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Enumerative sequences of leaves and nodes inrational treesFr�ed�erique BassinoInstitut Gaspard Monge,Universit�e de Marne-la-Vall�ee Marie-Pierre B�ealInstitut Gaspard Monge,Universit�e Paris 7 et CNRSDominique PerrinInstitut Gaspard Monge,Universit�e de Marne-la-Vall�eehttp://www-igm.univ-mlv.fr/~fbassino,beal,perringAbstractWe prove that any IN-rational sequence s = (sn)n�1 of nonnega-tive integers satisfying the Kraft strict inequality Pn�1 snk�n < 1 isthe enumerative sequence of leaves by height of a rational k-ary tree.We give an e�cient algorithm to get a k-ary rational tree. Particularcases of this result had been previously proven. We give some par-tial results in the case of equality. Especially we solve this questionwhen the associated sequence of internal nodes has a primitive linearrepresentation.1 IntroductionThis paper is a study of problems linked with coding and symbolic dynamics.The results can be considered as an extension of the old results of Hu�man,Kraft, McMillan and Shannon on source coding. We actually prove resultson rational sequences of integers that can be realized as the enumerativesequence of leaves or nodes in a rational tree.Let s be an IN-rational sequence of nonnegative numbers, that is a se-quence s = (sn)n�1 such that sn is the number of paths of length n goingfrom an initial state to a �nal state in a �nite multigraph or a �nite automa-ton. We say that s satis�es the Kraft inequality for a positive integer k ifPn�1 snk�n � 1. 1



A rational tree is a tree which has only a �nite number of non-isomorphicsubtrees. If s is the enumerative sequence of leaves of a rational k-ary tree,then s satis�es Kraft's inequality for the integer k.In this paper, we study the converse of the above property. Consider forexample the series s(z) = 3z21�z2 . We have s(1=2) = 1 and we can obtain sas the enumerative sequence of the tree of the �gure below associated withthe pre�x code X = (aa)�(ab+ ba+ bb) on the binary alphabet fa; bg.Fig. 1. Tree associated to 3z2(z2)�Known constructions allow one to obtain a sequence s satisfying Kraft'sinequality as the enumerative sequence of leaves of a k-ary tree, or as theenumerative sequence of leaves of a (perhaps not k-ary) rational tree. Thesetwo constructions lead in a natural way to the problem of building a treeboth rational and k-ary. This question was already considered in [10], whereit was conjectured that any IN-rational sequence satisfying Kraft's inequalityis the enumerative sequence of leaves of a k-ary rational tree.In this paper, we prove this conjecture in the case where the sequencesatis�es Kraft's inequality with a strict inequality. Proofs and algorithmsused to establish this result are based on automata theory and symbolicdynamics. In particular, we use the state splitting algorithm which hasbeen introduced by R. Adler, D. Coppersmith and M. Hassner in [1] tosolve coding problems for constrained channels by constructing �nite-statecodes with sliding block decoders. This was partly based on earlier work ofB. Marcus in [7]. A variant of Franaszek's algorithm of computation of anapproximate eigenvector makes the algorithms practical.A variant of the problem considered here consists in replacing the enu-merative sequence of leaves by the enumerative sequence of all nodes. Soit-tola ([12]) has characterized the series which are the enumerative sequenceof nodes in a rational tree. We prove that any IN-rational sequence t thatsatis�es some necessary conditions : t0 = 1, 8n � 1; tn � ktn�1, the conver-gence radius of t is strictly greater than 1=k, and such that t has a primitivelinear representation, is the enumerative sequence of nodes by height of a k-ary rational tree. The proof of this result is based on an extended notion ofstate splitting that allows us to output split states without outgoing edges.The problem of a similar characterization for rational k-ary trees remainsopen in the general case. 2



The paper is organized as follows. We �rst give basic de�nitions andproperties of rational objects, sequences and trees. We then give some de�-nitions coming from the theory of symbolic dynamics. We de�ne the notionsof state splitting, approximate eigenvector and recall the algorithm of [1]. InSection 3, we establish the announced result (Theorem 1) concerning enu-merative sequences of leaves and an give example for the construction. Nextwe give an e�cient algorithm, that is a variant of Franaszek's algorithm, to�nd approximate eigenvectors. Section 5 devoted to enumerative sequencesof nodes gives an extension (Theorem 2) of the main result of Section 3.A preliminary shorter version of this paper was presented at the ICALP'97.2 De�nitions and background2.1 Rational sequences of nonnegative numbersWe denote by G a directed graph with E as its set of edges. We actually usemultigraphs instead of ordinary graphs in order to be able to have severaldistinct edges with the same origin and end. Formally a multigraph is givenby two sets E (the edges) and V (the vertices) and two functions from E toV which de�ne the origin and the end of an edge. An edge in a multigraphgoing from p to q will be noted (p; x; q) where x 2 IN. This is equivalent tonumber the edges going from p to q in order to distinguish them. We shallalways say \graph" instead of \multigraph".In this paper, we consider sequences of nonnegative numbers. Such asequence s = (sn)n�0 will be said to be IN-rational if sn is the number ofpaths of length n going from a state in I to a state in F in a �nite directedgraph G, where I and F are two special subsets of states, the initial and�nal states respectively. We say that the triple (G; I; F ) is a representationof the sequence s.This de�nition is usually given for the series Pn�0 snzn instead of thesequence s. Any IN-rational sequence s satis�es a recurrence relation withinteger coe�cients. However, it is not true that a sequence of nonnegativeintegers satisfying a linear recurrence relation is IN-rational. An examplecan be found in [5] p. 93.A well known result in automata theory allows us to use a particularrepresentation of an IN-rational sequence s. One can choose a representation(G; i; F ) of s with a unique initial state i and such that :� no edge is coming in state i� no edge is going out of any state of F .3



