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BAD BOUNDARY BEHAVIOR IN STAR INVARIANT SUBSPACES I

ANDREAS HARTMANN & WILLIAM T. ROSS

ABSTRACT. We continue our study begun in [HR11] concerning the raglialvth of functions
in the model spaced H?)".

1. INTRODUCTION

Supposel = BS, is an inner function with Blaschke factd®, with zeros{\,},.: in the
open unit diskD repeated according to multiplicity, and singular innetdéad,, with associated
positive singular measupe on the unit circleél. The following result was shown by Frostman
in 1942 for Blaschke products (see [Fro42] or [CL66]) and dyeA-Clark for general inner
functions [AC71, Lemma 3].

Theorem 1.1 (Frostman, 1942; Ahern-Clark, 1971)et( € T and I be inner withu({¢}) = 0.
Then the following assertions are equivalent.

(1) Every divisor ofl has a radial limit of modulus one gt
(2) Every divisor ofl has a radial limit atc.
(3) The following condition holds

= |l it
2 d g 00,
(l ) n>1 < >\ | '/ |C ,u(e ) <

Based on a stronger condition than the above, Ahern and (A&R0] were able to charac-
terize “good” non-tangential boundary behavior of funetion the model spacés /2)* of the
classical Hardy spacE? (see [Nik86] for a very complete treatment of model spaces).

Theorem 1.3 ([AC70]). Let/ = BS, be an inner function with zerog\, },,-; and associated
singular measure:. For ¢ € T, the following are equivalent:

(1) Everyf € (IH?)* has a radial limit at.
(2) The following condition holds

|)‘ | it
(1.4) n>1|< IWE e - ap <) <

In this paper, we will study what happens when we are somenihdsetween the Frostman
condition (1.2) and the Ahern-Clark condition (1.4). In erdo do so we will introduce an
auxiliary function. Lety : (0,+00) — R* be a positive increasing function such that
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2 ANDREAS HARTMANN & WILLIAM T. ROSS

1) z - @ is bounded,
(2) z+— % is decreasing,
(3) p(z) = p(x+o(x)),z 0.

Such a functiony will be calledadmissible One can check that functions likgx) = 27,1 <
p<2,andy(z) = zPlog(1/z), 1 < p < 2, are admissible. Our main result is the following.

Theorem 1.5. Let I = BS, be an inner function with zero§\, },.; and associated singular
measureu, ¢ an admissible function, ange T. If
-]\, 1 4
(1.6) +/ —dp(e™) < oo,
D2 W IS [y

then everyf € (1 H?)! satisfies

)< \/@0(1—7”).

@ FOls ¥

Whenp(z) = x then we are in the Frostman situation (1.2) and no restrié§@iven for the
growth of f since generic functions i satisfy the growth condition

1
16Ol = o(—=)
On the other hand, whep(x) = 22 we reach the Ahern-Clark situation (1.4) . For othesuch
asy(x) = x%2 or perhapsp(z) = 22log(1/x) we get that even though functions(in/H?)* can
be poorly behaved (as in the title of this paper), the growitontrolled.

There is some history behind these types of problems. Wian = 22V+2, where N =
0,1,2,---, Ahern and Clark [AC70] showed that (1.6) is equivalent ® ¢ndition thatf ("), 0 <
j < N, have radial limits at for every f € (I H?)*. Wheny(x) = zP, p € (1, 00), Cohn [Coh86]
showed that (1.6) is equivalent to the condition that eveeyHe n I H}, whereq = p(p - 1)71,
has a finite radial limit af .

Why did we write this second paper? In [HR11] we discussedrotled growth of func-
tions from (BH?)', where B is a Blaschke product not satisfying the condition (1.4)ha# t
Ahern-Clark theorem. We have a general result but statedrindifferent terms, and using very
different techniques, than the paper here. In particuldilR11] we obtain two-sided estimates
for the reproducing kernels which yields more precise tesuTlhe results presented here are
one-sided estimates but are for general inner functionsiabplist Blaschke products.

