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Abstract

We prove that any IN-rational sequence s = (sp),>1 of nonnega-
tive integers satisfying the Kraft strict inequality Zn>_1 spk™" < 11s
the enumerative sequence of leaves by height of a rational k-ary tree.
We give an efficient algorithm to get a k-ary rational tree. Particular
cases of this result had been previously proven. We give some par-
tial results in the case of equality. Especially we solve this question
when the associated sequence of internal nodes has a primitive linear
representation.

1 Introduction

This paper is a study of problems linked with coding and symbolic dynamics.
The results can be considered as an extension of the old results of Huffman,
Kraft, McMillan and Shannon on source coding. We actually prove results
on rational sequences of integers that can be realized as the enumerative
sequence of leaves or nodes in a rational tree.

Let s be an IN-rational sequence of nonnegative numbers, that is a se-
quence s = (S,)p>1 such that s, is the number of paths of length n going
from an initial state to a final state in a finite multigraph or a finite automa-
ton. We say that s satisfies the Kraft inequality for a positive integer k if

2on>1 Sk <1



A rational tree is a tree which has only a finite number of non-isomorphic
subtrees. If s is the enumerative sequence of leaves of a rational k-ary tree,
then s satisfies Kraft’s inequality for the integer k.

In this paper, we study the converse of the above property. Consider for
example the series s(z) = 13_222. We have s(1/2) = 1 and we can obtain s
as the enumerative sequence of the tree of the figure below associated with

the prefix code X = (aa)*(ab+ ba + bb) on the binary alphabet {a,b}.

Fig. 1. Tree associated to 3z%(z?)*

Known constructions allow one to obtain a sequence s satisfying Kraft’s
inequality as the enumerative sequence of leaves of a k-ary tree, or as the
enumerative sequence of leaves of a (perhaps not k-ary) rational tree. These
two constructions lead in a natural way to the problem of building a tree
both rational and k-ary. This question was already considered in [10], where
it was conjectured that any IN-rational sequence satisfying Kraft’s inequality
is the enumerative sequence of leaves of a k-ary rational tree.

In this paper, we prove this conjecture in the case where the sequence
satisfies Kraft’s inequality with a strict inequality. Proofs and algorithms
used to establish this result are based on automata theory and symbolic
dynamics. In particular, we use the state splitting algorithm which has
been introduced by R. Adler, D. Coppersmith and M. Hassner in [1] to
solve coding problems for constrained channels by constructing finite-state
codes with sliding block decoders. This was partly based on earlier work of
B. Marcus in [7]. A variant of Franaszek’s algorithm of computation of an
approximate eigenvector makes the algorithms practical.

A variant of the problem considered here consists in replacing the enu-
merative sequence of leaves by the enumerative sequence of all nodes. Soit-
tola ([12]) has characterized the series which are the enumerative sequence
of nodes in a rational tree. We prove that any IN-rational sequence ¢ that
satisfies some necessary conditions: to = 1, ¥n > 1,¢, < kt,,_, the conver-
gence radius of ¢ is strictly greater than 1/k, and such that ¢ has a primitive
linear representation, is the enumerative sequence of nodes by height of a k-
ary rational tree. The proof of this result is based on an extended notion of
state splitting that allows us to output split states without outgoing edges.
The problem of a similar characterization for rational k-ary trees remains
open in the general case.



The paper is organized as follows. We first give basic definitions and
properties of rational objects, sequences and trees. We then give some defi-
nitions coming from the theory of symbolic dynamics. We define the notions
of state splitting, approximate eigenvector and recall the algorithm of [1]. In
Section 3, we establish the announced result (Theorem 1) concerning enu-
merative sequences of leaves and an give example for the construction. Next
we give an eflicient algorithm, that is a variant of Franaszek’s algorithm, to
find approximate eigenvectors. Section 5 devoted to enumerative sequences
of nodes gives an extension (Theorem 2) of the main result of Section 3.

A preliminary shorter version of this paper was presented at the ICALP’97.

2 Definitions and background

2.1 Rational sequences of nonnegative numbers

We denote by G a directed graph with E as its set of edges. We actually use
multigraphs instead of ordinary graphs in order to be able to have several
distinct edges with the same origin and end. Formally a multigraph is given
by two sets I/ (the edges) and V' (the vertices) and two functions from £ to
V which define the origin and the end of an edge. An edge in a multigraph
going from p to ¢ will be noted (p, z,¢) where z € IN. This is equivalent to
number the edges going from p to ¢ in order to distinguish them. We shall
always say “graph” instead of “multigraph”.

