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Abstract

A method is proposed to identify the mechanical properties of the skin and core materials of sandwich
structures having heterogeneous cores. All the elastiticeats and loss-factors that matter in the dynamics

of such a panel in the thick-plate approximation are identified. To this end, experimental natural modes (i.e.
eigenmodes of the damped system) are compared to the numerical modes of large sandwich pdnels (

80). The chosen generic model for the visco-elastic behaviour of the matert&s +s ;). The numerical

modes are computed by means of a Rayleigh-Ritz procedure and their dampings are predicted according
to the visco-elastic model. The frequencies and dampings of the natural modes of the panel are estimated
experimentally by means of a high-resolution modal analysis technique. An optimisation procedure yields
the desired cd@icients. A sensitivity analysis assess the reliability of the method. Identification is conducted
on two very diferent kind of sandwich panels to illustrate the method.

1 Introduction

Because of their light weight and the easy adjustment of their mechanical properties, sardveithes

with an heterogeneous core are widely used nowadays. However, due to the heterogenéitstscheal
mechanical properties arefiiicult to predict accurately on the basis of the material properties and identifica-
tion procedures are often needed. Mixed numeriah() / experimental XP) methods are used to identify
the parameters of a model by comparing simulated and measured characteristics (for examplemmdal da
ingsaN™ vs. oXF and frequenciegN'M vs. fXP of the first modes of the system). In order to obtain good
identification results, the model parameters must be sensitive to the measured characteristics.

Several authors have addressed the problem of the identification of elastic and damping propkdies of
mogeneous thick plates from full field measurements [1, 2, 3] or of homogeneous thin plates using point
measurements [4, 5, 6]. However no method has yet been presented for the identificatioticofieths
damping properties of thick plates from point measurements.

Sandwich panels often raise specidlidulties because of their heterogeneous cores (honeycombs core for
example). Equivalent elastic properties of such sandwich plates can be identified [7, 8], but olkediting
damping properties is still challenging. Following the work of De Vissdtel. [4] a point measurement
method for the identification of the elastic and damping properties of sandwich panels with heterogeneous
cores is presented in this paper, based on a thick plate approximation.

In order to consider the sandwich core as homogeneous in the in-plane directions, up to a givenyrequenc
f, the corresponding wavelengihmust contain at least 50 cells [9]. For a typical cell side-lersgif and
heighth this implies that the dimensions of a panel must be suchlfjat- 1 > 50s,. On the other
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hand, the panel must appear as a thick-plate (rather than a thin-platedifttbeplane elastic and damping
properties are to be identified. For flexural waves this implies that high-enough frequenciesuatedric

the processed datayh < 6 [10]. In other words, the panel must be large enough and the observed dynamics
must include high-enough modes, within the limit of a plate model. Due to the intrinsic dissipations of the
materials, the modal characteristics of high modes may fieult to measure with the Fourier transform
(FT) which is limited to modal overlaps &f 30 % in most implementations. The high-resolution modal
analysis (HRMA) technique [11] is an alternative to the FT for the estimation of modal parametera up
modal overlap of 70 %.

In the present work, the identification of most elastic and damping properties of sandwich strutiuees
heterogeneous core is considered by means of the modal analysis of large Rgriels 80). The HRMA
technique is used to estimate modal frequencies and dampings of the4lsnodes of the panels. An opti-
misation procedure, based on a numerical thick-plate model is used afterwards to identify thparatirg
elastic and damping properties.

2 A mechanical model of sandwich panels

2.1 Hypotheses

Skins

Figure 1: Geometry of the sandwich plate.

The sandwich panel consists in two identical skins and a core (Fig. 1). The thicknesses ofetlamdor
the skins arén® andhs respectively. The thickness of the panehis- h® + 2hS. In the following, "panel”
designs the physical structure whereas "plate” refers to the idealized structure marahrmiequivalent
homogeneous material. The following hypotheses are made on the panel and plate:

¢ Displacements are small so that the materials and structures behave linearly.
¢ Only flexural waves are considered.

e The plate is considered to follow the Reissner-Mindlin approximations (thick-plate model). For the
aspect ratidy,/h > 80 of the panels under study, a more sophisticated theory such as “Third Order
Shear Deformation Theory” would not give significantlyfdrent modal frequencies and dampings
[12].

e The wavelengths include at least 50 cells. According to Buet@h [9], this ensures that errors on the
modal frequencies of the plate (with a homogeneous equivalent core) are less than 2% when compared
to those of the panel as computed by various FE-models.