2. PROOF OF THE MAIN RESULT

It is well known that(/H?2)* is a reproducing kernel Hilbert space with kernel function

1-T(N)I(z)
]{ZI Z)i=—————"
A(2) T
It suffices to prove Theorem 1.5 fqr= 1. If || - | denotes the norm ifi/?, the estimate in (1.5)
follows from the following result along with the obvious esate

FOI< AR, fe(TH?)*, 1re(0,1).
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Theorem 2.1. Let I = BS, be an inner function with zero§\, },..; and associated singular
measure: and ¢ be an admissible function. If

1_|>‘n| 1 y
2.2 e
= ;¢(|1—An|)+fw(|1_en|) u(e’) < oo,
then
o p(1-1)
23) s 2T

Proof. Our first observation is that sinee— o (x)/z is bounded, (2.2) implies condition (1.2).
By Theorem 1.1 this implies théitn, .1~ |B(r)| = lim,_;- |S,(r)| = 1. Hence

[kl = 12 [L(r)P? _ 1-exp(log([/(r)P*)) _ 1-exp(log(|B(r)* +1og|S,(r)*))
" 1-1r2 1-1r2 1-r2 ’
and sincdog |B(r)| = 0 andlog|S,(r)| = 0 whenr — 1, we get
1 - exp(log [ B(r)[* +10g[ S5, (1))
1-1r2

1- (1 + (log |B(1)|? + log |Su(7’)|2) + 0( log |B(r)|? +log |Su(r)|2))

1-1r2

AR

log |B(r)|~ +log| S, (r)|
1172 '
Thus to prove the estimate in (2.3) we need to prove

log | B(r)|2 _ p(1-7)

(2.4) 1-72 7 (1-1r)
and
5 log |, (11> _ w(1-7)

1-r2 7 (1-r)%
Case 1: the Blaschke produBt

First note that from the Frostman condition (1.2) we get

1- |)‘n|
|1_)\n|

In particular, from a certain index, on the points\,,, n > ng, will be pseudohyperbolically far
from the radiuq0, 1), i.e., there is & such that for every. > no andr € [0, 1),

|b)\n(7’)| > 5

0.

(2.6)

This implies
< 1—1by, (1)

1
%8 Tor, ()2

A well known calculation shows that

1—1|by, (r)]?

_(@=r) A=)
L=
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Thus

log|B(r)[ Z —

2.7 = .
@7) e T S e 2w

Now let )\, = r,e?». We need the following two easy estimates:

(2.8) 1-peP < (1-p)?+6% p~1,0x0.

(2.9) (2P + w2 = |2] + ], z,weC.

In particular,|1 - \,|? < (1 -7,)? + 62. We now remember condition (2.6) which implies that
L-r,=1-|\)=0(1=A,|) =0((1 -r,) +6,) so that necessarily-r, = o(6, ). Hence

L= X2 2 (L=rpr)? 402 = (L=rp + 1, (1=7))2 462 2 (1 =7)2 + 62,

The estimate in (2.7) yields

log |B(r)|2 1= |\? 1-r, 1-r, 1-r,
— 7 x — Ny +
1-r2 1;1 |1 = Anr[? r; (1-7r)*+07 {n:1—27;<9n} 05 {n:1—zr:zen} (1-r)2
1-r 1
(2.10) - n oy (1-7,).
{n:l-r<0,} 0 (1-7)? {n:lzr:ZQn}

Let us discuss each summand in (2.10) individually. For tist, five use the fact that is
admissible and sg(0) = ¢(]1 - ¢?]) to get

L—r, 1-7r,

=
I 170,y \2(0n)02 )7/ 0(6r)

1/2 1/2
Z 1-r, Z 1-r,
{n:1-r<6y,} (P(en) {n:1-r<6,} n/w(e )

bounded by assumption

AN

1/2
1-r,

By assumptiongz — ¢(x)/2? is decreasing. Hence we can bouiidy(6,,) below in this last
sum by(1 -1r)2/¢(1-1). Hence

1/2
L-rn  p(1-7) L-ra ) . e(l-7)
{n:1-r<0y} H%L h (1 - T)Q {n:1-r<6y} w(en) ~ (1 - T)Q .



