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Abstract

A method is proposed to identify the mechanical propertfeheskin and core materials of honeycomb sandwich.
All the elastic coéicients and loss-factors that matter in the dynamics of alparke thick-plate approximation

are identified. To this end, experimental natural modesdéigenmodes of the damped system) are compared to the
numerical modes of a large sandwich pamg) fh =~ 80). The chosen generic model for the visco-elastic belavio

of the materials i€(1 + jn). The numerical modes are computed by means of a RayleighpRicedure and their
dampings are predicted according to the visco-elastic indde frequencies and dampings of the natural modes
of the panel are estimated experimentally by means of at@gblution modal analysis technique. An optimisation
procedure yields the desired dheients. A sensitivity analysis assess the reliability & thethod.

1 Introduction

Because of their light weight and the easy adjustment of thechanical properties, honeycomb sandwich panels
are widely used nowadays. However, their structural machhproperties are flicult to predict accurately on
the basis of the material properties and identification gdoces are often needed. Mixed numeriddlrf) /
experimental XP) methods are used to identify the parameters of a model byaong simulated and measured
characteristics (for example modal dampirg¥™ vs. «XF and frequenciegN'™ vs. fXP of the first modes of
the system). In order to obtain good identification restitts,model parameters must be sensitive to the measured
characteristics.

Several authors have addressed the problem of the idetitifiaaf elastic and damping properties of sandwich
panels [1, 2]. The honeycomb sandwich panels raise spefiialdties. In order to consider the honeycomb core as
homogeneous in the in-plane directions, up to a given frecyé, the corresponding wavelengttmust contain at
least 50 cells [3]. For a typical cell side-lengilx, and heighh this implies that the dimensions of a panel must be
such thaty, > A > 50Syex. On the other hand, the panel must appear as a thick-platedih of thin-plate) if the
out-of-plane elastic and damping properties are to be identified. For fexumaves this implies that high-enough
frequencies are at stake/h < 6 [4]. In other words, the panel must be large enough and teergbd dynamics
must include high-enough (but not too high. ..) modes. Dubaéantrinsic dissipations of the materials, the modal
characteristics of high modes may béidult to measure with the Fourier transform (FT) which is tilito modal
overlaps of= 30 % in most implementations. The high-resolution modalyaia (HRMA) technique [5] is an
alternative to the FT for the estimation of modal paramaterto a modal overlap o 70 %.

In the present work, the identification of most elastic amthpliag properties of a honeycomb sandwich structure
is considered by means of the modal analysis of a large papgh(=~ 80). The HRMA technique is used to
estimate modal frequencies and dampings of the first 45 mafdée panel. An optimisation procedure, based on
a numerical thick-plate model is used afterwards to idgitié corresponding elastic and damping properties.
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Figure 1: Geometry of the sandwich plate.

2 Mechanical model of the honeycomb sandwich panels

2.1 Hypotheses

The sandwich panel is made of 3 layers: two identical skirlsanore (Fig. 1). The thicknesses of the core and
the skins ardn® andhs respectively. The thickness of the panehis: h® + 2hs. In the following, "panel” designs

the physical structure whereas "plate” refers to the idedlistructure made out of the equivalent homogeneous
material. The following hypotheses are made on the dynaaiittse panel and plate:

¢ Displacements are small so that the materials and strigchateave linearly.
¢ Only flexural waves are considered.
e The plate is considered to follow the Reissner-Mindlin apgnations (thick-plate model).

e The wavelengths include at least 50 cells; according todBuet al.[3], this ensures that the error on the
modal frequencies of the plate (with a homogeneous equivalere) are less than 2% when compared to
those of the panel as computed by various FE-models.

The skin and core materials are each considered as homaggr@thotropic in thex andy directions, and
viscoelastic.

The formalism chosen for describing the viscoelastic bitavs that of complex moduk = E(1 + ji) which
do not depend on the frequency (see the model of materiaéz:ﬁos 2.2). The Young's and shear moduli and the
Poisson cofticient of the core ar&3, E/, E7, G5 . Gf,. G/,. v/,. v5,. v, andy§ . The same parameters for the
skins are denoted by treindex. The properties of the homogeneous material equivedehe whole sandwich are
denoted by théd index.

