
HAL Id: hal-00619325
https://hal.science/hal-00619325v1

Submitted on 6 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of elastic and damping properties of
sandwich structures based on high resolution modal

analysis of point measurements
Marc Rébillat, Xavier Boutillon

To cite this version:
Marc Rébillat, Xavier Boutillon. Identification of elastic and damping properties of sandwich struc-
tures based on high resolution modal analysis of point measurements. ISMA2010 including USD2010,
Sep 2010, Leuven, Belgium. pp.560. �hal-00619325�

https://hal.science/hal-00619325v1
https://hal.archives-ouvertes.fr


Identification of elastic and damping properties of sandwic h
structures based on high resolution modal analysis of point
measurements.
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Abstract
A method is proposed to identify the mechanical properties of the skin and core materials of sandwich
structures having heterogeneous cores. All the elastic coefficients and loss-factors that matter in the dynamics
of such a panel in the thick-plate approximation are identified. To this end, experimental natural modes (i.e.
eigenmodes of the damped system) are compared to the numerical modes of large sandwich panels (lx,y/h ≃
80). The chosen generic model for the visco-elastic behaviour of the materials isE(1+ jη). The numerical
modes are computed by means of a Rayleigh-Ritz procedure and their dampings are predicted according
to the visco-elastic model. The frequencies and dampings of the natural modes of the panel are estimated
experimentally by means of a high-resolution modal analysis technique. An optimisation procedure yields
the desired coefficients. A sensitivity analysis assess the reliability of the method. Identification is conducted
on two very different kind of sandwich panels to illustrate the method.

1 Introduction

Because of their light weight and the easy adjustment of their mechanical properties, sandwich structures
with an heterogeneous core are widely used nowadays. However, due to the heterogeneities, their structural
mechanical properties are difficult to predict accurately on the basis of the material properties and identifica-
tion procedures are often needed. Mixed numerical (Num) / experimental (XP) methods are used to identify
the parameters of a model by comparing simulated and measured characteristics (for example modal damp-
ingsαNum

n vs. αXP
n and frequenciesf Num

n vs. f XP
n of the first modes of the system). In order to obtain good

identification results, the model parameters must be sensitive to the measured characteristics.

Several authors have addressed the problem of the identification of elastic and damping properties ofho-
mogeneous thick plates from full field measurements [1, 2, 3] or of homogeneous thin plates using point
measurements [4, 5, 6]. However no method has yet been presented for the identification of elastic and
damping properties of thick plates from point measurements.

Sandwich panels often raise special difficulties because of their heterogeneous cores (honeycombs core for
example). Equivalent elastic properties of such sandwich plates can be identified [7, 8], but obtainingtheir
damping properties is still challenging. Following the work of De Visscheret al. [4] a point measurement
method for the identification of the elastic and damping properties of sandwich panels with heterogeneous
cores is presented in this paper, based on a thick plate approximation.

In order to consider the sandwich core as homogeneous in the in-plane directions, up to a given frequency
f , the corresponding wavelengthλ must contain at least 50 cells [9]. For a typical cell side-lengthscell and
height h this implies that the dimensions of a panel must be such thatlx,y > λ > 50scell. On the other
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hand, the panel must appear as a thick-plate (rather than a thin-plate) if theout-of-plane elastic and damping
properties are to be identified. For flexural waves this implies that high-enough frequencies are included in
the processed data:λ/h ≤ 6 [10]. In other words, the panel must be large enough and the observed dynamics
must include high-enough modes, within the limit of a plate model. Due to the intrinsic dissipations of the
materials, the modal characteristics of high modes may be difficult to measure with the Fourier transform
(FT) which is limited to modal overlaps of≃ 30 % in most implementations. The high-resolution modal
analysis (HRMA) technique [11] is an alternative to the FT for the estimation of modal parameters upto a
modal overlap of≃ 70 %.

In the present work, the identification of most elastic and damping properties of sandwich structureswith an
heterogeneous core is considered by means of the modal analysis of large panels (lx,y/h ≃ 80). The HRMA
technique is used to estimate modal frequencies and dampings of the first≃ 40 modes of the panels. An opti-
misation procedure, based on a numerical thick-plate model is used afterwards to identify the corresponding
elastic and damping properties.

2 A mechanical model of sandwich panels

2.1 Hypotheses

Figure 1: Geometry of the sandwich plate.

