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A STOCHASTIC MODEL FOR BACTERIOPHAGE THERAPIES

X. BARDINA, D. BASCOMPTE, C. ROVIRA, AND S. TINDEL

Abstract. In this article, we analyze a system modeling bacteriophage treatments for
infections in a noisy context. In the small noise regime, we show that after a reasonable
amount of time the system is close to a sane equilibrium (which is a relevant biologic
information) with high probability. Mathematically speaking, our study hinges on con-
centration techniques for delayed stochastic differential equations.

1. Introduction

In the last years Bacteriophage therapies are attracting the attention of several sci-
entific studies. They can be a new and powerful tool to treat bacterial infections or to
prevent them applying the treatment to animals such as poultry or swine. Very roughly
speaking, they consist in inoculating a (benign) virus in order to kill the bacteria known
to be responsible of a certain disease. This kind of treatment is known since the beginning
of the 20th century, but has been in disuse in the Western world, erased by antibiotic ther-
apies. However, a small activity in this domain has survived in the USSR, and it is now
re-emerging (at least at an experimental level). Among the reasons of this re-emersion
we can find the progressive slowdown in antibiotic efficiency (antibiotic resistance). Re-
ported recent experiments include animal diseases like hemorrhagic septicemia in cattle or
atrophic rhinitis in swine, and a need for suitable mathematical models is now expressed
by the community.

Let us be a little more specific about the (lytic) bacteriophage mechanism: after attach-
ment, the virus’ genetic material penetrates into the bacteria and use the host’s replication
mechanism to self-replicate. Once this is done, the bacteria is completely spoiled while
new viruses are released, ready to attack other bacteria. It should be noticed at this
point that among the advantages expected from the therapy is the fact that it focuses
on one specific bacteria, while antibiotics also attack autochthonous microbiota. Roughly
speaking, it is also believed that viruses are likely to adapt themselves to mutations of
their host bacteria.

At a mathematical level, whenever the mobility of the different biological actors is
high enough, bacteriophage systems can be modeled by a kind of predator-prey equation.
Namely, set St (resp. Qt) for the bacteria (resp. bacteriophages) concentration at time t.
Consider a truncated identity function σ : R+ → R+, such that σ ∈ C∞, σ(x) = x
whenever 0 ≤ x ≤ M and σ(x) = M + 1 for x > M + 1. Then a model for the evolution
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of the couple (S,Q) is as follows:
{

dSt = [α− kσ(Qt)]Stdt

dQt =
[

d−mQt − kσ(Qt)St + k b e−µζσ(Qt−ζ)St−ζ

]

dt,
(1)

where α is the reproducing rate of the bacteria and k is the adsorption rate. In equation
(1), d also stands for the quantity of bacteriophages inoculated per unit of time, m is their
death rate, we denote by b the number of bacteriophages which is released after replication
within the bacteria cell, ζ is the delay necessary to the reproduction of bacteriophages
(called latency time) and the coefficient e−µζ represents an attenuation in the release
of bacteriophages (given by the expected number of bacteria cell’s deaths during the
latency time, where µ is the bacteria’s death rate). A given initial condition (S0, Q0) is
also specified. When modeling biological phenomena, one usually assumes models like (1),
where σ is replaced by the identity function. We have considered here the truncation of the
identity σ in order to manipulate bounded coefficients in our equations, but our parameter
M can also be interpreted as a maximal infection rate of bacteria by bacteriophages.
One should also be aware of the fact that the latency time ζ (which can be seen as the
reproduction time of the bacteriophages within the bacteria) cannot be neglected, and is
generally of the same order (about 20mn) as the experiment length (about 60mn).

According to the values of the different parameters of the system and of the initial
conditions, different types of equilibriums for equation (1) might emerge. We shall focus
in the sequel on the simplest of these regimes, namely when d is large enough (the exact
condition is kd/m > α). This makes the mathematical analysis easier, and it corresponds
to the existence of a unique stable steady state E0 = (0, d/m) for our system (in particular
bacteria have been eradicated). Notice however that we can perfectly assume the regime
kd/m > α since the treatment allows to inject high quantities of viruses. One should
also mention a natural generalization of our problem: Consider the action of several
varieties bacteriophages, which is an option widely considered among practitioners. We
have restricted our analysis here to a simplified situation for sake of readability.

It is perfectly assumable that noise will appear when collecting data from laboratory
tests. Moreover, when one wishes to go from in vitro to in vivo modeling, it is commonly
accepted that noisy versions of the differential systems at stake have to be considered.
This program has been carried out e.g. for HIV dynamics in [3] and for bacteriophages
in marine organisms in [2]. In those references it is always assumed that the noise enters
in a bilinear way, which is quite natural in this situation and ensures positivity of the
solution. We shall take up this strategy here, and consider system (1) with a small
random perturbation of the form

{

dSε
t = [α− kσ(Qε

t )]S
ε
t dt+ εσ(Sε

t ) ◦ dW
1
t

dQε
t =

[

d−mQε
t − kσ(Qε

t )S
ε
t + k b e−µζσ(Qε

t−ζ)S
ε
t−ζ

]

dt + εσ(Qε
t) ◦ dW

2
t ,

(2)

where ε is a small positive coefficient and W = (W 1,W 2) is a 2-dimensional Brownian
motion defined on a complete probability space (Ω,F ,P). Our aim will then be to prove
that for a time τ0 within a reasonable range, the couple Zε

τ0
:= (Sε

τ0
, Qε

τ0
) is not too far

away from its stable equilibrium E0. Note that reasonable range is meant here as a time
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which corresponds to the order of both the latency delay and the time when the immune
system of the animal can cope with the remaining bacteria.