The skin and core materials are each considered as homogeneous, orthotropicandbyelirections, and
viscoelastic.
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The formalism chosen for describing the viscoelastic behaviour is that of complex nkoaulE(l + jn)

which do not depend on the frequency (see the model of materials in section 2. 2) The Young's and shear
moduli and the Poisson cfiient of the core ar&S, E/, E7, GY , G4, GJ, vy, vy, ¥, andyy . The same
parameters for the skins are denoted bystlmfdex The propertles of the homogeneous material equivalent

to the whole sandwich are denoted by théndex.

The following hypotheses are made on the sandwich panel:

e The sandwich panel is symmetric with respect to its mid-plane.

e Skins are very thin compared to the core so that shear stress in the skin can be igf®@§gek h°GS,
(and the same in thgdirection).

e The core is considered to be very sdify(< Ej, Ej < E; andG, < G})). Given the generic

c\3 c
expression of the moduli of the homogeneous equivalent matefiak (%) EC + [1— (:) lES

this ensures that all in-plane stress in the plate are entirely due to those in the skins.

According to these hypotheses, there is no stress associateBjtith vi>", v531, G}, G, ES, ES, G,
Zf(y Z which are ignored in what follows. These hypotheses are generally fulfllled in common sandwich
panels The typical orders of magnitude for the considered parameters in this kind of sandwichnganels a

hS/h¢ ~ 1071 1)
EY/Ef = ES/ES = G, /Gy, = 107

2.2 Model of the materials

The damping of plate vibrations hasfférent origins. In the present study, it is assumed that panels vi-
brate below their coincidence acoustical frequencies. Consequently, damping due to acousttaal iadia
surrounding air is very small compared to the structural damping. Among fiieedit structural damping
models, we have retained the standard hysteretic model (which is frequency-independent, xamite e
[13]). The relationship between the stre¥sand the strai” in eachy—material § = s, ¢, or H) involves 7
complex numbers and can be written, to first ordey as:

Ex(L+ i) vyxEXIL + i), + 1%)] 0 0 0
vigEJ[L+ i(n,, +m))] Ey(L+ in) 0 0 0
o’ = 0 0 GL(1+ jnk) 0 0 24
0 0 0 Gl + jnl) 0
0 0 0 0 Gl,(1+ jn)
()

The symmetry of the straistress relation adds the following relationshigisE) = v E) andn), +7j =
nZyx + nk which leaves 12 independent real parameters to be identified for each material (24 aljodiether
order to keep a formal symmetry in the mathematical treatment, one defines

V= \Vigvix  m=m,, g ©)

10ne must keep in mind tha} is not the imaginary part of”.
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2.3 Equivalent thick plate

Under the hypothesis and for the orders of magnitude given in section 2.1, the sandwich panelibghaves
low frequency range like a homogeneous thick-plate [14]. The thickness of the plate is chosdn itsbe

mechanical properties are given in Eg. (4) and (5) as functions of the mechanical and geomefredigs
of the skins and the core.

he\® he\®
EN = E)S(ll—(ﬁ) El = E;ll—(ﬁ) l yH =8

he\3 (4)
o=y |1-(}] | ob-cs cli-c
Ec hc 3 [ hc 3] EC hc 3 hc 3
=g (5] -5 | =g (5] - (F)
G¢ ) c ’ (5)

c\3
H_ c_ X[ s
”W‘”Wez(h)+"w

hey® H H H
1—(3) Me=Me Mz=Myz M =1

The 12 independent real parametgEs, ni!, E}', n', Gk . ¥l . GIL. il Gl mfy. M. i) are to be identified.
Their knowledge yields the elastic and damping properties of each layer of the sandwich panel pratided th
the 12-equation system formed by Egs. (4) and (5) is invertible.fBcgent condition is:

C C C
CEX S CE S G

Xy
nXE_)% < 71 T]y ES < r]y n():(y G)S(y < rl)s(y (6)
Yy

c Cc Cc

E
since—= « 1, —% < 1, andG—zy < 1 (see last point in section 2.1). This condition is not satisfied only

B 'E %
if the n°-codticients are several orders of magnitude larger thamthenes. This is not the case here and
rarely the case in genefalConsequently, the identification of tl, etc .. .yields a measurement of the
mechanical properties of the skin and core materials.