In this paper, we consider sequences of nonnegative numbers. Such a
sequence s = (Sn)nZO will be said to be IN-rational if s,, is the number of
paths of length n going from a state in [ to a state in F' in a finite directed
graph G, where I and F are two special subsets of states, the initial and
final states respectively. We say that the triple (G, I, F) is a representation
of the sequence s.

This definition is usually given for the series >, <, s,2" instead of the
sequence s. Any IN-rational sequence s satisfies a recurrence relation with
integer coefficients. However, it is not true that a sequence of nonnegative
integers satisfying a linear recurrence relation is IN-rational. An example
can be found in [5] p. 93.

A well known result in automata theory allows us to use a particular
representation of an IN-rational sequence s. One can choose a representation
(G4, I') of s with a unique initial state 7 and such that :

e no edge is coming in state ¢

e no edge is going out of any state of F.



Such a representation is called a normalized representation. Moreover, it is
possible to reduce to one state the set of final states (see for example [11] p.
14).

We now give some basic definitions about trees. A tree T on a set of
nodes N with a root r is a function 7' : N — {r} — N which associates to
each node distinct from the root its father 7'(n) in such a way that, for each
node n, there is a nonnegative integer h such that 7"(n) = r. The integer h
is the height of the node n. A tree is k-ary if each node has at most k sons.
A leaf is a node without son. We denote by [(T') the enumerative sequence
of its leaves by height, that is the sequence of numbers s,,, where s, is the
number of leaves of T' at height n. A tree is said to be rational if it admits
only a finite number of non isomorphic subtrees. If T is a rational tree, the
sequence [(T") is an IN-rational sequence.

The sequence s = [(T) of a k-ary tree is the length distribution of a
prefix code over a k-letter alphabet. The associate series s(z) = Y, 51 $,2"
satisfies then Kraft’s inequality : s(1/k) < 1. We shall say that Kraft’s
strict inequality is satisfied when s(1/k) < 1. The equality is reached when
each node of the tree has exactly zero or k sons. Conversely, the McMillan
construction establishes that for any series s satisfying Kraft’s inequality,
there is a k-ary tree such that s = [(T'). Moreover, if the series satisfies
Kraft’s equality, then the internal nodes will have exactly &k sons. But the
tree obtained is not rational in general.

It is also easy to see that an IN-rational sequence is the enumerative
sequence of the leaves of a rational tree. A normalized representation can
be used to do that by “developing” the tree. The root will correspond to the
initial state of the graph. If a node of the tree at height n corresponds to a
state ¢ in the graph which has r outgoing edges ending in states jy, j2, . . ., Jr,
it will admit r sons at height n+ 1, each of them corresponding respectively
to the states jy, jo, ..., j, of the graph. The leaves of the tree will correspond
to the final states of the normalized representation. The maximal number
of sons of a node we get is then equal to the maximal number of edges going
out of any state of the graph of this representation.

If s satisfies Kraft’s inequality, the above construction does not lead in
general to a k-ary rational tree. The aim of this paper is to get a k-ary
rational tree 1" such that s = [(7"). This result was conjectured in [10]. We
solve it for all IN-rational sequences satisfying Kraft’s strict inequality and
give a weaker result for the case of equality.



2.2 Approximate eigenvector and state splitting

Let s be an IN-rational sequence and let (G, ¢, I') be a normalized represen-
tation of s. If we identify the initial state ¢ and all final states of F' in a
single state still denoted 7, we get a new graph denoted (&, which is strongly
connected. The sequence s is then the length distribution of the paths of
first returns to state 7, that is of finite paths going from 7 to ¢ without going
through state i. Using the terminology of symbolic dynamics, the graph G
can be seen as an irreducible shift of finite type (see, for example, [3], [4] or
). B

We denote by M the adjacency matrix associated to the graph &, that
is the matrix M = (mz’j)lgi,jgm where n is the number of nodes of G and
where m;; is the number of edges going from state ¢ to state j. By the
Perron-Frobenius theorem (see [6]), the positive matrix M associated to the
strongly connected graph G has a positive eigenvalue of maximal modulus
denoted by A, also called the spectral radius of the matrix. Actually, A only
depends on the series s, 1/A is the minimal modulus of the poles of 1175
The dimension of the eigenspace of A is equal to one. There is a positive
eigenvector (componentwise) associated to A. Moreover, if there is a positive
eigenvector associated to an eigenvalue p, then p = A.

When A is an integer , the matrix admits a positive integral eigenvector.
When A < k, where k is an integer, the matrix admits a k-approxzimate
eigenvector, that is, by definition, a positive integral vector v with Mv < kv.

For example the left side of the figure below gives a representation
(G4, F) of the serie s(z) = 322/(1 — 2%), and the right side gives the asso-
ciated graph Gi. The adjacency matrix of G is

M =

o = O

3
0
1

o = O

Its maximal eigenvalue is A = 2. The components of a positive integral
eigenvector are written on the nodes.