As we shall see in the sequel, the treatment of equation (2) involves the introduction
of some rather technical assumptions on our coefficients. For sake of readability, we have
thus decided to handle first the following system without delay:

{

dSε
t = [α− kσ(Qε

t )]S
ε
t dt+ εσ(Sε

t ) ◦ dW
1
t

dQε
t = [d−mQε

t + k(b− 1)σ(Qε
t )S

ε
t ] dt + εσ(Qε

t) ◦ dW
2
t ,

(3)

where we notice that the only difference between (2) and (3) is that we have set ζ = 0 in
the latter.

The main advantage of equation (3) lies into the fact that we are able to work under
the following rather simple set of assumptions:

Hypothesis 1.1. We will suppose that the coefficients of equation (3) satisfy:

(i) The initial condition (S0, Q0) of the system lies into the region

R0 :=

[

0,
mM − d

k(b− 1)M

]

× [d/m,M ].

(ii) The coefficient γ = kd/m− α is strictly positive and M > d/m.

We shall also use extensively the following notations:

Notation 1.2. The letters c, c1, c2, . . . will stand for universal constants, whose exact
value is irrelevant. For a continuous function f , we set ‖f‖∞,I = supx∈I |f(x)|.

Then the previous loose considerations about convergence to E0 can be summarized in
the following theorem, which is the main result of our paper for our bacteriophage system
without delay:

Theorem 1.3. Given positive initial conditions, equation (3) admits a unique solution
which is almost surely an element of C(R+,R

2
+). Assume furthermore Hypothesis 1.1, set

η = m/2 ∧ γ and consider 3 constants 1 < κ1 < κ2 < κ3. Then there exists ρ0 such that
for any ρ ≤ ρ0 and any interval of time of the form I = [κ1 ln(c/ρ)/η, κ2 ln(c/ρ)/η], we
have

P (‖Zε −E0‖∞,I ≥ 2ρ) ≤ exp

(

−
c1ρ

2+λ

ε2

)

, (4)

where λ is a constant satisfying λ > κ3/η.

Remark 1.4. Relation (4) can be interpreted in the following manner: assume that we
observe a noise with intensity ε. Then the kind of deviation we might expect from the
noisy system (3) with respect to the equilibrium E0 is of order εϑ with ϑ = 2η/κ3. This
range of deviation happens at a time scale of order ln(ρ−1)/η.

A second part of our analysis is then devoted to the more realistic delayed system, for
which we obtain a result which is analogous to Theorem 1.3:

Theorem 1.5. Equation (4) still holds for the delayed system (2), under some slightly
more restrictive conditions on the initial condition which shall be specified at Hypothe-
sis 2.7.
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Theorem 1.5 can be seen as the main result of the current paper, and deserves some
additional comments:

(1) We have produced a concentration type result instead of a large deviation principle
for equation (3), because it seemed more adapted to our biological context. Indeed, in the
current situation one wishes to know how far we might be from the desired equilibrium at
a given fixed time, instead of producing asymptotic results as in the large deviation theory.
At a technical level however, we rely on large deviation type tools, and in particular on
an extensive use of exponential inequalities for martingales.

(2) Let us compare our result with [2, 3], which deal with closely related systems. The
interesting article [2] is concerned with a predator-prey system similar to ours, but it
assumes that a linearization procedure around equilibrium in the highly nonlinear situa-
tion (3) can be performed. The analysis relies then heavily on this unjustified step. As
far as [3] is concerned, it roughly shows that if the noise intensity of the system is high
enough, then HIV epidemics can be kept under control (in terms of exponential stability).
This is a valuable information, but far away from our point of view which assumes a
low intensity for the noise. We should also mention the related thorough deterministic
studies [1, 5, 7]

(3) Mathematically speaking, it would certainly be interesting to play with the rich
picture produced by equation (1) and its perturbed version in terms of stable and instable
equilibrium. We have not delved deeper into this direction because it did not seem directly
relevant to the biological problem at stake. It should be pointed out however that the
analysis of our random dynamical system (3) is non standard due to the coefficient d,
which accounts for the bacteriophage inoculation. Many of our considerations below will
be devoted to handle this problem.

Our article is structured as follows: Section 2 is devoted to some preliminary con-
siderations (existence and uniqueness results for our stochastic systems, convergence to
equilibrium for the corresponding deterministic equations). Then we show our concen-
tration results at Section 3. Finally some simulations are lead at Section 4 in order to
illustrate the theoretical results.

2. Preliminaries

In this section, we give some basic results concerning our competition system. We first
establish existence and uniqueness for the solution to the perturbed system (2), starting
from the simpler system (3). Then we deduce some properties for the equilibria of the
deterministic counterpart of both systems (2) and (3).

2.1. Existence, uniqueness and positivity of solution. Recall that we are consid-
ering the perturbed problem (2), with a coefficient σ and some initial conditions of the
following form:

Hypothesis 2.1. The coefficients of our differential systems satisfy the following assump-
tions:

(i) The function σ : R+ → R+ is such that σ ∈ C∞, and satisfies σ(x) = x for 0 ≤ x ≤ M
and σ(x) = M + 1 for x > M + 1. We also assume that 0 ≤ σ′(x) ≤ C for all x ∈ R+,
with a constant C such that C > 1.
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(ii) As far as the initial condition is concerned, we assume that it is given as continuous
positive functions {S0,τ , Q0,τ ;−ζ ≤ τ ≤ 0}. In case of the non delayed system (1), it is
simply given by two positive constants (S0, Q0).