The following hypotheses are made on the sandwich panel:

e The sandwich panel is symmetric with respect to its mid-plan

e Skins are very thin compared to the core so that shear strélss skin can be ignoredh®G§, < h°GS, (and
the same in thg direction).

e The core is considered to be very s (« E}, E; < Ej andGj, < G§). Given the generic expression

C 3 hc 3
of the moduli of the homogeneous equivalent mategial= (h) EC+(1- (h) } ES, this ensures that all

in-plane stress in the plate are entirely due to those inkims s

Following these hypotheses, the influenc&bf™, y&SH, ;SH G G, EX E;. G§ v,y is neglected in
what follows. These hypotheses are generally fulfllled mnrm)n honeycomb sandW|cxIlZ| panels The typical orders

of magnitude for the considered parameters in this kind oflgséch panels are:

{hS/hC 10! O
ES/ES ~ ES/ES ~ G, /G§, ~ 108
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2.2 Model of the materials

The damping of plate vibrations hadtérent origins. In the present study, it is assumed that panletate below
their coincidence acoustical frequencies. Consequehtydamping due to acoustical radiation in surrounding air
is very small compared to the structural damping. Among tfferént structural damping models, we have retained
the standard hysteretic model (which is frequency-inddpet) see for example [6]). The relationship between the
stresse” and the strair” in eachy—material ¢ = s, ¢, or H) involves 7 complex numbers and can be written, to
first order inn as:

EX(1+ jn) vixEX[L + i, + 7m0 0 0 0
viyEy[L + (i, +m))] Ej(1+ Jfﬂ) 0 0 0
o7 = 0 0 GL(L + jnk) 0 0 e ()
0 0 0 GlL(1+ jnl) 0
0 0 0 0 Gl (L + in)

The symmetry of the strajstress relation leads to the additional relationship&) = v),E} andn), +n, =
TIV .+ nk which leaves 12 independent real parameters to be idenfiifieghch material (24 altogether). In order to
keep a formal symmetry in the mathematical treatment, ofipede:

V= \Vigvix =, 3)

2.3 Equivalent thick plate

Under the hypothesis and for the orders of magnitude giveedtion 2.1, the honeycomb sandwich panel behaves
in the low frequency range like a homogeneous thick-platee thickness of the plate is chosen totbe Its
mechanical properties are given in Eq. (4) and (5) as funstad the mechanical and geometrical properties of the
skins and the core.

4
GH =Gs |1 ey’ Gl =G5, Gl =G “
A Xz~ Fxz yz
EC (he\? he\® ES (h he\?
M =n§E—§(F) +n§[l—(ﬁ)} ny :'7§E_;(F) +m; 1—(3) -

H b (h°)?
n =fl°—(—) + 15
Xy XHG% h Xy

The 12 independent real paramet@Ss, 7}, E'. ', Gk . i}l . Gl nle. G nfh. vH. !} are to be identified. Their
knowledge yields the elastic and damping properties of &aar of the honeycomb sandwich panel provided that
the 12-equation system formed by Egs. (4) and (5) is indertify suficient condition for that is:

Me =Ty Me=15 m =1

S

C c
X c_Y s c X s

B < s < Twgs < (6)
C

UM
EC E; Gl
with already— < 1, E_S < 1, and— < 1 (see section 2.1). This condition is not satisfied only & #F+
X
codficients are several orders of magnltude Iarger thamtanes. Since this is not the case here and rarely the
case in generl the identification of the!, ..yields a measurement of the mechanical properties afkime

and core materials.

2.4 Potential, kinetic and dissipated energies in the equatent thick-plate
To model the dynamical behaviour of the equivalent homogesehick plate, the first order Reissner-Mindlin
theory [7] has been chosen. The displacem@nts w} in the{X, y, z}-directions respectively are:

U(X, y,Z,t) = _ZCDX(X’ Y, t) U(X, y,Z,t) = _Z(Dy(x’ Y, t) U)(X, y,Z,t) = l,UQ(X, Y, t) (7)

The potential energy of the plate is:

10ne must keep in mind tha{, is not the imaginary part of”.
2]t can be the case when skins are made of metal.
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The shear correction factof_é and«2, account for the fact that Eq. (7) is an approximation:de codficients
depend lightly orzand sections of the plate do not remain plane in the flexufaraetion. The values,; = x, = 1
have been chosen according to the recommendations of [8afatwich panels.