BAD BOUNDARY BEHAVIOR IN STAR INVARIANT SUBSPACES II 5

For the second sum in (2.10) we have

\V ©(0n)
1-r,) = 1-1r,)—
{n:lgzen}( ) {nﬂg":Z@n}( ) V ‘P(en)

( > (1%))1/2( S (L=ra)e(0 ))1/2
{(ni1-r>0,} ‘P(en) {n:1-r>0,} ! "

bounded by assumption

1/2
\/@0(1—7")( > (1—'f’n)) ,

{n:1-r260,}

N

where we have used the fact thais increasing. Dividing through the square root of the sum,
this last inequality (and then squaring) implies

Z (1-r,) Sp(l-r).

{n:1-r>0,}
This verifies (2.4).
Case 2: the singular inner factsy,.

This case is very similar to the first case. Indeed,

10g|5—(r7;)| [|1 r629|2d'u( ) = [(1 2462 Ap(e”)

where we have again used (2.8). As in the Blaschke sﬂuatmﬂpm the integral into two parts
depending on which term in the denominator dominates:

log S, (r)|™ f 1 0 f 1 0
- =~ 7 < d 1 d 7
172 o Jea-r<oy (1-1)2+ 62 ple) + (o1-r20) (1 —7)2 + 62 #(e™)

1 ’ 1 .
—d 0 f d 10 )
-/{9:1—r$0} 02 M(e ) i (1 = T)2 {6:1-r>0} ,u(e )

Let us consider the first integral.

(2.11)

D¢

1 o0 1 e’
./{9:11«39} 62 A [{9=1TS9} Ve(0)6%\/o(0) e

1 Z 1/2 1 i 1/2
([{91 <} go(@) dnle 6)) (—/{9=1—rs9} 94/@(9)du(69)) .

Note that|1 - €| < #. Then using the hypothesis of admissibility we hax@) < ¢ (|1 - ¢?|)
and so

— (") % [———dp(e?)
(9) (|1 )
which is bounded by assumption. Hence, by the Cauchy-Schwaquality,

1 i 1 i 1/2 . 22(0) Z_ 1/2
'/{9:1%0} ﬁdﬂ(e 9) < (./{Gzlrsé} 04/90(0) d,u(e 9)) = ('/{9:1%0} —¢(0)04 d,u(e 9)) .
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Now using the fact that — (x)/z? is decreasing we obtaip? (0)/6* < (o(1-7))2/(1-7r)%.

Hence ;
i0 o(1-7) 1 0 o(1-71)
f{“ r<6} 02 Ile™) = (1-7)? (f{el r0y 9(0) dule )) : (1-r)%"

We turn to the second integral in (2.11) to get

Jo ey = [ Ve
{60:1-r>0} 0:1-r>0}

<p(9

L 1/2
(f{m_rze} w(e)du(e”)) (f{m - @(16) dp( ”)) :

We have already seen above that the second factor abovengédmby assumption. Using the
fact thatyp is increasing we get

IA

1/2 1/2
0y < / 0 ) /(1 = (/ i0 ) _
f{eqrze}d'u(e )N( {9:177«29}@(9””(6 ) w(1-1) {6:1-r>0} dp(e”)
Dividing through by the integral (and then squaring), weadipt
d 0 < 1 _
o W 500 1),
which verifies (2.5). [

3. AN EXAMPLE

The Blaschke situation was discussed in [HR11] where weirnddatwo-sided estimates for
the reproducing kernels. It can be shown with concrete ekesitpat the estimates from Theo-
rem 2.1 are in general weaker than those obtained in [HRIBl&schke products.

Let us discuss the simplest case, in fact close enough toszlike product, that a singular
inner functionS,, with a discrete measuye Let
/’l‘ = Z an5<n7

n>1
whered;, € T and«, are positive numbers witl, o, < oo guaranteeing that is a finite
measure off. Let us fix

1

_ i0n _ _i/n _
Cn € € 9 an n1+€7

n=12....

