predicted by the identified
models over the entire audio frequency range for any desired input amplitude.

1 Introduction

Even if great efforts have been done to reduce or control their nonlinear behavior, loudspeakers are still
the least linear part of the audio chain. The study of their non-linearities is thus of great importance. In
electrodynamic loudspeakers, a motor converts the electrical signal in motion and makes a cone vibrate.
The piston-like movement of the cone generates the sound field. The motor induces non-linearities because
of non-uniform magnetic field, Eddy currents and variations of the electrical inductance with displace-
ments [1, 2]. Significant excursion induces nonlinear bending in the cone and a nonlinear behavior of the
suspensions [3].

Traditional nonlinear measurement methods [4] give total harmonic distortion (THD), harmonic dis-
tortion of order n (HDn) or inter-modulation products (IMP) generated by loudspeakers. These quantities
are measured using pure tones at a given amplitude and frequency. They do not describe non-linearities
themselves but only some of their effects for these arbitrary excitations. Moreover, experimental processes
involved in those methods are very time-consuming if a wide range of frequencies and amplitudes is to be
covered. There is thus a real need for rapid model based procedures to measure non-linearities.

In order to represent the nonlinear behavior of electro-dynamical loudspeakers, different physical mod-
els have already been built. Their formulation was either completely analytical [5, 6] or based on the
finite element method [7]. Klippel [8] proposed to use a Volterra series expansion [9] and identified it
from measurements. However, all these physical models remains complex and heavy to manipulate. In
Refs. [10, 11], it is thus suggested to use simpler nonlinear models, cascade of Hammerstein models, to
represent and identify different audio systems, including acoustical transducers. Cascade of Hammerstein
models [12] are a subclass of Volterra models and represents exactly systems having diagonal Volterra Ker-
nels. These models are composed of N branches in parallel, made of one static polynomial non-linearity
followed by one linear filter (see Fig. 1).

Some methods exist to identify the structural elements of a cascade of Hammerstein models. Gallman
[12] and Hawksford [11] proposed a method using Gaussian noise at different amplitudes as inputs. The
estimation procedures are strongly based on the knowledge of the order of non-linearity of the polynomial
expansion, which is unknown in practical cases. Farina [10] proposed another method using sine sweeps
with frequency varying exponentially with time. Only an upper bound of the order of non-linearity of the
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model has to be assumed. However this method permits the separation of the contributions of the different
orders of non-linearity and not the complete identification of the Kernels of the system. Recently, Novák
et al. [13] have identified Kernels from the contributions of the different orders of non-linearity using a
least mean square minimization procedure. Of the examples given in Ref. [13], this method does not seem
to be very accurate. An extension of the method of Farina [10] is proposed here. It yields directly all the
Kernels of a cascade of Hammerstein models from the contributions of the different orders of non-linearity
obtained as in Ref. [10].

In this paper, cascade of Hammerstein models corresponding to an electro-dynamical loudspeaker
are identified using the previously introduced method from a single measurement. With the identified
models, total harmonic distortion (THD) and nth−order harmonic distortion (HDn) are predicted for any
desired amplitude and frequency. The THD and HDn at different frequencies and amplitudes are also
evaluated by classical means. The agreement between THD and HDn predicted by the identified cascade of
Hammerstein models and measured classically is very good in the entire audio frequency range, for a wide
range of amplitudes. This method is thus a very reliable manner to quickly characterize non-linearities
generated by electro-dynamic loudspeakers.

2 Mathematical foundations of the method

Mathematical foundations of the method used for direct identification of the elements of a cascade of
Hammerstein models are given in this section. This method is an extension of the procedure initially
proposed by Farina [10].

2.1 Cascade of Hammerstein models

A cascade of Hammerstein models is a nonlinear model made of N parallel branches. Each branch is
composed of one nonlinear static polynomial element followed by a linear one hn(t) [12], as shown in
Fig. 1.

Figure 1: Block diagram representation of a cascade of Hammerstein models.

Mathematically, the relation between the input e(t) and the output s(t) of such a system is given by
Eq. (1), where ∗ denotes the convolution.

s(t) =

N
∑

n=1

hn ∗ en(t) (1)

In this model, each impulse response hn(t) is convolved with the input signal elevated to its nth power
and the output s(t) is the sum of these convolutions. The first impulse response h1(t) represents the
linear response of the system. The other impulse responses {hn(t)}n∈{2...N} model the non-linearities. All
impulse responses are assumed to be zero-mean. The family {hn(t)}n∈{1...N} will be referred to as the
Kernels of the model. Any cascade of Hammerstein models is fully represented by its Kernels.