OO S0
® OES oW 0

Fig. 2. Representation (G, ¢, F) Fig. 3. Graph &G



Proposition 1 If s satisfies Kraft’s inequality s(1/k) < 1, then A < k. In
the case of equality where s(1/k) =1 we have A = k.

For a proof, we refer the reader to [3], [4] or [6].

We now define the operation of oulput state splitting in a graph G =
(V,L). Let ¢ be a vertex of GG and let I (resp. O) be the set of edges coming
in ¢ (resp. going out of ¢). Let O = O’ + O” be a partition of O. The
operation of (output) state splitting relative to (O, 0") transforms G into
the graph G' = (V' E’) where V' = (V\{¢})Uq¢'U¢" is obtained from V' by

splitting state ¢ into two states ¢’ and ¢”, and where E’ is defined as follows:

1. All edges of F that are not incident to ¢ are left unchanged.
2. The both states ¢’ and ¢” have the same input edges as ¢.

3. The output edges of ¢ are distributed between ¢’ and ¢” according to
the partition of O into O’ and O”. We denote U’ and U"” the sets of
output edges of ¢ and ¢” respectively :

U'={(d,2z,p)| (q,2,p) € O'} and U" = {(¢",2,p) | (¢,2,p) € O"}.

\@ _|° V‘
o 2

Fig. 4. Graph ¢ Fig. 5. Graph G’
Let us now assume that v is a k-approximate eigenvector for the graph
G. We denote by v, the component of index p of v. All components v,
are positive integers. A state splitting of a state ¢ is said to be admissible
according to k, if the partition in O’ and O” is such that O’ and O” are not
empty and:

k divides Z Uy
(g:z,r)€0’
If the state splitting is admissible (according to k), the vector v’ defined as
follows will be a k-approximate eigenvector for the new graph G’. If pis a

state distinct from ¢’ and ¢" then v, = v,. For states ¢’ and ¢" we have:

! ! !
Vg = — g Uy and Vg = Vg — Vg
(g,z,r)€0’

By the state splitting construction, one can check that M'v' < kv’, where
M is the adjacency matrix of G’.



The state splitting algorithm of [1] ensures that there is a finite number
of state splittings leading to a k-ary graph, that is a graph such that at most
k edges are going out of any state. For the sake of completeness, we briefly
recall the proof. If there is a state ¢ which admits more than k edges going
out of it, we choose k of them and denote by rq,rq,...,r; the sequence of
end states of these edges. We then choose a subset O’ of these &k edges such
that k divides Z(q7x77,)60, v,. This is always possible. Indeed, by considering
the £ 4+ 1 numbers v, , v, + Upy, ..., U + Uy, + -+ -0, We can see that at
least two of them are equal modulo &, and then their difference is equal
to zero modulo k. The partition of the output edges of ¢ in O’ and O”
leads to an admissible state splitting and v; is strictly less than v,. This
point ensures that the process stops after a finite number of splits, the final
number of states being bounded by the sum of the components of the initial
approximate eigenvector. The final graph obtained is k-ary.

We shall compute approximate eigenvectors for the strongly connected
graphs G associated to normalized representations (G, 1, F') of sequences.
We shall then perform admissible state splittings that can be seen either
on the graph G or on the graph G. To do that, we shall associate to each
node of G a value equal to the corresponding component of the approximate
eigenvector of the graph GG. The initial and the final states will have same
value since they correspond to the same state of G.

3 Enumerative sequences of leaves

We now state the result in the case of Kraft strict inequality.

Theorem 1 Let s = (s,),>1 be an IN-rational sequence of nonnegative in-
tegers et let k be an integer such that 3, <1 s,k™" < 1. Then there is a
k-ary rational tree such that s is the enumerative sequence of its leaves.

In order to prove this result, we first prove one lemma that remains
true in the case of equality. We therefore consider an IN-rational sequence
s and an integer k such that 3", <, s, k7" < 1. We begin with a normalized
representation (G, i, F) of the IN-rational sequence s. We denote by M the
adjacency matrix of G and by A its spectral radius. Then A < k. We then
compute a k-approximate eigenvector v = (v, vy, ..., v,)" of the graph G.
By definition, we have Mv < kv. Without loss of generality, we can assume
that state 1 is the initial state in all normalized representations.

Lemma 1 If k divides vy, then there is another normalized representation
for s and a new corresponding approximate eigenvector v’ with v| = vy div k.



Proof: We denote by P the set of states ¢ such that there is in G an edge
denoted (¢, z,t) going from ¢ to a final state ¢ of . Remark that, as state ¢
is equal to state 1 in G, the value of state ¢ is equal to the value of state 1.