The sandwich panel consists in two identical skins and a core (Fig. 1). The thicknesses of the core and
the skins arehc andhs respectively. The thickness of the panel ish = hc + 2hs. In the following, ”panel”
designs the physical structure whereas ”plate” refers to the idealized structure made outof the equivalent
homogeneous material. The following hypotheses are made on the panel and plate:

• Displacements are small so that the materials and structures behave linearly.

• Only flexural waves are considered.

• The plate is considered to follow the Reissner-Mindlin approximations (thick-plate model). For the
aspect ratiolx,y/h > 80 of the panels under study, a more sophisticated theory such as “Third Order
Shear Deformation Theory” would not give significantly different modal frequencies and dampings
[12].

• The wavelengths include at least 50 cells. According to Burtonet al. [9], this ensures that errors on the
modal frequencies of the plate (with a homogeneous equivalent core) are less than 2% when compared
to those of the panel as computed by various FE-models.

The skin and core materials are each considered as homogeneous, orthotropic in thex andy directions, and
viscoelastic.
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The formalism chosen for describing the viscoelastic behaviour is that of complex moduliE = E(1 + jη)
which do not depend on the frequency (see the model of materials in section 2.2). The Young’s and shear
moduli and the Poisson coefficient of the core areEc

x, Ec
y, Ec

z , Gc
xy, Gc

xz, Gc
yz, ν

c
yx, ν

c
xz, ν

c
yz andνcxy. The same

parameters for the skins are denoted by thes index. The properties of the homogeneous material equivalent
to the whole sandwich are denoted by theH index.

The following hypotheses are made on the sandwich panel:

• The sandwich panel is symmetric with respect to its mid-plane.

• Skins are very thin compared to the core so that shear stress in the skin can be ignored:hsGs
xz ≪ hcGc

xz
(and the same in they direction).

• The core is considered to be very soft (Ec
x ≪ Es

x, Ec
y ≪ Es

y andGc
xy ≪ Gs

xy). Given the generic

expression of the moduli of the homogeneous equivalent materialEH =

(

hc

h

)3

Ec +















1−

(

hc

h

)3












Es,

this ensures that all in-plane stress in the plate are entirely due to those in the skins.

According to these hypotheses, there is no stress associated withEc,s,H
z , νc,s,Hxz , ν

c,s,H
yz ,G

s
xz, Gs

yz, Ec
x, Ec

y, Gc
xy,

νcxy, ν
c
yx which are ignored in what follows. These hypotheses are generally fulfilled in common sandwich

panels. The typical orders of magnitude for the considered parameters in this kind of sandwich panels are:

{

hs/hc ≃ 10−1

Ec
x/E

s
x ≃ Ec

y/E
s
y ≃ Gc

xy/G
s
xy ≃ 10−5 (1)

2.2 Model of the materials

The damping of plate vibrations has different origins. In the present study, it is assumed that panels vi-
brate below their coincidence acoustical frequencies. Consequently, damping due to acoustical radiation in
surrounding air is very small compared to the structural damping. Among the different structural damping
models, we have retained the standard hysteretic model (which is frequency-independent, see for example
[13]). The relationship between the stressǫγ and the strainσγ in eachγ−material (γ = s, c, or H) involves 7
complex numbers and can be written, to first order inη as:

σγ =











































Eγx(1+ jηγx) ν
γ
yxEγx [1 + j(ηγνyx + η

γ
x)] 0 0 0

ν
γ
xyE
γ
y [1 + j(ηγνxy

+ η
γ
y)] Eγy (1+ jηγy) 0 0 0

0 0 Gγxz(1+ jηγxz) 0 0
0 0 0 Gγyz(1+ jηγyz) 0
0 0 0 0 Gγxy(1+ jηγxy)











































ǫγ

(2)

The symmetry of the strain/stress relation adds the following relationshipsνγxyE
γ
y = ν

γ
yxEγx andηγνxy

+ η
γ
y =

η
γ
νyx + η

γ
x which leaves 12 independent real parameters to be identified for each material (24 altogether). In

order to keep a formal symmetry in the mathematical treatment, one defines1:

νγ =

√

ν
γ
xyν
γ
yx η

γ
ν = η

γ
νxy
+ η
γ
y (3)

1One must keep in mind thatηγν is not the imaginary part ofνγ.
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2.3 Equivalent thick plate

Under the hypothesis and for the orders of magnitude given in section 2.1, the sandwich panel behavesin the
low frequency range like a homogeneous thick-plate [14]. The thickness of the plate is chosen to beh. Its
mechanical properties are given in Eq. (4) and (5) as functions of the mechanical and geometrical properties
of the skins and the core.
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The 12 independent real parameters{EH
x , η

H
x , E

H
y , η

H
y ,G

H
xy, η

H
xy,G

H
xz, η

H
xz,G

H
yz, η

H
yz, ν

H , ηH
ν } are to be identified.

