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Abstract

The synchronization delay of an N-state local automaton is known
to be O(N?). It has been conjectured by S. Kim, R. McNaughton and
R. McCloskey that, for deterministic local automata, it is O(N'®) on
a two-letter alphabet and no less than O(N?) in the general case. We
prove that this conjecture is false and that the synchronization delay
is Q(N?) in all cases.

1 Introduction

Local automata are finite automata with a very strong synchronizing prop-
erty: there are integers k and d (0 < d < k), such that two paths of length
k with the same label go through the same state at time d. The small-
est integer k satisfying this property is called the synchronizing delay of
the local automaton. Local automata recognize strictly locally testable lan-
guages of finite words, that is languages L on an alphabet A with L — {¢} =
UA*N A"V — AW A", where U, V, W are finite subsets of A*. They also
recognize subshifts of finite type, if we consider the bi-infinite words recog-
nized (see [6]). They are heavily used to construct transducers and coding
schemes adapted to constrained channels. When the output of the trans-
ducer is a local automaton, the decoding can be done with a sliding window,
and the size of the window is bounded by the synchronization delay of the
automaton. Finding adapted transducers with short synchronization delay
in output, to get a short window in order to limit the error propagation, is
one of the main goals when building codes for constrained channels (see for
example [8],[6],[2]).

The local property means that all long enough blocks are synchronizing
words, also called resolving blocks or reset sequences. A non-synchronizing
sequence of a deterministic local automaton is a word which is the label of
two paths ending in (and going through) different states. The synchroniza-
tion delay is then equal to the length of one of the longest non-synchronizing



sequence plus 1. For a given automaton A with N-states, this delay can be
computed in a polynomial time by using the product automaton, whose
states are pairs of states of A. The product automaton restricted to pairs of
distinct states of A has no cycle. The delay of a local deterministic automa-
ton A is then the height of this directed acyclic graph plus 1. It is known
that the delay is O(N?) for N-state local automata, and O(N) for deter-
ministic complete local automata. But it is was not known if this bound
could be improved.

This problem can be related to a similar (but different) question about
synchronizing sequences known as the Cerny-Pin conjecture. One has here
to find automata with very long non-synchronizing sequences, (the locality
implying that this length is bounded), where the Cerny problem is to show
that there are short synchronizing words (of length at most (N — 1)?) for
N-state complete synchronizing automata, (that is automata that admit at
least one synchronizing word).

In two papers about locally testable languages ([4] and [5]) S. Kim, R.
McNaughton and R. McCloskey conjectured that this synchronization delay
is O(N15) on a two-letter alphabet, and they gave an example of a family
of automata leading to this bound. More precisely, their conjecture stated
that if a locally testable automaton over a binary alphabet has IV states
then its order k (the smallest & for which the automaton is k-testable) is
O(N'5). What we prove in this paper, that is relevant to this conjecture, is
about a proper subset of the locally testable automata. We explicitly prove
that the order of a local automaton over a binary alphabet is Q(N?%), where
N is the number of its states. This result disproves the conjecture by Kim
et al. because the set of local automata is a subset of the set of locally
testable automata. In order to prove our result, we give an example of a
family of N-states local automata, that has a synchronization delay that is
Q(N?%). We also mention that the example, given in [2], of a family of N-
state local automata on a two-letter alphabet with Q(N?) synchronization
delay, is false.

It is easy to construct N-state automata with Q(N?) synchronization
delay when the alphabet size is unbounded. This leads us to consider only
the bounded case. We first give a general method to construct a local
automaton on a two-letter alphabet from a local automaton on a r-letter
alphabet, by encoding the r-letter alphabet in a circular code on the two-
letter alphabet. We use this construction to prove, independently from the
example we give after, that the complexity of the bound is the same in the
case of a two-letter alphabet and in the case of a r-letter one, where r > 2.
We then give in section 4 an example of automata which shows the main
result, that is that the bound is Q(N?).

We thank the referee for helpful comments.



2 Background

We first make precise notations used to compare the complexities.

If fand g are two functions from IN to IRT, we say that f ~ ¢ if and
only if f =0O(g) and g = O(f). We say that f = Q(g) if and only if there is
a positive constant K such for all integer m, there is an integer n > m such
that f(n) > Kg(n).

