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A FINITE STATE VERSIONOF THE KRAFT-MCMILLAN THEOREMFR�ED�ERIQUE BASSINO �, MARIE-PIERRE B�EAL � , AND DOMINIQUE PERRIN �Abstra
t. The main result is a �nite-state version of the Kraft-M
Millan theorem 
hara
terizingthe generating sequen
e of a k-ary regular tree. The proof uses a new 
onstru
tion 
alled the multiset
onstru
tion whi
h is a version with multipli
ities of the well-known subset 
onstru
tion of automatatheory.Key words. generating series, regular trees, nonnegative matri
es.AMS subje
t 
lassi�
ations. 68Q45, 68R10, 94A45, 37B101. Introdu
tion. The Kraft inequality Pn�0 snk�n � 1 
hara
terizes the gen-erating sequen
es (sn)n�0 of leaves in a k-ary tree. It is used in 
onnexion withHu�man algorithm to build pre�x 
odes or sear
h trees and usually restri
ted to the
ase of �nite trees. We are interested here in the 
ase of in�nite sequen
es 
orre-sponding to in�nite trees. These in�nite trees arise for example as sear
h trees inin�nite sets. They also appear in the 
ontext of �nite automata having nested loopsto represent the set of �rst returns to a given state. The tree thus obtained is 
alled aregular tree. It has only a �nite number of non-isomorphi
 subtrees sin
e two subtrees
orresponding to the same state of the automaton are isomorphi
. The generatingsequen
es of su
h in�nite trees are of interest in the appli
ations of �nite automatato text 
ompression or 
hannel 
oding.Our main result is a 
hara
terization of the generating sequen
es of leaves ofregular k-ary trees. Its essen
e is that the two 
onditions of being the generatingsequen
e of(i) a k-ary tree(ii) a regular treeare independent in the sense that their 
onjun
tion is enough to guarantee that asequen
e is the generating sequen
e of a regular k-ary tree.The proof uses a new 
onstru
tion on graphs 
alled the multiset 
onstru
tionwhi
h is a 
ounterpart for automata with multipli
ities of the well-known subset 
on-stru
tion of automata theory.Our results have a 
onnexion with symboli
 dynami
s. A
tually, in both 
ases,the emphasis is on the spa
e of paths in a �nite graph. Even if we do not use resultsfrom symboli
 dynami
s, some of the methods used, like state-splitting or the Perrontheory are similar. Using an expression of Lind and Mar
us [15℄, our treatment is\dynami
al in spirit". The relationship with symboli
 dynami
s is dis
ussed more
losely in [7℄ and [8℄.The paper is organized as follows. Se
tion 2 
ontains preliminary results andde�nitions on graphs, trees, regular sequen
es and the Perron-Frobenius theory. InSe
tion 3, we present the multiset 
onstru
tion. Se
tion 4 
ontains the proof of ourmain result (Theorem 4.2). The following se
tion (Se
tion 5) treats a similar problem,with the set of leaves repla
ed by the set of all nodes.The results 
ontained in this paper represent the terminal point of a series ofsteps. In a previous paper [7℄ (with a preliminary version in [5℄), we proved Theorem�Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee,77454 Marne-la-Vall�ee Cedex 2 Fran
e.fbassino,beal,perring�univ-mlv.fr. 1



2 F. Bassino, M.-P. B�eal and D. Perrin4.2 in the parti
ular 
ase of a stri
t inequality. The proof uses the te
hnique ofstate-splitting from symboli
 dynami
s. In the same paper, we also give a proofof Theorem 5.3 whi
h is di�erent from the proof given here, whi
h is based on themultiset 
onstru
tion and is more simple. Part of the results of the present paperwas presented at the 
onferen
e LATIN'98 [6℄. Finally, the survey paper [8℄ gives anoverview of length distributions and regular sequen
es.2. De�nitions and ba
kground. In this se
tion, we �x our notation 
on
ern-ing graphs, trees and regular sequen
es. We also re
all some notions 
on
erningpositive matri
es.A word on the terminology used here. We 
onstantly use the term regular wherea ri
her terminology is often used. In parti
ular, what we 
all here a regular sequen
eis, in Eilenberg's terminology, an N-rational sequen
e (see [11℄, [19℄ or [10℄).2.1. Graphs and trees. In this paper, we use dire
ted multigraphs i.e. graphswith possibly several edges with the same origin and the same end. We simply 
allthem graphs in all what follows. We denote G = (Q;E) a graph with Q as set ofverti
es and E as set of edges. We also say that G is a graph on the set Q.A tree T on a set of nodes N with a root r 2 N is a fun
tion T : N � frg �! Nwhi
h asso
iates to ea
h node distin
t from the root its father T (n), in su
h a waythat, for ea
h node n, there is a nonnegative integer h su
h that T h(n) = r. Theinteger h is the height of the node n.A tree is k-ary if ea
h node has at most k 
hildren. A node without 
hildren is
alled a leaf. A node whi
h is not a leaf is 
alled internal. A node n is a des
endantof a node m if m = T h(n) for some h � 0. A k-ary tree is 
omplete if all internalnodes have exa
tly k 
hildren and have at least one des
endant whi
h is a leaf.For ea
h node n of a tree T , the subtree rooted at n, denoted Tn is the treeobtained by restri
ting the set of nodes to the des
endants of n.Two trees S; T are isomorphi
, denoted S � T , if there is a map whi
h transformsS into T by permuting the 
hildren of ea
h node. Equivalently, S � T if there is abije
tive map f : N !M from the set of nodes of S onto the set of nodes of T su
hthat f Æ S = T Æ f . Su
h a map f is 
alled an isomorphism.If T is a tree with N as set of nodes, the quotient graph of T is the graphG = (Q;E) where Q and E are de�ned as follows. The set Q is the quotient of N bythe equivalen
e n � m if Tn � Tm. Let �m denote the 
lass of a node m. The numberof edges from �m to �n is the number of 
hildren of m equivalent to n.Conversely, the set of paths in a graph with given origin is a tree. Indeed, letG = (Q;E) be a graph. Let r 2 Q be a parti
ular vertex and let N be the setof paths in G starting at r. The tree T having N as set of nodes and su
h thatT (p0; p1; : : : ; pn) = (p0; p1; : : : ; pn�1) is 
alled the 
overing tree of G starting at r.Both 
onstru
tions are mutually inverse in the sense that any tree T is isomorphi
to the 
overing tree of its quotient graph starting at the image of the root.Proposition 2.1. Let T be a tree with root r. Let G be its quotient graph andlet i be the vertex of G whi
h is the 
lass of the root of T . For ea
h vertex q of G andfor ea
h n � 0, the number of paths of length n from i to q is equal to the number ofnodes of T at height n in the 
lass of q.A tree is said to be regular if it admits only a �nite number of non-isomorphi
subtrees, i.e. if its quotient graph is �nite.For example, the in�nite tree represented on Figure 2.1 is a regular tree. Itsquotient graph is represented on Figure 2.2.
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Fig. 2.1. A regular tree.1 342Fig. 2.2. And its quotient graph.There is also a 
lose 
onnexion between trees and sets of words on an alphabet.Let X be a set of words on the alphabet f0; 1; : : : ; k � 1g. The set X is said to bepre�x-
losed if any pre�x of an element of X is also in X . When X is pre�x 
losed,we 
an build a tree T (X) as follows. The set of nodes is X , the root is the emptyword � and T (a1a2 � � �an) = a1a2 � � �an�1.Let for example X = f�; 0; 1; 10; 11g. The tree T (X) is represented on Figure 2.3.
Fig. 2.3. The tree T (X).2.2. Regular sequen
es. We 
onsider sequen
es of natural integers s = (sn)n�0.We shall not distinguish between su
h a sequen
e and the formal series s(z) =Pn�0 snzn:We usually denote a ve
tor indexed by elements of a set Q, also 
alled a Q-ve
tor,with boldfa
e symbols. For v = (vq)q2Q we say that v is nonnegative, denoted v � 0,(resp. positive, denoted v > 0) if vq � 0 (resp. vq > 0) for all q 2 Q. The same
onventions are used for matri
es. A nonnegative Q � Q-matrix M is said to beirredu
ible if, for all indi
es p; q, there is an integer m su
h that (Mm)p;q > 0. The