Also let p(t) = t7 which defines an admissible function fbk ~ < 2. In order to have condition
(2.2) itis necessary and sufficient to have

1 1 1 ny 1
Zan(p(“ - 6i6"|) - zn: n1+8 cp(l/n) = zn: n1+5 B zn: TL1+5_7

n

< 00

which is equivalent toy < . We suppose that
(3.2) l<e<2.
By Theorem 2.1 we deduce that

s B - ()
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In this situation we have

PO oy TSl

which is slower growth than the standard estimate

1
OIS Gy i

In this situation, it is actually possible to get a doubléesi estimate for the reproducing
kernel: sincep is admissible, Theorem 1.1 implies th&tr) — n ¢ T whenr — 1-. In
particular forr € (0,1), this implies that

1-7r? 1-7r2
I(r)|=exp|-) ap7/——=]|~1-)> a———.
R O R e
Let us consider the reproducing kernel(6f, H%)* atr = py = 1 — 27V Indeed,

1-|7 2 1-
Hkiz\sz _ |(pé\7)| XQN( eXp( Zan pN ))

1- 03 - pn?

2 (1 (- Zea25))

DI¢

n |<n - pN'2

Now using (2.8)
1 1
2 O
|G = pn|” = 2t
and so
« « «
12 % Y s Lot O T
PN zn: 1/n?+1/22N nSZQ:N 1/n? n;v 1/22N
< Z n’ 2N 1 < 9(2-e)N
oy n1+e ey n1+e

1l
—
—_
I
—_
s
=
\—/
v
)

or, equivalently,

2) (o)

(the estimate extends to the whole radius). As a consequinecestimate from Theorem 2.1 is
not optimal, though it is possible to come closer to it by &ing e.g..(t) = t¢/log" ™ (1/t),
v > 0.
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4. A LOWER ESTIMATE

We finish the paper with a construction of gire (S, H?)*, with 1 the discrete measure dis-
cussed in the previous section, getting close to the growdngdy the norm of the reproducing
kernels thoughout the whole radig@ 1). As in [HR11] our construction will be based on un-
conditional sequences. We need to recall some material werglezed interpolation in Hardy
spaces for which we refer the reader to [Nik02, Section C3t /L= [],, [, be a factorization
of an inner function/ into inner functions/,,, n € N. The sequencél, },.; satisfies the gen-
eralized Carleson condition, sometimes called the Canl&&syunin condition, which we will
write {1,,}.-1 € (C'V), if there is & > 0 such that

4.2) |1(2)] 2512{|[n(z)|, zeD.

In the special case of a Blaschke prodict B, with simple zeros\ = {\, },»1 andI, = b,,,
this is equivalent to the well-known Carleson conditiofy, | B« (x,} (An)| > 0 > 0.

If {I,}ns1 € (CV) then{(I,H?)*},5: is an unconditional basis far/ H2)* meaning that
every f € (I H?)* can be written uniquely as

f= me fne(InHQ)La

n>1
with

[ = 22 1 al

n>1

In our situation we havé = S, and

2+ Cp

Ay,
I,=¢ Z=GCn,

The corresponding spacég,[H2)* are known to be isometrically isomorphic to the Paley-
Wiener space of analytic functions of exponential typg2 and square integrable on the real
axis. In this situation a sufficient condition for (4.1) isdam:

pHG PG}

sup < o0
0 T

(see [Nik86, Corollary 6, p. 247]). So, sinee 1 by (3.1), we have
1/7’Ll+€1/k31+€ l/nsfll/kefl 71—2

= IU— R G .

IR Ty y el D M vl

n>1 k#n n2l pazn

Hence(/H?)!' is an/?-sum of Paley-Wiener spaces (each of which possesses tanaesthe
harmonic unconditional basis). In particular, picking
1

A = TGy = Tnez/n’ Th=1- Ea

the sequencék, },-1, where
I

K, = —" e (I,H?*)",
[ |
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is an unconditional sequence (hf/?)+. Observe that\ = {)\, },-; is nota Blaschke sequence.
We can introduce the family of functions

fﬂ = ZﬁnK

n>1

where| f5[2 < 3,51 |8nl? < co. Let us estimate the nornﬂki’; |. First observe that
A+ G Ty, + 1 1 2-1/n 2-1/n

an}\n_gn:anrn—lznl+€ _1/n == ne —)07 n — 00,
Hence
e~ LOWR 1oL OW] 1 - exp (log (W)
) 1_T%L B L=ry, - 1-7r,
An Cn Tn
- 1—exp(an>\ +gn) N 1- (1+an Jﬁ)
1_Tn 1—7“”
2au,
(1-r,)%
so that