Such a representation is called a normalized representation. Moreover, it ispossible to reduce to one state the set of �nal states (see for example [11] p.14).We now give some basic de�nitions about trees. A tree T on a set ofnodes N with a root r is a function T : N � frg �! N which associates toeach node distinct from the root its father T (n) in such a way that, for eachnode n, there is a nonnegative integer h such that Th(n) = r. The integer his the height of the node n. A tree is k-ary if each node has at most k sons.A leaf is a node without son. We denote by l(T ) the enumerative sequenceof its leaves by height, that is the sequence of numbers sn, where sn is thenumber of leaves of T at height n. A tree is said to be rational if it admitsonly a �nite number of non isomorphic subtrees. If T is a rational tree, thesequence l(T ) is an IN-rational sequence.The sequence s = l(T ) of a k-ary tree is the length distribution of apre�x code over a k-letter alphabet. The associate series s(z) =Pn�1 snznsatis�es then Kraft's inequality : s(1=k) � 1. We shall say that Kraft'sstrict inequality is satis�ed when s(1=k) < 1. The equality is reached wheneach node of the tree has exactly zero or k sons. Conversely, the McMillanconstruction establishes that for any series s satisfying Kraft's inequality,there is a k-ary tree such that s = l(T ). Moreover, if the series satis�esKraft's equality, then the internal nodes will have exactly k sons. But thetree obtained is not rational in general.It is also easy to see that an IN-rational sequence is the enumerativesequence of the leaves of a rational tree. A normalized representation canbe used to do that by \developing" the tree. The root will correspond to theinitial state of the graph. If a node of the tree at height n corresponds to astate i in the graph which has r outgoing edges ending in states j1; j2; : : : ; jr,it will admit r sons at height n+1, each of them corresponding respectivelyto the states j1; j2; : : : ; jr of the graph. The leaves of the tree will correspondto the �nal states of the normalized representation. The maximal numberof sons of a node we get is then equal to the maximal number of edges goingout of any state of the graph of this representation.If s satis�es Kraft's inequality, the above construction does not lead ingeneral to a k-ary rational tree. The aim of this paper is to get a k-aryrational tree T such that s = l(T ). This result was conjectured in [10]. Wesolve it for all IN-rational sequences satisfying Kraft's strict inequality andgive a weaker result for the case of equality.4



2.2 Approximate eigenvector and state splittingLet s be an IN-rational sequence and let (G; i; F ) be a normalized represen-tation of s. If we identify the initial state i and all �nal states of F in asingle state still denoted i, we get a new graph denoted G, which is stronglyconnected. The sequence s is then the length distribution of the paths of�rst returns to state i, that is of �nite paths going from i to i without goingthrough state i. Using the terminology of symbolic dynamics, the graph Gcan be seen as an irreducible shift of �nite type (see, for example, [3], [4] or[6]).We denote by M the adjacency matrix associated to the graph G, thatis the matrix M = (mij)1�i;j�n, where n is the number of nodes of G andwhere mij is the number of edges going from state i to state j. By thePerron-Frobenius theorem (see [6]), the positive matrix M associated to thestrongly connected graph G has a positive eigenvalue of maximal modulusdenoted by �, also called the spectral radius of the matrix. Actually, � onlydepends on the series s, 1=� is the minimal modulus of the poles of 11�s .The dimension of the eigenspace of � is equal to one. There is a positiveeigenvector (componentwise) associated to �. Moreover, if there is a positiveeigenvector associated to an eigenvalue �, then � = �.When � is an integer , the matrix admits a positive integral eigenvector.When � < k, where k is an integer, the matrix admits a k-approximateeigenvector, that is, by de�nition, a positive integral vector v withMv � kv.For example the left side of the �gure below gives a representation(G; i; F ) of the serie s(z) = 3z2=(1� z2), and the right side gives the asso-ciated graph G. The adjacency matrix of G isM = 0B@ 0 3 01 0 10 1 0 1CAIts maximal eigenvalue is � = 2. The components of a positive integraleigenvector are written on the nodes.33 3 12Fig. 2. Representation (G; i; F ) 33 12Fig. 3. Graph G5