A finite automaton is said to be local if there are two integers k and d,
with 0 < d < k, such that if two finite paths of length &, ((p;, i, pi+1))o<i<i—1
and ((p}, ai, piyy))o<i<k—1, have the same label, then pg = pj;. A determin-
istic automaton is local if and only if the previous condition is satisfied
with d = k. Deterministic finite automata have also been called definite
automata in [9]. We call synchronization delay of a local automaton the
smallest integer k satisfying the conditions of the definition.

A finite automaton is said to be unambiguous if for any states p and ¢ (g
may be equal to p), there are not two distinct equally labeled paths going
from p to gq.

The following properties are known (see for example [2] p.44-46 for
proofs).

Proposition 1 Let A be an automaton with a strongly connected graph.
The two following properties are equivalent:

1) the automaton A is local.

2) the automaton A does not admit two distinct equally labeled cycles.

In this proposition, 1) = 2) is true even if the graph is not strongly con-
nected, and 1) <= 2) remains true if one suppose that the automaton is
unambiguous instead of being strongly connected. A local strongly con-
nected automaton is unambiguous.

Proposition 2 Let A be an N -state local automaton which is unambiguous
or has a strongly connected graph. Its synchronization delay is upper bounded

by (N? — N).

We briefly recall the proof given in [2] p.45.

Proof : We define m = W and k = 2m. We consider two paths
of length k: ((ps, as, pit1))o<i<k—1 and ((pf, as, pliy))o<i<k—1, With the same
label. There are at most m distinct pairs {p, ¢} of distinct states. As A is
local, it does not admit two equally labeled cycles. This implies that there
are not two distinct indices ¢, 7, with 0 <7, j < m, such that (p; # pl,p; #
p) and (((p:i, pi) = (pj, P}))or((pi, pt) = (), p;)))- It follows that there is an
index ¢, with 0 < 7 < m, such that p; = pi. There is also an index j with
m < j < k such that p; = p;. As A is local and has a strongly connected
graph, it is also unambiguous, and then p,, = p! . The condition of locality
is satisfied with paths of length k& and d = m. O

As a consequence, an N-state deterministic local automaton has a syn-
chronization delay which is O(N?).



Proposition 3 Let A be an N -state deterministic local automaton. Its syn-
- . N(N-1)
chronization delay is upper bounded by ——=—.

Proof : We define k = N(]\;_l). We consider two paths of length k& and

with the same label : ((pi, @i, piy1))o<i<k—1 and ((p}, ai, piyy))o<i<k—1. Like
in previous proof, there is an index i, with 0 < ¢ < k, such that p; = p}. As
A is deterministic, we get py = pj.. O

We recall that an automaton on an alphabet A is a complete deterministic
automaton if each state admits exactly one outgoing edge labeled by each
letter of the alphabet A. A proof of the following known result can be found
in [2] p.46:

Proposition 4 Let A be an N-state automaton which is complete deter-
ministic and local. Its synchronization delay is upper bounded by (N —1).

3 Link with circular codes

We now present a general method to encode the letters of a local automaton
on an alphabet of n letters into a code on a two-letter alphabet, in such a
way that the composed automaton is still local. We will use circular codes.

Let A be an alphabet. A subset C' of AT is said to be a circular code if
forall n,m > 1 and 21, 29,...,2, € C, y1,Y2,---,Ym € C, and p € A* and
5 € AT, the equalities

STy ... TpnpP = Yry2...Ym

T4 = ps

imply
n=m,p=¢, and z; =y; (1<i<n)

Circular codes are codes such that words of A* have at most one decom-
position in the codewords on a cycle. Let A be an automaton on an alphabet
A. We choose a state ¢ of A. The subset X, of A* of first returns to state
g is defined as the set of labels of all paths going from state ¢ to state ¢,
without going through state ¢ between the extremities. As the automaton
is finite, the set X, is rational.

We will call a 1-pole automaton an automaton which has the following
property: there is a state ¢ such that all cycles go through state ¢. The set
of first returns to state ¢ is then finite.

The link between local automata and circular codes is given in the two
following known propositions (see for example [3] or [2] for a proof):

Proposition 5 If A is local then X, is a circular code, for any state q of
A. In the other direction, if C' is a finite circular code, there is a 1-pole
automaton A and a state q of A such that X, = C'. One can choose the
flower automaton of the code C'. If C' is a finite circular code which is



the set of first returns of a 1-pole unambiguous automaton, then this 1-pole
automaton is local.