Due to the fact that we have assumed a bounded coefficient σ, the existence and
uniqueness of the solution to our differential system is a matter of standard considerations.

Theorem 2.2 (Global existence of solution). For any positive initial condition there exists
a unique solution of (2), which is defined for all t ≥ 0.

Proof. It is readily checked that the coefficients of the equation are locally Lipschitz with
linear growth. The existence and uniqueness of the solution is then a direct consequence
of classical results (see e.g. [6, Section 5.2] for the non delayed system and [9] for the
delayed one).

�

Positivity of the solution is also an important feature, if we want the quantities St, Qt

to be biologically meaningful. Moreover, part of our analysis will rely on this property,
that we label for further use:

Proposition 2.3 (Positivity). If we take positive initial conditions S0,t ≥ 0, Q0,t ≥ 0 for
all t ∈ [−ζ, 0] for the system (2), then the solution fulfills Sε

t ≥ 0, Qε
t ≥ 0 for all t > 0.

Proof. Let us first consider the system with σ(x) = x for all x, namely:
{

dSε
t = [α− kQε

t ]S
ε
t dt + εSε

t ◦ dW
1
t

dQε
t =

[

d−mQε
t − kQε

tS
ε
t + k b e−µζQε

t−ζS
ε
t−ζ

]

dt+ εQε
t ◦ dW

2
t ,

(5)

with initial condition (S0,t, Q0,t). Assuming existence and uniqueness of the solution to
(5), we shall prove that Sε

t , Q
ε
t ≥ 0 for all t ≥ 0 almost surely.

Indeed, after the change of variables xt = e−εW 1

t Sε
t , yt = e−εW 2

t Qε
t , we can recast (5)

into the following system of differential equations with random coefficients:






x′

t =
(

α− keεW
2
t yt

)

xt

y′t = de−εW 2
t −myt − keεW

1
t xtyt + k b e−µζ−ε(W 2

t −W 2

t−ζ
−W 1

t−ζ
)yt−ζxt−ζ ,

(6)

with initial conditions x0(t) = S0,t ≥ 0, y0(t) = Q0,t ≥ 0 for all t ∈ [−ζ, 0]. Then, the
positivity of xt is immediate from the representation

xt = x0(0) exp

{
∫ t

0

(α− keεW
2
s ys)ds

}

≥ 0.

In order to see the positivity of yt let us observe that for y0(0) = 0 we have y′0 =

d + k b e−µζ−ε(W 2

0
−W 2

−ζ
−W 1

−ζ
)y−ζx−ζ > 0. Therefore, for all initial condition y0 ≥ 0 there

exists δ > 0 such that yt > 0 for all t ∈ (0, δ). Let us suppose now that yt < 0 for
some t > 0, and let t0 = inf{t > 0 | yt < 0}. Due to the continuity of the solution we

have that yt0 = 0. Then y′t0 = de−εW 2

t0 + k b e−µζ−ε(W 2

t0
−W 2

t0−ζ
−W 1

t0−ζ
)yt0−ζxt0−ζ > 0, which

is impossible since it would yield yt > 0 for t ∈ (t0, t0 + δ) for δ small enough. This
contradiction means exactly that yt ≥ 0 for all t ≥ 0.
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Now that we have the positivity for system (5), we can prove the positivity for (2) in
the following way. Let us first handle the case of Sε

t , and assume that the initial condition
is such that S0,0 ≥ M . Set then τ 0M,S = inf{t ≥ 0 such that Sε

t ≤ M/2}, and observe that

τ 0M,S is a stopping time for the natural filtration of the Brownian motion W , such that Sε

has remained positive until τ 0M,S. Furthermore, the strong Markov property for (Sε, Qε)
entails that the process

{(

Sε
τ0
M,S

+t, Q
ε
τ0
M,S

+t

)

; t ≥ 0
}

also satisfies (2) on the set ΩM,S = {ω ∈ Ω; τ 0M,S < ∞}, with an initial condition S0,0 =
M/2. With these considerations in mind, we can assume that the initial condition of our
differential system satisfies S0,0 < M .

With such an initial condition we can conclude the positivity of Sε
t until the stopping

time τ̂ 0M,S = inf{t ≥ 0 such that Sε
t ≥ M} as we have done for the system (5), since up

to time τ̂ 0M,S we have σ(Sε
t ) = Sε

t . Then, invoking again the strong Markov property,

we can also guarantee positivity until time τ 1M,S = inf{t ≥ τ̂ 0M,S such that Sε
t ≤ M/2} as

above. We are now in a position to obtain the positivity of Sε
t until time τ̂ 1M,S = inf{t ≥

τ 1M,S such that Sε
t ≥ M}, once again with the same reasoning than for the system (5).

The global positivity of Sε
t on any interval of the form [τkM,S, τ

k+1
M,S ] for k ≥ 0 now follows

by iteration of this reasoning.

It remains to show that limk→∞ τkM,S = ∞. This is easily obtained by combining the
following two ingredients:

(i) The increments {τk+1
M,S − τkM,S; k ≥ 0} form a i.i.d sequence by a simple application of

the strong Markov property.

(ii) Owing to the specific coefficients we have for equation (2), it can be checked that for
any η2 > 0 one can find η1 > 0 small enough such that P(τ 1M,S > η1) ≥ 1− η2. Details of
this assertion are omitted for sake of conciseness.

We let the reader check that the positivity of Qε
t can be obtained along the same lines,

which ends the proof.
�

Remark 2.4. Using the a priori positivity properties stated above, we could have also
obtained existence and uniqueness of the solution for system (5). We did not include
those developments for sake of conciseness.