Proposition 1 If s satis�es Kraft's inequality s(1=k) � 1, then � � k. Inthe case of equality where s(1=k) = 1 we have � = k.For a proof, we refer the reader to [3], [4] or [6].We now de�ne the operation of output state splitting in a graph G =(V;E). Let q be a vertex of G and let I (resp. O) be the set of edges comingin q (resp. going out of q). Let O = O0 + O00 be a partition of O. Theoperation of (output) state splitting relative to (O0; O00) transforms G intothe graph G0 = (V 0; E 0) where V 0 = (V nfqg)[q0[q00 is obtained from V bysplitting state q into two states q0 and q00, and where E 0 is de�ned as follows:1. All edges of E that are not incident to q are left unchanged.2. The both states q0 and q00 have the same input edges as q.3. The output edges of q are distributed between q0 and q00 according tothe partition of O into O0 and O00. We denote U 0 and U 00 the sets ofoutput edges of q0 and q00 respectively :U 0 = f(q0; x; p) j (q; x; p) 2 O0g and U 00 = f(q00; x; p) j (q; x; p) 2 O00g.O"q O'Fig. 4. Graph G q" U'q' U"Fig. 5. Graph G0Let us now assume that v is a k-approximate eigenvector for the graphG. We denote by vp the component of index p of v. All components vpare positive integers. A state splitting of a state q is said to be admissibleaccording to k, if the partition in O0 and O00 is such that O0 and O00 are notempty and: k divides X(q;x;r)2O0 vrIf the state splitting is admissible (according to k), the vector v0 de�ned asfollows will be a k-approximate eigenvector for the new graph G0. If p is astate distinct from q0 and q00 then v0p = vp. For states q0 and q00 we have:v0q0 = 1k X(q;x;r)2O0 vr and v0q00 = vq � v0q0 :By the state splitting construction, one can check that M 0v0 � kv0, whereM 0 is the adjacency matrix of G0. 6



The state splitting algorithm of [1] ensures that there is a �nite numberof state splittings leading to a k-ary graph, that is a graph such that at mostk edges are going out of any state. For the sake of completeness, we brie
yrecall the proof. If there is a state q which admits more than k edges goingout of it, we choose k of them and denote by r1; r2; : : : ; rk the sequence ofend states of these edges. We then choose a subset O0 of these k edges suchthat k divides P(q;x;r)2O0 vr. This is always possible. Indeed, by consideringthe k + 1 numbers vr1 ; vr1 + vr2 ; : : : ; vr1 + vr2 + � � �vrk , we can see that atleast two of them are equal modulo k, and then their di�erence is equalto zero modulo k. The partition of the output edges of q in O0 and O00leads to an admissible state splitting and v0q is strictly less than vq. Thispoint ensures that the process stops after a �nite number of splits, the �nalnumber of states being bounded by the sum of the components of the initialapproximate eigenvector. The �nal graph obtained is k-ary.We shall compute approximate eigenvectors for the strongly connectedgraphs G associated to normalized representations (G; i; F ) of sequences.We shall then perform admissible state splittings that can be seen eitheron the graph G or on the graph G. To do that, we shall associate to eachnode of G a value equal to the corresponding component of the approximateeigenvector of the graph G. The initial and the �nal states will have samevalue since they correspond to the same state of G.3 Enumerative sequences of leavesWe now state the result in the case of Kraft strict inequality.Theorem 1 Let s = (sn)n�1 be an IN-rational sequence of nonnegative in-tegers et let k be an integer such that Pn�1 snk�n < 1. Then there is ak-ary rational tree such that s is the enumerative sequence of its leaves.In order to prove this result, we �rst prove one lemma that remainstrue in the case of equality. We therefore consider an IN-rational sequences and an integer k such that Pn�1 snk�n � 1. We begin with a normalizedrepresentation (G; i; F ) of the IN-rational sequence s. We denote by M theadjacency matrix of G and by � its spectral radius. Then � � k. We thencompute a k-approximate eigenvector v = (v1; v2; : : : ; vn)t of the graph G.By de�nition, we haveMv � kv. Without loss of generality, we can assumethat state 1 is the initial state in all normalized representations.Lemma 1 If k divides v1, then there is another normalized representationfor s and a new corresponding approximate eigenvector v0 with v01 = v1 div k.7