2.4 Potential, kinetic and dissipated energies in the equivalent thick-pla te

Within the frame of the first order Reissner-Mindlin theory the displacemantaw} in the{x, y, z}-directions
respectively are [15]:

U(X’ y,Z,t) = _Zq)X(X’ B t) U(X’ y,Z,t) = _Zq)y(x7 Y, t) w(X, .’/7Z’t) = w0(X, Y, t) (7)

The potential energy of the plate is:

U=3 [[f, ") e dr

1 a0y \? dDy 0D, oD, \? ) dwg  (dwo\
= EI[S[ Dl(a) +D2( ox a—y +D3 8_y +D4 (I)y_2®y6_y+ a_y + ... (8)
dwo  (dwo\? IDy\° 0Dy D, (0D,
Ds|®2 - 20— +(—2| |+D 2 dxd
5(* X8x+(ax))+ 6((8y)+ ay ox \ax) ||V

21t can be the case when skins are made of metal and the core is mageeohpaeycombs or of viscoelastic foam.
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with e Hp3 Hp3
EHh = E
Dy = X D, = My D3 = -y
12(1- vyyvyx) 6(1— vy, vyx) 12(1- vyyvyx) (9)
G,.h?
Dy = 241Gy Ds = 221Gy, De = —¢

The shear correction factok$, and «%, account for the fact that Eq. (7) is an approximation: dhg,
codficients depend lightly omand sections of the plate do not remain plane in the flexural deformation. The
valuesk,; = kx, = 1 have been chosen according to the recommendations of [16] for sandwich panels.

By definition, the fraction of energy lost during one cycle is:
= yr 0" dr|dt 10
=" ffr ffffv(‘r ) g r (10)
Based on section 2.AU can then be expressed as:
A0\ Iy 0D, oD owo  [dwo\?
_ H X H X H y 0 0
= - fj:s. nXDl(a ) +1n, D (ax 6 ) D3( ay) +nyZD4( Z(Da— (a—y)]'f'

2
oD 0D
ndDs ((1)2 2<I)Xawo (8wo) ] D6 [((M)X) + Za(DX Y +( y) ]]dxdy

0x 0X oy dy O0X 0X
(11)

The kinetic energyl’ of the system is given in Eq. (12) as a functiondgf, ®,, andwyo. In this expression,
H is the density of the equivalent homogeneous thick plate which is givép'by h®o¢ + 2hSpS.

H2ffj(;/)u+v +w Hzfj(;[ (@2 + q)2)+hw0

3 Numerical model of the thick plate

dxdy (12)

In order to compare experimental results to numerical simulations, it is necessary to evalukmiieg

factors of numerical modes. The dynamics of the panel is given by the hypotheses listed in sectlun 2.1,
Egs. (2), and the boundary conditions. Instead of a direct time-integration of the motion, we model here
the damping of the numerical modes of the associated conservative system, under the hyptothesis of light
damping. The problem consists in evaluating the relationships betweefftRelamping factors and thg
loss-factors.

3.1 Modal representation

The honeycomb sandwich panel is considered here as a non conservative 8ystevith N degrees of
freedomq = {gn} whereq is any set of generalised displacements. The damping model presented in sec-
tion 2.2 corresponds to viscous damping. Under this hypothesis, the equation of the free m@&iegncah

be written as:

M+ Cq+Kg=0 (13)

whereM, C andK are the mass, damping, andtess matrices. In what follows, the modesfyfc are
called natural modes. We also refer to the associated conservative $isteonresponding t&€ = 0. The
modes ofP¢ will be notedé,, and associated with the normal frequendigs
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If Pnc is lightly damped, it can be shown [17] that the natural modegae:nd the natural frequencies are
fa + jan to first order.

Let UNC be the potential energy associated withnHemode ofPyc. It varies in time as exp(2ant) so that
the energy lost by this mode during one cyslg\¢ is:

an

AUNC = 2 3

up© (14)

SincePc andPnc have the same moddg\© = US. And sinceU§ = TS, one obtains:
an
fn

Once the modeg, of Pc (and ofPnc) are known, Egs. (8), (11), and (14) yield the modal dampingsf
PNC .

