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A FINITE STATE VERSION
OF THE KRAFT-MCMILLAN THEOREM

FREDERIQUE BASSINO *, MARIE-PIERRE BEAL * , AND DOMINIQUE PERRIN *

Abstract. The main result is a finite-state version of the Kraft-McMillan theorem characterizing
the generating sequence of a k-ary regular tree. The proof uses a new construction called the multiset
construction which is a version with multiplicities of the well-known subset construction of automata
theory.
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1. Introduction. The Kraft inequality > ., s,k~" < 1 characterizes the gen-
erating sequences (S,)n,>o of leaves in a k-ary tree. It is used in connexion with
Huffman algorithm to build prefix codes or search trees and usually restricted to the
case of finite trees. We are interested here in the case of infinite sequences corre-
sponding to infinite trees. These infinite trees arise for example as search trees in
infinite sets. They also appear in the context of finite automata having nested loops
to represent the set of first returns to a given state. The tree thus obtained is called a
reqular tree. It has only a finite number of non-isomorphic subtrees since two subtrees
corresponding to the same state of the automaton are isomorphic. The generating
sequences of such infinite trees are of interest in the applications of finite automata
to text compression or channel coding.

Our main result is a characterization of the generating sequences of leaves of
regular k-ary trees. Its essence is that the two conditions of being the generating
sequence of

(i) a k-ary tree

(ii) a regular tree
are independent in the sense that their conjunction is enough to guarantee that a
sequence is the generating sequence of a regular k-ary tree.

The proof uses a new construction on graphs called the multiset construction
which is a counterpart for automata with multiplicities of the well-known subset con-
struction of automata theory.

Our results have a connexion with symbolic dynamics. Actually, in both cases,
the emphasis is on the space of paths in a finite graph. Even if we do not use results
from symbolic dynamics, some of the methods used, like state-splitting or the Perron
theory are similar. Using an expression of Lind and Marcus [15], our treatment is
“dynamical in spirit”. The relationship with symbolic dynamics is discussed more
closely in [7] and [8].

The paper is organized as follows. Section 2 contains preliminary results and
definitions on graphs, trees, regular sequences and the Perron-Frobenius theory. In
Section 3, we present the multiset construction. Section 4 contains the proof of our
main result (Theorem 4.2). The following section (Section 5) treats a similar problem,
with the set of leaves replaced by the set of all nodes.

The results contained in this paper represent the terminal point of a series of
steps. In a previous paper [7] (with a preliminary version in [5]), we proved Theorem

*Institut Gaspard Monge, Université de Marne-la-Vallée,77454 Marne-la-Vallée Cedex 2 France.
{bassino,beal,perrin}Quniv-mlv.fr.



2 F. Bassino, M.-P. Béal and D. Perrin

4.2 in the particular case of a strict inequality. The proof uses the technique of
state-splitting from symbolic dynamics. In the same paper, we also give a proof
of Theorem 5.3 which is different from the proof given here, which is based on the
multiset construction and is more simple. Part of the results of the present paper
was presented at the conference LATIN’98 [6]. Finally, the survey paper [8] gives an
overview of length distributions and regular sequences.

2. Definitions and background. In this section, we fix our notation concern-
ing graphs, trees and regular sequences. We also recall some notions concerning
positive matrices.

A word on the terminology used here. We constantly use the term regular where
a richer terminology is often used. In particular, what we call here a regular sequence
is, in Eilenberg’s terminology, an N-rational sequence (see [11], [19] or [10]).

2.1. Graphs and trees. In this paper, we use directed multigraphs i.e. graphs
with possibly several edges with the same origin and the same end. We simply call
them graphs in all what follows. We denote G = (@, E) a graph with @ as set of
vertices and E as set of edges. We also say that G is a graph on the set Q.

A tree T on a set of nodes N with a root r € N is a function ' : N — {r} — N
which associates to each node distinct from the root its father T'(n), in such a way
that, for each node n, there is a nonnegative integer h such that T"(n) = r. The
integer h is the height of the node n.

A tree is k-ary if each node has at most k children. A node without children is
called a leaf. A node which is not a leaf is called internal. A node n is a descendant
of a node m if m = T"(n) for some h > 0. A k-ary tree is complete if all internal
nodes have exactly k children and have at least one descendant which is a leaf.

For each node n of a tree T, the subtree rooted at m, denoted T, is the tree
obtained by restricting the set of nodes to the descendants of n.

Two trees S, T are isomorphic, denoted S = T, if there is a map which transforms
S into T by permuting the children of each node. Equivalently, S = T if there is a
bijective map f : N — M from the set of nodes of S onto the set of nodes of T" such
that foS =T o f. Such a map f is called an isomorphism.

If T is a tree with N as set of nodes, the quotient graph of T is the graph
G = (Q, E) where ) and E are defined as follows. The set @ is the quotient of N by
the equivalence n = m if T,, = T),,. Let m denote the class of a node m. The number
of edges from m to @ is the number of children of m equivalent to n.

Conversely, the set of paths in a graph with given origin is a tree. Indeed, let
G = (Q,F) be a graph. Let r € @ be a particular vertex and let N be the set
of paths in G starting at r. The tree T having N as set of nodes and such that
T(po,p1,---,Pn) = (Po,P1,---,Pn—1) is called the covering tree of G starting at 7.

Both constructions are mutually inverse in the sense that any tree T' is isomorphic
to the covering tree of its quotient graph starting at the image of the root.