2.2. Analysis of the deterministic non delayed system. This section is devoted to
the analysis of the non perturbed system corresponding to (3). Namely, we shall consider
the following dynamical system:

{

dSt = [α− kσ(Qt)]Stdt

dQt = [d−mQt + k(b− 1)σ(Qt)St] dt.
(7)

We will give some sufficient conditions for the existence of a unique stable equilibrium E0

and then show exponential convergence to this equilibrium.

Let us start with the basic results we shall need about equilibria of (7).
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Theorem 2.5. If either M+1 < α
k

or M > α
k

and kd
m

≥ α, system (7) has a unique (posi-

tive) steady state E0 = (0, d
m
). Moreover, the bacteria-free equilibrium E0 is asymptotically

stable for kd
m

> α and M > d
m

.

Proof. To obtain the equilibria, we have to find the solutions of the following equation:
{

0 = (α− kσ(Q̂))Ŝ

0 = d−mQ̂ + k(b− 1)σ(Q̂)Ŝ,
(8)

where Ŝ, Q̂ are positive constants.

Owing to the first equation we have either Ŝ = 0 or α − kσ(Q̂) = 0. Since Ŝ = 0

and the second equation imply Q̂ = d
m

, we have that bacteria-free equilibrium E0 exists
for any value of the parameters. In the case M + 1 < α

k
one can observe that no other

equilibrium exists (since α− kσ(Q̂) > 0 for any Q̂).

Taking M > α
k
, α− kσ(Q̂) = 0 if and only if Q̂ = α

k
. Then, using the second equation

in (8), we have

0 = d−m
α

k
+ (b− 1)αŜ =⇒ Ŝ =

mα− kd

k(b− 1)α
,

which is positive only for α > kd
m

. So we have proved the first part of the result.

For the second part, the Jacobian matrix of system (7) at E0 is

A0 :=

(

α− kσ( d
m
) 0

k(b− 1)σ( d
m
) −m

)

.

The eigenvalues of this matrix are easily shown to be λ0 = α − kσ( d
m
) and λ1 = −m,

which are negative for kd
m

> α and M > d
m

.
�

We now wish to study the rate of convergence towards the E0 equilibrium in the stable
case (i.e., when kd/m > α and M > d

m
). The main result we obtain to this respect is:

Theorem 2.6. Under Hypothesis 1.1 and 2.1, the solution of system (7) with initial
condition

(S0, Q0) ∈

[

0,
mM − d

k(b− 1)M

]

× [d/m,M ]

exponentially converges to the equilibrium E0:

|(St, Qt)− E0| ≤ c e−ηt, with η = γ ∧
m

2
, (9)

where we recall that γ = kd
m

− α > 0.

Proof. In order to prove our claim, we first have to show that the region R := [0, mM−d
k(b−1)M

]×

[ d
m
,M ] ⊂ [0,M ]2 is left invariant by equation (7). Towards this aim, we can invoke the

same method we will use in Proposition 2.8, and we let the reader check the details.
Now, since we have Qt ≤ M for all t, we can consider σ(x) = x in equation (7). We

will consider a version of this system centered at E0 by means of the change of variables
S̃ = S, Q̃ = Q− d/m. This leads to the system
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S̃ ′

t = −γS̃t − kQ̃tS̃t

Q̃′

t = −mQ̃t +
kd

m
(b− 1)S̃t + k(b− 1)Q̃tS̃t.

(10)

Notice that, according to our set of assumptions concerning the initial conditions, we have
S̃0 ≥ 0 and Q̃0 ≥ 0. Thus the solution to (10) will remain positive for all t > 0 (it can be
deduced from R being invariant, or can be proved just like in Proposition 2.3).

Now, from the first equation in (10), we have that S̃ ′

t ≤ −γS̃t. This implies S̃t ≤ S̃0e
−γt,

proving that S̃t exponentially converges to zero.

Owing to the second equation in (10) and using positivity properties of the solution,
we also get

Q̃′

t ≤ −mQ̃t + k(b− 1)S̃0e
−γt

(

d

m
+ Q̃t

)

.

Finally, the variation of constants method will lead to the stated result, following the
same steps we will detail later in the proof of Theorem 2.10.

�

2.3. Analysis of the deterministic delayed system. We now try to generalize the
results of Section 2.2 to our deterministic delayed system (1). To this aim, we shall work
under the following assumptions.

Hypothesis 2.7. We will suppose that the coefficients of equation (3) satisfy the following
conditions, valid for any t ∈ [−ζ, 0]:

(i) The initial condition (S0,t, Q0,t) of the system lies into the region

R0 := [0,M ]×

[

d

m
,M

]

.

(ii) We have b e−µζQ0,tS0,t >
d
m
S0,0, and b e−µζ > 1.

(iii) The condition S0,t <
mM−d

kbe−µζM
is satisfied.

A first step towards exponential stability is then the invariance of a certain region under
our dynamical system:

Proposition 2.8. Under Hypothesis 1.1, 2.1 and 2.7, the region

R :=

[

0,
mM − d

kbe−µζM

]

×

[

d

m
,M

]

⊂ [0,M ]2

is left invariant by equation (1).

Proof. We separate the analysis of S and Q in two steps.

Step 1: boundedness of S. Since S is obviously positive (along the same lines as for
equation (6)) and owing to the fact that S ′

t = (α− kσ(Qt))St we obtain that

S ′

t ≤ 0 whenever Qt >
α

k
, and S ′

t ≥ 0 whenever Qt <
α

k
.