Let us first suppose that the initial state 1 does not belong to P. If there
is in P a state ¢ which admits more than one (say n) outgoing edges, we split
q in ¢ and ¢ according to partition (O’, 0") where O' = {(q, z,t)} contains
exactly one edge. Since k divides vy, this state splitting is admissible and
v, = vy div k. Moreover, in the new graph G, ¢’ admits only one outgoing
edge (going to t) and ¢” is either not in P or admits less than n outgoing
edges. By successive state splittings of all states in P” having more than one
outgoing edges, we shall get, in a finite number of steps, a representation such
that all states with one outgoing edge ending in F' have no other outgoing
edges. Under the hypothesis that state 1 does not belong to P, the initial
state has not been split during this process and so each new computed
graph is still a normalized representation of the sequence. We denote again
by (G, 1, F) the final representation obtained for s and by Py the set of
states having one outgoing edge ending in F' in this graph. Remark that
the values of states of P4 are greater than or equal to vy div k. We turn
all values of states of Pj,s: greater than vy div k into vy div k; the vector v
remains a k-approximate eigenvector.

We then transform the representation (G, 1, I') in a new one, (H, ¢, Plast),
where H is the graph obtained from G by adding a state ¢, an edge from ¢
to 1 and by removing all edges of GG going out of a state of F,q. If we look
at paths in GG going from 1 to F, we have just cut the last edge and added
one at the beginning. We assign to state ¢ the value vy div &, and the values
of all states correspond now to a new k-approximate eigenvector for H. We
call this tranformation the “shift” transformation.

Let us now suppose that the initial state 1 belongs to P. We first split,
as explained above, all states of P having more that one outgoing edge. In
this case, state 1 may have been split. We denote by 1(1), 1(2), L), --- 1)
the copies of state 1 obtained by successive state splittings of the initial state
1. We still denote by GG the graph obtained by this transformation and by
Py, the set of states having one outgoing edge ending in F in this graph.
We then transform the representation (G, 1, F') into a new one, (H, ¢, Past),
where H is the graph obtained from G by adding a state ¢, an edge from ¢
to each 1(;y,1 < j < r and by removing all edges of G going out of a state
of Plas- Remark that (r — 1) states among 1(y), 1(3), L(3), .- . 1(,) belong to
Ppuse. We again assign to the state ¢ the value vy div k, and the values of all
states correspond now to a new k-approximate eigenvector for H. O



Corollary 1 If vy is a power of k, then there is another normalized repre-
sentation and a new corresponding approzimate eigenvector v’ with vi = 1.

Proof : If v; = k™, we iterate the construction given in previous lemma

and get vi = 1in m steps. O

Example
Let s be the following series:

*

s(z) = 2% 4 222 (22(22)*)

Here, k =2 and s(1/2) = 1.
In the following pictures, the nodes
are labeled with their value.

First step

Fig. 7. First state splitting
Second step

(2] ONO
g/g Q)

) ()
O =D

Fig. 9. Other state splittings

9

Fig. 6. Initial normalized
representation

Fig. 10. Second “shift”



The last step is described in the proof
of Theorem 1.
It corresponds here to a state splitting
of all states of the graph of value dif-
ferent from 1.

Fig. 11. Last representation
We now prove another lemma which is true only in the case of Kraft
strict inequality.

Lemma 2 Let M be a nonnegative integral matriz. If its spectral radius is
strictly less than k, then there is a k-approzimate eigenvector w of M such
that wy is a power of k.

Proof : Let A (A < k) be the positive real eigenvalue of maximal modulus
of M and let v be an eigenvector associated to A\. We denote by P the set
of positive vectors w such that Mw < kw. The set P is an open set and
v belongs to P. By dividing all components of v par vy, we can assume
that vy is equal to 1. As P is open, there is a positive real ¢ such that
B(v,e) C P, where B(v,e) = {w | v; — ¢ < w; < v; + €}. Let us now
choose an integer m such that 1/k™ < ¢. As B(v,1/k™) C P, we have
{k"w |w € B(v,1/k™)} C P. This set is {w | k™v; — 1 < w; < k™v; 4+ 1}
and contains w where w; = [k™v;|. This vector is a positive integer vector
w with Mw < kw : it is a k-approximate eigenvector. Moreover wy = k™.
O

We now prove Theorem 1.
Proof : (Theorem 1) We begin with a normalized representation of s and
compute, by Lemma 2, a k-approximate eigenvector whose component for
the initial state is a power of k. We then compute, by Corollary 1, a normal-
ized representation (G, 1, F') of s which admits a k-approximate eigenvector
of component 1 for the initial state. Finally, we apply to G the state splitting
algorithm described in the previous section to obtain a k-ary graph. As the
component of the approximate eigenvector on the initial state is 1 and as the
state splittings have to be admissible, this state will never be split during
the process. A state splitting of a state of G different from state 1 leads by
construction to a graph G’ still representing the same sequence. The result