PROPOSITION 2.1. Let T be a tree with root r. Let G be its quotient graph and
let i be the vertex of G which is the class of the root of T'. For each vertex q of G and
for each n > 0, the number of paths of length n from i to q is equal to the number of
nodes of T at height n in the class of q.

A tree is said to be regular if it admits only a finite number of non-isomorphic
subtrees, i.e. if its quotient graph is finite.

For example, the infinite tree represented on Figure 2.1 is a regular tree. Its
quotient graph is represented on Figure 2.2.
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Fia. 2.1. A regular tree.

Fia. 2.2. And its quotient graph.

There is also a close connexion between trees and sets of words on an alphabet.
Let X be a set of words on the alphabet {0,1,...,k —1}. The set X is said to be
prefiz-closed if any prefix of an element of X is also in X. When X is prefix closed,
we can build a tree T'(X) as follows. The set of nodes is X, the root is the empty
word € and T'(a1as ---a,) = ajaz - ap_1.

Let for example X = {¢,0,1,10,11}. The tree T(X) is represented on Figure 2.3.

Fi1G. 2.3. The tree T(X).

2.2. Regular sequences. We consider sequences of natural integers s = (8,)n>0.
We shall not distinguish between such a sequence and the formal series s(z) =
ZnZO SnZn.

We usually denote a vector indexed by elements of a set @), also called a Q-vector,
with boldface symbols. For v = (v,)4eq we say that v is nonnegative, denoted v > 0,
(resp. positive, denoted v > 0) if v, > 0 (resp. vy > 0) for all ¢ € Q. The same
conventions are used for matrices. A nonnegative @) X @Q-matrix M is said to be
irreducible if, for all indices p, ¢, there is an integer m such that (M™),, > 0. The
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matrix is primitive if there is an integer m such that M™ > 0.

The adjacency matriz of a graph G = (Q, E) is the @ x @-matrix M such that
for each p,q € @, the integer M, , is the number of edges from p to ¢. The adjacency
matrix of a graph G is irreducible iff the graph is strongly connected. It is primitive
if, moreover, the g.c.d of lengths of cycles in G is 1.

Let G be a finite graph and let I, T be two sets of vertices. For each n > 0, let s,
be the number of distinct paths of length n from a vertex of I to a vertex of T. The
sequence s = (Sp)n>o0 is called the sequence recognized by (G,I,T) or also by G if I
and T are already specified. When I = {i} and T = {t}, we simply denote (G,i,t)
instead of (G, {i}, {t}).

A sequence s = (sp)n>0 of nonnegative integers is said to be regular if it is
recognized by such a triple (G, I, T'), where G is finite. We say that the triple (G, I,T)
is a representation of the sequence s. The vertices of I are called initial and those of
T terminal. Two representations are said to be equivalent if they recognize the same
sequence.

A representation (G, I,T) is said to be trim if every vertex of G is on some path
from I to T'. It is clear that any representation is equivalent to a trim one.

A well known result in theory of finite automata allows one to use a particular
representation of any regular sequence s such that so = 0. One can always choose in
this case a representation (G,i,t) of s with a unique initial vertex ¢, a unique final
vertex t # i such that no edge is entering vertex 7 and no edge is going out of vertex
t. Such a representation is called a normalized representation (see for example [17]
page 14).

Let (G,i,t) be a trim normalized representation. If we merge the initial vertex
1 and the final vertex ¢ in a single vertex still denoted by ¢, we obtain a new graph
denoted by G, which is strongly connected. The triple (G, i,i) is called the closure of
(G,i,t).

Let s be a regular sequence such that s = 0. The star s* of the sequence s is
defined by

1
%
s%(z) = s

ProposITION 2.2. If (G,i,t) is a normalized representation of s, its closure
(G,i,i) recognizes the sequence s*.

Proof. The sequence s is the length distribution of the paths of first returns to
vertex i in G, that is of finite paths going from i to i without going through vertex i.
The length distribution of the set of all returns to i is thus 1 + s(z) + s2(2) +... =
1/(1—s(z)). O

An equivalent definition of regular sequences uses vectors instead of sets I, F'.
Let 1 be a @-row vector of nonnegative integers and let t be a -column vector of
nonnegative integers. We say that (G, i,t) recognizes the sequence s = (sy,)n>0 if for
each integer n > 0

Sp = iIM"t,

where M is the adjacency matrix of G. The proof that both definitions are equivalent
follows from the fact that the family of regular sequences is closed under addition (see
[11]). A triple (G, 1,t) recognizing a sequence s is also called a representation of s and
two representations are called equivalent if they recognize the same sequence.
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A sequence s = (sp)n>0 of nonnegative integers is rational if it satisfies a recur-
rence relation with integral coefficients. Equivalently, s is rational if there exist two
polynomials p(z), ¢(z) with integral coefficients and with ¢(0) = 1 such that

Any regular sequence is rational. The converse is however not true (see Section
5). For example, the sequence s defined by s(z) = === is the sequence of Fibonacci

@Gowliso

Fic. 2.4. The Fibonacci graph.

numbers also defined by sg = 0,s; = 1 and s;,4.1 = S, + Sp,—1. It is recognized by the
graph of Figure 2.4 with I = {1} and T' = {2}.

2.3. Regular sequences and trees. If T is a tree, its generating sequence of
leaves is the sequence of numbers s = (s,,)n>0, Where s, is the number of leaves at
height n. We also simply say that s is the generating sequence of T.