Furthermore, our system starts from an initial condition Q0,0 ≥ d
m

> α
k
. Thus S is non

increasing as long as Q remains in the interval [ d
m
,∞).
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Let us now observe what happens in the limiting case Q0,0 = d
m

: recalling that our
initial conditions are denoted by S0,t, Q0,t for t ∈ [−ζ, 0], we have

Q′

0 = −k
d

m
S0,0 + kbe−µζσ(Q0,−ζ)S0,−ζ = k

(

be−µζQ0,−ζS0,−ζ −
d

m
S0,0

)

> 0,

where we have used the fact that be−µζQ0,−ζS0,−ζ >
d
m
S0,0. According to this inequality,

we obtain the existence of a strictly positive ε such that Qt >
d
m

for all t ∈ (0, ε). We

thus introduce the quantity t0 = inf{t > 0 : Qt =
d
m
}, and notice that we have

Q′

t0 = −k
d

m
St0 + kbe−µζσ(Qt0−ζ)St0−ζ .

We can now distinguish two cases:

(1) If t0 > ζ , since St is non-increasing in [0, t0], St0−ζ ≥ St0 and hence

Q′

t0 ≥ kSt0

(

be−µζσ(Qt0−ζ)−
d

m

)

> 0,

due to the fact that be−µζ > 1, M > d
m

and Qt0−ζ >
d
m

.
(2) If t0 ≤ ζ , since St0 ≤ S0,0 we obtain

Q′

t0
≥ −k

d

m
S0,0 + kbe−µζσ(Q0,t0−ζ)S0,t0−ζ = k

(

be−µζQ0,t0−ζS0,t0−ζ −
d

m
S0,0

)

> 0,

where we have used the fact that be−µζQ0,tS0,t >
d
m
S0,0 for all t ∈ [−ζ, 0].

This discussion allows thus to conclude that t0 cannot be a finite time. Indeed, we should
have Q′

t0
> 0 and hence Q increasing in a neighborhood of t0, while Q should be decreasing

in a neighborhood of t0 according to its very definition. We have thus reached the following
partial conclusion:

Qt ≥
d

m
, t 7→ St decreasing, St ≥ 0.

In particular, any interval of the form [0, L] for L ≥ 0 is left invariant by t 7→ St.

Step 2: boundedness of Q. Our claim is now reduced to prove that for (S0,t, Q0,t) ∈ R we
have Qt ≤ M for all t ≥ 0.

To this aim notice that, whenever Q0,0 = M we have

Q′

0 = d−mM − kMS0,0 + kbe−µζσ(Q0,−ζ)S0,−ζ

≤ d−mM + kbe−µζMS0,−ζ < 0,

where we recall that S0,−ζ <
mM−d

kbe−µζM
according to Hypothesis 2.7. This yields the existence

of ε > 0 such that Qt < M for all t ∈ (0, ε).

We now define t1 = inf {t > 0 : Qt = M}. It is readily checked that

Q′

t1
= d−mM − kMSt1 + kbe−µζσ(Qt1−ζ)St1−ζ

= d−mM − kMSt1 + kbe−µζQt1−ζSt1−ζ

≤ d−mM + kbe−µζMSt1−ζ ,

and we can distinguish again two cases:



10 X. BARDINA, D. BASCOMPTE, C. ROVIRA, AND S. TINDEL

(1) If t1 > ζ , thanks to the fact that t 7→ St is non-increasing on [0, t1], we have

Q′

t1 ≤ d−mM + kbe−µζMS0,0 < 0,

since we have assumed that S0,0 <
mM−d

kbe−µζM
.

(2) If t1 ≤ ζ then

Q′

t1
≤ d−mM + kbe−µζMS0,t1−ζ < 0,

thanks to the fact that S0,t <
mM−d

kbe−µζM
for all t ∈ [−ζ, 0].

As for the discussion of the previous step, this allows thus to conclude that t1 cannot be
a finite time, due to the contradiction Q′

t1 < 0 and Qt < Qt1 for all t ∈ (0, t1). We have
thus shown Qt ≤ M for all t ≥ 0, which finishes the proof.

�

Remark 2.9. Before stating the exponential convergence to the bacteria-free equilibrium
result, let us observe that Theorem 2.5 still holds true for the delayed system (1). It can
be easily checked using exactly the same steps we have done for the non-delayed system.

We are now ready to state our result on exponential convergence of the delayed dynam-
ics:

Theorem 2.10. Assume Hypothesis 1.1, 2.1, and 2.7 are satisfied, and let R be the
region defined at Proposition 2.8. Then the solution of system (1) with initial condition
(S0, Q0) ∈ R exponentially converges to the equilibrium E0:

|(St, Qt)− E0| ≤ c e−ηt, with η = γ ∧
m

2
, (11)

where we recall that γ = kd
m

− α > 0.

Proof. According to Proposition 2.8, we have Q(t) ≤ M for all −ζ ≤ t < ∞ under our
standing assumptions. Hence one can recast equation (1) as

{

dSt = (α− kQt)Stdt
dQt =

(

d−mQt − kQtSt + kbe−µζQt−ζSt−ζ

)

dt

Let us perform now the change of variables Q̃ = Q − d
m

. This transforms the previous
system into







dSt =
(

α− k(Q̃t +
d
m
)
)

St dt

dQ̃t =
(

d−m(Q̃t +
d
m
)− k(Q̃t +

d
m
)St + kbe−µζ(Q̃t−ζ +

d
m
)St−ζ

)

dt.

Equivalently, our new system is:






dSt = −
(

γSt + kQ̃tSt

)

dt

dQ̃t =
(

−mQ̃t − k d
m
St − kQ̃tSt + k d

m
be−µζSt−ζ + kbe−µζQ̃t−ζSt−ζ

)

dt.

