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Introduction

This paper is a study of problems linked with coding and symbolic dynamics. The results can be considered as an extension of the old results of Hu man, Kraft, McMillan and Shannon on source coding. We actually prove results on rational sequences of integers that can be realized as the enumerative sequence of leaves or nodes in a rational tree.

Let s be an IN-rational sequence of nonnegative numbers, that is a sequence s = (s n ) n 1 such that s n is the number of paths of length n going from an initial state to a nal state in a nite multigraph or a nite automaton. We say that s satis es the Kraft inequality for a positive integer k if P n 1 s n k n 1. 1 A rational tree is a tree which has only a nite number of non-isomorphic subtrees. If s is the enumerative sequence of leaves of a rational k-ary tree, then s satis es Kraft's inequality for the integer k.

In this paper, we study the converse of the above property. Consider for example the series s(z) = 3z 2 1 z 2 . We have s(1=2) = 1 and we can obtain s as the enumerative sequence of the tree of the gure below associated with the pre x code X = (aa) (ab + ba + bb) on the binary alphabet fa; bg.

Fig. 1. Tree associated to 3z 2 (z 2 ) Known constructions allow one to obtain a sequence s satisfying Kraft's inequality as the enumerative sequence of leaves of a k-ary tree, or as the enumerative sequence of leaves of a (perhaps not k-ary) rational tree. These two constructions lead in a natural way to the problem of building a tree both rational and k-ary. This question was already considered in 10], where it was conjectured that any IN-rational sequence satisfying Kraft's inequality is the enumerative sequence of leaves of a k-ary rational tree.

In this paper, we prove this conjecture in the case where the sequence satis es Kraft's inequality with a strict inequality. Proofs and algorithms used to establish this result are based on automata theory and symbolic dynamics. In particular, we use the state splitting algorithm which has been introduced by R. Adler, D. Coppersmith and M. Hassner in 1] to solve coding problems for constrained channels by constructing nite-state codes with sliding block decoders. This was partly based on earlier work of B. Marcus in 7]. A variant of Franaszek's algorithm of computation of an approximate eigenvector makes the algorithms practical.

A variant of the problem considered here consists in replacing the enumerative sequence of leaves by the enumerative sequence of all nodes. Soittola ( 12]) has characterized the series which are the enumerative sequence of nodes in a rational tree. We prove that any IN-rational sequence t that satis es some necessary conditions : t 0 = 1, 8n 1; t n kt n 1 , the convergence radius of t is strictly greater than 1=k, and such that t has a primitive linear representation, is the enumerative sequence of nodes by height of a kary rational tree. The proof of this result is based on an extended notion of state splitting that allows us to output split states without outgoing edges.

The problem of a similar characterization for rational k-ary trees remains open in the general case.

The paper is organized as follows. We rst give basic de nitions and properties of rational objects, sequences and trees. We then give some denitions coming from the theory of symbolic dynamics. We de ne the notions of state splitting, approximate eigenvector and recall the algorithm of 1]. In Section 3, we establish the announced result (Theorem 1) concerning enumerative sequences of leaves and an give example for the construction. Next we give an e cient algorithm, that is a variant of Franaszek's algorithm, to nd approximate eigenvectors. Section 5 devoted to enumerative sequences of nodes gives an extension (Theorem 2) of the main result of Section 3.

A preliminary shorter version of this paper was presented at the ICALP'97.

2 De nitions and background

Rational sequences of nonnegative numbers

We denote by G a directed graph with E as its set of edges. We actually use multigraphs instead of ordinary graphs in order to be able to have several distinct edges with the same origin and end. Formally a multigraph is given by two sets E (the edges) and V (the vertices) and two functions from E to V which de ne the origin and the end of an edge. An edge in a multigraph going from p to q will be noted (p; x; q) where x 2 IN. This is equivalent to number the edges going from p to q in order to distinguish them. We shall always say \graph" instead of \multigraph".