The following result is a direct consequence of the definitions.

THEOREM 2.3. The generating sequence of a reqular tree is a reqular sequence.

Proof. Let T be a regular tree and let G be its quotient graph. Since T is regular,
G is finite. The leaves of T form an equivalence class ¢. By Proposition 2.1, the
generating sequence of T is recognized by (G,i,t) where 7 is the class of the root of
T.0O

We say that a sequence s = (s,)n>1 satisfies the Kraft inequality for the integer
k if

Z spk™ " <1,

n>0
i.e. using the formal series s(z) =), <, sn2", if
s(1/k) < 1.

We say that s satisfies the strict Kraft inequality for k if s(1/k) < 1. The following
result is well-known (see [3] page 35 for example).

THEOREM 2.4. A sequence s is the gemerating sequence of a k-ary tree iff it
satisfies the Kraft inequality for the integer k.

Proof. Let first T be a k-ary tree and let s be its generating sequence. It is enough
to prove that, for each n > 0, the sequence (so,-. ., s,) satisfies the Kraft inequality.
It is the generating sequence of the finite tree obtained by restricting 7" to the nodes
at height at most n. We may thus suppose 7" to be a finite tree. We have

s(z) = zt1(z) + ... + ztp(2)

where t1, . . ., tj, are the generating sequences of leaves of the (possibly empty) subtrees
rooted at the children of the root of T. By induction on the number of nodes, we
have t;(1/k) < 1 whence the desired result.
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Conversely, we use an induction on n to prove that there exists a k-ary tree with

generating sequence (so, - - ., Sy). For n =0, we have sp < 1 and T is either empty or
reduced to one node. Suppose by induction hypothesis to have already built a tree T
with generating sequence (so, S1,...,8,—1). We have

i Sik_i S ].,
i=0

then
n
> skt < k"
i=0
and thus
n—1
Sp < k™ — Z s; k"R
i=0

This allows us to add s,, leaves at height n to the tree T'. O

Let us consider the Kraft’s equality case. If s(1/k) = 1, then any tree T having s
as generating sequence is complete. The converse property is not true in general (see
[11] p. 231). However, it is a classical result that when T is a complete regular tree,
its generating sequence satisfies s(1/k) = 1 (see Proposition 2.8).

For the sake of a complete description of the construction described above in the
proof of Theorem 2.4, we have to specify the choice made at each step among the
leaves at height n. A possible policy is to choose to give as many children as possible
to the nodes which are not leaves and of maximal height.

If we start with a finite sequence s satisfying Kraft’s inequality, the above method
builds a finite tree with generating sequence equal to s. It is not true that this
incremental method gives a regular tree when we start with a regular sequence, as
shown in the following example.

Let s(z) = 22/(1—22?). Since s(1/2) = 1/2, we may apply the Kraft construction
to build a binary tree with length distribution s. The result is the tree T'(X) where
X is the set of prefixes of the set

v = ] 0170{0,1}".
n>0

which is not regular.

If s is a regular sequence such that so = 0, there exists a regular tree T having s
as generating sequence. Indeed, let (G,4,t) be a normalized representation of s. The
generating sequence of the covering tree of G starting at ¢ is s. If s satisfies moreover
the Kraft inequality for an integer k, it is however not true that the regular covering
tree obtained is k-ary, as shown in the following example.

Let s be the regular sequence recognized by the graph of Figure 2.5 on the left
with i = 1 and ¢t = 4. We have s(z) = 322/(1 — 22). Furthermore s(1/2) = 1 and thus
s satisfies Kraft’s equality for k = 2. However there are four edges going out of vertex
2 and its regular covering tree starting at 1 is 4-ary. A solution for this example is
given by the graph of Figure 2.5 on the right. It recognizes s and its covering tree
starting at 1 is the regular binary tree of Figure 2.1.

The aim of Section 4 is to build from a regular sequence s that satisfies the Kraft
inequality for an integer k a tree with generating sequence s which is both regular
and k-ary.
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FIG. 2.5. Graphs recognizing s(z) = 322/(1 — 22).

2.4. Approximate eigenvector. Let M be the adjacency matrix of a graph
G. By the Perron-Frobenius theorem (see [12], for a general presentation and [15],
[14] or [9] for the link with graphs and regular sequences), the nonnegative matrix M
has a nonnegative real eigenvalue of maximal modulus denoted by A, also called the
spectral radius of the matrix.

When G is strongly connected, the matrix is irreducible and the Perron-Frobenius
theorem asserts that the dimension of the eigenspace of the matrix M corresponding
to A is equal to one, and that there is a positive eigenvector associated to .

Let k be an integer. A k-approximate eigenvector of a nonnegative matrix M is,
by definition, an integral vector v > 0 such that

Mv < kv.

One has the following result (see [15] p. 152).

PROPOSITION 2.5. An irreducible nonnegative matriz M with spectral radius X
admits a positive k-approxzimate eigenvector iff k > A.

For a proof, see [15] p. 152. When M is the adjacency matrix of a graph G, we also
say that v is a k-approximate eigenvector of G. The computation of an approximate
eigenvector can be obtained by the use of Franaszek’s algorithm (see for example [15]).
It can be shown that there exists a k-approximate eigenvector with elements bounded
above by k?" where n is the dimension of M [4]. Thus the size of the coefficients of
a k-approximate eigenvector is bounded above by an exponential in n and can be in
the worst case of this order of magnitude.