Their knowledge yields the elastic and damping properties of each layer of the sandwich panel provided that
the 12-equation system formed by Eqs. (4) and (5) is invertible. A sufficient condition is:

ηc
x

Ec
x

Es
x
≪ ηs

x ηc
y

Ec
y

Es
y

≪ ηs
y η

c
xy

Gc
xy

Gs
xy
≪ ηs

xy (6)

since
Ec

x

Es
x
≪ 1,

Ec
y

Es
y

≪ 1, and
Gc

xy

Gs
xy
≪ 1 (see last point in section 2.1). This condition is not satisfied only

if the ηc-coefficients are several orders of magnitude larger than theηs-ones. This is not the case here and
rarely the case in general2. Consequently, the identification of theEH

x , etc . . . yields a measurement of the
mechanical properties of the skin and core materials.

2.4 Potential, kinetic and dissipated energies in the equivalent thick-pla te

Within the frame of the first order Reissner-Mindlin theory the displacements{u, v, w} in the{x, y, z}-directions
respectively are [15]:

u(x, y, z, t) = −zΦx(x, y, t) v(x, y, z, t) = −zΦy(x, y, t) w(x, y, z, t) = w0(x, y, t) (7)

The potential energy of the plate is:
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1
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#
V
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]

dxdy

(8)

2It can be the case when skins are made of metal and the core is made of paper honeycombs or of viscoelastic foam.
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with

D1 =
EH

x h3

12(1− νxyνyx)
D2 =

νxyEH
y h3

6(1− νxyνyx)
D3 =

EH
y h3

12(1− νxyνyx)

D4 = 2κ2yzhGyz D5 = 2κ2xzhGxz D6 =
Gyzh3

6

(9)

The shear correction factorsκ2yz and κ2xz account for the fact that Eq. (7) is an approximation: theΦx,y

coefficients depend lightly onz and sections of the plate do not remain plane in the flexural deformation. The
valuesκyz = κxz = 1 have been chosen according to the recommendations of [16] for sandwich panels.

By definition, the fraction of energy lost during one cycle is:

∆U = −
∫

T

[ #
V

(σH)T ∂ǫ
H

∂t
dτ

]

dt (10)

Based on section 2.2,∆U can then be expressed as:
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]
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(11)

The kinetic energyT of the system is given in Eq. (12) as a function ofΦx, Φy, andw0. In this expression,
ρH is the density of the equivalent homogeneous thick plate which is given byhρH = hcρc + 2hsρs.

T =
ρHω2

2

$
(V)

[

u2 + v2 + w2
]

dτ =
ρHω2

2

"
(S)

[

h3

12
(Φ2

x + Φ
2
y) + hw2

0

]

dxdy (12)

3 Numerical model of the thick plate

In order to compare experimental results to numerical simulations, it is necessary to evaluate thedamping
factors of numerical modes. The dynamics of the panel is given by the hypotheses listed in section 2.1,the
Eqs. (2), and the boundary conditions. Instead of a direct time-integration of the motion, we model here
the damping of the numerical modes of the associated conservative system, under the hyptothesis of light
damping. The problem consists in evaluating the relationships between theαNum

n damping factors and theηH

loss-factors.

3.1 Modal representation

The honeycomb sandwich panel is considered here as a non conservative systemPNC with N degrees of
freedomq = {qn} whereq is any set of generalised displacements. The damping model presented in sec-
tion 2.2 corresponds to viscous damping. Under this hypothesis, the equation of the free motion ofPNC can
be written as:

Mq̈ + Cq̇ + Kq = 0 (13)

whereM, C and K are the mass, damping, and stiffness matrices. In what follows, the modes ofPNC are
called natural modes. We also refer to the associated conservative systemPC corresponding toC = 0. The
modes ofPC will be notedξn and associated with the normal frequenciesfn.
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If PNC is lightly damped, it can be shown [17] that the natural modes areξn and the natural frequencies are
fn + jαn to first order.