2.2 A cascade of Hammerstein models fed with sine sweeps

To experimentally cover the frequency range on which the system under study is to be identified, sines
with time-varying frequencies are interesting signals:
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∀t ∈ R e(t) = cos [Φ(t)] (2)

If e(t) is the input of the cascade of Hammerstein models, the output of the nonlinear block of the ith

branch (see Fig. 1) is:

ei(t) = cosi[Φ(t)] (3)

Using Chebyshev polynomials, ei(t) is rewritten in Eq. (4) as a linear function of {cos[kΦ(t)]}k∈[1,i].
The coefficient of the matrix C of order 8 are given by Eq. (15)

∀i ∈ {1 . . . N} cosi[Φ(t)] =

i
∑

k=0

C(i, k) cos[kΦ(t)] (4)

2.3 Exponential sine sweeps

When the instantaneous frequency of e(t) is increasing exponentially from f1 to f2 (f1, f2 > 0) in a time
T , such a signal is referred to as an “exponential sine sweep” [10, 14] and its instantaneous phase is given
by :

∀t ∈ R Φ(t) = 2π
f1T

ln f2
f1

(e
t
T

ln
f2
f1 − 1)− π/2 (5)

The corresponding instantaneous frequency of e(t) is :

∀t ∈ R f(t) =
Φ′(t)

2π
= f1e

t
T

ln
f2
f1 (6)

Thus f(0) = f1 and f(T ) = f2. The frequency range [f1, f2] corresponds to the band of interest of the
system under test.

2.4 Fundamental phase property

From Eq. (5), it can be shown that this type of signal exhibits the phase property given by Eq. (7).

∀k ∈ N
∗, ∀t ∈ R :

kΦ(t) = Φ(t+
T ln k

ln f2
f1

)− (k − 1)(
π

2
+

2πf1T

ln f2
f1

)
(7)

By choosing Tm = (2mπ −
π

2
)
ln f2/f1
2πf1

with m ∈ N
∗, the second term in Eq. (4) becomes a multiple

of 2π and one obtains Eq. (8) which is another way to express the kth term of the linearization given in
Eq. (4).

∀k ∈ N
∗, cos [kΦ(t)] = cos [Φ(t+∆tk)] (8a)

with ∆tk =
Tm ln k

ln f2/f1
(8b)

For any Tm-long logarithmic sweep, multiplying the phase by a factor k results in the same signal,
but in advance in the time domain by ∆tk. As can be seen from Eqs. (8a) and (8b), this time advance
depends only on the sweep parameters Tm, f1, f2 and on k. In Refs. [10, 15], similar time advances were
obtained using different arguments.

The fact that Tm must take only a discrete set of values to ensure the fundamental phase property
(8a) has been first highlighted in Ref. [13] but is mathematically demonstrated here for the first time.

One should note that e(t) has been designed for all t with its instantaneous frequency increasing from
f1 to f2 between t = 0 and t = T . In practice, signals are defined only on [0, T ]. Thus the phase property is
not valid on the whole support of the function. The phase property becomes false when the instantaneous
frequency of cos [kΦ(t)] is outside the frequency range of interest (i.e. [f1, f2]).
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2.5 Inverse convolution

Using the Eqs. (8a) and (1), one obtains:

s(t) =

N
∑

n=1

gn ∗ e(t+∆tn)

with gn(t) =

N
∑

k=n

C(k, n)hk(t)

(9)

In order to separately identify each Kernel of the cascade of Hammerstein models, a signal y(t) which
looks like an inverse in the convolution sense of e(t) is needed. Unfortunately, such an inverse does not
necessarily exist mathematically. A band-limited inverse y(t) can however easily be defined such that it
satisfies:

y(t) ∗ e(t) = sinc(2f2t)− sinc(2f1t) = d(t) (10)

with sinc(x) = sin(πx)/πx.
d(t) can be seen as a band-limited Dirac Function, since its Fourier transform is 1[−f2,−f1]∩[f1,f2](f).

Then, Y (f), the Fourier transform of the inverse filter y(t) can be built in the frequency domain using
Eq. (11).

Y (f) =
1

E(f)
1[−f2,−f1]∩[f1,f2](f)

≃
1

E(f)

1

1 + ǫ(f)

(11)

In practice, the filter Y (f) should be build by replacing the discontinuous function 1[−f2,−f1]∩[f1,f2](f)

by a function of the type
1

1 + ǫ(f)
. This function ensures a smoother transition between the two frequency

domains and thus generates less unwanted side effects in the time domain.
ǫ(f) is a frequency dependent real parameter chosen as equal to 0 in the bandwidth and as having a

large value outside of it, with a continuous transition between the two domains.
In so doing, y(t) can be considered as an inverse of e(t) in the sense of convolution in the frequency

range [f1, f2].