The following result is well-known. It links the radius of convergence of a sequence
with the spectral radius of the associated matrix.

PROPOSITION 2.6. Let s be a reqular sequence recognized by a trim representation
(G,I,T). Let M be the adjacency matriz of G. The radius of convergence of s is the
inverse of the maximal eigenvalue of M.

Proof. The maximal eigenvalue A of M is A = limsup,,~, ¥/||M™||, where || || is
any of the equivalent matrix norms. Let p be the radius of convergence of s and, for
each p,q € Q, let py, be the radius of convergence of the sequence up, = (M) )n>o0-
Then 1/A = min pp,. Since (G, I,T) is trim, we have pp, > p for all p,g € Q. On
the other hand, p > min pp, since s is a sum of some of the sequences u,,. Thus
ps = min p,, which concludes the proof. O

As a consequence of this result, the radius of convergence p of a regular sequence
s is a pole. Indeed, with the above notation, s(z) = i(1— Mz)~'t. Then det(I — Mz)
is a denominator of the rational fraction s, the poles of s are among the inverses of
the eigenvalues of M. And since 1/ is the radius of convergence of s, it has to be a
pole of s. In particular, s diverges for z = p.
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The following result, due to Berstel, is also well-known. It allows one to compute
the radius of convergence of the star of a sequence.

PROPOSITION 2.7. Let s be a reqular sequence. The radius of convergence of the
series s*(z) = 1/(1 — s(z)) is the unique real number r such that s(r) = 1. For a
proof, see [11] pp 211-214, [10] p. 82 or [9] p. 84. As a consequence, we obtain the
following result.

PROPOSITION 2.8. Let s be a reqular sequence and let A be the inverse of the radius
of convergence of s*. The sequence s satisfies the Kraft strict inequality s(1/k) < 1
(resp. equality s(1/k) = 1) if and only if N < k (resp. A =k).

We have thus proved the following result, which is the basis of the constructions
of the next sections.

PROPOSITION 2.9. Let s be a regular sequence satisfying Kraft’s inequality s(1/k) <
1. Let (G,i,t) be a normalized representation of s and let (G,i,i) be the closure of
(G,i,t). The adjacency matriz M of G admits a k-approzimate eigenvector.

Actually, under the hypothesis of Proposition 2.9, the graph G itself also admits
a k-approximate eigenvector. Indeed, let W = (Wy)4eq—1 be a k-approximate eigen-
vector of G. Then the vector w = (w;),cq defined by w, = w, for ¢ # t and w, = w;
is a k-approximate eigenvector of G. This is illustrated in the following example.

© ‘e.e G

F1G. 2.6. The graphs G and G.

Let us for example consider again s(z) = 32%/(1 — 22) (see Figure 2.5). The
sequence s is recognized by the normalized representation (G,1,4) where G is the
graph represented on the left of Figure 2.6. The graph G is represented on the right.
The vectors

are 2-approximate eigenvectors of G and G respectively.

3. The multiset construction. In this section, we present the main construc-
tion used in this paper. It can be considered as a version with multiplicities of the
subset construction used in automata theory to replace a finite automaton by an
equivalent deterministic one. We use only unlabeled graphs but the construction can
be easily generalized to graphs with edges labeled by symbols from an alphabet.

Our construction is also linked with one used by D. Lind to build a positive matrix
with given spectral radius (see [15], especially Lemma 11.1.9).
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We use for convenience the term multiset of elements of a set () as a synonym
of @Q-vector. If u = (uy)qeq is such a multiset, the coefficient u, is also called the
multiplicity of q. The degree of u is the sum quQ u, of all multiplicities.

We start with a triple (G,1i,t) where G = (Q, E) is a finite graph and i (resp. t)
is a row (resp. column) @Q-vector. We denote by M the adjacency matrix of G.

Let m be a positive integer. We define another triple (H,J,X) which is said to
be obtained by the multiset construction. The graph H is called an extension of the
graph GG. The extension is not unique and depends as we shall see on some arbitrary
choices. The set S of vertices of H is formed of multisets of elements of @ of total
degree at most m. Thus, an element of S is a nonnegative vector u = (uq)qeq@ With
indices in @ such that > geQ Ug <M. This condition ensures that H is a finite graph.

We now describe the set of edges of the graph H by defining its adjacency matrix
N. Let U be the S x @Q-matrix defined by Uy, = u,. Then N is any nonnegative
S x S-matrix which satisfies

NU =UM.

Equivalently, for all u € S,

Z Nyvv =uM.
veSs

Let us comment informally the above formula. We can describe the construction of
the graph H as a sequence of choices. If we reach a vertex u of H, we partition the
multiset uM of vertices reachable from the vertices composing u into multisets of
degree at most m to define the vertices reachable from u in H. The integer Ny v
is the multiplicity of v in the partition. The formula simply expresses the fact that
the result is indeed a partition. In general, there are several possible partitions. The
matrix U is called the transfer matriz of the extension.

We further define the S-row vector J and the S-column vector X. Let J be the
S-row vector such that J; = 1 and J, = 0 for u # i. Let X be the S-column vector
such that X, = u - t.

Thus

JU =i, X=Ut.

To avoid unnecessary complexity, we only keep in S the vertices reachable from i.
Thus, we replace the set S by the set of elements u of S such that there is a path
from 1 to u.