Proof : We denote by P the set of states q such that there is in G an edgedenoted (q; x; t) going from q to a �nal state t of F . Remark that, as state tis equal to state 1 in G, the value of state t is equal to the value of state 1.Let us �rst suppose that the initial state 1 does not belong to P . If thereis in P a state q which admits more than one (say n) outgoing edges, we splitq in q0 and q00 according to partition (O0; O00) where O0 = f(q; x; t)g containsexactly one edge. Since k divides v1, this state splitting is admissible andv0q0 = v1 div k. Moreover, in the new graph G0, q0 admits only one outgoingedge (going to t) and q00 is either not in P or admits less than n outgoingedges. By successive state splittings of all states in P having more than oneoutgoing edges, we shall get, in a �nite number of steps, a representation suchthat all states with one outgoing edge ending in F have no other outgoingedges. Under the hypothesis that state 1 does not belong to P , the initialstate has not been split during this process and so each new computedgraph is still a normalized representation of the sequence. We denote againby (G; 1; F ) the �nal representation obtained for s and by Plast the set ofstates having one outgoing edge ending in F in this graph. Remark thatthe values of states of Plast are greater than or equal to v1 div k. We turnall values of states of Plast greater than v1 div k into v1 div k; the vector vremains a k-approximate eigenvector.We then transform the representation (G; 1; F ) in a new one, (H; i; Plast),where H is the graph obtained from G by adding a state i, an edge from ito 1 and by removing all edges of G going out of a state of Plast. If we lookat paths in G going from 1 to F , we have just cut the last edge and addedone at the beginning. We assign to state i the value v1 div k, and the valuesof all states correspond now to a new k-approximate eigenvector for H . Wecall this tranformation the \shift" transformation.Let us now suppose that the initial state 1 belongs to P . We �rst split,as explained above, all states of P having more that one outgoing edge. Inthis case, state 1 may have been split. We denote by 1(1); 1(2); 1(3); : : :1(r)the copies of state 1 obtained by successive state splittings of the initial state1. We still denote by G the graph obtained by this transformation and byPlast the set of states having one outgoing edge ending in F in this graph.We then transform the representation (G; 1; F ) into a new one, (H; i; Plast),where H is the graph obtained from G by adding a state i, an edge from ito each 1(j); 1 � j � r and by removing all edges of G going out of a stateof Plast. Remark that (r � 1) states among 1(1); 1(2); 1(3); : : :1(r) belong toPlast. We again assign to the state i the value v1 div k, and the values of allstates correspond now to a new k-approximate eigenvector for H . 28



Corollary 1 If v1 is a power of k, then there is another normalized repre-sentation and a new corresponding approximate eigenvector v0 with v01 = 1.Proof : If v1 = km, we iterate the construction given in previous lemmaand get v01 = 1 in m steps. 2ExampleLet s be the following series:s(z) = 2z3 + 2z2 �z2(z2)���Here, k = 2 and s(1=2) = 1:In the following pictures, the nodesare labeled with their value. 41224 31 4Fig. 6. Initial normalizedrepresentationFirst step 12 14 221 44Fig. 7. First state splitting 21 12 2421Fig. 8. First \shift"Second step
21 11 1 22 21 1 1Fig. 9. Other state splittings 11 1

11 21 1 12Fig. 10. Second \shift"9



The last step is described in the proofof Theorem 1.It corresponds here to a state splittingof all states of the graph of value dif-ferent from 1. 1 11111 111 11 111111Fig. 11. Last representationWe now prove another lemma which is true only in the case of Kraftstrict inequality.Lemma 2 Let M be a nonnegative integral matrix. If its spectral radius isstrictly less than k, then there is a k-approximate eigenvector w of M suchthat w1 is a power of k.Proof : Let � (� < k) be the positive real eigenvalue of maximal modulusof M and let v be an eigenvector associated to �. We denote by P the setof positive vectors w such that Mw < kw. The set P is an open set andv belongs to P . By dividing all components of v par v1, we can assumethat v1 is equal to 1. As P is open, there is a positive real � such thatB(v; �) � P , where B(v; �) = fw j vi � � � wi � vi + �g. Let us nowchoose an integer m such that 1=km < �. As B(v; 1=km) � P , we havefkmw j w 2 B(v; 1=km)g � P . This set is fw j kmvi � 1 � wi � kmvi + 1gand contains w where wi = dkmvie. This vector is a positive integer vectorw with Mw < kw : it is a k-approximate eigenvector. Moreover w1 = km.2 We now prove Theorem 1.Proof : (Theorem 1) We begin with a normalized representation of s andcompute, by Lemma 2, a k-approximate eigenvector whose component forthe initial state is a power of k. We then compute, by Corollary 1, a normal-ized representation (G; 1; F ) of s which admits a k-approximate eigenvectorof component 1 for the initial state. Finally, we apply toG the state splittingalgorithm described in the previous section to obtain a k-ary graph. As thecomponent of the approximate eigenvector on the initial state is 1 and as thestate splittings have to be admissible, this state will never be split duringthe process. A state splitting of a state of G di�erent from state 1 leads byconstruction to a graph G0 still representing the same sequence. The result10