In this paper, we consider sequences of nonnegative numbers. Such a sequence s = (s n ) n 0 will be said to be IN-rational if s n is the number of paths of length n going from a state in I to a state in F in a nite directed graph G, where I and F are two special subsets of states, the initial and nal states respectively. We say that the triple (G; I; F) is a representation of the sequence s. We now give some basic de nitions about trees. A tree T on a set of nodes N with a root r is a function T : N frg ! N which associates to each node distinct from the root its father T(n) in such a way that, for each node n, there is a nonnegative integer h such that T h (n) = r. The integer h is the height of the node n. A tree is k-ary if each node has at most k sons. A leaf is a node without son. We denote by l(T) the enumerative sequence of its leaves by height, that is the sequence of numbers s n , where s n is the number of leaves of T at height n. A tree is said to be rational if it admits only a nite number of non isomorphic subtrees. If T is a rational tree, the sequence l(T) is an IN-rational sequence.

The sequence s = l(T) of a k-ary tree is the length distribution of a pre x code over a k-letter alphabet. The associate series s(z) = P n 1 s n z n satis es then Kraft's inequality : s(1=k) 1. We shall say that Kraft's strict inequality is satis ed when s(1=k) < 1. The equality is reached when each node of the tree has exactly zero or k sons. Conversely, the McMillan construction establishes that for any series s satisfying Kraft's inequality, there is a k-ary tree such that s = l(T). Moreover, if the series satis es Kraft's equality, then the internal nodes will have exactly k sons. But the tree obtained is not rational in general.

It is also easy to see that an IN-rational sequence is the enumerative sequence of the leaves of a rational tree. A normalized representation can be used to do that by \developing" the tree. The root will correspond to the initial state of the graph. If a node of the tree at height n corresponds to a state i in the graph which has r outgoing edges ending in states j 1 ; j 2 ; : : :; j r , it will admit r sons at height n + 1, each of them corresponding respectively to the states j 1 ; j 2 ; : : :; j r of the graph. The leaves of the tree will correspond to the nal states of the normalized representation. The maximal number of sons of a node we get is then equal to the maximal number of edges going out of any state of the graph of this representation.

If s satis es Kraft's inequality, the above construction does not lead in general to a k-ary rational tree. The aim of this paper is to get a k-ary rational tree T such that s = l(T). This result was conjectured in 10]. We solve it for all IN-rational sequences satisfying Kraft's strict inequality and give a weaker result for the case of equality.

Approximate eigenvector and state splitting

Let s be an IN-rational sequence and let (G; i; F) be a normalized representation of s. If we identify the initial state i and all nal states of F in a single state still denoted i, we get a new graph denoted G, which is strongly connected. The sequence s is then the length distribution of the paths of rst returns to state i, that is of nite paths going from i to i without going through state i. Using the terminology of symbolic dynamics, the graph G can be seen as an irreducible shift of nite type (see, for example, 3], 4] or 6]).

We denote by M the adjacency matrix associated to the graph G, that is the matrix M = (m ij ) 1 i;j n , where n is the number of nodes of G and where m ij is the number of edges going from state i to state j. By the Perron-Frobenius theorem (see 6]), the positive matrix M associated to the strongly connected graph G has a positive eigenvalue of maximal modulus denoted by , also called the spectral radius of the matrix. Actually, only depends on the series s, 1= is the minimal modulus of the poles of 1 1 s . The dimension of the eigenspace of is equal to one. There is a positive eigenvector (componentwise) associated to . Moreover, if there is a positive eigenvector associated to an eigenvalue , then = .

When is an integer , the matrix admits a positive integral eigenvector.

When < k, where k is an integer, the matrix admits a k-approximate eigenvector, that is, by de nition, a positive integral vector v with Mv kv.

For example the left side of the gure below gives a representation (G; i; F) of the serie s(z) = 3z 2 =(1 z 2 ), and the right side gives the associated graph G. The adjacency matrix of G is

M = 0 B @ 0 3 0 1 0 1 0 1 0 1 C A
Its maximal eigenvalue is = 2. The components of a positive integral eigenvector are written on the nodes. We now de ne the operation of output state splitting in a graph G = (V; E). Let q be a vertex of G and let I (resp. O) be the set of edges coming in q (resp. going out of q). Let O = O 0 + O 00 be a partition of O. The operation of (output) state splitting relative to (O 0 ; O 00 ) transforms G into the graph G 0 = (V 0 ; E 0 ) where V 0 = (V nfqg) q 0 q 00 is obtained from V by splitting state q into two states q 0 and q 00 , and where E 0 is de ned as follows:

1. All edges of E that are not incident to q are left unchanged. 2. The both states q 0 and q 00 have the same input edges as q.