The number of multisets of degree at most m on a set () with n elements is
nmtl 1

——- Thus the number of vertices of a multiset extension is of order n™. It is
polynomial in n if m is taken as a constant.
Let for example G be the graph represented on Figure 3.1 on the left. The graph
H represented on the right is a multiset extension of G with

i=[1 0, j:m.

The matrices M, N and U are

wefp orep Yo et el
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Fic. 3.1. The graphs G and H.

In this case, the matrix U is invertible and the matrices M, N are conjugate.

The basic property of an extension is the following one.

PROPOSITION 3.1. Let H be an extension of G. The triple (H,J,X) is equivalent
to (G,i,t).

Proof. For each n > 0, we have
UM" = N"U.
Consequently, for each integer n > 0,

JN"X =JIN"Ut
=JUM"t
=iM"t.

This shows that (H,J,X) recognizes s. O
We will also make use of the following additional property of extensions.
PROPOSITION 3.2. Let H be an extension of G. Let M (resp. N ) be the adjacency
matriz of G (resp. H) and let U be the transfer matriz. If w is a k-approzimate
eigenvector of M, the vector W = Uw is a k-approzimate eigenvector of N. If w is

positive, then W is also positive.
Proof. We have

NW =NUw=UMw <kUw = kW.

Since all rows of U are distinct from 0, the vector W is positive whenever w is positive.
d

In the next section, we will choose a particular extension of the graph G called
admissible and which is defined as follows. Let w be a positive @Q-vector and let m
be a positive integer. Let H be an extension of G, let U be the transfer matrix, and
let W = Uw. We say that H is admissible with respect to w and m if for each
u € S, all but possibly one of the vertices v such that (u,v) is an edge of H satisfy
W, = 0 mod m.

THEOREM 3.3. For any graph G on @), any positive Q-vector w and any integer
m > 0, the graph G admits an admissible extension with respect to w and m.

The proof relies on the following combinatorial lemma. This lemma is also used
in a similar context by Adler et al. and Marcus [16],[1]. It is actually presented in [2]
as a nice variant of the pigeon-hole principle.

LEMMA 3.4. Let wy,ws, ..., wy, be positive integers. Then there is a non-empty
subset S C {1,2,...,m} such that 3_ g wq is divisible by m.

Proof. The partial sums w1y, wy +ws, wi +ws+ws, ..., w1 +ws+- - -+w,, either are
all distinct (mod m), or two are congruent (mod m). In the former case, at least one
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partial sum must be congruent to 0 (mod m). In the latter, there are 1 <p <r <m
such that

wy +we -+ wp =wy +wy + -+ wp( mod m)

Hence wpi1 + wpto + -+ -+ wyp =0 (mod m). O

Proof. of Theorem 3.3. We build progressively the set of edges of H. Let u be
an element of S. We prove by induction on the degree d(uM) = 3 _,(uM), of uMl
that there exists vi,...,v, € S such that uM = Y7 | v; and Wy, = 0 mod m for
1<i<n-1. IfuM €85, ie. if d(uM) < m, we choose n = 1 and v; = ulM.
Otherwise, there exists a decomposition uM = v + u’ such that d(v) = m. Let
wy, W2, ..., Wy be the sequence of integers formed by the w, repeated v, times. By
Lemma 3.4 applied to the sequence of integers w;, there is a decomposition v = v' +r
with v/ # 0 such that Wy = 0 mod m. We have uM = v/ + w' with w' = r + u’.
Since d(w') < d(uM), we can apply the induction hypothesis to w’, giving the desired
result. O

For an S-vector W, we denote by [Y] the S-vector Z such that for each u in S,

Zy = (%]

Summing up the previous results, we obtain the following statement.

PROPOSITION 3.5. Let H be an admissible extension of G with respect to w and
m. Let M (resp. N) be the adjacency matriz of G (resp. H), let U be the transfer
matriz and let W = Uw. If w is a positive k-approximate eigenvector of M, then
f%] is a positive k-approximate eigenvector of N.

Proof. By Proposition 3, the vector W is a positive k-approximate eigenvector of
N. Thus

NW < kW.

Let u be an element of S. We have W, = 0 mod m for all indices v such that Ny v >0
except possibly for an index vo. The previous inequality implies that

W, W. W,
Z Nu7v_v+Nu7v0 o Sk _ll-
m m m
veS—{vo}
Since % is a nonnegative integer for v € Q — {vo}, we get

Wy Wy, Wa
E Nu,v_+NU,V0|— —l Sk |——-|
m m m
veS—{vo}

This proves that

NIV < k1Y,
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4. Generating sequence of leaves. In what follows, we state and prove, using
the multiset construction, our main result concerning the generating sequences of
regular trees. We begin with the following lemma, which is also used in the next
section. We use the term leaf for a vertex of a graph without outgoing edges.

LeMMA 4.1. Let G be a graph on a set Q of vertices. Leti € Q and T C Q. If
G admits a k-approximate eigenvector w, there is a graph G' and a set of vertices I'
of G' such that

1. G' admits the k-approzimate eigenvector w' with all components equal to 1.

2. the triple (G,i,w) is equivalent to the triple (G',I',w');

3. Ifw, =1 for all p € T, there is a set of vertices T' of G' such that the triple
(G,i,T) is equivalent to the triple (G',I',T"). Moreover, if T is the set of
leaves of G, we can choose for T' the set of leaves of G'.

Proof. We first show that one can replace G by a graph without multiplicities,
i.e. such that the adjacency matrix has coefficients 0 or 1.