Observe now that Proposition 2.8 asserts that Qt ≥
d
m

for all t ≥ 0, which means that

Q̃t ≥ 0. With our change of variables, we have also shifted our equilibrium to the point
(0, 0). We now wish to prove that St and Q̃t exponentially converge to 0.



BACTERIOPHAGE SYSTEMS 11

The bound on St is easily obtained: just note that

dSt ≤ −γSt dt,

which yields St ≤ S0,0 e
−γt. As far as Q̃t is concerned, one gets the bound

dQ̃t

dt
≤ −mQ̃t + k

d

m
be−µζS0,0 e

−γ(t−ζ) + kbe−µζQ̃t−ζS0,0 e
−γ(t−ζ)

≤ −mQ̃t + kbe−µζS0,0 e
−γ(t−ζ)

(

d

m
+M −

d

m

)

= −mQ̃t + c e−γt,

with c = kbMS0,0 e
(γ−µ)ζ , and where we have used the fact that Qt ≤ M uniformly in t.

Invoking now the variation of constant method, it is readily checked that equation
ẋt = −mxt + c e−γt with initial condition x0 = Q̃0,0 can be explicitly solved as

x(t) = e−mt

(

Q̃0,0 +
c

m− γ

(

e(m−γ)t − 1
)

)

=

(

Q̃0,0 −
c

m− γ

)

e−mt +
c

m− γ
e−γt.

By comparison, this entails the inequality Q̃t ≤ c1 e
−ηt, where c1 = max(Q̃0,0−

c
m−γ

, c
m−γ

)
and η = m ∧ γ. Our proof is now finished.

�

3. Fluctuations of the random system

Let us summarize the information we have obtained up to now in the non delayed case:
we are considering the system

{

dSε
t = [α− kσ(Qε

t )]S
ε
t dt+ εσ(Sε

t ) ◦ dW
1
t

dQε
t = [d−mQε

t + k(b− 1)σ(Qε
t )S

ε
t ] dt + εσ(Qε

t) ◦ dW
2
t .

(12)

Under Hypothesis 1.1 and 2.1, we have shown the existence of a unique equilibrium E0 =
(0, d/m) for the deterministic system (7), corresponding to (12) with ε = 0. Furthermore,
we have constructed a region R ∈ R

2
+ such that for any initial condition (S0, Q0) ∈ R, the

solution converges exponentially to E0, with a rate η = γ ∧ m
2
. We now wish to obtain a

concentration result for the perturbed system (12), that is give a proof of Theorem 1.3.
To this aim, we shall divide our proof in several subsections.

Notation 3.1. We will set Zε
t for the couple (Sε

t , Q
ε
t ), and Z0

t for the solution to the
deterministic equation (7).

3.1. Reduction of the problem. Recall that Theorem 1.3 states an exponential bound
(valid for ρ small enough) of the form

P (‖Zε −E0‖∞,I ≥ 2ρ) ≤ exp

(

−
c1ρ

2+λ

ε2

)

, (13)

on any interval of the form I = [κ1 ln(c/ρ)/η; κ2 ln(c/ρ)/η] and 1 < κ1 < κ2 < κ3 such
that λ > κ3/η.
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A first step in this direction is to consider a generic interval of the form Î = [a, b], and
write

P

(

‖Zε − E0‖∞,Î ≥ 2ρ
)

= P

(

(‖Zε − E0‖∞,Î ≥ 2ρ) ∩ (‖Z0 − E0‖∞,Î ≥ ρ)
)

+P

(

(‖Zε −E0‖∞,Î ≥ 2ρ) ∩ (‖Z0 − E0‖∞,Î ≤ ρ)
)

,

which yields

P

(

‖Zε −E0‖∞,Î ≥ 2ρ
)

≤ A1 + A2,

with

A1 = P

(

‖Z0 −E0‖∞,Î ≥ ρ
)

, and A2 = P

(

‖Zε − Z0‖
∞,Î ≥ ρ

)

. (14)

Moreover, the term A1 is easily handled: owing to (11), we have A1 = 0 as soon as
a = κ1 ln(c/ρ)/η with κ1 > 1. In order to prove (13), it is thus sufficient to check the
following identity:

P
(

‖Zε − Z0‖∞,I ≥ ρ
)

≤ exp

(

−
c1ρ

2+λ

ε2

)

, (15)

on any interval of the form I = [κ1 ln(c/ρ)/η; κ2 ln(c/ρ)/η] and 1 < κ1 < κ2 < κ3. We
shall focus on this inequality in the next subsection.

3.2. Exponential concentration of the stochastic equation. We will now give a
general concentration result for Zε − Z0 on suitable time scales as follows:

Proposition 3.2. Let Zε be the solution to (12). Then there exists ε0 = ε0(M, τ) such
that, for any ρ ≤ 1 and ε ≤ ε0 we have

P
(

‖Zε − Z0‖∞,[0,τ ] > ρ
)

≤ exp

(

−
c2ρ

2

eκ2 τε2

)

, (16)

where c2, κ2 are strictly positive constants which do not depend on ρ, ε, but both depend
on our set of parameters α, k, σ, d,m, b,M .