3. The output edges of q are distributed between q 0 and q 00 according to the partition of O into O 0 and O 00 . We denote U 0 and U 00 the sets of output edges of q 0 and q 00 respectively : U 0 = f(q 0 ; x; p) j (q; x; p) 2 O 0 g and U 00 = f(q 00 ; x; p) j (q; x; p) 2 O 00 g.

O" q O' Fig. 4. Graph G q" U' q' U" Fig. 5. Graph G 0 Let us now assume that v is a k-approximate eigenvector for the graph G. We denote by v p the component of index p of v. All components v p are positive integers. A state splitting of a state q is said to be admissible according to k, if the partition in O 0 and O 00 is such that O 0 and O 00 are not empty and:

k divides X (q;x;r)2O 0 v r
If the state splitting is admissible (according to k), the vector v 0 de ned as follows will be a k-approximate eigenvector for the new graph G 0 . If p is a state distinct from q 0 and q 00 then v 0 p = v p . For states q 0 and q 00 we have: v 0 q 0 = 1 k X (q;x;r)2O 0 v r and v 0 q 00 = v q v 0 q 0 : By the state splitting construction, one can check that M 0 v 0 kv 0 , where M 0 is the adjacency matrix of G 0 .

The state splitting algorithm of 1] ensures that there is a nite number of state splittings leading to a k-ary graph, that is a graph such that at most k edges are going out of any state. For the sake of completeness, we brie y recall the proof. If there is a state q which admits more than k edges going out of it, we choose k of them and denote by r 1 ; r 2 ; : : :; r k the sequence of end states of these edges. We then choose a subset O 0 of these k edges such that k divides P (q;x;r)2O 0 v r . This is always possible. Indeed, by considering the k + 1 numbers v r 1 ; v r 1 + v r 2 ; : : :; v r 1 + v r 2 + v r k , we can see that at least two of them are equal modulo k, and then their di erence is equal to zero modulo k. The partition of the output edges of q in O 0 and O 00 leads to an admissible state splitting and v 0 q is strictly less than v q . This point ensures that the process stops after a nite number of splits, the nal number of states being bounded by the sum of the components of the initial approximate eigenvector. The nal graph obtained is k-ary.

We shall compute approximate eigenvectors for the strongly connected graphs G associated to normalized representations (G; i; F) of sequences.

We shall then perform admissible state splittings that can be seen either on the graph G or on the graph G. To do that, we shall associate to each node of G a value equal to the corresponding component of the approximate eigenvector of the graph G. The initial and the nal states will have same value since they correspond to the same state of G.

Enumerative sequences of leaves

We now state the result in the case of Kraft strict inequality.

Theorem 1 Let s = (s n ) n 1 be an IN-rational sequence of nonnegative integers et let k be an integer such that P n 1 s n k n < 1. Then there is a k-ary rational tree such that s is the enumerative sequence of its leaves.

In order to prove this result, we rst prove one lemma that remains true in the case of equality. We therefore consider an IN-rational sequence s and an integer k such that P n 1 s n k n 1. We begin with a normalized representation (G; i; F) of the IN-rational sequence s. We denote by M the adjacency matrix of G and by its spectral radius. Then k. We then compute a k-approximate eigenvector v = (v 1 ; v 2 ; : : :; v n ) t of the graph G.

By de nition, we have Mv kv. Without loss of generality, we can assume that state 1 is the initial state in all normalized representations.

Lemma 1 If k divides v 1 , then there is another normalized representation for s and a new corresponding approximate eigenvector v 0 with v 0 1 = v 1 div k.

Proof : We denote by P the set of states q such that there is in G an edge denoted (q; x; t) going from q to a nal state t of F. Remark that, as state t is equal to state 1 in G, the value of state t is equal to the value of state 1.

Let us rst suppose that the initial state 1 does not belong to P. If there is in P a state q which admits more than one (say n) outgoing edges, we split q in q 0 and q 00 according to partition (O 0 ; O 00 ) where O 0 = f(q; x; t)g contains exactly one edge. Since k divides v 1 , this state splitting is admissible and v 0 q 0 = v 1 div k. Moreover, in the new graph G 0 , q 0 admits only one outgoing edge (going to t) and q 00 is either not in P or admits less than n outgoing edges. By successive state splittings of all states in P having more than one outgoing edges, we shall get, in a nite number of steps, a representation such that all states with one outgoing edge ending in F have no other outgoing edges. Under the hypothesis that state 1 does not belong to P, the initial state has not been split during this process and so each new computed graph is still a normalized representation of the sequence. We denote again by (G; 1; F) the nal representation obtained for s and by P last the set of states having one outgoing edge ending in F in this graph. Remark that the values of states of P last are greater than or equal to v 1 div k. We turn all values of states of P last greater than v 1 div k into v 1 div k; the vector v remains a k-approximate eigenvector.