For this, let n be the maximal value of the coefficients of M. Let Q' be the
set of all pairs (p,j) for p € @ and 1 < j < n. Let E' be the set of all pairs
((p,4),(g,h)) € Q" x Q" such that 1 < j<mnand1<h< My, Leti = (i,1) and
T ={(t,j) | t€ T,1 <j<n} Let G =(Q',E). The triple (G',i',T") recognizes
the same sequence as (G,4,T). Let wzm.) =wp forallpe Qandalll <j <n.
The triple (G',i',w') recognizes the same sequence as (G,i,w). The vector w' is a
k-approximate eigenvector of M’.

We may thus suppose that all coefficients of M are 0 or 1, i.e. that the set E of
edges of G can be identified with a subset of @ x Q. We now transform the graph G
into a graph G’ such that there are at most k edges going out of every vertex. For
this, let Q' be the set of pairs (¢,7) with ¢ € @ and 1 < j < w,. For each p € Q, we
have

Z wy < kwp.

ql(p,9)EE

We may thus partition the pairs (¢,h) € Q' in such a way that (p,q) € E, in w,
groups X1, X>,..., X, of at most k elements. The edges going out of (p, j) are all
the pairs ((p,j), (g, h)) such that (¢,h) € X;. One can actually identify G with a
multiset extension of G', where the set of multisets is {UJ;<;<,, (p,J) | p € Q} that
we identify to Q. Let I' = {(i,j) | 1 < j < w;}. Let wépﬂ.) =1 for all (p,j) withp € Q
and 1 < j < wp. Then, according to Proposition 3.1, the triple (G', I’, w') recognizes
the same sequence as (G, i, w). Moreover, if w, =1 for all p € T, let T" be set of all
(p,1) € Q' with p € T. Then the triple (G',I',T") recognizes the same sequence as
(G,4,T). If T is the set of vertices that have no outgoing edges, it is clear that the
same holds for 7". O

We now come to our main result.

THEOREM 4.2. Let s = (s5)n>0 be a reqular sequence of nonnegative integers and
let k be a positive integer such that )", -, spk™™ < 1. Then there is a k-ary rational
tree having s as its generating sequence.

Proof. Let us consider a regular sequence s and an integer k such that >~ <, $,k™" <
1. Since the result holds trivially for s(z) = 1, we may suppose that s = 0. Let
(G,i,t) be a normalized representation of s and let G be the closure of G’ as defined
at the beginning of Section 2.2. We denote by M (resp. M) the adjacency matrix of
G (resp. G). Let Q = Q — {t} be the vertex set of G. Let A be the spectral radius of
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M. By Proposition 2.8, the matrix M admits a positive k-approximate eigenvector
W. By definition, we have MW < kWw.

Let w be the Q-vector defined by w, = W, for all ¢ € @ and w; = w;. Then, since
there is no edge going out of ¢ in G, w is a positive k-approximate eigenvector of M.
Let t be the (Q-vector which is the characteristic vector of the vertex ¢t. Let m = w;.

By Theorem 3.3 there exists an admissible extension H of G with respect to w
and m. Let U be the transfer matrix and let W = Uw. Since wy; = 0 mod m, we
may choose H with the following additional property. For all u € S either u; = 0 or
u=-t.

According to Proposition 3.1, the sequence s is recognized by (H,J,X) where J
is the characteristic row vector of i and X is the characteristic column vector of t.
This means that s is recognized by the normalized representation consisting in the
graph H, the initial vertex i, that we identify to i, and the terminal vertex t, that we
identify to ¢.

Let N be the adjacency matrix of H. By Proposition 3.5, the vector [¥] is a
positive k-approximate eigenvector of N. Remark that [W]; = [W], = 1.

We may now apply Lemma 4.1 to construct a triple (H',I',T") equivalent to
(H,i,t). The set T" is the set of leaves of H'. Since [¥]; =1, I' is reduced to one
vertex i'. Since H' admits a k-approximate eigenvector with all components equal to
one, the graph H' is of outdegree at most k. Finally s is the generating sequence of
the covering tree of H' starting at i’. This tree is k-ary and regular. O

Let us consider the above constructions in the particular case of the equality in
Kraft’s inequality. In this case, the result is a complete k-ary tree. Indeed, by Propo-
sition 2.8, the matrix M admits a positive integral eigenvector w for the eigenvalue
k. We have for all p € Q,

Z Mpqwg = kwy.
7€Q

As a consequence, for any u # t, we have

> NuyWy = kW,
vES

Then the graph constructed in Lemma 4.1 is of constant outdegree k. Thus the k-ary
tree obtained is complete.

Let us consider the complexity of the construction used in the proof of Theorem
4.2. Let n be the number of vertices of the graph G giving a normalized representation
of s. The size of the integer m = w; is exponential in n (see Section 2.4). Thus the
number of vertices of the graph H is bounded by a double exponential in nn. The final
regular tree is the covering tree of a graph whose set of vertices has the same size in
order of magnitude.

Let for example s be the sequence defined by

22 22

=gt aoeay

Since s(1/2) = 1, it satisfies the Kraft equality for k = 2. The sequence s is recognized
by (G,i,t) where G = (Q, E) is the graph given in Figure 4 with @ = {1,2,3,4,5,6,7},
i = 1, t = 4. The adjacency matrix of G admits the 2-approximate eigenvector
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FiG. 4.1. A normalized representation of s

represented on Figure 4, where the coefficients of w are represented in squares beside
the vertices. Thus m = 3.