Based on the material model shown in (section 2.2), the lastibn of energy during one cycle is given in
Eq. (10) as:

—- b | D e a
2 2 2
dDy 0D, oD, dwo _ (dwo
=-r ffs[nXDl(a ) +ntD, (6 7 )+7]HD3(ay +77szD4 (I>2 20, — 6 (9y +
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The kinetic energyl of the system is given in Eq. (11) as a functiondgf, ®,, andwp. In this expressiong"
is the density of the equivalent homogeneous thick platehwisi given byhp™ = h®p® + 2hSpS.

oHa? oHa?
= fff u? + 02 +w ff[ ((I>)2(+(D§)+hw(2)
(W) (S)

3 Numerical model of the thick plate

dxdy (11)

In order to compare experimental results to numerical satmis, it is necessary to evaluate the damping factors
of numerical modes. The dynamics of the panel is given by tipotheses listed in section 2.1, the Egs. (2),
and the boundary conditions. Instead of a direct time-natiion of the motion, we model here the damping of
the numerical modes of the associated conservative sysiaher the hyptothesis of light damping. The problem
consists in evaluating the relationships betweernfft& damping factors and thg' loss-factors.

3.1 Modal representation of the system

The honeycomb sandwich panel is considered here as a noareatige systenPyc with N degrees of freedom
g = {gn}. The damping model presented in section 2.2 correspondsdous damping. Under this hypothesis, the
equation of the free motion &y\c can be written as:

MG+Cq+Kg=0 (12)

whereM, C andK are the mass, damping, andffstess matrices. In what follows, the modesfyj- are called
natural modes. We also refer to the associated consengtbtentPc corresponding t€ = 0, whose modes will
be called normal modeg, and the normal frequencidsg.

If Pne is lightly damped, it can be shown [9] that the natural modeség and the natural frequencies are
fn + jan to first order.

Let U, be the potential energy associated with temode ofPyc. It varies in time as exp(2ant) so that the
energy lost by this mode during one cyd¥,, is:

AU, = —2%un (13)
n

Once the mode shapes®§ are known, Egs. (8), (10), and (13) yield the modal dampingsf Pnc -



3.2 Rayleigh-Ritz procedure

A Rayleigh-Ritz procedure has been used to derive the maajgesti\"™ and the modal frequencigd"™ of Pc.
To this end,®4(x, y), ®,(X, y), andwo(X, y) have been projected on an orthonormal polynomial basigdgrd)
satisfying the free-free boundary conditions [10]:

O(xy) = Y Lip(pi) y(xy) = > Mip(Ipjs) wolxy) = > Nipi(¥)pi() (14)
ij i i

The Hamilton principle is applied, leading to Eq. (15). Thieekic and potential energi@sandU, defined in
section 2.4 are calculated with Egs. (14).

AT-U) _, AT-V) _, aT-V)_

V(i j) €[0,Q-1]%: 0 15

(.De0.Q-11": =5 e e (15)
The above system of¥ linear equations can be re-written #{472f2M]& = 0 wheref is the eigenfrequency

and¢ is the eigenvector of unknown ceientsL;j, M;; andN;;. The resolution of this eigenvalue problem gives a

straightforward access to the modal frequendf#§” and mode shaped'™ of Pc.

3.3 Derivation of @\Um

By introducing the numerical mode shagg$™ and frequencie§\""™ found in section 3.2 in the energies expres-
sions of section 2.4, the relations Egs. (16) are obtain&eé. cbdficientst, andun depend only on the geometry
and mass parameters of the plate and on the modal gi4BeFor the subscripts of, {x, v, y, yz Xz xy} have been
replaced by{1, 2,3, 4,5, 6}.

6 6
vne[LN]: To=472f2t, Un= ) Dbk AU =-7 ) mDink (16)
k=1 k=1
Using relations Egs. (16), the expression Eq. (17) of theahddmpingsx\™ can be deduced from Eqg. (13)
using the fact thatl,, = U,, for £c. One can notice thada, is a linear combination of the.

6

_ anUn _ Unk
U ‘;nkDﬁnfntn (7

4 Experimental study of a honeycomb sandwich panel

4.1 Experimental setup

A rectangular honeycomb sandwich panel (No@dxoneycombs core and paper skins) is studied experimentally
The known parameters of the panel are given in table 1. Siggé =~ 80, the panel is considered to satisfy
the Reissner-Mindlin approximations. The panel is suspdrxy thin wires in order to ensure free-free boundary
conditions. It is acoustically excited by an electro-dymeahloudspeaker placed in its vicinity and driven by a
wide-band electrical signal. The panel response was measuith a laser vibrometer pointing in one corner. This
ensures that all modes are present in the response. By measpecially designed excitation signal, the impulse
response of the panel can be reconstructed [11].