AUNC = 2-0TC (15)

3.2 Rayleigh-Ritz procedure for the conservative modes

A Rayleigh-Ritz procedure has been used to derive the mode skiffeand the modal frequencigd™
of Pc. To this end, the generalised displacemebfx, y), @, (X, y), andwo(X, y) have been projected on an
orthonormal polynomial basis of ord€rsatisfying the free-free boundary conditions [18]:

Ox(xy) = D Liip(Ipi) D,008) = > Mip(Ipjy) woley) = D Nijpi(0piy)  (16)
i i i

This procedure generates a new set of generalised displaceimems; andN;;. The kinetic and potential
energiesl andU, defined in section 2.4, have been expressed explicitly as functions of the new coordinates.
The Hamilton principle reads as:

. a(T -U) a(T -U) a(T -U)

v 0,Q-1P: ———=0 ———2=0 —==0 17
(i,j)€[0,Q-1] aL; M N, 17)

The above system of@¥ linear equations can be re-written & 472f>M]& = 0, see also Eq. (13), where

f is the eigenfrequency artlis the eigenvector of unknown cieientsL;;, Mjj andN;j. The resolution of

this eigenvalue problem gives a straightforward access to the modal frequéi¢iesnd mode shaped'™

of Pc.

3.3 Derivation of o™

By introducing the numerical moded"™ and frequenciegN'™ found in section 3.2 in the energies ex-
pressions of section 2.4, the relations Egs. (18) are obtained. Tlfecimrgst, andu. depend only on
the geometry and mass parameters of the plate and on the modal &f¥8peFor the subscripts of,
{X,v,y,yz Xz, Xy} have been replaced B¥, 2, 3,4, 5, 6}.

6 6
vne[LN]: UNC=US =3 Dk AUNC =7 > mDeunk Ty = 4 f2t (18)
k=1 k=1

Using relations Egs. (18), the expression Eq. (19) of the modal damgjft{fixan be deduced from Eq. (15).
One can notice tham, is a linear combination of the.

_faAUNCe 8 Unk

an = = D
f ZTE = Tk I(47Tfntn

(19)
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4 Experimental study of sandwich panels

4.1 Experimental setup

Two different sandwich panels with heterogeneous cores have been studied experimentally. The first one
is a rectangular lightweight honeycomb sandwich panel (N(@nhmneycombs core and paper skins). The
second one is a sandwich sheet composed of two stainless steel face sheets and two bitijreotimmgated

steel layers form its core of 20 % relative density. Known parameters for each pangigesrén Table 1.
Sincely, /h =~ 80 for the honeycombs core panel dpgl/h ~ 90 for the bidirectionally corrugated core one,

they both satisfy the Reissner-Mindlin approximations (see Sec. 2.1). Panels were suspendedipgshin

in order to ensure free-free boundary conditions. The honeycomb core panel has been acoustically excited
by an electro-dynamical loudspeaker placed in its vicinity and driven by a wide-band eleatyicall dts
response was measured with a laser vibrometer pointing one corner. This ensures that all enpaeseat

in the response. By means of a specially designed excitation signal [19], the impulse resporggankth

was reconstructed. The corrugated core panel has been excité@edrdipositions by means of an impact
hammer. The panel responses were measured with an accelerometer located in onewuuisE résponses

were obtained after deconvolution with the force signal.

I l, hs he Scell p° p°
Honeycomb core panel39.15cm 5910cm 02mm 488 mm 4 mm| 37.8 kgm® 713 kgm®
Corrugated core panel 17.78 cm  2286cm 02mm 148 mm 1 mm| 2164 kgm® 7800 kgm?

Table 1: Geometry and mass of each sandwich panels. The typical length of the core-cells is signoted

4.2 High resolution modal analysis

The impulse response of the non-conservative system can be expressed as a summation duealits na
modes:

N
h(t) = )" &nexp(2r ot - ant + jén) (20)
n=1

In order to extract the experimental modal frequendifs and dampingaX", a recently developed modal
analysis method [11] has been applied to velocity impulse responses of the sandwich panels obtained in
section 4.1. In the available noise conditions, the parameters of the 45 first modes could be exiracted f
the honeycombs core panel and of the 38 first modes for the corrugated core panel. The modal overlap of
the highest modes of the honeycombs core sandwich panel W%, which is out of reach of traditional
implementations of the Fourier transform, hence our need of the new method.