Let UNC
n be the potential energy associated with thenth mode ofPNC. It varies in time as exp(−2αnt) so that

the energy lost by this mode during one cycle∆UNC
n is:

∆UNC
n = −2

αn

fn
UNC

n (14)

SincePC andPNC have the same modes,UNC
n = UC

n . And sinceUC
n = TC

n , one obtains:

∆UNC
n = −2

αn

fn
TC

n (15)

Once the modesξn of PC (and ofPNC) are known, Eqs. (8), (11), and (14) yield the modal dampingsαn of
PNC .

3.2 Rayleigh-Ritz procedure for the conservative modes

A Rayleigh-Ritz procedure has been used to derive the mode shapesξNum
n and the modal frequenciesf Num

n
of PC. To this end, the generalised displacementsΦx(x, y), Φy(x, y), andw0(x, y) have been projected on an
orthonormal polynomial basis of orderQ satisfying the free-free boundary conditions [18]:

Φx(x, y) =
∑

i, j

Li j pi(x)p j(y) Φy(x, y) =
∑

i, j

Mi j pi(x)p j(y) w0(x, y) =
∑

i, j

Ni j pi(x)p j(y) (16)

This procedure generates a new set of generalised displacementsLi j, Mi j andNi j. The kinetic and potential
energiesT andU, defined in section 2.4, have been expressed explicitly as functions of the new coordinates.
The Hamilton principle reads as:

∀(i, j) ∈ [0,Q − 1]2 :
∂(T − U)
∂Li j

= 0
∂(T − U)
∂Mi j

= 0
∂(T − U)
∂Ni j

= 0 (17)

The above system of 3Q2 linear equations can be re-written as [K − 4π2 f 2M]ξ = 0, see also Eq. (13), where
f is the eigenfrequency andξ is the eigenvector of unknown coefficientsLi j, Mi j andNi j. The resolution of
this eigenvalue problem gives a straightforward access to the modal frequenciesf Num

n and mode shapesξNum
n

of PC.

3.3 Derivation of αNum
n

By introducing the numerical modesξNum
n and frequenciesf Num

n found in section 3.2 in the energies ex-
pressions of section 2.4, the relations Eqs. (18) are obtained. The coefficientstn andunk depend only on
the geometry and mass parameters of the plate and on the modal shapeξNum

n . For the subscripts ofη,
{x, ν, y, yz, xz, xy} have been replaced by{1,2,3,4,5,6}.

∀n ∈ [1,N] : UNC
n = UC

n =

6
∑

k=1

Dkunk ∆UNC
n = −π

6
∑

k=1

ηkDkunk TC
n = 4π2 f 2

n tn (18)

Using relations Eqs. (18), the expression Eq. (19) of the modal dampingsαNum
n can be deduced from Eq. (15).

One can notice thanαn is a linear combination of theηk.

αn =
fn∆UNC

n

2TC
n
=

6
∑

k=1

ηkDk
unk

4π fntn
(19)
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4 Experimental study of sandwich panels

4.1 Experimental setup

Two different sandwich panels with heterogeneous cores have been studied experimentally. The first one
is a rectangular lightweight honeycomb sandwich panel (NomexR© honeycombs core and paper skins). The
second one is a sandwich sheet composed of two stainless steel face sheets and two bidirectionally corrugated
steel layers form its core of 20 % relative density. Known parameters for each panels aregiven in Table 1.
Sincelx,y/h ≃ 80 for the honeycombs core panel andlx,y/h ≃ 90 for the bidirectionally corrugated core one,
they both satisfy the Reissner-Mindlin approximations (see Sec. 2.1). Panels were suspended by thinwires
in order to ensure free-free boundary conditions. The honeycomb core panel has been acoustically excited
by an electro-dynamical loudspeaker placed in its vicinity and driven by a wide-band electrical signal. Its
response was measured with a laser vibrometer pointing one corner. This ensures that all modes are present
in the response. By means of a specially designed excitation signal [19], the impulse response of the panel
was reconstructed. The corrugated core panel has been excited at different positions by means of an impact
hammer. The panel responses were measured with an accelerometer located in one corner. Impulse responses
were obtained after deconvolution with the force signal.

lx ly hs hc scell ρc ρs

Honeycomb core panel 39.15 cm 59.10 cm 0.2 mm 4.88 mm 4 mm 37.8 kg/m3 713 kg/m3

Corrugated core panel 17.78 cm 22.86 cm 0.2 mm 1.48 mm 1 mm 2164 kg/m3 7800 kg/m3

Table 1: Geometry and mass of each sandwich panels. The typical length of the core-cells is denotedscell.