4 F. Bassino, M.-P. B�eal and D. Perrinmatrix is primitive if there is an integer m su
h that Mm > 0.The adja
en
y matrix of a graph G = (Q;E) is the Q � Q-matrix M su
h thatfor ea
h p; q 2 Q, the integer Mp;q is the number of edges from p to q. The adja
en
ymatrix of a graph G is irredu
ible i� the graph is strongly 
onne
ted. It is primitiveif, moreover, the g.
.d of lengths of 
y
les in G is 1.Let G be a �nite graph and let I , T be two sets of verti
es. For ea
h n � 0, let snbe the number of distin
t paths of length n from a vertex of I to a vertex of T . Thesequen
e s = (sn)n�0 is 
alled the sequen
e re
ognized by (G; I; T ) or also by G if Iand T are already spe
i�ed. When I = fig and T = ftg, we simply denote (G; i; t)instead of (G; fig; ftg).A sequen
e s = (sn)n�0 of nonnegative integers is said to be regular if it isre
ognized by su
h a triple (G; I; T ), where G is �nite. We say that the triple (G; I; T )is a representation of the sequen
e s. The verti
es of I are 
alled initial and those ofT terminal. Two representations are said to be equivalent if they re
ognize the samesequen
e.A representation (G; I; T ) is said to be trim if every vertex of G is on some pathfrom I to T . It is 
lear that any representation is equivalent to a trim one.A well known result in theory of �nite automata allows one to use a parti
ularrepresentation of any regular sequen
e s su
h that s0 = 0. One 
an always 
hoose inthis 
ase a representation (G; i; t) of s with a unique initial vertex i, a unique �nalvertex t 6= i su
h that no edge is entering vertex i and no edge is going out of vertext. Su
h a representation is 
alled a normalized representation (see for example [17℄page 14).Let (G; i; t) be a trim normalized representation. If we merge the initial vertexi and the �nal vertex t in a single vertex still denoted by i, we obtain a new graphdenoted by G, whi
h is strongly 
onne
ted. The triple (G; i; i) is 
alled the 
losure of(G; i; t).Let s be a regular sequen
e su
h that s0 = 0. The star s� of the sequen
e s isde�ned by s�(z) = 11� s(z) :Proposition 2.2. If (G; i; t) is a normalized representation of s, its 
losure(G; i; i) re
ognizes the sequen
e s�.Proof. The sequen
e s is the length distribution of the paths of �rst returns tovertex i in G, that is of �nite paths going from i to i without going through vertex i.The length distribution of the set of all returns to i is thus 1 + s(z) + s2(z) + : : : =1=(1� s(z)).An equivalent de�nition of regular sequen
es uses ve
tors instead of sets I; F .Let i be a Q-row ve
tor of nonnegative integers and let t be a Q-
olumn ve
tor ofnonnegative integers. We say that (G; i; t) re
ognizes the sequen
e s = (sn)n�0 if forea
h integer n � 0 sn = iMnt;whereM is the adja
en
y matrix of G. The proof that both de�nitions are equivalentfollows from the fa
t that the family of regular sequen
es is 
losed under addition (see[11℄). A triple (G; i; t) re
ognizing a sequen
e s is also 
alled a representation of s andtwo representations are 
alled equivalent if they re
ognize the same sequen
e.