I Iy h® h° SHexa o° p°
3915cm 5910cm 02mm 488 mm 4 mm| 37.8 kgm® 713 kgm?®

Table 1: Geometry and mass of the honeycomb sandwich pamel.siie-length of the hexagonal core-cells is
SHexa-

4.2 High resolution modal analysis

The impulse response of the non-conservative system caxpbessed as a summation over its natural modes:

N
h(t) = Z £ exp(i2nfat — ant + jon) (18)
n=1



In order to extract their experimental modal frequendi®s and dampings:X", a recently developed modal
analysis method [5] has been applied to velocity impulsparses of honeycomb sandwich panels as obtained in
section 4.1. In the available noise conditions, the pararsetdf the 45 first modes could be extracted. The modal
damping of the highest modes was50 %, which is out of reach of traditional implementationsttod Fourier
transform, hence our use of the new method.

Using several bandpass filters associated with the ESPRIESMER algorithms (see reference [5] for details),
it is shown that this method yields a precise estimatiorf,ofnd a, in presence of moderate noise: the modal
frequenciesf, can be estimated with a precision®f0.01 % and the modal dampings with a precision=of %.
Moreover, this method allows for the identification of mogakameters of modes having a modal overlap up to
70 %.

5 Optimization procedure

5.1 Estimation method

This section describes how to derif, 7i!, El'. nl!, G, . nk} . G&t. .. G

.M. nlt) from the experimental val-

ues of the modal frequencig$® and dampinga*. Since the modal frequencies of the conservative and the rea
systems are equal to first order (section 3.1), it is validrtd §eparately and successively the elastic constants and
the loss factors.

To first order, the modal frequencies depend only on theieleshstants of the homogeneous equivalent thick-
plate modelE}, E!, G}} . G}, G}, v"'}. Since this dependence is non-linear, a cost fundieis defined (Eq. (19))
and an optimisation procedure based on the gradient-médmbteen implemented.

N FXP _ §Num 2
n n
ce= (")

n=1

(19)

It has been shown in section 3.3 that the dampinments{ar'ﬂ“m}ne[l,,\.] can be expressed as linear combina-
tions of the{n}’, nl', ki . ni%. nt%. nt'} loss factors. Therefore, the latter can be obtained by alsileast mean square
method, with the constraint that loss factors remain passiti

5.2 Results

The optimisation is performed on the 45 first modal frequesn@nd dampings. The numerical model used a
Q = 14-order basis which proved to ensure the convergence diigheer modes values. The identified visco-
elastic parameters of the equivalent homogeneous platggvemein Tab. 2. The relative errors in modal frequencies
and dampings are shown in Fig. 2. It can be seen that the agnéésnvery good for modal frequencies (mean
absolute error of B %). The predicted modal dampings fit well the mean measures, dut the dierence is more
important (mean absolute error of . 2®%).

[= E} S Gy Gy | v 7
Real part 10GPa 14 GPa M6GPa 12MPa 26 MPa0.23 Q33
Loss factor (%) 1.3 14 11 44 81 0 0.1

Table 2: Identified parameters of the homogenised model. coa&cients in the two last columns are mutually
related by the symmetry relationships (cf. section 2.2).

5.3 Sensitivity analysis

The sensitivities of the frequency valuds to the codicients {E},E}', G} .G}, G} are defined a$;, (X) =
ofn [ fn

X \ X
Results are presented in Fig. 3. Since the modal frequeacésery little sensitive to the Poisson @isents,
their sensitivities to these parameters have not beensepted. As expected, it can be seen in Fig. 3a that modes
of the form (Qi) or (j,0) convey a lot of information relatively t&y and E, respectively. Since the thick-plate
model difers from the thin-plate model for the higher frequencieis itormal that there is almost 10 times more
information relative tdGy, and toG,;, in the higher modes than in the lower ones (Fig. 3b). The I@eesitivity of

Gy, to the modal frequencies than that®y; is simply due to the aspect ratio of the plate< 1,).

-1
) . They reflect the information contained in a modal frequeradgtively to the elastic parametet.
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Comparisons between measured and predicted rinedaéncies (left) and dampings (right).

This identification method yields all the mechanical parargeof the sandwich materials that matter dynamically,
under only mild hypotheses. Compared to the method propogeef. [1], it yields loss factors. Compared to the
method proposed by ref. [2], it is considerably easier asteéfao implement: only one vibrating point is measured,
no FEM is needed; it also reaches frequency domains thatsaialy out of reach of the modal analyses based on
the Fourier transform. Incidentally, the method presemhie could be used to access the frequency-dependence
of the loss factors by considering only modes in a given feaqy range. Compared to the static investigations
on each sandwich component, this dynamical method is netrtaitive and the experimental test needs very little
time. Avoiding heavy lab-equipment, it is a good candidataridustrial in-line process of quality control.
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