A wvery pure monoid M is a monoid with the following property:
w,vu € M = w,veM

Proposition 6 A set C' C A* is a circular code if and only if C* is a very
pure monoid and CC NC = Q.

An example of circular code is the subset Xy = {AAC, AAT, ACC,
ATC,ATT, CAG,CTC,CTG,GAA,GAC,GAG, GAT,GCC,GGC,GGT,
GTA,GTC,GTT,TAC,TTC} discovered by D. Arques and C. Michel. It is
the set of 20 trinucleotides having a preferential occurrence in the frame 0 of
protein (coding) genes of both prokariotes and eukariotes. The reading frame
is established by the ATG start trinucleotide (see [1]). The synchronization
delay of its local flower automaton is 13, and it is the set of first returns of
a 1-pole automaton on a 4-letter alphabet with 11 states. Similar circular
codes also exist for the two other frames.

We now define the notion of composition of two codes and of composition
of an automaton with a code. Let Z C A" and Y C B”*, where A and B are
finite alphabets, be two codes together with a bijection § from B onto Z.
Then 3 defines an injective morphism §: B* — A*. The set X = (V) is
obtained by composition of Y and Z and is denoted by X =Y o Z. The set
X is obtained by coding the letters of ¥ by the corresponding words of Z.
It is known that if Y and Z are composable circular codes, X =Y o Z is a
circular code (see [3]).

We will prove a similar result about a composition of an automaton with
a circular code.

Let A be a an automaton on an alphabet B. Let Z be a finite circular
code on an alphabet A with a bijection § from B onto Z. Then [ defines an
injective morphism g : B® — A*. We call composition of the automaton
A with 3, the automaton denoted by Ao 3, and obtained by replacing each
edge (p, b, q) of A by the edges:

ay as as An—1 An
p—re—>e—>e---—re—5g

with 3(b) = ajaz...a,, and where (n — 1) new intermediate states have
been added.

If A is deterministic, we can define a deterministic version of the compo-
sition of A with 3, when Z = 3(B) is a prefix circular code. Under this hy-
pothesis, let p be state of A and let (p, b;, ¢;)1<i<s be its outgoing edges. Let
T, be a labeled tree representing the prefix code Z, = 3({b1,...,bs}) C Z:
the edges of T, are labeled in the alphabet A, and each word of Z, is the
label of exactly one path from the root to a leaf. We label the root by p and
each leaf corresponding to 3(b;) by ¢;. We now define A o4y § as the au-
tomaton obtained from A by replacing, for each state p, the outgoing edges



Figure 1: Tree T),

of p in A by the edges of the tree T),. The internal nodes of T}, will be new
intermediate states in Aoy 3. Figure 1 shows the tree 7}, when the outgoing
edges of p are (p, b;, ¢;)1<i<4, A = {a, b}, and Z, = (aa, aba, abb, bb).

Proposition 7 If A is a local automaton that either has a strongly con-
nected graph or is unambiguous, and if 7 = [(B) is a circular code, Ao 3
is local. Moreover, if A is a local deterministic automaton and if 7 is prefix
circular, A ogey B is local and deterministic.

Proof : We prove the first part of the proposition. The second one is a
consequence of the first one, as Aoy 3 can be seen as a projection of Ao 3.

We consider two distinct and equally labeled cycles of Ao 3, one begin-
ning at (and ending in) a state p, the other one beginning at (and ending in)
a state g. We can suppose that p # ¢. Without loss of generality we also can
assume that at least one of them is also a state of A (not an intermediate
added state). If they are both states of A, we get in A two distinct equally
labeled cycles, which contradicts the locality of A. We now suppose that p
is a state of A and ¢ is not. We can remark that each cycle of Ao § goes
through a state of A. Let r be the first state belonging to the states of A in
the cycle beginning at ¢. This cycle is composed of a path labeled u from
¢ to r, concatenated to a path labeled v from r to ¢. The word uv is also
the label of the other cycle beginning at p. We get wv,vu € Z*. As 7 is
a circular code, Z* is a very pure monoid. We get u,v € Z*. This forces
P, q,r to be states of A, which concludes the proof. O

We will use an encoding of the alphabet of A in a particular class of
circular codes: the comma-free codes. A subset C' of A" is a comma-free
code if and only if, for all w € Ct, u,v € A*,

vwv € C7" = u,v € C*

We refer to [3] for this notion and the following result due to Golomb et al.
and Eastman:



Theorem 1 For any alphabet A with r letters for any odd integer m > 1,
there exits a comma-free code C' C A™ such that Card(C') = ,,(r), where
Ly (r) is number of conjugacy classes of primitive words of length m in A*.