A �nite state Kraft-M
Millan theorem 5A sequen
e s = (sn)n�0 of nonnegative integers is rational if it satis�es a re
ur-ren
e relation with integral 
oeÆ
ients. Equivalently, s is rational if there exist twopolynomials p(z); q(z) with integral 
oeÆ
ients and with q(0) = 1 su
h thats(z) = p(z)q(z) :Any regular sequen
e is rational. The 
onverse is however not true (see Se
tion5). For example, the sequen
e s de�ned by s(z) = z1�z�z2 is the sequen
e of Fibona

i1 2Fig. 2.4. The Fibona

i graph.numbers also de�ned by s0 = 0; s1 = 1 and sn+1 = sn + sn�1. It is re
ognized by thegraph of Figure 2.4 with I = f1g and T = f2g.2.3. Regular sequen
es and trees. If T is a tree, its generating sequen
e ofleaves is the sequen
e of numbers s = (sn)n�0, where sn is the number of leaves atheight n. We also simply say that s is the generating sequen
e of T .The following result is a dire
t 
onsequen
e of the de�nitions.Theorem 2.3. The generating sequen
e of a regular tree is a regular sequen
e.Proof. Let T be a regular tree and let G be its quotient graph. Sin
e T is regular,G is �nite. The leaves of T form an equivalen
e 
lass t. By Proposition 2.1, thegenerating sequen
e of T is re
ognized by (G; i; t) where i is the 
lass of the root ofT . We say that a sequen
e s = (sn)n�1 satis�es the Kraft inequality for the integerk if Xn�0 snk�n � 1;i.e. using the formal series s(z) =Pn�0 snzn, ifs(1=k) � 1:We say that s satis�es the stri
t Kraft inequality for k if s(1=k) < 1. The followingresult is well-known (see [3℄ page 35 for example).Theorem 2.4. A sequen
e s is the generating sequen
e of a k-ary tree i� itsatis�es the Kraft inequality for the integer k.Proof. Let �rst T be a k-ary tree and let s be its generating sequen
e. It is enoughto prove that, for ea
h n � 0, the sequen
e (s0; : : : ; sn) satis�es the Kraft inequality.It is the generating sequen
e of the �nite tree obtained by restri
ting T to the nodesat height at most n. We may thus suppose T to be a �nite tree. We haves(z) = zt1(z) + : : :+ ztk(z)where t1; : : : ; tk are the generating sequen
es of leaves of the (possibly empty) subtreesrooted at the 
hildren of the root of T . By indu
tion on the number of nodes, wehave ti(1=k) � 1 when
e the desired result.



6 F. Bassino, M.-P. B�eal and D. PerrinConversely, we use an indu
tion on n to prove that there exists a k-ary tree withgenerating sequen
e (s0; : : : ; sn). For n = 0, we have s0 � 1 and T is either empty orredu
ed to one node. Suppose by indu
tion hypothesis to have already built a tree Twith generating sequen
e (s0; s1; : : : ; sn�1). We havenXi=0 sik�i � 1;then nXi=0 sikn�i � kn;and thus sn � kn � n�1Xi=0 sikn�i:This allows us to add sn leaves at height n to the tree T .Let us 
onsider the Kraft's equality 
ase. If s(1=k) = 1, then any tree T having sas generating sequen
e is 
omplete. The 
onverse property is not true in general (see[11℄ p. 231). However, it is a 
lassi
al result that when T is a 
omplete regular tree,its generating sequen
e satis�es s(1=k) = 1 (see Proposition 2.8).For the sake of a 
omplete des
ription of the 
onstru
tion des
ribed above in theproof of Theorem 2.4, we have to spe
ify the 
hoi
e made at ea
h step among theleaves at height n. A possible poli
y is to 
hoose to give as many 
hildren as possibleto the nodes whi
h are not leaves and of maximal height.If we start with a �nite sequen
e s satisfying Kraft's inequality, the above methodbuilds a �nite tree with generating sequen
e equal to s. It is not true that thisin
remental method gives a regular tree when we start with a regular sequen
e, asshown in the following example.Let s(z) = z2=(1�2z2). Sin
e s(1=2) = 1=2, we may apply the Kraft 
onstru
tionto build a binary tree with length distribution s. The result is the tree T (X) whereX is the set of pre�xes of the setY = [n�0 01n0f0; 1gn:whi
h is not regular.If s is a regular sequen
e su
h that s0 = 0, there exists a regular tree T having sas generating sequen
e. Indeed, let (G; i; t) be a normalized representation of s. Thegenerating sequen
e of the 
overing tree of G starting at i is s. If s satis�es moreoverthe Kraft inequality for an integer k, it is however not true that the regular 
overingtree obtained is k-ary, as shown in the following example.Let s be the regular sequen
e re
ognized by the graph of Figure 2.5 on the leftwith i = 1 and t = 4. We have s(z) = 3z2=(1� z2). Furthermore s(1=2) = 1 and thuss satis�es Kraft's equality for k = 2. However there are four edges going out of vertex2 and its regular 
overing tree starting at 1 is 4-ary. A solution for this example isgiven by the graph of Figure 2.5 on the right. It re
ognizes s and its 
overing treestarting at 1 is the regular binary tree of Figure 2.1.The aim of Se
tion 4 is to build from a regular sequen
e s that satis�es the Kraftinequality for an integer k a tree with generating sequen
e s whi
h is both regularand k-ary.



A �nite state Kraft-M
Millan theorem 71 2 34 1 342Fig. 2.5. Graphs re
ognizing s(z) = 3z2=(1� z2).2.4. Approximate eigenve
tor. Let M be the adja
en
y matrix of a graphG. By the Perron-Frobenius theorem (see [12℄, for a general presentation and [15℄,[14℄ or [9℄ for the link with graphs and regular sequen
es), the nonnegative matrix Mhas a nonnegative real eigenvalue of maximal modulus denoted by �, also 
alled thespe
tral radius of the matrix.When G is strongly 
onne
ted, the matrix is irredu
ible and the Perron-Frobeniustheorem asserts that the dimension of the eigenspa
e of the matrix M 
orrespondingto � is equal to one, and that there is a positive eigenve
tor asso
iated to �.Let k be an integer. A k-approximate eigenve
tor of a nonnegative matrix M is,by de�nition, an integral ve
tor v � 0 su
h thatMv � kv:One has the following result (see [15℄ p. 152).Proposition 2.5. An irredu
ible nonnegative matrix M with spe
tral radius �admits a positive k-approximate eigenve
tor i� k � �.For a proof, see [15℄ p. 152. WhenM is the adja
en
y matrix of a graph G, we alsosay that v is a k-approximate eigenve
tor of G. The 
omputation of an approximateeigenve
tor 
an be obtained by the use of Franaszek's algorithm (see for example [15℄).It 
an be shown that there exists a k-approximate eigenve
tor with elements boundedabove by k2n where n is the dimension of M [4℄. Thus the size of the 
oeÆ
ients ofa k-approximate eigenve
tor is bounded above by an exponential in n and 
an be inthe worst 
ase of this order of magnitude.The following result is well-known. It links the radius of 
onvergen
e of a sequen
ewith the spe
tral radius of the asso
iated matrix.Proposition 2.6. Let s be a regular sequen
e re
ognized by a trim representation(G; I; T ). Let M be the adja
en
y matrix of G. The radius of 
onvergen
e of s is theinverse of the maximal eigenvalue of M .Proof. The maximal eigenvalue � of M is � = lim supn�0 npkMnk, where k k isany of the equivalent matrix norms. Let � be the radius of 
onvergen
e of s and, forea
h p; q 2 Q, let �pq be the radius of 
onvergen
e of the sequen
e upq = (Mnpq)n�0.Then 1=� = min �pq . Sin
e (G; I; T ) is trim, we have �pq � � for all p; q 2 Q. Onthe other hand, � � min �pq sin
e s is a sum of some of the sequen
es upq. Thus�s = min �pq whi
h 
on
ludes the proof.As a 
onsequen
e of this result, the radius of 
onvergen
e � of a regular sequen
es is a pole. Indeed, with the above notation, s(z) = i(1�Mz)�1t. Then det(I �Mz)is a denominator of the rational fra
tion s, the poles of s are among the inverses ofthe eigenvalues of M . And sin
e 1=� is the radius of 
onvergen
e of s, it has to be apole of s. In parti
ular, s diverges for z = �.