4.2 High resolution modal analysis

The impulse response of the non-conservative system can be expressed as a summation over its natural
modes:

h(t) =
N

∑

n=1

ξn exp(j2π fnt − αnt + jφn) (20)

In order to extract the experimental modal frequenciesf XP
n and dampingsαXP

n , a recently developed modal
analysis method [11] has been applied to velocity impulse responses of the sandwich panels obtained in
section 4.1. In the available noise conditions, the parameters of the 45 first modes could be extracted for
the honeycombs core panel and of the 38 first modes for the corrugated core panel. The modal overlap of
the highest modes of the honeycombs core sandwich panel was≃ 50 %, which is out of reach of traditional
implementations of the Fourier transform, hence our need of the new method.

Using several bandpass filters associated with the ESPRIT and ESTER algorithms (see reference [11] for
details), it is shown that this method yields a precise estimation offn andαn in presence of moderate noise:
the modal frequenciesfn can be estimated with a precision of≃ 0.01 % and the modal dampings with a
precision of≃ 1 %. Moreover, this method allows for the identification of modal parameters of modes
having a modal overlap up to 70 %.

5 Optimisation procedure

5.1 Estimation method

This section describes how to derive{EH
x , η

H
x , E

H
y , η

H
y ,G

H
xy, η

H
xy,G

H
xz, η

H
xz,G

H
yz, η

H
yz, ν

H , ηH
ν } from the experimen-

tal values of the modal frequenciesf XP
n and dampingsαXP

n . Since the modal frequencies of the conservative
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and the real systems are equal to first order (section 3.1), it is valid to find separately and successively the
elastic constants and the loss factors.

To first order, the modal frequencies depend only on the elastic constants of the homogeneous equivalent
thick-plate model{EH

x , E
H
y ,G

H
xy,G

H
xz,G

H
yz, ν

H}. Since this dependence is non-linear, a cost functionCE is
defined (Eq. (21)) and an optimisation procedure based on the gradient-method has been implemented.

CE =

N
∑

n=1

(

f XP
n − f Num

n

f XP
n

)2

(21)

It has been shown in section 3.3 that the damping coefficients{αNum
n }n∈[1,N] can be expressed as linear com-

binations of the{ηH
x , η

H
y , η

H
xy, η

H
xz, η

H
yz, η

H
ν } loss factors. Therefore, the latter can be obtained by a simple least

mean square method, with the constraint that loss factors remain positive.

5.2 Results for the honeycombs core sandwich panel

5.2.1 Identification of elastic and damping constants

The optimisation is performed on the 45 first modal frequencies and dampings obtained experimentally for
this panel. The numerical model used aQ = 14-order basis which proved to ensure the convergence of the
highest modes values. The identified visco-elastic parameters of the equivalent homogeneous plate are given
in Tab. 2. The relative errors in modal frequencies and dampings are shown in Fig. 2. It canbe seen that the
agreement is very good for modal frequencies (mean absolute error of 1.8 %). The predicted modal dampings
fit well the mean measured ones, but the difference is more important (mean absolute error of 10.2 %).

EH
x EH

y GH
xy GH

xz GH
yz νH

xy νH
yx

Real part 1.0 GPa 1.4 GPa 0.46 GPa 12 MPa 26 MPa 0.23 0.33
Loss factor (%) 1.3 1.4 1.1 4.4 8.1 0 0.1

Table 2: Identified parameters of the homogenised model corresponding to the honeycombs core sandwich
panel. The coefficients in the two last columns are mutually related by the symmetry relationships (cf.
section 2.2).

5.2.2 Sensitivity analysis

The sensitivities of the frequency valuesfn to the coefficients{EH
x , E

H
y ,G

H
xy,G

H
xz,G

H
yz} are defined asS fn(X) =

∂ fn
∂X

(

fn
X

)−1

. They reflect the information contained in a modal frequency relatively to the elastic parameter X.

Results are presented in Fig. 3. Since the modal frequencies are very little sensitive to the Poisson coefficients
compared to the other in-plane parameters, their sensitivities to these parameters have not beenrepresented.
As expected, it can be seen in Fig. 3a that modes of the form (0, i) or ( j,0) convey a lot of information
relatively toEx andEy respectively. Since the thick-plate model differs from the thin-plate model for the
higher frequencies, it is normal that there is almost 10 times more information relative toGxz and toGyz in
the higher modes than in the lower ones (Fig. 3b). The lower sensitivity ofGxz to the modal frequencies than
that ofGyz is simply due to the aspect ratio of the plate (lx < ly).
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Figure 2: Comparisons between measured and predicted modal frequencies (left) and dampings (right) for
the honeycomb sandwich panel.