10



follows then from the fact that the final normalized representation has a
k-ary graph. O

We can apply the construction given above to the case of Kraft equality
when it is possible to find a representation of s which admits a k-eigenvector
with a power of & as component on the initial state. This may perhaps not
always be the case. We can consider the example : s(z) = (2z + 22?)(2%)*z.
It has a representation given by the graph GG with an eigenvector such that
vy = 3 and it admits also the representation given by graph H with an
eigenvector such that v; = 1. The series is also equal to 222z*. There is no
hope to succeed in transforming GG into H by state splitting and merging
since H and G are non isomorphic symbolic subshifts.

o

©

Fig. 12. Root of value 3 (G) Fig. 13. Root of value 1 (H)

4 Computation of an approximate eigenvector

Although Lemma 2 tells us that, for an irreducible matrix with a spectral
radius strictly less than an integer k, an approximate eigenvector with a
power of k as first component, exists, it does not provide a good way to
find one. Fortunately, there is an efficient algorithm to find such small
approximate eigenvectors. The algorithm we give is a variant of Franaszek’s
algorithm to compute an upper approximate eigenvector (see [6] p.153). This
makes the algorithm of Theorem 1 practical.

Let M be a nonnegative irreducible integral matrix and A its spectral
radius. If A > k, a k-upper approximate eigenvector is a positive integral
vector v such that Mv > kv. If A < k, a k-lower approximate eigenvector is
a positive integral vector v such that Mv < kv. In the case where A < k, we
want to compute a k-lower approximate eigenvector with a first component
which is a power of k. In the sequel, we shall omit the word lower.

We use the following notation to state the algorithms. If u and v
are vectors, let w = max{u,v} (resp. w = min{u,v}) denote the com-
ponentwise maximum (resp. minimum), so that w; = max{u;,v;} (resp.

11



w; = min{u;, v;}) for each index 7. For a real number r, let [r] denote the
integer top of r, i.e., the smallest integer greater than or equal to r.

Proposition 2 Let M be an integral irreducible matriz with a spectral ra-
dius less than or equal to an integer k. A smallest k-approximate eigenvector
exists. If the spectral radius is strictly less than k, a smallest k-approximate
eigenvector, whose first component is a power of k, exists.

Proof: The proof of the existence of a k-(lower) approximate eigenvector
is the same as the proof of the existence of a k-upper approximate eigen-
vector (for irreducible matrices with a spectral radius greater than or equal
to k). Let now u and u’ be two k-approximate eigenvectors. Then it is
straightforward that v = min{u, u’} is a k-approximate eigenvector.

When the spectral radius is strictly less than k, the proof of the existence
of a k-approximate eigenvector, whose first component is a power of k, is
given in Lemma 2. If u and u’ are two k-approximate eigenvectors, whose
first component is a power of k, then this is true also of min{u,u’}. O

The lower version of Franaszek’s algorithm that computes the smallest
k-approximate eigenvector is the following:

FRANASZEK’S ALGORITHM:

begin
vii=(1,1,..., )%
repeat
begin
vi=v';
v/ := max {V7 [%MV}},
end

until v/ = v;
end

The proof that the algorithm is correct is the following:

Proof : The vectors computed are monotonically nondecreasing in each
component. Let u be a k-approximate eigenvector. As all components of
u are positive integers, we have v/ < u. In fact, this is true for the first
vector v/ = (1,1,...,1)". If we assume that v < u in the repeat loop, then
either v/ = v, or v/ = {%MV-‘ In the first case, v/ < u. In the second case,
v/ < [fMu] < [u]. Since u has integer components, we also get v/ < u.
This proves that the process eventually stops.

12



The final vector v obtained is then a k-approximate eigenvector. In fact,
as v = v, {%MV-‘ < wv. Then Mv < kv. As v is less than or equal to any
other k-approximate eigenvector, it is the smallest. O

We now suppose that the spectral radius of M is strictly less than k.
We are interested in computing a k-approximate eigenvector whose first
component is a power of k. We give a variant of Franaszek’s algorithm
that finds the smallest k-approximate eigenvector whose first component is
a power of k.