8 F. Bassino, M.-P. B�eal and D. PerrinThe following result, due to Berstel, is also well-known. It allows one to 
omputethe radius of 
onvergen
e of the star of a sequen
e.Proposition 2.7. Let s be a regular sequen
e. The radius of 
onvergen
e of theseries s�(z) = 1=(1 � s(z)) is the unique real number r su
h that s(r) = 1: For aproof, see [11℄ pp 211-214, [10℄ p. 82 or [9℄ p. 84. As a 
onsequen
e, we obtain thefollowing result.Proposition 2.8. Let s be a regular sequen
e and let � be the inverse of the radiusof 
onvergen
e of s�. The sequen
e s satis�es the Kraft stri
t inequality s(1=k) < 1(resp. equality s(1=k) = 1) if and only if � < k (resp. � = k).We have thus proved the following result, whi
h is the basis of the 
onstru
tionsof the next se
tions.Proposition 2.9. Let s be a regular sequen
e satisfying Kraft's inequality s(1=k) �1. Let (G; i; t) be a normalized representation of s and let (G; i; i) be the 
losure of(G; i; t). The adja
en
y matrix M of G admits a k-approximate eigenve
tor.A
tually, under the hypothesis of Proposition 2.9, the graph G itself also admitsa k-approximate eigenve
tor. Indeed, let w = (wq)q2Q�t be a k-approximate eigen-ve
tor of G. Then the ve
tor w = (wq)q2Q de�ned by wq = wq for q 6= t and wt = wiis a k-approximate eigenve
tor of G. This is illustrated in the following example.
1 2 34 1 2 3

Fig. 2.6. The graphs G and G.Let us for example 
onsider again s(z) = 3z2=(1 � z2) (see Figure 2.5). Thesequen
e s is re
ognized by the normalized representation (G; 1; 4) where G is thegraph represented on the left of Figure 2.6. The graph G is represented on the right.The ve
tors w = 266432133775 ;w = 2432135are 2-approximate eigenve
tors of G and G respe
tively.3. The multiset 
onstru
tion. In this se
tion, we present the main 
onstru
-tion used in this paper. It 
an be 
onsidered as a version with multipli
ities of thesubset 
onstru
tion used in automata theory to repla
e a �nite automaton by anequivalent deterministi
 one. We use only unlabeled graphs but the 
onstru
tion 
anbe easily generalized to graphs with edges labeled by symbols from an alphabet.Our 
onstru
tion is also linked with one used by D. Lind to build a positive matrixwith given spe
tral radius (see [15℄, espe
ially Lemma 11.1.9).