We then transform the representation (G; 1; F) in a new one, (H; i; P last ), where H is the graph obtained from G by adding a state i, an edge from i to 1 and by removing all edges of G going out of a state of P last . If we look at paths in G going from 1 to F, we have just cut the last edge and added one at the beginning. We assign to state i the value v 1 div k, and the values of all states correspond now to a new k-approximate eigenvector for H. We call this tranformation the \shift" transformation.

Let us now suppose that the initial state 1 belongs to P. We rst split, as explained above, all states of P having more that one outgoing edge. In this case, state 1 may have been split. We denote by 1 (1) ; 1 (2) ; 1 (3) ; : : :1 (r) the copies of state 1 obtained by successive state splittings of the initial state 1. We still denote by G the graph obtained by this transformation and by P last the set of states having one outgoing edge ending in F in this graph. We then transform the representation (G; 1; F) into a new one, (H; i; P last ), where H is the graph obtained from G by adding a state i, an edge from i to each 1 (j) ; 1 j r and by removing all edges of G going out of a state of P last . Remark that (r 1) states among 1 (1) ; 1 (2) ; 1 (3) ; : : :1 (r) belong to P last . We again assign to the state i the value v 1 div k, and the values of all states correspond now to a new k-approximate eigenvector for H. 2 Corollary 1 If v 1 is a power of k, then there is another normalized representation and a new corresponding approximate eigenvector v 0 with v 0 1 = 1.

Proof : If v 1 = k m , we iterate the construction given in previous lemma and get v 0 1 = 1 in m steps. 2

Example

Let s be the following series:

s(z) = 2z 3 + 2z 2 z 2 (z 2 )
Here, k = 2 and s(1=2) = 1:

In the following pictures, the nodes are labeled with their value. The last step is described in the proof of Theorem 1. It corresponds here to a state splitting of all states of the graph of value different from 1.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Fig.

Last representation

We now prove another lemma which is true only in the case of Kraft strict inequality.

Lemma 2 Let M be a nonnegative integral matrix. If its spectral radius is strictly less than k, then there is a k-approximate eigenvector w of M such that w 1 is a power of k.

Proof : Let ( < k) be the positive real eigenvalue of maximal modulus of M and let v be an eigenvector associated to . We denote by P the set of positive vectors w such that Mw < kw. The set P is an open set and v belongs to P. By dividing all components of v par v 1 , we can assume that v 1 is equal to 1. As P is open, there is a positive real such that B(v; ) P, where B(v; ) = fw j v i w i v i + g. Let us now choose an integer m such that 1=k m < . As B(v; 1=k m ) P, we have fk m w j w 2 B(v; 1=k m )g P. This set is fw j k m v i 1 w i k m v i + 1g and contains w where w i = dk m v i e. This vector is a positive integer vector w with Mw < kw : it is a k-approximate eigenvector. Moreover w 1 = k m .

2

We now prove Theorem 1.

Proof : (Theorem 1) We begin with a normalized representation of s and compute, by Lemma 2, a k-approximate eigenvector whose component for the initial state is a power of k. We then compute, by Corollary 1, a normalized representation (G; 1; F) of s which admits a k-approximate eigenvector of component 1 for the initial state. Finally, we apply to G the state splitting algorithm described in the previous section to obtain a k-ary graph. As the component of the approximate eigenvector on the initial state is 1 and as the state splittings have to be admissible, this state will never be split during the process. A state splitting of a state of G di erent from state 1 leads by construction to a graph G 0 still representing the same sequence. The result follows then from the fact that the nal normalized representation has a k-ary graph. 2

We can apply the construction given above to the case of Kraft equality when it is possible to nd a representation of s which admits a k-eigenvector with a power of k as component on the initial state. This may perhaps not always be the case. We can consider the example : s(z) = (2z + 2z 2 )(z 2 ) z. It has a representation given by the graph G with an eigenvector such that v 1 = 3 and it admits also the representation given by graph H with an eigenvector such that v 1 = 1. The series is also equal to 2z 2 z . There is no hope to succeed in transforming G into H by state splitting and merging since H and G are non isomorphic symbolic subshifts. 