follows then from the fact that the �nal normalized representation has ak-ary graph. 2We can apply the construction given above to the case of Kraft equalitywhen it is possible to �nd a representation of s which admits a k-eigenvectorwith a power of k as component on the initial state. This may perhaps notalways be the case. We can consider the example : s(z) = (2z + 2z2)(z2)�z.It has a representation given by the graph G with an eigenvector such thatv1 = 3 and it admits also the representation given by graph H with aneigenvector such that v1 = 1. The series is also equal to 2z2z�. There is nohope to succeed in transforming G into H by state splitting and mergingsince H and G are non isomorphic symbolic subshifts.2 13 3Fig. 12. Root of value 3 (G) 111Fig. 13. Root of value 1 (H)4 Computation of an approximate eigenvectorAlthough Lemma 2 tells us that, for an irreducible matrix with a spectralradius strictly less than an integer k, an approximate eigenvector with apower of k as �rst component, exists, it does not provide a good way to�nd one. Fortunately, there is an e�cient algorithm to �nd such smallapproximate eigenvectors. The algorithm we give is a variant of Franaszek'salgorithm to compute an upper approximate eigenvector (see [6] p.153). Thismakes the algorithm of Theorem 1 practical.Let M be a nonnegative irreducible integral matrix and � its spectralradius. If � � k, a k-upper approximate eigenvector is a positive integralvector v such thatMv � kv. If � � k, a k-lower approximate eigenvector isa positive integral vector v such thatMv � kv. In the case where � < k, wewant to compute a k-lower approximate eigenvector with a �rst componentwhich is a power of k. In the sequel, we shall omit the word lower.We use the following notation to state the algorithms. If u and vare vectors, let w = maxfu;vg (resp. w = minfu;vg) denote the com-ponentwise maximum (resp. minimum), so that wi = maxfui; vig (resp.11



wi = minfui; vig) for each index i. For a real number r, let dre denote theinteger top of r, i.e., the smallest integer greater than or equal to r.Proposition 2 Let M be an integral irreducible matrix with a spectral ra-dius less than or equal to an integer k. A smallest k-approximate eigenvectorexists. If the spectral radius is strictly less than k, a smallest k-approximateeigenvector, whose �rst component is a power of k, exists.Proof : The proof of the existence of a k-(lower) approximate eigenvectoris the same as the proof of the existence of a k-upper approximate eigen-vector (for irreducible matrices with a spectral radius greater than or equalto k). Let now u and u0 be two k-approximate eigenvectors. Then it isstraightforward that v = minfu;u0g is a k-approximate eigenvector.When the spectral radius is strictly less than k, the proof of the existenceof a k-approximate eigenvector, whose �rst component is a power of k, isgiven in Lemma 2. If u and u0 are two k-approximate eigenvectors, whose�rst component is a power of k, then this is true also of minfu;u0g. 2The lower version of Franaszek's algorithm that computes the smallestk-approximate eigenvector is the following:Franaszek's algorithm:beginv0 := (1; 1; : : : ; 1)t;repeat beginv := v0;v0 := maxnv; d 1kMveo;enduntil v0 = v;endThe proof that the algorithm is correct is the following:Proof : The vectors computed are monotonically nondecreasing in eachcomponent. Let u be a k-approximate eigenvector. As all components ofu are positive integers, we have v0 � u. In fact, this is true for the �rstvector v0 = (1; 1; : : : ; 1)t. If we assume that v � u in the repeat loop, theneither v0 = v, or v0 = d 1kMve. In the �rst case, v0 � u. In the second case,v0 � d 1kMue � due. Since u has integer components, we also get v0 � u.This proves that the process eventually stops.12



The �nal vector v obtained is then a k-approximate eigenvector. In fact,as v0 = v, d 1kMve � v. Then Mv � kv. As v is less than or equal to anyother k-approximate eigenvector, it is the smallest. 2We now suppose that the spectral radius of M is strictly less than k.We are interested in computing a k-approximate eigenvector whose �rstcomponent is a power of k. We give a variant of Franaszek's algorithmthat �nds the smallest k-approximate eigenvector whose �rst component isa power of k.Variant of Franaszek's algorithm:begin v0 := (1; 1; : : : ; 1)t;repeat beginv := v0;v01 := maxnv1; kdlogk(d 1k (Mv)1e)eo;v0i := maxnvi; d 1k(Mv)ieo for i � 2;enduntil v0 = v;endThe proof that the algorithm is correct is the following:Proof : The vectors computed are monotonically nondecreasing in eachcomponent. Let u be now a k-approximate eigenvector whose �rst compo-nent is a power of k. We assume that u1 = ks, where s is a nonnegativeinteger. We still have v0 � u. In fact, this is true at the beginning of therepeat loop since u is a positive integral vector. Let us suppose that v � uin the loop, we have Mv � Mu � ku. Then d 1k (Mv)1e � u1 = ks andd 1k (Mv)ie � ui for i � 2, since u is integer. We get v0i � ui for i � 2,and logk(d 1k (Mv)1e) � s. Finally, we have dlogk(d 1k (Mv)1e)e � s andv01 � ks = u1. This proves that v0 � u and that the process stops.Let v be the �nal vector computed. We still have Mv � kv. This iseasily veri�ed for all components greater than 1 as in the previous proof.For the �rst component, we successively get, as v = v0:kdlogk(d 1k (Mv)1e)e � v1;klogk(d 1k (Mv)1e) � v1;13