A �nite state Kraft-M
Millan theorem 9We use for 
onvenien
e the term multiset of elements of a set Q as a synonymof Q-ve
tor. If u = (uq)q2Q is su
h a multiset, the 
oeÆ
ient uq is also 
alled themultipli
ity of q. The degree of u is the sum Pq2Q uq of all multipli
ities.We start with a triple (G; i; t) where G = (Q;E) is a �nite graph and i (resp. t)is a row (resp. 
olumn) Q-ve
tor. We denote by M the adja
en
y matrix of G.Let m be a positive integer. We de�ne another triple (H;J;X) whi
h is said tobe obtained by the multiset 
onstru
tion. The graph H is 
alled an extension of thegraph G. The extension is not unique and depends as we shall see on some arbitrary
hoi
es. The set S of verti
es of H is formed of multisets of elements of Q of totaldegree at most m. Thus, an element of S is a nonnegative ve
tor u = (uq)q2Q withindi
es in Q su
h thatPq2Q uq � m. This 
ondition ensures that H is a �nite graph.We now des
ribe the set of edges of the graph H by de�ning its adja
en
y matrixN . Let U be the S � Q-matrix de�ned by Uu;q = uq . Then N is any nonnegativeS � S-matrix whi
h satis�es NU = UM:Equivalently, for all u 2 S, Xv2SNu;vv = uM:Let us 
omment informally the above formula. We 
an des
ribe the 
onstru
tion ofthe graph H as a sequen
e of 
hoi
es. If we rea
h a vertex u of H , we partition themultiset uM of verti
es rea
hable from the verti
es 
omposing u into multisets ofdegree at most m to de�ne the verti
es rea
hable from u in H . The integer Nu;vis the multipli
ity of v in the partition. The formula simply expresses the fa
t thatthe result is indeed a partition. In general, there are several possible partitions. Thematrix U is 
alled the transfer matrix of the extension.We further de�ne the S-row ve
tor J and the S-
olumn ve
tor X. Let J be theS-row ve
tor su
h that Ji = 1 and Ju = 0 for u 6= i. Let X be the S-
olumn ve
torsu
h that Xu = u � t.Thus JU = i; X = Ut:To avoid unne
essary 
omplexity, we only keep in S the verti
es rea
hable from i.Thus, we repla
e the set S by the set of elements u of S su
h that there is a pathfrom i to u.The number of multisets of degree at most m on a set Q with n elements isnm+1�1n�1 . Thus the number of verti
es of a multiset extension is of order nm. It ispolynomial in n if m is taken as a 
onstant.Let for example G be the graph represented on Figure 3.1 on the left. The graphH represented on the right is a multiset extension of G withi = �1 0� ; j = �01� :The matri
es M;N and U areM = �2 10 1� ; N = �1 10 2� ; U = �1 01 1� ;J = �1 0� ;X = �01� :
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1 2 1 12Fig. 3.1. The graphs G and H.In this 
ase, the matrix U is invertible and the matri
es M;N are 
onjugate.The basi
 property of an extension is the following one.Proposition 3.1. Let H be an extension of G. The triple (H;J;X) is equivalentto (G; i; t).Proof. For ea
h n � 0, we haveUMn = NnU:Consequently, for ea
h integer n � 0,JNnX = JNnUt= JUMnt= iMnt:This shows that (H;J;X) re
ognizes s.We will also make use of the following additional property of extensions.Proposition 3.2. Let H be an extension of G. Let M (resp. N) be the adja
en
ymatrix of G (resp. H) and let U be the transfer matrix. If w is a k-approximateeigenve
tor of M , the ve
tor W = Uw is a k-approximate eigenve
tor of N . If w ispositive, then W is also positive.Proof. We have NW = NUw = UMw � kUw = kW:Sin
e all rows of U are distin
t from 0, the ve
torW is positive wheneverw is positive.In the next se
tion, we will 
hoose a parti
ular extension of the graph G 
alledadmissible and whi
h is de�ned as follows. Let w be a positive Q-ve
tor and let mbe a positive integer. Let H be an extension of G, let U be the transfer matrix, andlet W = Uw. We say that H is admissible with respe
t to w and m if for ea
hu 2 S, all but possibly one of the verti
es v su
h that (u;v) is an edge of H satisfyWv � 0 mod m.Theorem 3.3. For any graph G on Q, any positive Q-ve
tor w and any integerm > 0, the graph G admits an admissible extension with respe
t to w and m.The proof relies on the following 
ombinatorial lemma. This lemma is also usedin a similar 
ontext by Adler et al. and Mar
us [16℄,[1℄. It is a
tually presented in [2℄as a ni
e variant of the pigeon-hole prin
iple.Lemma 3.4. Let w1; w2; : : : ; wm be positive integers. Then there is a non-emptysubset S � f1; 2; : : : ;mg su
h that Pq2S wq is divisible by m.Proof. The partial sums w1; w1+w2; w1+w2+w3; : : : ; w1+w2+� � �+wm either areall distin
t (mod m), or two are 
ongruent (mod m). In the former 
ase, at least one
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Millan theorem 11partial sum must be 
ongruent to 0 (mod m). In the latter, there are 1 � p < r � msu
h that w1 + w2 + � � �+ wp � w1 + w2 + � � �+ wr( mod m)Hen
e wp+1 + wp+2 + � � �+ wr � 0 (mod m).Proof. of Theorem 3.3. We build progressively the set of edges of H . Let u bean element of S. We prove by indu
tion on the degree d(uM) =Pq2Q(uM)q of uMthat there exists v1; : : : ;vn 2 S su
h that uM = Pni=1 vi and Wvi � 0 mod m for1 � i � n � 1. If uM 2 S, i.e. if d(uM) � m, we 
hoose n = 1 and v1 = uM .Otherwise, there exists a de
omposition uM = v + u0 su
h that d(v) = m. Letw1; w2; : : : ; wm be the sequen
e of integers formed by the wq repeated vq times. ByLemma 3.4 applied to the sequen
e of integers wi, there is a de
omposition v = v0+rwith v0 6= 0 su
h that Wv0 � 0 mod m. We have uM = v0 +w0 with w0 = r + u0.Sin
e d(w0) < d(uM), we 
an apply the indu
tion hypothesis to w0, giving the desiredresult.For an S-ve
torW, we denote by dWm e the S-ve
tor Z su
h that for ea
h u in S,Zu = dWum e:Summing up the previous results, we obtain the following statement.Proposition 3.5. Let H be an admissible extension of G with respe
t to w andm. Let M (resp. N) be the adja
en
y matrix of G (resp. H), let U be the transfermatrix and let W = Uw. If w is a positive k-approximate eigenve
tor of M , thendWm e is a positive k-approximate eigenve
tor of N .Proof. By Proposition 3, the ve
torW is a positive k-approximate eigenve
tor ofN . Thus NW � kW:Let u be an element of S. We haveWv � 0 mod m for all indi
es v su
h that Nu;v > 0ex
ept possibly for an index v0. The previous inequality implies thatXv2S�fv0gNu;vWvm +Nu;v0Wv0m � k Wum :Sin
e Wvm is a nonnegative integer for v 2 Q� fv0g, we getXv2S�fv0gNu;vWvm +Nu;v0dWv0m e � k dWum e:This proves that NdWm e � kdWm e:
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e of leaves. In what follows, we state and prove, usingthe multiset 
onstru
tion, our main result 
on
erning the generating sequen
es ofregular trees. We begin with the following lemma, whi
h is also used in the nextse
tion. We use the term leaf for a vertex of a graph without outgoing edges.Lemma 4.1. Let G be a graph on a set Q of verti
es. Let i 2 Q and T � Q. IfG admits a k-approximate eigenve
tor w, there is a graph G0 and a set of verti
es I 0of G0 su
h that1. G0 admits the k-approximate eigenve
tor w0 with all 
omponents equal to 1.2. the triple (G; i;w) is equivalent to the triple (G0; I 0;w0);3. If wp = 1 for all p 2 T , there is a set of verti
es T 0 of G0 su
h that the triple(G; i; T ) is equivalent to the triple (G0; I 0; T 0). Moreover, if T is the set ofleaves of G, we 
an 
hoose for T 0 the set of leaves of G0.Proof. We �rst show that one 
an repla
e G by a graph without multipli
ities,i.e. su
h that the adja
en
y matrix has 
oeÆ
ients 0 or 1.For this, let n be the maximal value of the 
oeÆ
ients of M . Let Q0 be theset of all pairs (p; j) for p 2 Q and 1 � j � n. Let E0 be the set of all pairs((p; j); (q; h)) 2 Q0 � Q0 su
h that 1 � j � n and 1 � h � Mp;q. Let i0 = (i; 1) andT 0 = f(t; j) j t 2 T; 1 � j � ng. Let G0 = (Q0; E0). The triple (G0; i0; T 0) re
ognizesthe same sequen
e as (G; i; T ). Let w0(p;j) = wp for all p 2 Q and all 1 � j � n.The triple (G0; i0;w0) re
ognizes the same sequen
e as (G; i;w). The ve
tor w0 is ak-approximate eigenve
tor of M 0.We may thus suppose that all 
oeÆ
ients of M are 0 or 1, i.e. that the set E ofedges of G 
an be identi�ed with a subset of Q�Q. We now transform the graph Ginto a graph G0 su
h that there are at most k edges going out of every vertex. Forthis, let Q0 be the set of pairs (q; j) with q 2 Q and 1 � j � wq . For ea
h p 2 Q, wehave Xqj(p;q)2Ewq � kwp:We may thus partition the pairs (q; h) 2 Q0 in su
h a way that (p; q) 2 E, in wpgroups X1; X2; : : : ; Xwp of at most k elements. The edges going out of (p; j) are allthe pairs ((p; j); (q; h)) su
h that (q; h) 2 Xj . One 
an a
tually identify G with amultiset extension of G0, where the set of multisets is fS1�j�wp(p; j) j p 2 Qg thatwe identify to Q. Let I 0 = f(i; j) j 1 � j � wig. Let w0(p;j) = 1 for all (p; j) with p 2 Qand 1 � j � wp. Then, a