An admissible extension H of G with respect to w and m is given in Figure 4.2. In
this figure, each multiset of S is represented by a sequence of vertices with repetitions
corresponding to the multiplicity. For example, the multiset u = (0,0, 1,0,0,2,0) is
represented by (3,6, 6). The sequence s is recognized by the normalized representation
(H,1,4), where the initial and final vertices are named as they appear on Figure 4.2.
The coefficients of [%] are represented in squares beside the vertices.

Fic. 4.2. An admissible extension H.

A regular binary tree T having s as generating sequence of leaves, is given in
Figure 4.3. In this figure, the nodes have been renumbered, with the children of a
node with a given label represented only once. The leaves of the tree are indicated by
black boxes. The tree itself is obtained from the graph of Figure 4.2 by application of
the construction of Lemma 4.1. For example, the vertex (2,5), which has coefficient
6 in W, is split into two vertices named 2 and 3 in the tree.

This example was suggested to us by Christophe Reutenauer [18].

5. Generating sequence of nodes. In this section, we consider the generating
sequence of the set of all nodes in a tree instead of just the set of leaves. This is
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Fia. 4.3. A regular binary tree with length distribution s.

motivated by the fact that in search trees, the information can either be carried by the
leaves or by all the nodes of the tree. We will see that the complete characterization of
the generating sequences of nodes in regular trees (Theorem 5.1) is more complicated
than the one for leaves.

Soittola (see [19] p. 104) has characterized the series which are the generating
sequences of nodes in a regular tree. We characterize the ones that correspond to
k-ary trees (Theorem 5.1). We also give a more direct construction in a particular
case (Theorem 5.3).

Let T be a tree. The generating sequence of nodes of the tree T is the sequence
t = (tn)n>0, where t,, is the number of nodes of T at height n. The sequence ¢ satisfies
to < 1 and, moreover, if T is a k-ary tree, the condition

tn S ktnfl

for all n > 1. If T is a regular tree, then t is a regular sequence. We now completely
characterize the regular sequences ¢ that are the generating sequences of nodes of a
k-ary regular tree.

THEOREM 5.1. Let t = (tn)n>0 be a reqular sequence and let k be a positive
integer. The sequence (t,)n>o0 is the generating sequence of nodes of a k-ary regular
tree iff it satisfies the following conditions.

(i) the convergence radius of t is strictly greater than 1/k,

(ii) the sequence s(z) = t(z)(kz — 1) + 1 is regular.

Proof. Let us first show that the conditions are necessary. Let T be the complete
k-ary tree obtained by adding ¢ new leaves to each node that has k — ¢ children. Since
T is a regular tree, T is also regular.

Let s be the generating sequence of leaves of 7. Since T is complete, s(1/k) = 1.
Since kt,, = $py1 + tny1 for all n > 0, we have

1—s(z) =t(z)(1 — kz).

Since s is a regular sequence, its radius of convergence is strictly larger than 1/k (see
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Section 2.4). Since the value of the derivative of s at z = 1/k is kt(1/k), the same
holds for ¢. This proves the necessity of the conditions.

Conversely, if ¢ satisfies the conditions of the theorem, the regular series s(z) =
t(z)(kz — 1) + 1 satisfies s(1/k) = 1. Thus, by Theorem 4.2, s is the generating
sequence of leaves of a complete k-ary regular tree. The internal nodes of this tree
form a k-ary regular tree whose generating sequence of nodes is ¢. O

The sequence s defined by condition (ii) is rational as soon as ¢ is regular and
therefore rational. Given a regular sequence ¢, condition (ii) is decidable in view of
a theorem of Soittola [19], also found independently in [13] and recalled below. We
say that a rational sequence has a dominating root, either if it is a polynomial or if it
has a real positive pole which is strictly smaller than the modulus of any other one.
A sequence r is a merge of the sequences r; if there is an integer p such that

r(z) = Z 2ir(2P).

THEOREM 5.2 (Soittola). A sequence of nonnegative integers r = (ry)n>0 18
reqular if and only if it is a merge of rational sequences having a dominating root.

This result shows that it is decidable if a rational series is regular (see [19]). In
the positive case, there is an algorithm computing a representation of the sequence.

We may observe that condition (ii) of the theorem implies the non-negativity of
the coefficients of the series s and thus the inequality Vn > 1,t, < kt,_1. It also
implies that to < 1.

We now show that there are regular sequences t satisfying ¢, < kt,—q foralln > 1,
and condition (i) of the theorem and such that the sequence s(z) = t(z)(kz — 1) + 1
is not regular. The example is based on an example of a rational sequence with
nonnegative coefficients and which is not regular (see [10] page 95). Let

n = b*"cos®(nh)

with cos(§) = ¢ where the integers a,b are such that b # 2a and 0 < a < b. The

sequence r is rational, has nonnegative integer coefficients and is not regular. Its poles
1260

are &, e and Le 2. We now define the sequence t as follows:
520 b 3 q
h
ton, = k",

topt+1 = k" +ry.

We also assume that b?> < k. By Soittola’s theorem, the sequence t is regular since it
is a merge of rational sequences having a dominating root. The convergence radius
of t is ﬁ > % Therefore the sequence ¢ satisfies the first condition of Theorem 5.1.