d1k (Mv)1e � v1;1k (Mv)1 � v1;(Mv)1 � v1:The last vector computed is also smaller than any other k-approximate eigen-vector whose �rst component is a power of k. This concludes the proof. 25 Link with enumerative sequences of nodesIn this section, we are going to extend Theorem 1 to the case of Kraftequality when, moreover, the enumerative sequence of nodes correspondingto the sequence of leaves has a primitive linear representation.Let s be an IN-rational series. A linear representation of s is a triple(l;M; c), where l is a nonnegative integral row vector, c is a nonnegativeintegral column vector, and M is a nonnegative integral matrix, with:8n � 0; sn = lMnc:The triple (l;M; c) corresponds to a representation (G; I; F ) of s de�ned insuch a way that M is the adjacency matrix of G. The linear representationis said to be primitive if M is primitive. Recall that a matrix is primitiveif there exists an integer n such that Mn > 0. Equivalently, the adjacencymatrix of a strongly connected graph G is primitive if the g.c.d of lengthsof cycles in G is 1.Let T be a tree. We de�ne the enumerative sequence t of internal nodesby height of the tree T by t = (tn)n�0, where tn is the number of internalnodes of T at height n. An internal node is a node which is not a leaf. Lets (resp. t) be the enumerative sequence of leaves (resp. of nodes) by heightof a complete k-ary tree. The link between s and t is the following:t(z) = 1� s(z)1� kz with s(1=k) = 1:We also have s(z) = P (z)=Q(z), where P (z) and Q(z) are polynomialswith nonnegative integral coe�cients and Q(0) = 1. Therefore the series tassociated to s sati�es: t(z) = Q(z)� P (z)(1� kz)Q(z) :14



As s(1=k) = 1, P (1=k) = Q(1=k). Thus the series s and t have the samepoles and especially the same convergence radius 1=� > 1=k.We can now state the following result that we are going to prove:Theorem 2 Let t(z) =Pn�0 tnzn be an IN-rational series such that:� t0 = 1.� 8n � 1; tn � ktn�1.� the convergence radius of t is strictly greater than 1=k (k 2 IN�).� t has a primitive linear representation.Then (tn)n�0 is the enumerative sequence of nodes by height in a k-aryrational tree.The construction that we give is partly based on a proof by Perrin ([9]).Let l;M; c be matrices with nonnegative entries such that (l;M; c) is alinear representation of t, i.e.8n � 0; tn = lMnc:We denote by 1=� the convergence radius of t. As the matrix M has � < kas spectral radius and is primitive, the sequence ((M=�)n)n�1 tends to-ward a positive matrix N such that (M=�)N = N . Thus, the sequence((M=�)nc)n�1 tends toward a positive vector w = Nc. The vector w is aneigenvector associated to 1 forM=� since (M=�)Nc = Nc. SinceMw < kw,for all large enough n, we getM �M� �n c < k�M� �n c;and so, we have the inequality8n � n0; Mn+1c < kMnc:We shall give a construction of paths in the tree beginning at the nodes ofheight n0, the construction of the remaining part of the tree being obvious.In order to do that, we transform the linear representation of (tn)n�0 intothe one of (tn)n�n0 . The latter is (l;M;v) with v = Mn0c since8n � 0; tn+n0 = lMn(Mn0c):15