5.3 Results for the corrugated core sandwich panel

5.3.1 Identification of elastic and damping constants

The optimisation is performed on the 38 first modal frequencies and dampings obtained experimentally for
this panel. The numerical model used aQ = 13-order basis which proved to ensure the convergence of
the highest modes values. The identified visco-elastic parameters of the equivalent homogeneous plate are
given in Tab. 3. The relative errors in modal frequencies and dampings are shown in Fig. 4. It can be seen
that the agreement is satisfying for modal frequencies (mean absolute error of 2.2 %). The predicted modal
dampings fit correctly the mean measured ones, but as previously the difference is more important (mean
absolute error of 36 %).

EH
x EH

y GH
xy GH

xz GH
yz νH

xy νH
yx

Real part 116 GPa 102 GPa 46 GPa 78 GPa 163 GPa0.32 0.28
Loss factor (%) 0.12 0.15 0.1 0 0 0.1 0.13

Table 3: Identified parameters of the homogenised model for the other sandwich panel. The coefficients in
the two last columns are mutually related by the symmetry relationships (cf. section 2.2).

In Fig. 4, it can be seen that the error on damping estimation is moderate in the mid-frequency range, but
larger for the first modes and in the high-frequency range. As the identified loss factors arevery low (see
Tab. 3), the measured modal dampings are very sensitive to the way the panel is suspended andto the
damping due to acoustical radiation. In the present case, the thin wires used to suspend the panelmay be
the origin of some additional damping in the low frequency range that was not included in the model. In
the high-frequency range, the damping is systematically underestimated above 3 kHz. Since the equivalent
elastic parameters of the panel have been identified, the coincidence frequency of this panel can be estimated
around 4 kHz. This results in an additional damping due to acoustical radiation as the modal frequency
comes closer to this frequency. In the same spirit, the modal frequencies seem systematically underestimated
by 2 % below 3 kHz. In order of magnitude, this is consistent with air loading in the low frequency range.
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Figure 3: Sensitivities of the mechanical parameters to the modal frequencies for the honeycombs core sand-
wich panel. In the figures, each column is the sum of the sensitivities of the different involved parameters.
On the top of the column the number of nodal lines in thex (top) andy (bottom) directions of this mode is
specified .

5.3.2 Sensitivity analysis

Results of the sensitivity analysis are presented in Fig. 5. Since the modal frequencies are almostinsensitive
to the Poisson coefficients, their sensitivities to these parameters have not been represented. For this panel
it can be seen that the sensitivity to the out-of-plane properties is very low compared to the sensitivity
relative to the in-plane properties. This means that the modal frequencies and modal dampings are very little
influenced by the out-of-plane complex moduli. As a consequence the estimations of these parameters are
to be interpreted very carefully. In this case, even if the plate fulfills the hypothesis of the Reissner-Mindlin
model (i.e. lx,y/h ≃ 90), the core material has too high out-of-plane shear moduli to allow for their precise
identification.

6 Conclusion

An identification method that yields all the mechanical parameters of sandwich materials that matter dynam-
ically, under only mild hypotheses has been presented. The performances of the method have been illustrated
successfully on two different sandwich panels having heterogeneous cores: paper honeycombs core and steel
corrugated core.

Compared to the methods proposed in Refs. [7, 8], this method also provides loss factors. Compared to
the methods presented in Refs. [4, 5, 6], out-of-plane complex moduli of the materials are also extracted.
Compared to the method proposed in Ref. [1, 2, 3], this method is considerably easier and fasterto implement
since only one vibrating point is to be measured. It also reaches frequency domains that are usually out of
reach of the modal analyses based on the Fourier transform. Incidentally, the method presentedhere could be
used to access the frequency-dependence of the loss factors by considering only modes in a given frequency
range. Compared to the static investigations on each sandwich component, this dynamical method is non-
destructive and the experimental test needs very little time. Avoiding heavy lab-equipment, it is a good
candidate for industrial in-line process of quality control.
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Figure 4: Comparisons between measured and predicted modal frequencies (left) and dampings (right) for
the corrugated core panel.
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