Computation of an approximate eigenvector

Although Lemma 2 tells us that, for an irreducible matrix with a spectral radius strictly less than an integer k, an approximate eigenvector with a power of k as rst component, exists, it does not provide a good way to nd one. Fortunately, there is an e cient algorithm to nd such small approximate eigenvectors. The algorithm we give is a variant of Franaszek's algorithm to compute an upper approximate eigenvector (see 6] p.153). This makes the algorithm of Theorem 1 practical.

Let M be a nonnegative irreducible integral matrix and its spectral radius. If k, a k-upper approximate eigenvector is a positive integral vector v such that Mv kv. If k, a k-lower approximate eigenvector is a positive integral vector v such that Mv kv. In the case where < k, we want to compute a k-lower approximate eigenvector with a rst component which is a power of k. In the sequel, we shall omit the word lower.

We use the following notation to state the algorithms. If u and v are vectors, let w = maxfu; vg (resp. w = minfu; vg) denote the componentwise maximum (resp. minimum), so that w i = maxfu i ; v i g (resp.

w i = minfu i ; v i g) for each index i. For a real number r, let dre denote the integer top of r, i.e., the smallest integer greater than or equal to r.

Proposition 2 Let M be an integral irreducible matrix with a spectral radius less than or equal to an integer k. A smallest k-approximate eigenvector exists. If the spectral radius is strictly less than k, a smallest k-approximate eigenvector, whose rst component is a power of k, exists.

Proof : The proof of the existence of a k-(lower) approximate eigenvector is the same as the proof of the existence of a k-upper approximate eigenvector (for irreducible matrices with a spectral radius greater than or equal to k). Let now u and u 0 be two k-approximate eigenvectors. Then it is straightforward that v = minfu; u 0 g is a k-approximate eigenvector.

When the spectral radius is strictly less than k, the proof of the existence of a k-approximate eigenvector, whose rst component is a power of k, is given in Lemma 2. If u and u 0 are two k-approximate eigenvectors, whose rst component is a power of k, then this is true also of minfu; u 0 g. 2

The lower version of Franaszek's algorithm that computes the smallest k-approximate eigenvector is the following: The proof that the algorithm is correct is the following: Proof : The vectors computed are monotonically nondecreasing in each component. Let u be a k-approximate eigenvector. As all components of u are positive integers, we have v 0 u. In fact, this is true for the rst vector v 0 = (1; 1; : : :; 1) t . If we assume that v u in the repeat loop, then either v 0 = v, or v 0 = d 1 k Mve. In the rst case, v 0 u. In the second case, v 0 d 1 k Mue due. Since u has integer components, we also get v 0 u.

This proves that the process eventually stops.

The nal vector v obtained is then a k-approximate eigenvector. In fact, as v 0 = v, d 1 k Mve v. Then Mv kv. As v is less than or equal to any other k-approximate eigenvector, it is the smallest. 2

We now suppose that the spectral radius of M is strictly less than k. We are interested in computing a k-approximate eigenvector whose rst component is a power of k. We give a variant of Franaszek's algorithm that nds the smallest k-approximate eigenvector whose rst component is a power of k. end until v 0 = v; end The proof that the algorithm is correct is the following: Proof : The vectors computed are monotonically nondecreasing in each component. Let u be now a k-approximate eigenvector whose rst component is a power of k. We assume that u 1 = k s , where s is a nonnegative integer. We still have v 0 u. In fact, this is true at the beginning of the repeat loop since u is a positive integral vector. Let us suppose that v u in the loop, we have Mv Mu ku. Then d 1 k (Mv) 1 e u 1 = k s and d 1 k (Mv) i e u i for i 2, since u is integer. We get v 0 i u i for i 2, and log k (d 1 k (Mv) 1 e) s. Finally, we have dlog k (d 1 k (Mv) 1 e)e s and v 0 1 k s = u 1 . This proves that v 0 u and that the process stops. Let v be the nal vector computed. We still have Mv kv. This is easily veri ed for all components greater than 1 as in the previous proof.