VARIANT OF FRANASZEK’S ALGORITHM:

begin
L= (1,1, D)
repeat
begin
v =V’

1
vy = max{vl,kﬂogk (% (MV)1] ]}

vl := max {vi, [+(Mv),] } for i > 2;
end
until v/ = v;
end

The proof that the algorithm is correct is the following:
Proof : The vectors computed are monotonically nondecreasing in each
component. Let u be now a k-approximate eigenvector whose first compo-
nent is a power of k. We assume that w; = k°, where s is a nonnegative
integer. We still have v/ < u. In fact, this is true at the beginning of the
repeat loop since u is a positive integral vector. Let us suppose that v < u
in the loop, we have Mv < Mu < ku. Then [%(Mv)ﬂ < u; = k* and
[%(MV)J < u; for ¢ > 2, since u is integer. We get v/ < w; for ¢ > 2,
and log,([+(Mv)]) < s. Finally, we have [log,([£(Mv)i])] < s and
v} < k® = uy. This proves that v/ < u and that the process stops.

Let v be the final vector computed. We still have Mv < kv. This is
easily verified for all components greater than 1 as in the previous proof.
For the first component, we successively get, as v = v’

jMosx ([£(Mv)1 )]
o (TE(Mv)1])

IN

U1,

IN

U1,

13



k_l:—\
=
=
I

U1,

1
E(MV)I S U1,
(MV)l S v1.

The last vector computed is also smaller than any other k-approximate eigen-
vector whose first component is a power of k. This concludes the proof. O

5 Link with enumerative sequences of nodes

In this section, we are going to extend Theorem 1 to the case of Kraft
equality when, moreover, the enumerative sequence of nodes corresponding
to the sequence of leaves has a primitive linear representation.

Let s be an IN-rational series. A linear representation of s is a triple
(I, M, c), where 1 is a nonnegative integral row vector, ¢ is a nonnegative
integral column vector, and M is a nonnegative integral matrix, with:

Yn >0, s, = 1M"e.

The triple (1, M, ¢) corresponds to a representation (G, I, I') of s defined in
such a way that M is the adjacency matrix of . The linear representation
is said to be primitive if M is primitive. Recall that a matrix is primitive
if there exists an integer n such that M" > 0. Equivalently, the adjacency
matrix of a strongly connected graph G is primitive if the g.c.d of lengths
of cycles in G is 1.

Let T be a tree. We define the enumerative sequence ¢ of internal nodes
by height of the tree T' by t = (¢,),>0, Where t, is the number of internal
nodes of T" at height n. An internal node is a node which is not a leaf. Let
s (resp. t) be the enumerative sequence of leaves (resp. of nodes) by height
of a complete k-ary tree. The link between s and ¢ is the following:

t(z):% with  s(1/k) = 1.

We also have s(z) = P(z)/Q(z), where P(z) and ()(z) are polynomials
with nonnegative integral coefficients and @)(0) = 1. Therefore the series t
associated to s satifies:

Q(z) - P(2)

RRTETErE)
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As s(1/k) = 1, P(1/k) = Q(1/k). Thus the series s and ¢t have the same
poles and especially the same convergence radius 1/A > 1/k.
We can now state the following result that we are going to prove:

Theorem 2 Let {(z) = 3,5 tnz" be an N-rational series such that:
o tyg—=1.
e Vn>1,t, <kt,_1.
e the convergence radius of t is strictly greater than 1/k (k € IN*).
e 1 has a primitive linear representation.

Then (t,),>0 is the enumerative sequence of nodes by height in a k-ary
rational tree.

The construction that we give is partly based on a proof by Perrin ([9]).
Let I, M, ¢ be matrices with nonnegative entries such that (1, M, ¢) is a
linear representation of ¢, i.e.

Yn > 0, t, =1M"c.

We denote by 1/X the convergence radius of t. As the matrix M has A < k
as spectral radius and is primitive, the sequence ((M/A)"), ., tends to-
ward a positive matrix N such that (M/A)N = N. Thus, the sequence
((M/X)"c),~, tends toward a positive vector w = Ne. The vector w is an
eigenvector associated to 1 for M/A since (M/A)Ne = Ne. Since Mw < kw,
for all large enough n, we get

MN\" MN\"
M (7) c < k (7) C,
and so, we have the inequality

Yn > ng, M™"Me < EM™e.

We shall give a construction of paths in the tree beginning at the nodes of
height ng, the construction of the remaining part of the tree being obvious.
In order to do that, we transform the linear representation of (tn)nZO into
the one of (t,),>n,. The latter is (1, M, v) with v = M™ ¢ since

V>0, tagn, = M7 (M™e).
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The vector v is then a k-(lower) approximate eigenvector of the matrix M,
since we have Mv < kv.

Now we shall prove that we can replace the triple (1, M,v) by a triple
(', M’,v"), which is also a linear representation of (¢, ),>n,, such that v’ has
all its entries equal to 1, and such that the entries of each row of M’ are at
most k. The construction of this new linear representation basically makes
use of the state splitting.