Using several bandpass filters associated with the ESPRIT and ESTER algorithms dsmecesf11] for
details), it is shown that this method yields a precise estimatidp afida, in presence of moderate noise:
the modal frequencie$, can be estimated with a precision ©f0.01 % and the modal dampings with a
precision of~ 1 %. Moreover, this method allows for the identification of modal parameters of modes
having a modal overlap up to 70 %.

5 Optimisation procedure

5.1 Estimation method

This section describes how to derf!, nt!, E;, nyH, GH n,'j'u Gl i Gl iy v, it} from the experimen-

tal values of the modal frequenci€$P and dampingaF. Since the modal frequencies of the conservative
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and the real systems are equal to first order (section 3.1), it is valid to find separatelycapdsively the
elastic constants and the loss factors.

To first order, the modal frequencies depend only on the elastic constants of the homogeneous equivalent
thick-plate modefE!, EyH,GQy,GQZ, GyHZ, v}, Since this dependence is non-linear, a cost fundBens
defined (Eg. (21)) and an optimisation procedure based on the gradient-method has been implemented.

N fg(P _ frgxlum 2
Ce=), (—fxp ) (21)
n=1 n

It has been shown in section 3.3 that the dampingfmhents{ar’}‘”m}ne[l,N] can be expressed as linear com-
binations of the(n!, n!!, 7} . nit. nt. nt'} loss factors. Therefore, the latter can be obtained by a simple least
mean square method, with the constraint that loss factors remain positive.

5.2 Results for the honeycombs core sandwich panel
5.2.1 Identification of elastic and damping constants

The optimisation is performed on the 45 first modal frequencies and dampings obtained experimentally for
this panel. The numerical model use®a= 14-order basis which proved to ensure the convergence of the
highest modes values. The identified visco-elastic parameters of the equivalent homogeneous plate are Qi
in Tab. 2. The relative errors in modal frequencies and dampings are shown in Fig. 2b# saan that the
agreement is very good for modal frequencies (mean absolute err@%) 1 The predicted modal dampings

fit well the mean measured ones, but théadence is more important (mean absolute error a2 ¥0).

E} EY Gy Ge G | ¥, v
Real part 10GPa 14GPa 06GPa 12MPa 26 MPa0.23 033
Loss factor (%)| 1.3 14 11 44 81 0 01

Table 2: Identified parameters of the homogenised model corresponding to the honeycombs core sandwich
panel. The coicients in the two last columns are mutually related by the symmetry relationships (cf.
section 2.2).

5.2.2 Sensitivity analysis

The sensitivities of the frequency valukgo the codficients{E}, E!, G} . G}, G!}} are defined a8y, (X) =

Ofa () . . - ) .
8_>2 (Y” . They reflect the information contained in a modal frequency relatively to the elastic par&mete

Results are presented in Fig. 3. Since the modal frequencies are very little sensitive to thie Emdfisients
compared to the other in-plane parameters, their sensitivities to these parameters have mregptrbsented.
As expected, it can be seen in Fig. 3a that modes of the forim ¢@ (j, 0) convey a lot of information
relatively to Ex and E, respectively. Since the thick-plate modeftdis from the thin-plate model for the
higher frequencies, it is normal that there is almost 10 times more information relatg émd toG,; in
the higher modes than in the lower ones (Fig. 3b). The lower sensitividyab the modal frequencies than
that of G, is simply due to the aspect ratio of the plate< |,).



MODAL TESTING: METHODS AND CASE STUDIES 2585

10 : ; ;
30 ..................... ........................ ........................ T:
| 5 o
SOL '111* ................... ....................... :lr
: : s
I 5 S
— ) I Dol Sl
£ £ 10} *E _______ (L B :’T _______ T\ _&x _______ ¥
<= = oot oo 0 *
5 5 L AN S N B Y
E - E gl l'..i"....|.‘.. * :', ...... YISV AU RO sl
: | AT A YN
s . 2 [ T L S I A Y gl
= ; = [T N ; * 4
8 5 = 0f g Y AT R koo b
> : e P o Uk : :
18 : 1 '*'il l| P \: % : )
f L AT D f
: -20 F%'ﬁr Ak B
5 * 5
! : :
g 30k ....................... P
-10 L i 1 | i 1
500 1000 1500 500 1000 1500
Frequency (Hz) Frequency (Hz)

Figure 2. Comparisons between measured and predicted modal frequencies (left) and dampings (right) for
the honeycomb sandwich panel.