For the rst component, we successively get, as v = v 0 :

k dlog k (d 1 k (M v) 1 e)e v 1 ; k log k (d 1 k (M v) 1 e) v 1 ; d 1 k (Mv) 1 e v 1 ; 1 k (Mv) 1 v 1 ; (Mv) 1 v 1 :
The last vector computed is also smaller than any other k-approximate eigenvector whose rst component is a power of k. This concludes the proof. 2

5 Link with enumerative sequences of nodes

In this section, we are going to extend Theorem 1 to the case of Kraft equality when, moreover, the enumerative sequence of nodes corresponding to the sequence of leaves has a primitive linear representation.

Let s be an IN-rational series. A linear representation of s is a triple (l; M; c), where l is a nonnegative integral row vector, c is a nonnegative integral column vector, and M is a nonnegative integral matrix, with: 8n 0; s n = lM n c: The triple (l; M; c) corresponds to a representation (G; I; F) of s de ned in such a way that M is the adjacency matrix of G. The linear representation is said to be primitive if M is primitive. Recall that a matrix is primitive if there exists an integer n such that M n > 0. Equivalently, the adjacency matrix of a strongly connected graph G is primitive if the g.c.d of lengths of cycles in G is 1.

Let T be a tree. We de ne the enumerative sequence t of internal nodes by height of the tree T by t = (t n ) n 0 , where t n is the number of internal nodes of T at height n. An internal node is a node which is not a leaf. Let s (resp. t) be the enumerative sequence of leaves (resp. of nodes) by height of a complete k-ary tree. The link between s and t is the following: t(z) = 1 s(z) 1 kz with s(1=k) = 1: We also have s(z) = P(z)=Q(z), where P(z) and Q(z) are polynomials with nonnegative integral coe cients and Q(0) = 1. Therefore the series t associated to s sati es: t(z) = Q(z) P(z)

(1 kz)Q(z) :

As s(1=k) = 1, P(1=k) = Q(1=k). Thus the series s and t have the same poles and especially the same convergence radius 1= > 1=k.

We can now state the following result that we are going to prove:

Theorem 2 Let t(z) = P n 0 t n z n be an IN-rational series such that: t 0 = 1. 8n 1; t n kt n 1 . the convergence radius of t is strictly greater than 1=k (k 2 IN ). t has a primitive linear representation. Then (t n ) n 0 is the enumerative sequence of nodes by height in a k-ary rational tree.

The construction that we give is partly based on a proof by Perrin [START_REF] Marcus | So c systems and encoding data[END_REF]).

Let l; M; c be matrices with nonnegative entries such that (l; M; c) is a linear representation of t, i.e. 8n 0; t n = lM n c:

We denote by 1= the convergence radius of t. As the matrix M has < k as spectral radius and is primitive, the sequence ((M= ) n ) n 1 tends toward a positive matrix N such that (M= )N = N. Thus, the sequence ((M= ) n c) n 1 tends toward a positive vector w = Nc. The vector w is an eigenvector associated to 1 for M= since (M= )Nc = Nc. Since Mw < kw, for all large enough n, we get M M n c < k M n c; and so, we have the inequality 8n n 0 ; M n+1 c < kM n c:

We shall give a construction of paths in the tree beginning at the nodes of height n 0 , the construction of the remaining part of the tree being obvious.

In order to do that, we transform the linear representation of (t n ) n 0 into the one of (t n ) n n 0 . The latter is (l; M; v) with v = M n 0 c since 8n 0; t n+n 0 = lM n (M n 0 c):

is an admissible k-approximate eigenvector of M 0 .

Let us now assume that r 1 i r. We de ne the splitting of q according to the partition (O 1 ; : : :; O m ), where O 1 = O and O i = ; for 2 i m, and v 0 by v 0 q i = 1 for 1 i m:

The vector v 0 is still admissible. 5 th case We suppose that Card(O) = r < k < m.

If r > 1, we de ne the splitting of q according to the partition (O 1 ; O 2 = O n O 1 ), where O 1 contains exactly one edge of O. We number 1; 2; : : :; r the states of J, and we can suppose that state 1 is the ending state of the edge of O 1 . The vector v 0 is de ned by v 0 q 1 = d v 1 k e and v 0 q 2 = v q v 0 q 1 :

We have: v 1 + v 2 + + v r rm (k 1)m; and as v 1 > k(d v 1 k e 1), v 2 + + v r < (k 1)m k(d v 1 k e 1); k(m d v 1 k e) + k m k(m d v 1 k e): This proves that v 0 is again an admissible vector.