ording to Proposition 3.1, the triple (G0; I 0;w0) re
ognizesthe same sequen
e as (G; i;w). Moreover, if wp = 1 for all p 2 T , let T 0 be set of all(p; 1) 2 Q0 with p 2 T . Then the triple (G0; I 0; T 0) re
ognizes the same sequen
e as(G; i; T ). If T is the set of verti
es that have no outgoing edges, it is 
lear that thesame holds for T 0.We now 
ome to our main result.Theorem 4.2. Let s = (sn)n�0 be a regular sequen
e of nonnegative integers andlet k be a positive integer su
h that Pn�0 snk�n � 1. Then there is a k-ary rationaltree having s as its generating sequen
e.Proof. Let us 
onsider a regular sequen
e s and an integer k su
h thatPn�0 snk�n �1. Sin
e the result holds trivially for s(z) = 1, we may suppose that s0 = 0. Let(G; i; t) be a normalized representation of s and let G be the 
losure of G as de�nedat the beginning of Se
tion 2.2. We denote by M (resp. M) the adja
en
y matrix ofG (resp. G). Let Q = Q� ftg be the vertex set of G. Let � be the spe
tral radius of
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Millan theorem 13M . By Proposition 2.8, the matrix M admits a positive k-approximate eigenve
torw. By de�nition, we have Mw � kw.Let w be the Q-ve
tor de�ned by wq = wq for all q 2 Q and wt = wi. Then, sin
ethere is no edge going out of t in G, w is a positive k-approximate eigenve
tor of M .Let t be the Q-ve
tor whi
h is the 
hara
teristi
 ve
tor of the vertex t. Let m = wi.By Theorem 3.3 there exists an admissible extension H of G with respe
t to wand m. Let U be the transfer matrix and let W = Uw. Sin
e wt � 0 mod m, wemay 
hoose H with the following additional property. For all u 2 S either ut = 0 oru = t.A

ording to Proposition 3.1, the sequen
e s is re
ognized by (H;J;X) where Jis the 
hara
teristi
 row ve
tor of i and X is the 
hara
teristi
 
olumn ve
tor of t.This means that s is re
ognized by the normalized representation 
onsisting in thegraph H , the initial vertex i, that we identify to i, and the terminal vertex t, that weidentify to t.Let N be the adja
en
y matrix of H . By Proposition 3.5, the ve
tor dWm e is apositive k-approximate eigenve
tor of N . Remark that dWm ei = dWm et = 1.We may now apply Lemma 4.1 to 
onstru
t a triple (H 0; I 0; T 0) equivalent to(H; i; t). The set T 0 is the set of leaves of H 0. Sin
e dWm ei = 1, I 0 is redu
ed to onevertex i0. Sin
e H 0 admits a k-approximate eigenve
tor with all 
omponents equal toone, the graph H 0 is of outdegree at most k. Finally s is the generating sequen
e ofthe 
overing tree of H 0 starting at i0. This tree is k-ary and regular.Let us 
onsider the above 
onstru
tions in the parti
ular 
ase of the equality inKraft's inequality. In this 
ase, the result is a 
omplete k-ary tree. Indeed, by Propo-sition 2.8, the matrix M admits a positive integral eigenve
tor w for the eigenvaluek. We have for all p 2 Q, Xq2QMp;qwq = kwp:As a 
onsequen
e, for any u 6= t, we haveXv2SNu;vWv = kWu:Then the graph 
onstru
ted in Lemma 4.1 is of 
onstant outdegree k. Thus the k-arytree obtained is 
omplete.Let us 
onsider the 
omplexity of the 
onstru
tion used in the proof of Theorem4.2. Let n be the number of verti
es of the graph G giving a normalized representationof s. The size of the integer m = wi is exponential in n (see Se
tion 2.4). Thus thenumber of verti
es of the graph H is bounded by a double exponential in n. The �nalregular tree is the 
overing tree of a graph whose set of verti
es has the same size inorder of magnitude.Let for example s be the sequen
e de�ned bys(z) = z2(1� z2) + z2(1� 5z3) :Sin
e s(1=2) = 1, it satis�es the Kraft equality for k = 2. The sequen
e s is re
ognizedby (G; i; t) whereG = (Q;E) is the graph given in Figure 4 with Q = f1; 2; 3; 4; 5; 6; 7g,i = 1, t = 4. The adja
en
y matrix of G admits the 2-approximate eigenve
tor
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Fig. 4.1. A normalized representation of srepresented on Figure 4, where the 
oeÆ
ients of w are represented in squares besidethe verti
es. Thus m = 3.An admissible extension H of G with respe
t to w andm is given in Figure 4.2. Inthis �gure, ea
h multiset of S is represented by a sequen
e of verti
es with repetitions
orresponding to the multipli
ity. For example, the multiset u = (0; 0; 1; 0; 0; 2; 0) isrepresented by (3; 6; 6). The sequen
e s is re
ognized by the normalized representation(H; 1; 4), where the initial and �nal verti
es are named as they appear on Figure 4.2.The 
oeÆ
ients of dWm e are represented in squares beside the verti
es.
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Fig. 4.2. An admissible extension H.A regular binary tree T having s as generating sequen
e of leaves, is given inFigure 4.3. In this �gure, the nodes have been renumbered, with the 
hildren of anode with a given label represented only on
e. The leaves of the tree are indi
ated bybla
k boxes. The tree itself is obtained from the graph of Figure 4.2 by appli
ation ofthe 
onstru
tion of Lemma 4.1. For example, the vertex (2; 5), whi
h has 
oeÆ
ient6 in W, is split into two verti
es named 2 and 3 in the tree.This example was suggested to us by Christophe Reutenauer [18℄.5. Generating sequen
e of nodes. In this se
tion, we 
onsider the generatingsequen
e of the set of all nodes in a tree instead of just the set of leaves. This is