2.6 Kernels Identification in the temporal domain

After convolving the output of the cascade of Hammerstein models s(t) given in Eq. (9) with y(t), one
obtains :

y ∗ s(t) =

N
∑

i=1

gi(t+∆tn) ∗ d(t) (12)

Since it is assumed that the system under study has no significant behavior outside [f1, f2], gi(t+∆ tn) ∗ d(t)
reduces to gi(t+∆tn), and then :

y ∗ s(t) =

N
∑

i=1

gi(t+∆tn) (13)

In Fig. 2, y ∗ s(t) is represented. Because ∆tn ∝ ln(n) and f2 > f1, the higher the order of linearity
n is, the more in advance the corresponding gn(t) will be. Thus, if Tm is long enough, the different gn(t)
will not overlap. It is then easy to separate them by windowing in the time domain. The separation of the
contribution of the different orders of non-linearity by using exponential sweeps, which is mathematically
demonstrated here, is already experimentally well known in the audio community [14, 16, 17].

After that step, using Eq. (14), the family {hn(t)}n∈[1,N ] of the Kernels of the cascade of Hammerstein
models can be fully extracted.







h1(t)
...

hN (t)






= AT

c







g1(t)
...

gN (t)






(14)
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Figure 2: Separation of the different order of non-linearity after convolution with y(t).

The matrix A of order 8, which is sufficient for practical use, is given in Eq. (15). AT
c is the matrix

AT without the first column and the first row, and (.)T stands for matrix transposition. Then, as all the
Kernels of the system are known, the system under study is completely identified.

A = C−1 =









1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 2 0 0 0 0 0
0 −3 0 4 0 0 0 0
1 0 −8 0 8 0 0 0
0 5 −20 0 0 16 0 0
−1 0 18 0 −48 0 32 0
0 −7 0 56 0 −112 0 64









(15)

3 Practical implementation

In this section, the practical discrete-time implementation of the method presented in section 2 is described.

3.1 Overview of the method

In Fig. 3, a global overview of the procedure is given. It can be decomposed in the following steps:

1. Design of the input sweep e(t) using Eq. (5). The choice of f1, f2 and T is discussed in section 3.2.

2. Playing e(t) and recording s(t). The sampling frequency fs must be chosen to avoid any aliasing
effects caused by the digital to analog converter in the frequency range of interest [f1, f2].

3. Generation of the inverse filter y(t) according to Eq. (11). A convenient way to implement this filter
is described in section 2.5.

4. Convolution of the output signal s(t) with the inverse filter y(t) as in Eq. (13). This can be done in
the frequency domain with a sufficient number of points to avoid temporal aliasing.

5. Windowing in the temporal domain (cf. Fig. 2) to obtain the {gk(t+∆tk)}k∈[1,N ] . Rectangular
windows of constant size τ = 1/2(∆tN −∆tN−1) can be chosen to separate the different orders of
non-linearity. N is the highest desired order in the cascade Hammerstein model.

6. Temporal shift of the different orders of non-linearity to recover {gk(t)}k∈[1,N ]. A shift of a non-
integer number of samples can be performed with a phase shift in the frequency domain.

7. Multiplication with AT
c to access {hk(t)}k∈[1,N ], according to Eq. (14). The matrix A of order 9 is

given in Eq. (15).

3.2 Choice of the parameters (f 1, f 2, T and N)

For satisfactory measurements, the sweep parameters f1, f2, T and N must be well chosen. These choices
must be made considering the following aspects:
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Figure 3: Overview of the method used to identify a Cascade of Hammerstein models.

• The frequencies f1 and f2 must be chosen such that the interesting behavior of the system under
study is in the frequency range [f1, f2].

• The influence of noise on the identification results should also be minimized [15]. By itself, the
exponential sweep rejects correctly uncorrelated noise in quiet environment [18]. Moreover its energy
repartition in frequency is often adapted to the ambient noise [17, 19]. The choice of this signal is
thus interesting from this point of view. If an excellent signal to noise ratio (SNR) is needed, the
longer T , the better the SNR after step 4 will be at a given amplitude of the input signal.

• The number of points to be convolved at step 4 is limited by the available computational power.
Thus, as T increases, the computation time will increase. T must not be too high in order to avoid
long calculation time.