If r 1, we then de ne the splitting of q according to the partition (O 1 ; : : :; O m d v 1 k e ), where O 1 contains the only edge of O and O i = ; for 2 i (m d v 1 k e). The vector v 0 de ned by v 0 q 1 = d v 1 k e and v 0 i = 1 for 2 i (m d v 1 k e) is again an admissible vector.

In all cases, the state q is split in states with new values stricly less than the maximal value m. Moreover each state without output edge obtained by state splitting has value 1. This transformation is iterated until all components of the vector v 0 are equal to 1, concluding the proof of Proposition 3. 2
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The vector v is then a k-(lower) approximate eigenvector of the matrix M, since we have Mv kv. Now we shall prove that we can replace the triple (l; M; v) by a triple (l 0 ; M 0 ; v 0 ), which is also a linear representation of (t n ) n n 0 , such that v 0 has all its entries equal to 1, and such that the entries of each row of M 0 are at most k. The construction of this new linear representation basically makes use of the state splitting.

We shall use the following extended notion of state splitting, that we call again a state splitting. Let G = (V; E) be a graph and let q be a vertex of G.

We denote by I (resp. O) be the set of edges coming in q (resp. going out of q). Let (O 1 ; O 2 ; ; O r ) be a partition of O in r parts. Main di erence with the de nition of state splitting in Section 2 is that some parts O i of the partition may be here empty. The operation of (output) state splitting relative to this partition transforms G into the graph G 0 = (V 0 ; E 0 ) where V 0 = (V n fqg) q 1 q 2 : : : q r is obtained from V by splitting state q into r states q 1 ; : : :; q r , and where E 0 is de ned as follows:

1. All edges of E that are not incident to q are left unchanged. 2. All states q i have the same input edges as q.

3. The output edges of q are distributed between q 1 ; : : :; q r according to the partition of O into (O 1 ; O 2 ; : : :; O r ). We denote by U i the set of output edges of q i : U i = f(q i ; x; p) j (q; x; p) 2 O i g. Note that some U i may be empty.

Let us now assume that a k-approximate eigenvector v for the graph G, that is a k-approximate eigenvector of the adjacency matrix of G, exists.

We denote by v p the component of index p of v, if p is a state of G. It is also called the value of state p (before the state splitting). All components v p are positive integers. An admissible vector v 0 for the new graph G 0 is a positive integral vector satisfying the following conditions:

If p is a state distinct from q i then v 0 p = v p . P 1 i r v 0 q i = v q .

The vector v 0 is a k-approximate eigenvector of the adjacency matrix M 0 of the new graph G 0 .

Note the di erence with the de nition of an admissible state splitting given in Section 2.

Finally, let l be the row vector of a linear representation (l; M; v). We transform l into l 0 de ned in the following way: l 0 q 1 = l 0 q 2 = = l 0 qr = l q ; if p 6 = q i l 0 p = l p :

If (l; M; v) is a linear representation of a given series, then (l 0 ; M 0 ; v 0 ) is a representation of the same series.

Proposition 3 Let M be a nonnegative integral matrix whose spectral radius is less than a positive integer k. Let v be a k-(lower) approximate eigenvector for M. If (l; M; v) is the linear representation of an IN-rational series, there is another representation (l 0 ; M 0 ; v 0 ), with matrices having entries in IN, of the same series, such that the sum of the entries of each row of M 0 is at most k, and all components of v 0 are equal to 1.

Note that the matrix M is not necessarily irreducible. We de ne the graph G associated to M 2 IN n n as the n-state graph having M ij edges from i to j.

Proof : (Proposition 3) We may suppose that the matrix M is a 0 1 matrix.

Otherwise, we obtain such a matrix by successive output state splittings of all states having more than one output edges going to a same state.

The method consists in successive output state splittings of the graph G associated to M, in such a way that a new graph G 0 and a new admissible k-approximate eigenvector v 0 are obtained at each step. The inequality Mv kv is then an invariant of the iteration of state splittings.

More precisely, we choose a state q of the graph G such that v q is maximal and has not exactly k outgoing edges all ending in states of maximal value. Such a state of maximal value exists, since otherwise G would admit a subgraph whose states all have k outgoing edges, and the spectral radius of the matrix M would be then greater than or equal to k. We denote by O the set of outgoing edges of q, and we denote by m = v q the maximal value of the components of v. We can assume that m > 1 since otherwise the process immediately stops. We denote by J the ending states of edges of O.