Proof. For notational sake, let us abbreviate ‖f‖∞,[0,τ ] into ‖f‖∞ throughout the proof.
In order to bound Zε − Z0, we first seek a bound for Sε − S0. To this aim we notice
that for the deterministic function S0 and thanks to relation (11), one can find a constant

κ1 = κ1(α, k, σ, d,m, b) such that ‖S0‖∞ ≤ κ1. Set also J1
t :=

∫ t

0
σ(Sε

s) ◦ dW
1
s . Then

|Sε
t − S0

t | ≤

∫ t

0

∣

∣(α− kσ(Qε
s))S

ε
s −

(

α− kσ(Q0
s)
)

S0
s

∣

∣ ds+ ε
∣

∣J1
t

∣

∣

≤

∫ t

0

∣

∣(α− kσ(Qε
s)) (S

ε
s − S0

s )
∣

∣ ds+

∫ t

0

k
∣

∣σ(Qε
s)− σ(Q0

s)
∣

∣ |S0
s |ds+ ε|J1

t |

≤

∫ t

0

(α + kM)|Sε
s − S0

s |ds+ κ1k

∫ t

0

|Qε
s −Q0

s|ds+ ε|J1
t |. (17)

Analogously, setting J2
t :=

∫ t

0
σ(Qε

s) ◦ dW
2
s , we obtain

|Qε
t −Q0

t | ≤

∫ t

0

(m+ k(b− 1)κ1)|Q
ε
s −Q0

s|ds+

∫ t

0

k(b− 1)M |Sε
s − S0

s |ds+ ε|J2
t |. (18)
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Hence, putting together (17) and (18), we get the existence of two positive constants
κ2, κ3 such that

|Zε
t − Z0

t |
2 ≤ κ2ε

2
(

|J1
t |

2 + |J2
t |

2
)

+ κ3

∫ t

0

|Zε
s − Z0

s |
2ds,

and by a standard application of Gronwall’s lemma, we get for all t ∈ [0, τ ]:

|Zε
t − Z0

t |
2 ≤ κ2ε

2
[

|J1
t |

2 + |J2
t |

2
]

exp(κ3t)

≤ κ2ε
2
[

|J1
t |

2 + |J2
t |

2
]

exp(κ3τ). (19)

Let us now go back to our claim (16): thanks to inequality (19), we have

P
(

‖Zε − Z0‖∞ > ρ
)

= P
(

‖Zε − Z0‖2
∞

> ρ2
)

≤ P

(

‖J1‖2
∞
+ ‖J2‖2

∞
>

ρ2

κ2ε2 exp(κ3τ)

)

≤ T1 + T2,

with

T1 = P

(

‖J1‖∞ >
κ4ρ

ε exp(κ5τ)

)

, and T2 = P

(

‖J2‖∞ >
κ4ρ

ε exp(κ5τ)

)

.

We now proceed to bound the quantity T1, and to this aim we first write J1
t in terms

of Itô’s integrals: according to [6, Definition 3.13 p. 156],

J1
t =

∫ t

0

σ(Sε
s)dW

1
s +

1

2

〈

σ(Sε), W 1
〉

t
,

where 〈·, ·〉 stands for the bracket of two semi-martingales. Invoking equation (12) and
ordinary rules of Stratonovich differential calculus, it is also readily checked that

σ(Sε
t ) = σ(Sε

0) + ε

∫ t

0

σσ′(Sε
s)dW

1
s + Vt,

where V is a process with bounded variation. We thus end up with the expression J1
t =

M̂1
t + V 1

t , where

M̂1
t =

∫ t

0

σ(Sε
s)dW

1
s , and V 1

t =
ε

2

∫ t

0

σσ′(Sε
s)ds,

and decompose T1 accordingly into T1 ≤ T1,1 + T1,2, with

T1,1 = P

(

‖M̂1‖∞ >
κ4ρ

ε exp(κ3τ)

)

, and T1,2 = P

(

‖V 1‖∞ >
κ4ρ

ε exp(κ3τ)

)

.

We now bound the terms T1,1 and T1,2 separately.

The term T1,2 is easily bounded thanks to some deterministic arguments. Indeed, since
σσ′(x) ≤ C(M + 1) for any x ∈ R+, we have ‖V 1‖∞ ≤ C(M + 1)ετ , so that for any
ρ ≤ 1 and ε ≤ ε1 := (κ4/(C(M + 1)τ exp(κ3τ)))

1/2, we have T1,2 = 0. As far as T1,1 is
concerned, one can apply the exponential martingale inequality (see, for instance, [4]) for
stochastic integrals in order to get

T1,1 ≤ exp

(

−
κ4ρ

2

M2 exp(κ3τ)ε2

)

.
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Putting together the estimates for T1,1 and T1,2, we have thus obtained

T1 ≤ exp

(

−
κ4ρ

2

M2 exp(κ3τ)ε2

)

,

for any ρ ≤ 1 and ε ≤ ε1 := (κ4/(C(M + 1)τ exp(κ3τ)))
1/2. We let the reader check that

the term T2 can be handled along the same lines, which finishes our proof.
�

3.3. Deviation from equilibrium. Let us now prove inequality (13): recall that we
have decomposed P(‖Zε − E0‖∞,I ≥ 2ρ) into A1 + A2 defined by (14). Furthermore,

A1 = 0 when Î is of the form [a, b] with a = κ1 ln(c/ρ)/η.

In order to complete our result, let us analyze the term A2 in the light of inequality (16).
Indeed, in order to go from (16) to (15), it is sufficient to choose ρ, τ, λ such that

ρ2 exp(−κ2τ) > ρ2+λ,

which is achieved for τ < b := λ ln(1/ρ)/κ2. Hence our claim is satisfied on the interval

Î = [a, b]. We now have to verify that this interval is nonempty, namely that a < b. This
gives a linear equation in ln(1/ρ), of the form

κ1

η
[ln(1/ρ) + ln(c)] ≤

λ

κ2

ln(1/ρ).

and the reader might easily check that the following conditions are sufficient:

(i) The linear terms satisfy κ1

η
< λ

κ2

, that is λ > κ1κ2

η
.