• N should not be underestimated to guarantee good accuracy in identification. The optimal N is
reached when it is impossible to extract the correspondingN th impulse response from the background
noise.

• The different pseudo-impulse responses gk(t) which appear in the temporal domain after the convo-
lution with the inverse signal (step 4, see Fig. 2) must not overlap each other. The global decay time
of the system τglobal is an upper bound of the decay times of each orders of non-linearity. Parameters
f1, f2 and T such that ∆tN −∆tN−1 > τglobal will thus avoid overlapping of the different orders

of non-linearity [19, 20]. Because ∆tN =
Tm lnN

ln f2/f1
, considering the chosen value for N , T must be

chosen to be long enough and f2/f1 not so large in order to respect the previous condition.

4 Modeling electro-dynamic loudspeakers with cascade of Ham-
merstein models

In this section, an electrodynamic loudspeaker is identified as cascade of Hammerstein models using the
method presented in section 2.
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4.1 Experimental setup

Experiments have been conducted on a standard electrodynamic loudspeaker. All measurements have
been made on axis at one meter from the motor with a microphone. Measurements have been done in a
semi-anechoic room. In these conditions, a signal to noise ratio of ≃ 50 dB below 50 Hz and of ≃ 70 dB
above has been reached for pressure amplitudes of ≃ 110 dB.

4.2 Measured cascade of Hammerstein models Kernels

The Kernels corresponding to the system have been measured using the previously described experimental
setup. As the cascade of Hammerstein models is a nonlinear model, its Kernels should be independent
of the amplitude of measurement. To assess this, measurements of the Kernels have been done using
parameters given in Tab. 1 for 10 different amplitudes ranging from 95 to 115 dB in pressure.

Parameter Value
f1 20 Hz
f2 20 kHz
fs 192 kHz
T 15 s
N 5

Table 1: Parameters chosen to identify the simulated system.

Mean measured Kernels and their corresponding standard deviation are given in Fig. 4 for the electro-
dynamical loudspeaker. The amplitude of the different Kernels of order n ≥ 2 decreases with frequency,
which is consistent with the physical analysis of [6]. The linear part, which is by definition independent
of the amplitude, exhibits no variations among the different measurements. The non-linearities have thus
been removed successfully from the linear part using the proposed method. The identified Kernels of
order n ≥ 2 depends slightly on the amplitude at which they have been measured. As a consequence, the
assumption that electro-dynamic loudspeakers can be represented by cascade of Hammerstein models is
a correct approximation in the chosen range of amplitudes.

Figure 4: Mean measured Kernel of the cascade of Hammerstein models (solid line) and the corresponding
standard deviations (dashed lines).

5 Prediction of the harmonic distortion generated by transduc-
ers

In this section, the previously identified cascade of Hammerstein models will be used to predict the
harmonic distortion generated by the electro-dynamic loudspeaker.
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5.1 Link between HDn, THD and cascade of Hammerstein models

To characterize distortion generated by an acoustic transducer, the following approach is classically
adopted. The input of the system is assumed to be sinusoidal, and non-linearities generate harmonic
components at frequencies higher than the input fundamental frequency. The amplitudes of these har-
monics compared to the amplitude of the fundamental are considered as representative of the non-linearity
of the transducer. Total harmonic distortion (THD) and harmonic distortion of order n (HDn) are com-
mon tools to quantify this [4]. The THD is the square root of the ratio of the power contained in the
harmonics to the power contained in the fundamental. The HDn is the same but for the nth harmonic
only.

For a sinusoidal input signal x(t) = X cos(2πft) which enters a cascade of Hammerstein models
identified at the amplitude X0, the output signal z(t) can be written as in Eq. (16) by using Eqs. (1) and
(4).

z(t) =

N
∑

n=1

|Γn(X,nf)| cos [2πnft+ ∠(Γn(X,nf))]

with Γn(X, f) =

N
∑

k=1

(

X

X0

)k

C(k, n)Hk(f)

(16)

THD and HDn can thus be directly identified from Eq. (16) and expressed as:

HDn(X, f) =

∣

∣

∣

∣

Γn(X,nf)

ΓTot(X, f)

∣

∣

∣

∣

(17a)

THD(X, f) =

√

√

√

√

N
∑

n=2

[

Γn(X,nf)

ΓTot(X, f)

]2

(17b)

with ΓTot(X, f) =

√

√

√

√

N
∑

n=1

[Γn(X,nf)]2 (17c)

The knowledge of the Kernels in the frequency range [f1, f2] allows for the direct computation of the
THD and HDn using Eqs. (17). This can be done for any value of input amplitude X and for any frequency
f in [f1, f2]. In the present study, the prediction of the inter-modulation product (IMP) has not been
included for the sake of brevity. Nevertheless, this model is fully able also to predict IMP, or to compute
the output corresponding to any desired signal.