5.3 Results for the corrugated core sandwich panel
5.3.1 Identification of elastic and damping constants

The optimisation is performed on the 38 first modal frequencies and dampings obtained experimentally for
this panel. The numerical model used)a= 13-order basis which proved to ensure the convergence of
the highest modes values. The identified visco-elastic parameters of the equivalent homogeneores plate a
given in Tab. 3. The relative errors in modal frequencies and dampings are shown in Rigad.ble seen

that the agreement is satisfying for modal frequencies (mean absolute err@r%6j.2The predicted modal
dampings fit correctly the mean measured ones, but as previouslyffbeedce is more important (mean
absolute error of 36 %).

E} E; G, G G, | v, vk
Real part 116 GPa 102 GPa 46GPa 78GPa 163 GP82 028
Loss factor (%)| 0.12 015 01 0 0 01 013

Table 3: Identified parameters of the homogenised model for the other sandwich panel. flilceentein
the two last columns are mutually related by the symmetry relationships (cf. section 2.2).

In Fig. 4, it can be seen that the error on damping estimation is moderate in the mid-frequenc¢ybténge
larger for the first modes and in the high-frequency range. As the identified loss facteeryatew (see

Tab. 3), the measured modal dampings are very sensitive to the way the panel is suspeniethand
damping due to acoustical radiation. In the present case, the thin wires used to suspend thepdreel

the origin of some additional damping in the low frequency range that was not included in the model. In
the high-frequency range, the damping is systematically underestimated above 3 kHz. Since #iergquiv
elastic parameters of the panel have been identified, the coincidence frequency of thispdreetstimated
around 4 kHz. This results in an additional damping due to acoustical radiation as the modal frequency
comes closer to this frequency. In the same spirit, the modal frequencies seem systematiceditiomated

by 2 % below 3 kHz. In order of magnitude, this is consistent with air loading in the low frequency range.
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Figure 3: Sensitivities of the mechanical parameters to the modal frequencies for the honeycombs core sand-
wich panel. In the figures, each column is the sum of the sensitivities of fiegatit involved parameters.

On the top of the column the number of nodal lines in xHgop) andy (bottom) directions of this mode is
specified .

5.3.2 Sensitivity analysis

Results of the sensitivity analysis are presented in Fig. 5. Since the modal frequencies arenaknegive

to the Poisson cdicients, their sensitivities to these parameters have not been represented. For this panel
it can be seen that the sensitivity to the out-of-plane properties is very low compared to thevigensiti
relative to the in-plane properties. This means that the modal frequencies and modal dampingslitie ver
influenced by the out-of-plane complex moduli. As a consequence the estimations of these parameters are
to be interpreted very carefully. In this case, even if the plate fulfills the hypothesie &dissner-Mindlin

model {.e. lx,/h =~ 90), the core material has too high out-of-plane shear moduli to allow for their precise
identification.

6 Conclusion

An identification method that yields all the mechanical parameters of sandwich materials thatiyreite-

ically, under only mild hypotheses has been presented. The performances of the method have beedlillustra
successfully on two dlierent sandwich panels having heterogeneous cores: paper honeycombs core and steel
corrugated core.

Compared to the methods proposed in Refs. [7, 8], this method also provides loss factors. edompar

the methods presented in Refs. [4, 5, 6], out-of-plane complex moduli of the materials are also extracted.
Compared to the method proposed in Ref. [1, 2, 3], this method is considerably easier artd fagilErment

since only one vibrating point is to be measured. It also reaches frequency domains that lyeusoé

reach of the modal analyses based on the Fourier transform. Incidentally, the method piesentedid be

used to access the frequency-dependence of the loss factors by considering only modesiifreqgieecy

range. Compared to the static investigations on each sandwich component, this dynamical method is non-
destructive and the experimental test needs very little time. Avoiding heavy lab-equipment, it is a good
candidate for industrial in-line process of quality control.
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Figure 4. Comparisons between measured and predicted modal frequencies (left) and dampings (right) for
the corrugated core panel.
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