The vector v is then a k-(lower) approximate eigenvector of the matrix M ,since we have Mv � kv.Now we shall prove that we can replace the triple (l;M;v) by a triple(l0;M 0;v0), which is also a linear representation of (tn)n�n0 , such that v0 hasall its entries equal to 1, and such that the entries of each row of M 0 are atmost k. The construction of this new linear representation basically makesuse of the state splitting.We shall use the following extended notion of state splitting, that we callagain a state splitting. Let G = (V;E) be a graph and let q be a vertex of G.We denote by I (resp. O) be the set of edges coming in q (resp. going outof q). Let (O1; O2; � � � ; Or) be a partition of O in r parts. Main di�erencewith the de�nition of state splitting in Section 2 is that some parts Oi ofthe partition may be here empty. The operation of (output) state splittingrelative to this partition transforms G into the graph G0 = (V 0; E 0) whereV 0 = (V n fqg) [ q1 [ q2 : : :[ qr is obtained from V by splitting state q intor states q1; : : : ; qr, and where E 0 is de�ned as follows:1. All edges of E that are not incident to q are left unchanged.2. All states qi have the same input edges as q.3. The output edges of q are distributed between q1; : : : ; qr according tothe partition of O into (O1; O2; : : : ; Or). We denote by Ui the set ofoutput edges of qi: Ui = f(qi; x; p) j (q; x; p) 2 Oig. Note that some Uimay be empty.Let us now assume that a k-approximate eigenvector v for the graph G,that is a k-approximate eigenvector of the adjacency matrix of G, exists.We denote by vp the component of index p of v, if p is a state of G. It isalso called the value of state p (before the state splitting). All componentsvp are positive integers. An admissible vector v0 for the new graph G0 is apositive integral vector satisfying the following conditions:� If p is a state distinct from qi then v0p = vp.� P1�i�r v0qi = vq.� The vector v0 is a k-approximate eigenvector of the adjacency matrixM 0 of the new graph G0.Note the di�erence with the de�nition of an admissible state splitting givenin Section 2. 16



Finally, let l be the row vector of a linear representation (l;M;v). Wetransform l into l0 de�ned in the following way:l0q1 = l0q2 = � � �= l0qr = lq;if p 6= qi l0p = lp:If (l;M;v) is a linear representation of a given series, then (l0;M 0;v0) is arepresentation of the same series.Proposition 3 Let M be a nonnegative integral matrix whose spectral ra-dius is less than a positive integer k. Let v be a k-(lower) approximateeigenvector for M . If (l;M;v) is the linear representation of an IN-rationalseries, there is another representation (l0;M 0;v0), with matrices having en-tries in IN, of the same series, such that the sum of the entries of each rowof M 0 is at most k, and all components of v0 are equal to 1.Note that the matrix M is not necessarily irreducible. We de�ne thegraph G associated to M 2 INn�n as the n-state graph having Mij edgesfrom i to j.Proof : (Proposition 3)We may suppose that the matrixM is a 0�1 matrix.Otherwise, we obtain such a matrix by successive output state splittings ofall states having more than one output edges going to a same state.The method consists in successive output state splittings of the graph Gassociated to M , in such a way that a new graph G0 and a new admissiblek-approximate eigenvector v0 are obtained at each step. The inequalityMv � kv is then an invariant of the iteration of state splittings.More precisely, we choose a state q of the graph G such that vq is maximaland has not exactly k outgoing edges all ending in states of maximal value.Such a state of maximal value exists, since otherwise G would admit asubgraph whose states all have k outgoing edges, and the spectral radius ofthe matrix M would be then greater than or equal to k. We denote by Othe set of outgoing edges of q, and we denote by m = vq the maximal valueof the components of v. We can assume that m > 1 since otherwise theprocess immediately stops. We denote by J the ending states of edges of O.We consider several cases to de�ne the state splitting:1st case We suppose that there is a non empty and strict subset J 0 of Jsuch that Pp2J 0 vp � 0 mod k. This is true especially when Card(O) > k(see Section 3).In this case, we do an output state splitting of q relative to the partition(O1; O2), where O1 are the edges of O ending in J 0 and O2 = O nO1. The17



graph G is transformed into a graph G0 having M 0 as adjacency matrix. Wede�ne the vector v0 byv0q1 = 1k Xp2J 0 vp; v0q2 = vq � v0q1 ;and if p 6= q1; q2 v0p = vp:The vector v0 is positive integral vector that satis�es the inequality:M 0v0 � kv0:Indeed, setting J 00 = J n J 0, we getif p 6= q1; q2; (M 0v0)p = (Mv)p:(M 0v0)q1 = ( Pp2J 0 v0p if q =2 J 0Pp2J 0nfqg v0p + v0q1 + v0q2 if q 2 J 0= Xp2J 0 vp = kv0q1(M 0v0)q2 = ( Pp2J 00 v0p if q =2 J 00Pp2J 00nfqg v0p + v0q1 + v0q2 if q 2 J 00= Xp2J 00 vp = Xp2J vp � Xp2J 0 vp � kvq � kv0q1� kv0q2 :Therefore v0 is an admissible k-approximate eigenvector.2nd case We suppose that Card(O) = k. Then we can also suppose thatPp2J vp � 0 mod k. Otherwise we would be in the �rst case.Since, by hypothesis, q has at least one outgoing edge ending in a state ofvalue strictly less than the maximal value m = vq, we have Pp2J vp < km.As the left member of the inequality is a multiple of k, we obtainXp2J vp � k(m� 1): (1)We split state q according to the partition (O1 = O;O2 = ;) and de�ne ak-approximate eigenvector v0 byv0q1 = m� 1; v0q2 = 118