5.2 Prediction of HDn and THD at a given amplitude

Using the different sets of Kernels measured in the previous section, the HDn and THD have been predicted
from Eqs. (17). To compare with, traditional measurements using pure tones have been done using
the experimental protocol depicted in section 4.1. HDn and THD have been measured this way for 50
frequencies between 50 Hz and 12 kHz and for 10 different amplitudes ranging from 95 to 115 dB in
pressure. In Fig. 5 the predictions made using equations (17) with identified Kernels and the traditional
measurements are shown. It can be seen that the agreement between measured and predicted data is very
good over the entire frequency range.

5.3 Prediction of HDn and THD for different amplitudes

To have an overview of the quality of the predictions depending on the amplitude at which Kernels have
been measured (Xm) and on the amplitude at which prediction are made (Xp), a mean error has been
introduced. This error is defined in Eq. 18. This error has been computed for the following frequency
bands: [45, 355] Hz (octave bands centered at 63 Hz, 125 Hz, and 250 Hz), [355, 2800] Hz (octave bands
centered at 500 Hz, 1 kHz and 2 kHz) and [2800, 11200] Hz (octave bands centered at 4 kHz and 8 kHz).
The error in dB in each of these frequency bands is shown in Fig. 6.

∆[fA,fB ](Xm, Xp) = ...

20 log10 mean
[fA,fB ]

|THDm(Xp, f)− THDp(Xm, Xp, f)|
(18)

In Fig. 6 (a), the error in the frequency band [45, 355] Hz is shown. It can be seen that this error is
low, around −11 dB. The minimum of −15 dB is reached when the THD is predicted for low values of Xp.
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Figure 5: Comparisons between measurements (circles) and predictions (solid lines) at 106 dB for the
HD2, HD3 and THD. Kernels identified at 107 dB have been used for predictions.

As the amplitude of prediction Xp increases, the error increases too in this frequency band, but with still
a very good accuracy. In Figs. 6 (b) and (c), errors for frequency bands [355, 2800] and [2800, 11200] Hz
are shown. Error values in these frequency bands are significantly lower than in the previous one. The
minimums of these errors, which are −25 dB and −21 dB, can be seen around the diagonals. Predictions
are then very precise in these frequency bands.

6 Conclusion

In this article a method for the identification of a class of nonlinear systems, referred to as cascade of
Hammerstein models, has been mathematically described and applied on an electro-dynamic loudspeakers.
This method permits the complete identification of the constitutive elements of the model from only one
single measurement. This method is very fast compared to other methods [11, 12] where several repeated
measurements are necessary. The mathematical formalism developed by the authors allows moreover
an extension beyond the simple separation of the different orders of non-linearities initially proposed by
Farina [10].

Harmonic distortion of order n (HDn) and the total harmonic distortion (THD) are afterwards pre-
dicted using the identified Kernels. The originality of the present approach is that HDn and THD are
predicted at different amplitudes. This is an advance compared to the literature where HDn and THD are
usually predicted only for a given amplitude [5, 10, 19]. Results obtained when comparing this approach
to the traditional one at different amplitudes for HDn and THD are very satisfying.

This method is also interesting for transducer quality assessment. Indeed, the present approach gives a
straightforward access to a compact and very fine representation of the linear and nonlinear characteristics
of real transducers. As has been shown in this paper, total harmonic distortion and nth-order harmonic
distortion are precisely predicted by the identified models. However, they badly correlate with subjective
experiments involving transducer’s quality [21]. Nevertheless, as an input-independent model is available,
simulations of the nonlinear responses of identified transducers for any desired input signal (noise, music,
...) can be easily performed. This can be very useful when searching pertinent cues to assess the decreases
of quality caused by non-linearities in acoustical transducers.

In a future work, models of panel-based transducers (distributed mode loudspeakers [22] or multi-
actuator panels [23]) will be identified with the present method. As their physical underlying principle is
different it is not obvious that cascade of Hammerstein models represent them correctly. The influence of
the order of non-linearity N and the sensitivity of the method to ambient noise will also be studied.
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Figure 6: Mean error in the frequency band [45, 355] (a), [355, 2800] (b) and [2800, 11200] Hz (c) for the
electrodynamic loudspeaker. Amplitudes of measurement of the Kernels are given on the x-axis.
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