A �nite state Kraft-M
Millan theorem 15
1 23

�45�
6789

101112�10131212

��14555�5
�1

Fig. 4.3. A regular binary tree with length distribution s.motivated by the fa
t that in sear
h trees, the information 
an either be 
arried by theleaves or by all the nodes of the tree. We will see that the 
omplete 
hara
terization ofthe generating sequen
es of nodes in regular trees (Theorem 5.1) is more 
ompli
atedthan the one for leaves.Soittola (see [19℄ p. 104) has 
hara
terized the series whi
h are the generatingsequen
es of nodes in a regular tree. We 
hara
terize the ones that 
orrespond tok-ary trees (Theorem 5.1). We also give a more dire
t 
onstru
tion in a parti
ular
ase (Theorem 5.3).Let T be a tree. The generating sequen
e of nodes of the tree T is the sequen
et = (tn)n�0, where tn is the number of nodes of T at height n. The sequen
e t satis�est0 � 1 and, moreover, if T is a k-ary tree, the 
onditiontn � ktn�1for all n � 1. If T is a regular tree, then t is a regular sequen
e. We now 
ompletely
hara
terize the regular sequen
es t that are the generating sequen
es of nodes of ak-ary regular tree.Theorem 5.1. Let t = (tn)n�0 be a regular sequen
e and let k be a positiveinteger. The sequen
e (tn)n�0 is the generating sequen
e of nodes of a k-ary regulartree i� it satis�es the following 
onditions.(i) the 
onvergen
e radius of t is stri
tly greater than 1=k,(ii) the sequen
e s(z) = t(z)(kz � 1) + 1 is regular.Proof. Let us �rst show that the 
onditions are ne
essary. Let T be the 
ompletek-ary tree obtained by adding i new leaves to ea
h node that has k� i 
hildren. Sin
eT is a regular tree, T is also regular.Let s be the generating sequen
e of leaves of T . Sin
e T is 
omplete, s(1=k) = 1.Sin
e ktn = sn+1 + tn+1 for all n � 0, we have1� s(z) = t(z)(1� kz):Sin
e s is a regular sequen
e, its radius of 
onvergen
e is stri
tly larger than 1=k (see
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tion 2.4). Sin
e the value of the derivative of s at z = 1=k is kt(1=k), the sameholds for t. This proves the ne
essity of the 
onditions.Conversely, if t satis�es the 
onditions of the theorem, the regular series s(z) =t(z)(kz � 1) + 1 satis�es s(1=k) = 1. Thus, by Theorem 4.2, s is the generatingsequen
e of leaves of a 
omplete k-ary regular tree. The internal nodes of this treeform a k-ary regular tree whose generating sequen
e of nodes is t.The sequen
e s de�ned by 
ondition (ii) is rational as soon as t is regular andtherefore rational. Given a regular sequen
e t, 
ondition (ii) is de
idable in view ofa theorem of Soittola [19℄, also found independently in [13℄ and re
alled below. Wesay that a rational sequen
e has a dominating root, either if it is a polynomial or if ithas a real positive pole whi
h is stri
tly smaller than the modulus of any other one.A sequen
e r is a merge of the sequen
es ri if there is an integer p su
h thatr(z) = p�1Xi=0 ziri(zp):Theorem 5.2 (Soittola). A sequen
e of nonnegative integers r = (rn)n�0 isregular if and only if it is a merge of rational sequen
es having a dominating root.This result shows that it is de
idable if a rational series is regular (see [19℄). Inthe positive 
ase, there is an algorithm 
omputing a representation of the sequen
e.We may observe that 
ondition (ii) of the theorem implies the non-negativity ofthe 
oeÆ
ients of the series s and thus the inequality 8n � 1; tn � ktn�1. It alsoimplies that t0 � 1.We now show that there are regular sequen
es t satisfying tn � ktn�1 for all n � 1,and 
ondition (i) of the theorem and su
h that the sequen
e s(z) = t(z)(kz � 1) + 1is not regular. The example is based on an example of a rational sequen
e withnonnegative 
oeÆ
ients and whi
h is not regular (see [10℄ page 95). Letrn = b2n
os2(n�)with 
os(�) = ab where the integers a; b are su
h that b 6= 2a and 0 < a < b. Thesequen
e r is rational, has nonnegative integer 
oeÆ
ients and is not regular. Its polesare 1b2 , 1b2 e2i� and 1b2 e�2i�. We now de�ne the sequen
e t as follows:t2h = kh;t2h+1 = kh + rh:We also assume that b2 < k. By Soittola's theorem, the sequen
e t is regular sin
e itis a merge of rational sequen
es having a dominating root. The 
onvergen
e radiusof t is 1pk > 1k . Therefore the sequen
e t satis�es the �rst 
ondition of Theorem 5.1.Let s be the sequen
e de�ned by s(z) = t(z)(kz � 1) + 1. If h = 2p is even,sh = kth�1 � th= kkp�1 + krp�1 � kp + 1 = krp�1 + 1:Thus the sequen
e s is not regular.The above example does not work for the small values of k (the least value isk = 10). We do not know of similar examples for 2 � k � 9.We �nally des
ribe a parti
ular 
ase of Theorem 5.1 in whi
h one has a relativelysimple method, based on the multiset 
onstru
tion, to build the regular tree with a
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Millan theorem 17given generating sequen
e of nodes. This avoids the use of Soittola's 
hara
terizationwhi
h leads to a method of higher 
omplexity.A primitive representation of a regular sequen
e s is a representation (G; i; t) su
hthat the adja
en
y matrix of G is primitive. The following result is proved in [7℄ witha di�erent proof using the state-splitting method of symboli
 dynami
s. The proofgiven here relies on a simpler 
onstru
tion.Theorem 5.3. Let t = (tn)n�0 be a regular sequen
e and let k be a positiveinteger su
h that t0 = 1, tn � ktn�1 for all n � 1 and su
h that(i) the 
onvergen
e radius of t is stri
tly greater than 1=k,(ii) t has a primitive representation.Then (tn)n�0 is the generating sequen
e of nodes by height of a k-ary regular tree.We are going to give a proof of the theorem whi
h uses the multiset 
onstru
tion.We shall use the following lemma that we establish �rst.Lemma 5.4. Let M be a primitive matrix with spe
tral radius �. Let v be a non-null and nonnegative integral ve
tor and let k be an integer su
h that � < k. Thenthere is a positive integer n su
h that Mnv is a positive k-approximate eigenve
tor ofM . Proof. For a primitive matrix M with spe
tral radius �, it is known that thesequen
e ((M� )n)n�0 
onverges to r:l where r is a positive right eigenve
tor and l apositive left eigenve
tor ofM for the eigenvalue � with l �r = 1 (see for example [15℄ p.130). Thus (Mn�n v)n�0 
onverges to r:l:v whi
h is equal to �r where � is a nonnegativereal number. Sin
e Mr = �r, we get, for a large enough integer n,MMn�n v � kMn�n vor equivalently MMnv � kMnv. If n is large enough, we moreover have Mnv > 0sin
e M is primitive.We now give the proof of Theorem 5.3. It uses a shift of indi
es of the sequen
eto obtain a new sequen
e to whi
h a simple appli
ation of the multiset 
onstru
tion
an be applied.Proof. Sin
e t is regular, it is re
ognized by a triple (G; i; t), where G = (Q;E) isa �nite graph. Let M be the adja
en
y matrix of G.For ea
h n � 0, we have tn = iMnt:We denote by � the spe
tral radius ofM . By Proposition 2.6 the positive real number1=� is the radius of 
onvergen
e of t. Thus � < k by hypothesis (i). Sin
e M is aprimitive matrix, by Lemma 5.4, there exists a positive integer n0 su
h that Mn0t isa positive k-approximate eigenve
tor of M .Let w =Mn0t, and let t0 be the sequen
e de�ned by t0n = tn+n0 for n � 0. Thus,for ea
h n � 0, t0n = iMnw:The sequen
e t0 is thus re
ognized by the triple (G; i;w). Note that t00 = i �w.Let H = (S;R) be the extension of G obtained by the multiset 
onstru
tion inthe following way. When we rea
h a vertex u of H , we partition uM in multisets vof degree 1, i.e. su
h that v is a 0; 1-ve
tor with vq = 0 for all q 2 Q ex
ept one.All elements of S are thus elements of Q ex
ept perhaps the initial vertex i. If i is ofdegree 1, the number of elements of S is then equal to the number of elements of Q.