(ii) We take ρ small enough, namely ρ ≤ ρ0 in order to compensate the term ln(c).

The proof of (13) is now finished.

3.4. Extension to the delayed system. Let us deal now with the delayed case: as
mentioned in the introduction, we consider the system

{

dSε
t = [α− kσ(Qε

t )]S
ε
t dt + εσ(Sε

t ) ◦ dW
1
t

dQε
t =

[

d−mQε
t − kσ(Qε

t )S
ε
t + k b e−µζσ(Qε

t−ζ)S
ε
t−ζ

]

dt+ εσ(Qε
t ) ◦ dW

2
t ,

(20)

where for any t ∈ [−ζ, 0] and for any ε > 0, (Sε
t , Q

ε
t ) = (S0

t , Q
0
t ).

Under Hypothesis 1.1, 2.1 and 2.7 we have shown the existence of a unique equilibrium
E0 for the deterministic system (1), corresponding to (20) with ε = 0. Following the
non-delayed case, we wish to obtain a concentration result for the perturbed system (20),
as is given in Theorem 1.5.

The proof of this result can be carried out almost exactly as for Theorem 1.3. Let us
only point out the main difference: how to get an equivalent of inequalities (17) and (18).

To this aim, we set again J1
t :=

∫ t

0
σ(Sε

s) ◦ dW
1
s and J2

t :=
∫ t

0
εσ(Qε

s) ◦ dW
2
s . Then in the

delayed case, relations (17) and (18) become

|Sε
t − S0

t | ≤

∫ t

0

(α+ kM)|Sε
s − S0

s |ds+ κ1k

∫ t

0

|Qε
s −Q0

s|ds+ ε|J1
t |, (21)
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and

|Qε
t −Q0

t | ≤

∫ t

0

(m+ kκ1)|Q
ε
s −Q0

s|ds+

∫ t

0

kM |Sε
s − S0

s |ds+ ε|J2
t | (22)

+

∫ t

0

kbMe−µζ |Sε
s−ζ − S0

s−ζ|ds+

∫ t

0

kbk1e
−µζ |Qε

s−ζ −Q0
s−ζ |ds.

Using that for any t ∈ [−ζ, 0] and for any ε > 0, (Sε
t , Q

ε
t) = (S0

t , Q
0
t ) we can write the

bounds
∫ t

0

kbMe−µζ |Sε
s−ζ − S0

s−ζ|ds =

∫ t−ζ

0

kbMe−µζ |Sε
s − S0

s |ds ≤

∫ t

0

kbMe−µζ |Sε
s − S0

s |ds,

∫ t

0

kbk1e
−µζ |Qε

s−ζ −Q0
s−ζ|ds =

∫ t−ζ

0

kbk1e
−µζ |Qε

s −Q0
s|ds ≤

∫ t

0

kbk1e
−µζ |Qε

s −Q0
s|ds

Then, putting these last bounds in (21) and (22) we get the existence of two positive
constants κ2, κ3 such that

|Zε
t − Z0

t |
2 ≤ κ2

(

|J1
t |

2 + |J2
t |

2
)

+ κ3

∫ t

0

|Zε
s − Z0

s |
2ds.

From this point, the proof follows exactly as for Theorem 1.3.

4. Numerical simulations

This final section is devoted to a presentation of some numerical simulations for the sys-
tem described by equation (2). We have chosen the parameters (α, k, d,m, b, ζ) according
to some real data observed by the Molecular Biology Group of the Department of Genetics
and Microbiology at Universitat Autònoma de Barcelona. However, since the stochastic
effects we are dealing with cannot be taken into account in laboratory experiments, we
did not try to match existing curves like those of [1]. We have chosen instead to compare
theoretical and noisy dynamics in order to see that the quantities S and Q are close to
their equilibrium after a reasonable amount of time, in spite of randomness.

It is worth noticing at this point that the parameters we have chosen for our simulations
do not meet the conditions stated at Hypothesis 2.7. Indeed, those conditions were
imposed in order to obtain our theoretical large deviations type results with a reasonable
amount of efforts, but might be too restrictive to fit to real data experiments. Nevertheless,
our simulations turn out to be satisfactory, since we observe that the solution (St, Qt)
converges to E0 for small values of ε in a reasonable amount of time, regardless of the
violation of Hypothesis 2.7.

Specifically, we have simulated trajectories with parameters estimated on an experiment
involving Salmonella ATCC14028 bacteria and UAB_Phi78 virus. From the experiments
conducted by the mentioned group we have chosen the parameters as:

(α, k, d,m, b, ζ) = (12.1622, 27.36, 0.1, 0.1947, 61, 0.01875).

We have also put M = 10, µ = 0.5, and we have taken the initial conditions S0,t =
4.8eα(t+ζ), Q0,t = 0 for t ∈ [ζ, 0]. The time is expressed in days and the amount of virus
and bacteria are expressed in tens of millions of units.
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Figure 1. Simulation of the trajectories of S and Q with real parame-
ters for the Salmonella ATCC14028 bacteria and UAB_Phi78 virus for the
deterministic case (ε = 0), for ε = −3 (red curve) and ε = 1 (blue curve).

Our simulations are summarized at Figure 1, in which different paths of the processes S
and Q are computed. We have used an Euler type discretization scheme for our equations,
implemented with the R software. We have then plotted the deterministic case (ε = 0)
plus the curves corresponding to several values of ε (namely ε = −3, 1). As mentioned
before, the fluctuations of S and Q (which are obviously due to the randomness we have
introduced) do not prevent them to converge to equilibrium.
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