Let s be the sequence defined by s(z) = t(2)(kz — 1) + 1. If h = 2p is even,

sp=kth_1 —1p
=kkP™' + krp—1 — kP + 1 =krp_q + 1.

Thus the sequence s is not regular.

The above example does not work for the small values of k (the least value is
k = 10). We do not know of similar examples for 2 < k < 9.

We finally describe a particular case of Theorem 5.1 in which one has a relatively
simple method, based on the multiset construction, to build the regular tree with a
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given generating sequence of nodes. This avoids the use of Soittola’s characterization
which leads to a method of higher complexity.

A primitive representation of a regular sequence s is a representation (G, i, t) such
that the adjacency matrix of G is primitive. The following result is proved in [7] with
a different proof using the state-splitting method of symbolic dynamics. The proof
given here relies on a simpler construction.

THEOREM 5.3. Let t = (tn)n>0 be a regular sequence and let k be a positive
integer such that tg =1, t, < ktn_1 for all n > 1 and such that

(i) the convergence radius of t is strictly greater than 1/k,

(ii) t has a primitive representation.

Then (tn)n>o0 is the generating sequence of nodes by height of a k-ary regular tree.

We are going to give a proof of the theorem which uses the multiset construction.
We shall use the following lemma that we establish first.

LEMMA 5.4. Let M be a primitive matrixz with spectral radius \. Let v be a non-
null and nonnegative integral vector and let k be an integer such that X < k. Then
there is a positive integer n such that M™v is a positive k-approzimate eigenvector of
M.

Proof. For a primitive matrix M with spectral radius A, it is known that the
sequence ((3£)™)n>0 converges to r.1 where r is a positive right eigenvector and 1 a
positive left eigenvector of M for the eigenvalue A with 1-r = 1 (see for example [15] p.
130). Thus (]K[—:v)nzo converges to r.l.v which is equal to pr where p is a nonnegative
real number. Since Mr = Ar, we get, for a large enough integer n,

n n
M %v < k}\—nv
or equivalently MM"v < kEM™v. If n is large enough, we moreover have M"v > 0
since M is primitive. 0

We now give the proof of Theorem 5.3. It uses a shift of indices of the sequence
to obtain a new sequence to which a simple application of the multiset construction
can be applied.

Proof. Since t is regular, it is recognized by a triple (G, 1,t), where G = (Q, E) is
a finite graph. Let M be the adjacency matrix of G.

For each n > 0, we have

t, = iM"t.

We denote by A the spectral radius of M. By Proposition 2.6 the positive real number
1/ is the radius of convergence of t. Thus A < k by hypothesis (i). Since M is a
primitive matrix, by Lemma 5.4, there exists a positive integer ng such that M™¢t is
a positive k-approximate eigenvector of M.

Let w = M™t, and let ¢’ be the sequence defined by ¢/, = t,,4n, for n > 0. Thus,
for each n > 0,

t =iM"w.

The sequence t' is thus recognized by the triple (G,i,w). Note that ¢, =1i-w.

Let H = (S, R) be the extension of G obtained by the multiset construction in
the following way. When we reach a vertex u of H, we partition ulM in multisets v
of degree 1, i.e. such that v is a 0, 1-vector with v, = 0 for all ¢ € ) except one.
All elements of S are thus elements of () except perhaps the initial vertex i. If i is of
degree 1, the number of elements of S is then equal to the number of elements of Q.
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Let U be the transfer matrix of the extension. Since w is a positive k-approximate
eigenvector of M, by Proposition 3.2, the vector W = Uw is a positive k-approximate
eigenvector of the adjacency matrix of H. By Proposition 3.1, the triple (H,i, W) is
equivalent to (G,1,w).

We now apply Lemma 4.1 to the graph H. We use i as initial vertex and the
k-approximate eigenvector W. Since we only use the first assertion of the lemma, we
will not use any set 7' of terminal states. According to the lemma, we construct a
graph H' and a set of vertices I' of H' such that H' admits the k-approximate vector
W' with all components equal to 1, and (H',I',W') is equivalent to (H,i, W). Thus
H' is k-ary. Note that I' has W; =1i-w = ¢, elements.

Let T), be the covering tree of H' starting at the state p of I'. Each Tj, is a regular
k-ary tree. Then #' is the sum the generating sequences of nodes of the trees T}, for
pel.

Finally, we build a finite k-ary tree T’ whose generating sequence of nodes is
(to,t1,...,tn,). This can actually be done since ¢, = 1 and t,, < kt,—; for n > 1. We
then identify bijectively each leaf at height ng of T” to the root of a tree T;. We get
a regular k-ary binary tree whose generating sequence of nodes is ¢t. O

Fic. 5.1. A primitive representation G of t.

Let for example ¢ be the series recognized by the graph G of Figure 5.1 with
1
i=[1 0 0] andt= |1
0

The adjacency matrix M of G is the primitive matrix

oo Y]

[1 0 oJ'

Tts spectral radius is less than 2. The hypothesis of Theorem 5.3 are thus satisfied.
We apply the method described above. We have

2 3
M?*t = |1| and M3t = |2
2 2

Since M3t < 2M?t, M?t is an approximate eigenvector of M. We thus set ny = 2
and w = M?t. The graph H is the same as the graph G of Figure 5.1. The vector
W is thus
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The graph H' is represented on the left side of Figure 5.2. We finally obtain the
binary regular tree T represented on the right side of Figure 5.2 (the nodes of the tree
have been renumbered).

FiG. 5.2. The graph H' and the tree T.
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