We shall use the following extended notion of state splitting, that we call
again a state splitting. Let G = (V, F) be a graph and let ¢ be a vertex of .
We denote by I (resp. O) be the set of edges coming in ¢ (resp. going out
of q). Let (O1,03,---,0,) be a partition of O in r parts. Main difference
with the definition of state splitting in Section 2 is that some parts O; of
the partition may be here empty. The operation of (output) state splitting
relative to this partition transforms G into the graph G’ = (V', E’) where
Vi=(V\{¢})UqUqa...Ugq. is obtained from V by splitting state ¢ into
r states q1,...,¢,, and where E’ is defined as follows:

1. All edges of F that are not incident to ¢ are left unchanged.
2. All states g; have the same input edges as g¢.

3. The output edges of ¢ are distributed between ¢1,..., ¢, according to
the partition of O into (O1,02,...,0,). We denote by U; the set of
output edges of ¢;: U; = {(¢:;,z,p) | (q,2,p) € O;}. Note that some U;
may be empty.

Let us now assume that a k-approximate eigenvector v for the graph G,
that is a k-approximate eigenvector of the adjacency matrix of G, exists.
We denote by v, the component of index p of v, if pis a state of G. It is
also called the value of state p (before the state splitting). All components
v, are positive integers. An admissible vector v’ for the new graph G’ is a
positive integral vector satisfying the following conditions:

I

e If pis a state distinct from ¢; then v},

Up.
[
[ ] E ISZ'ST qu = Uq.

e The vector v’ is a k-approximate eigenvector of the adjacency matrix
M’ of the new graph G’.

Note the difference with the definition of an admissible state splitting given
in Section 2.
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Finally, let 1 be the row vector of a linear representation (1, M,v). We
transform 1 into I’ defined in the following way:

l;lzl;2:“‘:l;r:lq7

if p#q l; =1,
If (1, M,v) is a linear representation of a given series, then (I', M’ v') is a
representation of the same series.

Proposition 3 Let M be a nonnegative integral matriz whose spectral ra-
dius is less than a positive integer k. Let v be a k-(lower) approzimate
eigenvector for M. If (1, M, V) is the linear representation of an IN-rational
series, there is another representation (', M',v'), with matrices having en-
tries in IN, of the same series, such that the sum of the entries of each row
of M’ is at most k, and all components of v' are equal to 1.

Note that the matrix M is not necessarily irreducible. We define the
graph G associated to M € IN"*" as the n-state graph having M;; edges
from ¢ to j.

Proof: (Proposition 3) We may suppose that the matrix M is a 0—1 matrix.
Otherwise, we obtain such a matrix by successive output state splittings of
all states having more than one output edges going to a same state.

The method consists in successive output state splittings of the graph G
associated to M, in such a way that a new graph G’ and a new admissible
k-approximate eigenvector v’ are obtained at each step. The inequality
Mv < kv is then an invariant of the iteration of state splittings.

More precisely, we choose a state ¢ of the graph G such that v, is maximal
and has not exactly k£ outgoing edges all ending in states of maximal value.
Such a state of maximal value exists, since otherwise ¢ would admit a
subgraph whose states all have k outgoing edges, and the spectral radius of
the matrix M would be then greater than or equal to k. We denote by O
the set of outgoing edges of ¢, and we denote by m = v, the maximal value
of the components of v. We can assume that m > 1 since otherwise the
process immediately stops. We denote by J the ending states of edges of O.
We consider several cases to define the state splitting:

15t case We suppose that there is a non empty and strict subset J’ of J

such that - ¢ v, = 0 mod k. This is true especially when Card(O) > k
(see Section 3).
In this case, we do an output state splitting of ¢ relative to the partition

(O1,03), where Oy are the edges of O ending in J’ and O; = O\ O;. The

17



graph G is transformed into a graph G’ having M’ as adjacency matrix. We
define the vector v/ by

1
ro_ ' o
Uql - I Z Up; Uq2 =Yg Uql’
peJ’

and if p#q,q v;:vp.
The vector v’ is positive integral vector that satisfies the inequality:
M'v' < kv'.
Indeed, setting J" = .J \ J', we get

if p 7£ q1, 492, (M/V/)p = (MV)p.

/U/ lf J/
(M/V/)ql = ZPGJ b / / T ! ¢ /
2opedn{q) Up T Vg T g, i g€ J
= Z v, = kv(’h
peJ’
" ! f q € J”
M/ ! — ZpEJ Up 1
(M), { ZPGJ//\{q}vz’)—I—v(’h +vy, if qeJ”
= va:va—vagkvq—kv;1
peJ! pEJ peJ!
< k!

q2°

Therefore v’ is an admissible k-approximate eigenvector.