We consider several cases to de ne the state splitting:

1 st case We suppose that there is a non empty and strict subset J 0 of J such that P p2J 0 v p 0 mod k. This is true especially when Card(O) > k (see Section 3).

In this case, we do an output state splitting of q relative to the partition (O 1 ; O 2 ), where O 1 are the edges of O ending in J 0 and O 2 = O n O 1 . The graph G is transformed into a graph G 0 having M 0 as adjacency matrix. We de ne the vector v 0 by v 0 q 1 = 1 k X p2J 0 v p ; v 0 q 2 = v q v 0 q 1 ; and if p 6 = q 1 ; q 2 v 0 p = v p :

The vector v 0 is positive integral vector that satis es the inequality: M 0 v 0 kv 0 : Indeed, setting J 00 = J n J 0 , we get if p 6 = q 1 ; q 2 ; (M 0 v 0 ) p = (Mv) p :

(M 0 v 0 ) q 1 = ( P p2J 0 v 0 p if q = 2 J 0 P p2J 0 nfqg v 0 p + v 0 q 1 + v 0 q 2 if q 2 J 0 = X p2J 0 v p = kv 0 q 1 (M 0 v 0 ) q 2 = ( P p2J 00 v 0 p if q = 2 J 00 P p2J 00 nfqg v 0 p + v 0 q 1 + v 0 q 2 if q 2 J 00 = X p2J 00 v p = X p2J v p X p2J 0 v p kv q kv 0 q 1 kv 0 q 2 : Therefore v 0 is an admissible k-approximate eigenvector.

2 nd case We suppose that Card(O) = k. Then we can also suppose that P p2J v p 0 mod k. Otherwise we would be in the rst case. Since, by hypothesis, q has at least one outgoing edge ending in a state of value strictly less than the maximal value m = v q , we have P p2J v p < km. As the left member of the inequality is a multiple of k, we obtain X p2J v p k(m 1):

(1)

We split state q according to the partition (O 1 = O; O 2 = ;) and de ne a k-approximate eigenvector v 0 by v 0 q 1 = m 1; v 0 q 2 = 1 18

We still have M 0 v 0 kv 0 and v 0 is admissible.

We mention here another possibility of splitting according to a partition of O into two non empty subsets. If J 0 denotes the ending states of edges of O 1 , the admissible vector v 0 is in this case de ned by v 0 q 1 = d 1 k P p2J 0 v p e. The remaining cases are devoted to the case where Card(O) = r < k.

3 rd case We suppose that Card(O) = r < k and r m k.

We split q in q 1 ; q 2 ; : : :; q m according to (O 1 ; O 2 ; : : :; O m ), where O i contains exactly one edge from O, for 1 i r, and O i = ; for r + 1 i m. We de ne a k-approximate eigenvector v 0 by v 0 q i = 1; 1 i m As v 0 p m k for any state p, M 0 v 0 kv 0 and v 0 is admissible. 4 th case We suppose that m < Card(O) = r < k.

We number 1; 2 : : :; r the states of J. Let i be the greatest index such that v 1 + v 2 + + v i < k m; if it does not exist, we set i = 0. Let us rst assume that 0 i < r 1. Then v 1 + v 2 + + v i+1 rm k(m 1):

In fact, otherwise we would have:

We then also get:

As a consequence we de ne the splitting of q according to the partition (O 1 ; O 2 = O n O 1 ), where O 1 is the set of outgoing edges of q ending in states 1 to i + 1. The vector v 0 de ned by v 0 q 1 = 1 and v 0 q 2 = m 1;

We then obtain, by Proposition 3, a new representation (l 0 ; M 0 ; v 0 ) of the sequence (t n ) n n 0 , where the sum of each row of M 0 is at most k (since M 0 v 0 kv 0 ), and all components of v 0 are equal to 1. The sum of the components of l 0 is then t n 0 .

The interpretation of this new representation shows that t is the generating series of internal nodes of a k-ary rational tree, concluding the proof.

Example Let t be the following series: t(z) = (z + z 3 ) (1 + z). We get that M 2 c kMc, so Mc = (2; 1; 2) t is a k approximate eigenvector and after splittings we obtain the tree of the last picture.