We still have M 0v0 � kv0 and v0 is admissible.We mention here another possibility of splitting according to a partitionof O into two non empty subsets. If J 0 denotes the ending states of edges ofO1, the admissible vector v0 is in this case de�ned by v0q1 = d 1k Pp2J 0 vpe.The remaining cases are devoted to the case where Card(O) = r < k.3rd case We suppose that Card(O) = r < k and r � m � k.We split q in q1; q2; : : : ; qm according to (O1; O2; : : : ; Om), where Oi con-tains exactly one edge from O, for 1 � i � r, and Oi = ; for r + 1 � i � m.We de�ne a k-approximate eigenvector v0 byv0qi = 1; 1 � i � mAs v0p � m � k for any state p, M 0v0 � kv0 and v0 is admissible.4th case We suppose that m < Card(O) = r < k.We number 1; 2 : : : ; r the states of J . Let i be the greatest index suchthat v1 + v2 + � � �+ vi < k �m;if it does not exist, we set i = 0.Let us �rst assume that 0 � i < r � 1.Then v1 + v2 + � � �+ vi+1 � rm� k(m� 1):In fact, otherwise we would have:v1 + v2 + � � �+ vi+1 < rm� k(m� 1) � (k � 1)m� k(m� 1) = k �m:We then also get:v1 + v2 + � � �+ vi + vi+1 < k �m+m = kand vi+2 + � � �+ vr = (v1 + v2 � � �+ vr)� (v1 + v2 + � � �+ vi+1)� rm� (rm� k(m� 1)) = k(m� 1):As a consequence we de�ne the splitting of q according to the partition(O1; O2 = O n O1), where O1 is the set of outgoing edges of q ending instates 1 to i+ 1. The vector v0 de�ned byv0q1 = 1 and v0q2 = m� 1;19



is an admissible k-approximate eigenvector of M 0.Let us now assume that r � 1 � i � r.We de�ne the splitting of q according to the partition (O1; : : : ; Om), whereO1 = O and Oi = ; for 2 � i � m, and v0 byv0qi = 1 for 1 � i � m:The vector v0 is still admissible.5th case We suppose that Card(O) = r < k < m.If r > 1, we de�ne the splitting of q according to the partition (O1; O2 =O n O1), where O1 contains exactly one edge of O. We number 1; 2; : : : ; rthe states of J , and we can suppose that state 1 is the ending state of theedge of O1. The vector v0 is de�ned byv0q1 = dv1k e and v0q2 = vq � v0q1 :We have: v1 + v2 + � � �+ vr � rm � (k � 1)m;and as v1 > k(dv1k e � 1),v2 + � � �+ vr < (k � 1)m� k(dv1k e � 1);� k(m� dv1k e) + k �m� k(m� dv1k e):This proves that v0 is again an admissible vector.If r � 1, we then de�ne the splitting of q according to the partition(O1; : : : ; Om�d v1k e), where O1 contains the only edge of O and Oi = ; for2 � i � (m� dv1k e). The vector v0 de�ned byv0q1 = dv1k e and v0i = 1 for 2 � i � (m� dv1k e)is again an admissible vector.In all cases, the state q is split in states with new values stricly less thanthe maximal value m. Moreover each state without output edge obtainedby state splitting has value 1. This transformation is iterated until all com-ponents of the vector v0 are equal to 1, concluding the proof of Proposition3. 2 20



We then obtain, by Proposition 3, a new representation (l0;M 0;v0) ofthe sequence (tn)n�n0 , where the sum of each row of M 0 is at most k (sinceM 0v0 � kv0), and all components of v0 are equal to 1. The sum of thecomponents of l0 is then tn0 .The interpretation of this new representation shows that t is the gene-rating series of internal nodes of a k-ary rational tree, concluding the proof.Example Let t be the following se-ries: t(z) = (z + z3)�(1 + z). We getthat M2c � kMc, so Mc = (2; 1; 2)tis a k approximate eigenvector and af-ter splittings we obtain the tree of thelast picture. Fig. 14. The sequence t22 1Fig. 15. The k-approximate eigen-vector Mv. 1 1 21Fig. 16. First state splitting(1st case)3111 1151 2 4Fig. 17. Another state splitting(2nd case) 21 4315 5 15Fig. 18. The associated tree (nodesare labelled by state numbers)References[1] R. L. Adler, D. Coppersmith, and M. Hassner. Algorithms for slidingblock codes. I.E.E.E. Trans. Inform. Theory, IT-29:5{22, 1983.[2] F. Bassino. S�eries rationnelles et distributions de longueurs. Th�ese,Universit�e de Marne-La-Vall�ee, 1996.21
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