Vi~ (1+) _ o 1-1/2-/2 _ . (1-£)/2
nl= (1- rn)Q 1n A

Observe now that th&,’s belong to a Stolz domain with vertex at 1. Indeed,
—Anl=1=r,=1/n~1-C|=|1-\,]
(this follows from (2.8)). For fixed = {3, }.»1 with ,, > 0 we compute

1= 1, (M) I(Aw)
1- My

Refs(Ay) = 3 f.nD1Re

n>1

We have already seen that /,,()\,) — 1, n - o0, and

1+7r 2
LiA) ~1-a,—2~1-=,
(An) @ 1-7r, n®
We have to consider
>\N+Cn
p, .
AN—Cn

Forn or N big enough, RE\y + (,) < Im(Ax + () = |An + (] = 1. We thus have to consider
the denominator. We observe that by Lemma 2.8

1 1 1+‘1 1|v
n NI N |n NI

)\N+<n
Q7™ —>
)‘N_Cn

ifn< N

4.2) Dy =Gl =11=C ] = (1= .
( )|N C|| CN|( rN) + it > N

2}z

As a consequence,

Again:
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Hence

- In()‘n)[n()\N)

—_

2

1—(1+an—rn+1)(1+an)w+§")Nan1+rn +angn+)\N
Tn — AN_Cn 1_Tn Cn_AN

- Lrry  GrAnv)  (1+7)(G = An) + (1 =7) (G + AN)
- an(l_rn+gn_)\N)_an (1_Tn)(<n_)\N)

- 9 Cn - Tn)\N - 9% C 1- C_nrn)\N
n(l_rn)(gn_AN) " n(l_rn)(gn_AN)
1- M\
= 20,Cn .
(1 - rn)(Cn - )\N)
From here we have
1=\ AN (I-rp)(Cn=AN) 1°G—An
We claim that at least fat > 2.V,
Cn Cn
< Re .
Gn = AN Cn— AN
Indeed,
Cn 1 - Cn)\N

G- AN 1Gn = AN
so that for the claim to hold it is sufficient to check that
|1 - CnXN| = Re(l - <nXN)
for n > 2N. We have already seen in (4.2) that

- 1
|1_Cn)\N|XN, n>2N.

Now
1 1 1 1

Re(1-(,A\n) =1 —TNRe(ei(l/”_l/N)) =1- (1 - N) (cos(g - N)) < N’ n>2N,

which proves the claim. We thus can pass in (4.3) to real parteat forn > 2N

1- In()\n)]n(AN) 3 Cn - 3 1- CnXN
Re( W ) - Re(n) n&Re(Kn—ANP)

2 1/N _2 1N
ne1/n2+ (1/n—-1/N)2 "~ ne (1/N)2

DI¢

¢

N
—, whenn>2N.
n€

Hence

Refs(A\n) 2 Y ﬁ"nale)/g Re(1-G\w) | D B

n>1 |Cn - >‘N|2 " n>2N n(1+e)/2”
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Pick for instances,, = n~-(1+7)/2 wheren > 0 is arbitrary, so that obvioulsy, > 0 and 3 € (2.
Then

1 1 1 1-g/2-n/2

> ~ - Nl-=ef2m/2 o |~

Refﬁ()‘N) ~ anzQ:N nl+(e+n)/2 NN(€+17)/2 N A (1 _ |)\N|)

wheren > 0 is arbitrarily small. Compare this with the estimate of taproducing kernel (3.2).
With better choices of it is of course clear that we can come closer to the maximaktro

given by the reproducing kernel.

Finally, we point out that wheh(z) — 1 whenz — 1 in a fixed Stolz domain, itis, in general,
particularly difficult to decide whether or not a sequenceepfoducing kernels faf7 H2)*, with
the parameter in a Stolz domain with vertex at 1, is an und¢mmdil basis or not. Even when
sup,, [I(\,)| < 1, there is a characterization known for unconditional badigh is, in general,
difficult to check.
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