18 F. Bassino, M.-P. B�eal and D. PerrinLet U be the transfer matrix of the extension. Sin
e w is a positive k-approximateeigenve
tor ofM , by Proposition 3.2, the ve
torW = Uw is a positive k-approximateeigenve
tor of the adja
en
y matrix of H . By Proposition 3.1, the triple (H; i;W) isequivalent to (G; i;w).We now apply Lemma 4.1 to the graph H . We use i as initial vertex and thek-approximate eigenve
torW. Sin
e we only use the �rst assertion of the lemma, wewill not use any set T of terminal states. A

ording to the lemma, we 
onstru
t agraph H 0 and a set of verti
es I 0 of H 0 su
h that H 0 admits the k-approximate ve
torW0 with all 
omponents equal to 1, and (H 0; I 0;W0) is equivalent to (H; i;W). ThusH 0 is k-ary. Note that I 0 has Wi = i �w = tn0 elements.Let Tp be the 
overing tree of H 0 starting at the state p of I 0. Ea
h Tp is a regulark-ary tree. Then t0 is the sum the generating sequen
es of nodes of the trees Tp forp 2 I 0.Finally, we build a �nite k-ary tree T 0 whose generating sequen
e of nodes is(t0; t1; : : : ; tn0). This 
an a
tually be done sin
e t0 = 1 and tn � ktn�1 for n � 1. Wethen identify bije
tively ea
h leaf at height n0 of T 0 to the root of a tree Tj . We geta regular k-ary binary tree whose generating sequen
e of nodes is t.1 2 3Fig. 5.1. A primitive representation G of t.Let for example t be the series re
ognized by the graph G of Figure 5.1 withi = �1 0 0� and t = 2411035 :The adja
en
y matrix M of G is the primitive matrixM = 241 1 00 0 11 0 035 :Its spe
tral radius is less than 2. The hypothesis of Theorem 5.3 are thus satis�ed.We apply the method des
ribed above. We haveM2t = 2421235 and M3t = 2432235 :Sin
e M3t � 2M2t, M2t is an approximate eigenve
tor of M . We thus set n0 = 2and w = M2t. The graph H is the same as the graph G of Figure 5.1. The ve
torW is thus W = 2421235 :



A �nite state Kraft-M
Millan theorem 19The graph H 0 is represented on the left side of Figure 5.2. We �nally obtain thebinary regular tree T represented on the right side of Figure 5.2 (the nodes of the treehave been renumbered).
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Fig. 5.2. The graph H0 and the tree T .A
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