2nd case We suppose that Card(O) = k. Then we can also suppose that

> peg Vp = 0mod k. Otherwise we would be in the first case.

Since, by hypothesis, ¢ has at least one outgoing edge ending in a state of
value strictly less than the maximal value m = vy, we have >_ ;v, < km.
As the left member of the inequality is a multiple of k, we obtain

va < k(m-1). (1)

peJ

We split state ¢ according to the partition (O; = O,02 = 0) and define a
k-approximate eigenvector v’ by

‘o ro_
vy, =m—1, v, =1

18



We still have M'v’ < kv’ and v’ is admissible.

We mention here another possibility of splitting according to a partition
of O into two non empty subsets. If J’ denotes the ending states of edges of
O1, the admissible vector v’ is in this case defined by v/ = [+ 3 ¢ vp].

The remaining cases are devoted to the case where Card(O) = r < k.

3rd case We suppose that Card(O) =r < k and r <m < k.

We split ¢ in ¢1, g2, - . ., ¢m according to (01,04, ...,0,,), where O; con-
tains exactly one edge from O, for 1 <i¢<r,and O; =0 forr+1 <i < m.
We define a k-approximate eigenvector v’ by

v;i =1, 1<:<m
As v, < m < k for any state p, M'v' < kv’ and v’ is admissible.

ath case We suppose that m < Card(O) =r < k.
We number 1,2...,r the states of J. Let ¢ be the greatest index such
that

v vt < k—m,

if it does not exist, we set ¢ = 0.
Let us first assume that 0 <7< r — 1.
Then

vi+ vyt ot vgr > rm—k(m—1).

In fact, otherwise we would have:
v+t Foup <rm—km—-1)<(k-1)m—k(m—-1)=k—m.
We then also get:
viFvatc vt <k-m4+m=Ek
and

Vige + v, = (v dveo4u) — (v Fva 4 i)
< rm—(rm—k(m—-1))=k(m—-1).

As a consequence we define the splitting of ¢ according to the partition
(01,02 = O\ O1), where Oy is the set of outgoing edges of ¢ ending in
states 1 to ¢ + 1. The vector v’ defined by

=m-—1,

' /
vql_l and g,
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is an admissible k-approximate eigenvector of M’.

Let us now assume that r — 1 < ¢ <.

We define the splitting of ¢ according to the partition (O, ...,0,,), where
O1 =0 and O; =0 for 2 <7 < m, and v’ by

v;izl for 1<i<m.

The vector v’ is still admissible.

5th case We suppose that Card(O) =r < k < m.

If r > 1, we define the splitting of ¢ according to the partition (01,0 =
O\ O4), where O; contains exactly one edge of O. We number 1,2,...,r
the states of J, and we can suppose that state 1 is the ending state of the
edge of O1. The vector v’ is defined by

v :[U—} and v, =wv, —v

We have:
vy v+ +u <rm < (k—1)m,

and as v; > k([4] — 1),

Vot du < (k—1)m—k((%1—1),

< k(m— [ +k-—m
< km =[]

This proves that v’ is again an admissible vector.
If » < 1, we then define the splitting of ¢ according to the partition
_ ”—1])7 where Op contains the only edge of O and O; = () for

k
2 <i< (m—[%]). The vector v/ defined by

v’ :[%} and vl’»:l for 2§i§(m_[%})

is again an admissible vector.

In all cases, the state ¢ is split in states with new values stricly less than
the maximal value m. Moreover each state without output edge obtained
by state splitting has value 1. This transformation is iterated until all com-
ponents of the vector v’ are equal to 1, concluding the proof of Proposition
3.0
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We then obtain, by Proposition 3, a new representation (I', M’ v’} of
the sequence (t,,)n>n,, Where the sum of each row of M’ is at most k (since
M'v' < kv'), and all components of v/ are equal to 1. The sum of the
components of 1" is then ¢, .

The interpretation of this new representation shows that ¢ is the gene-
rating series of internal nodes of a k-ary rational tree, concluding the proof.

Example Let ¢ be the following se-

ries: t(z) = (2 + 2°)*(1 + z). We get mﬂ@“
that M%c < kMe, so Mc = (2,1,2)!
is a k approximate eigenvector and af-

ter splittings we obtain the tree of the
last picture. Fig. 14. The sequence t

i <
Y B

Fig. 15. The k-approximate eigen- Fig. 16. First state splitting
vector Mv. (1Y case)
O,

L ot
ERONNO SH
£ %@8

Fig(i 17. Another state splitting Fig. 18. The associated tree (nodes
(2"

case) are labelled by state numbers)
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