Moreover, we have
2m
I (2) ~ —.
2~ 2

This theorem implies that it is possible to find a comma-free (thus cir-
cular) code on a two-letter alphabet composed of [ words of length m with
m ~ log(l). As the codewords have the same length, the code is also a
prefix code. By considering the case of an alphabet A of size r, we get the
following result:

Proposition 8 Let r be an fixed integer and let f be an increasing function
from IN to Rt such that for any positive constant ¢, f(N) ~ f(eN). If
the synchronization delay of an N -state local deterministic automaton on a
r-letter alphabet is Q(f(N)), then the synchronization delay of N -state local
deterministic automaton on a 2-letter alphabet is Q(f(N)).

Proof : Let A, be a family of N-state local deterministic automata on
a r-letter alphabet, with N ~ n, and with a synchronization delay at least
k(N), where k(N) is Q(f(N)). Let B,, the family A,, 0g4et 85, of deterministic
automata on the two-letter alphabet, where 3, defines a coding from the
alphabet of A, in a prefix circular code of words of a fixed length m on
the two-letter alphabet. As A, is deterministic, the number of its edges is
F < rN. The number of states of B, is

N' ~ (N4 F)ym~N xrxm.

The synchronization delay of B,, is greater than (k(N) — 1)m, at least

As r and m are constants, the synchronization delay of B, is then Q(f(%))
=Q(f(N')). o

This proposition applies in particular in the case where f(N) = N2. This
proposition shows that the complexity of the synchronization delay in the
case of a 2-letter alphabet is the same as in the case of a r-letter one, for
any r > 2. In the next section we give an example of a family of automata
with Q(N?) synchronization delay on a two-letter alphabet.

4 Upper bound of the synchronization delay

We now go to the case of a fixed alphabet with two letters A = {a,b}. Let
A, be the following family of N-state local deterministic automata on the



Figure 2: Ladder automaton

alphabet A. The set of states of A, is {p1,p2, .- Pns Q1,42 -+, qn}. We
then have N = 2n. The edges of A, are

G —= qr-1, 2<k<n
Pk i> Pk+1, 1§k§n—1
e -5 g1, 2<k<n

b
qgq — M

The automaton A, is given in Figure 2.

For a deterministic automaton, we call a non-synchronizing sequence a
finite word w such that there are two paths labeled by u, (p;, a;, Pi—|—1)0§z’§k—1
and (p;, @i, Phyy)o<i<k—1, with p; # p} for all indices .

Proposition 9 The above defined N-state automaton A, is local and its
synchronization delay is Q(N?).

Proof : We first prove that A, is local. We can prove this directly by
using the definition of local automata. We give here a proof that uses circular
codes. We remark that A, is a 1-pole automaton and we can choose state py
as pole. Then A, is local if and only if the finite code of first returns to state
pp is circular. This code is C' = {akba(’“_l)b7 1 <k < n}. Let us suppose
that this code is not circular. We then have two circular decompositions:

STg ... Trp = Y1Yz2...Ym

T4 = ps



with @1, 29,...,2, € C, y1,Y2,...,ym € C and p € AT and s € AT, These
two decompositions in words a*ba*=1p of C' are:

u Y2 Ym

ps T2 Ty Ps

N e ————

and we get r = m. This implies that s = ¢*b and p = q(k=2m+1)

cannot belong to C'.

By considering the paths beginning at states pl and g, labeled by u =
a® Dpa("=2)p .. .ab, one sees that u is a non-synchronizing sequence. The
synchronization delay of A, is then greater than or equal to the length of u
plus 1, that is to ﬂnQ—-Hl As N = 2n, it is Q(N?). O

b and ps

We now briefly describe the relationship between this example and the
conjecture by Kim et al. (see also the first section). Let us consider the
above automaton with p; as initial state and the sole accepting state. We
can discard the state ¢, so that the automaton is strongly connected. The
language of finite words recognized by this automaton is locally testable
but not k-testable with & = ((n? — n)/2). So the example disproves the
conjecture by Kim et al.
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