Andreas Hartmann 
email: hartmann@math.u-bordeaux.fr
  
William T Ross 
email: wross@richmond.edu
  
BAD BOUNDARY BEHAVIOR IN STAR INVARIANT SUBSPACES II

Keywords: Mathematics Subject Classification. 30J10, 30A12, 30A08 Hardy spaces, star invariant subspaces, non-tangential limits, inner functions, unconditional sequences, generalized Carleson condition

HAL is

INTRODUCTION

Suppose I = BS µ is an inner function with Blaschke factor B, with zeros {λ n } n≥1 in the open unit disk D repeated according to multiplicity, and singular inner factor S µ with associated positive singular measure µ on the unit circle T. The following result was shown by Frostman in 1942 for Blaschke products (see [START_REF] Frostman | Sur les produits de Blaschke, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar[END_REF] or [START_REF] Collingwood | The theory of cluster sets[END_REF]) and by Ahern-Clark for general inner functions [AC71, Lemma 3].

Theorem 1.1 [START_REF] Frostman | Sur les produits de Blaschke, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar[END_REF]Ahern-Clark, 1971). Let ζ ∈ T and I be inner with µ({ζ}) = 0. Then the following assertions are equivalent.

(1) Every divisor of I has a radial limit of modulus one at ζ.

(2) Every divisor of I has a radial limit at ζ. Based on a stronger condition than the above, Ahern and Clark [START_REF] Ahern | Radial limits and invariant subspaces[END_REF] were able to characterize "good" non-tangential boundary behavior of functions in the model spaces (IH 2 ) ⊥ of the classical Hardy space H 2 (see [START_REF] Nikol | Treatise on the shift operator, Grundlehren der Mathematischen Wissenschaften[END_REF] for a very complete treatment of model spaces).

Theorem 1.3 ([AC70]

). Let I = BS µ be an inner function with zeros {λ n } n≥1 and associated singular measure µ. For ζ ∈ T, the following are equivalent:

(1) Every f ∈ (IH 2 ) ⊥ has a radial limit at ζ.

(2) The following condition holds

(1.4) n≥1 1 -λ n ζ -λ n 2 + T 1 ζ -e it 2 dµ(e it ) < ∞.
In this paper, we will study what happens when we are somewhere in between the Frostman condition (1.2) and the Ahern-Clark condition (1.4). In order to do so we will introduce an auxiliary function. Let ϕ ∶ (0, +∞) → R + be a positive increasing function such that

(1) x → ϕ(x) x is bounded, (2) x → ϕ(x) x 2 is decreasing, (3) ϕ(x) ≍ ϕ(x + o(x)), x ↓ 0.
Such a function ϕ will be called admissible. One can check that functions like ϕ(x) = x p , 1 ≤ p < 2, and ϕ(x) = x p log(1 x), 1 < p < 2, are admissible. Our main result is the following.

Theorem 1.5. Let I = BS µ be an inner function with zeros {λ n } n≥1 and associated singular measure µ, ϕ an admissible function, and

ζ ∈ T. If n≥1 1 -λ n ϕ( ζ -λ n ) + T 1 ϕ( ζ -e it )
dµ(e it ) < ∞, (1.6)

then every f ∈ (IH 2 ) ⊥ satisfies (1.7) f (rζ) ≲ ϕ(1 -r) 1 -r .
When ϕ(x) = x then we are in the Frostman situation (1.2) and no restriction is given for the growth of f since generic functions in H 2 satisfy the growth condition

f (rζ) = o( 1 √ 1 -r )
On the other hand, when ϕ(x) = x 2 we reach the Ahern-Clark situation (1.4) . For other ϕ such as ϕ(x) = x 3 2 or perhaps ϕ(x) = x 2 log(1 x) we get that even though functions in (IH 2 ) ⊥ can be poorly behaved (as in the title of this paper), the growth is controlled.

There is some history behind these types of problems. When ϕ(x) = x 2N +2 , where N = 0, 1, 2, ⋯, Ahern and Clark [START_REF] Ahern | Radial limits and invariant subspaces[END_REF] showed that (1.6) is equivalent to the condition that f (j) , 0 ≤ j ≤ N, have radial limits at ζ for every f ∈ (IH 2 ) ⊥ . When ϕ(x) = x p , p ∈ (1, ∞), Cohn [START_REF] Cohn | Radial limits and star invariant subspaces of bounded mean oscillation[END_REF] showed that (1.6) is equivalent to the condition that every f ∈ H q ∩ IH q 0 , where q = p(p -1) -1 , has a finite radial limit at ζ. Why did we write this second paper? In [START_REF] Hartmann | Bad boundary behavior in backward shift invariant subspaces I[END_REF] we discussed controlled growth of functions from (BH 2 ) ⊥ , where B is a Blaschke product not satisfying the condition (1.4) of the Ahern-Clark theorem. We have a general result but stated in very different terms, and using very different techniques, than the paper here. In particular, in [START_REF] Hartmann | Bad boundary behavior in backward shift invariant subspaces I[END_REF] we obtain two-sided estimates for the reproducing kernels which yields more precise results. The results presented here are one-sided estimates but are for general inner functions and not just Blaschke products.

PROOF OF THE MAIN RESULT

It is well known that (IH 2 ) ⊥ is a reproducing kernel Hilbert space with kernel function

k I λ (z) ∶= 1 -I(λ)I(z) 1 -λz .
It suffices to prove Theorem 1.5 for ζ = 1. If ⋅ denotes the norm in H 2 , the estimate in (1.5) follows from the following result along with the obvious estimate

f (r) ≤ f k I r , f ∈ (IH 2 ) ⊥ , r ∈ (0, 1).
Theorem 2.1. Let I = BS µ be an inner function with zeros {λ n } n≥1 and associated singular measure µ and ϕ be an admissible function. If

n≥1 1 -λ n ϕ( 1 -λ n ) + T 1 ϕ( 1 -e it ) dµ(e it ) < ∞, (2.2) then (2.3) k I r 2 ≲ ϕ(1 -r) (1 -r) 2 . Proof. Our first observation is that since x → ϕ(x) x is bounded, (2.2) implies condition (1.2). By Theorem 1.1 this implies that lim r→1 -B(r) = lim r→1 -S µ (r) = 1. Hence k I r 2 = 1 -I(r) 2 1 -r 2 = 1 -exp(log( I(r) 2 )) 1 -r 2 = 1 -exp(log( B(r) 2 + log S µ (r) 2 )) 1 -r 2 ,
and since log B(r) → 0 and log S µ (r) → 0 when r → 1, we get

k I r 2 = 1 -exp(log B(r) 2 + log S µ (r) 2 ) 1 -r 2 = 1 -1 + log B(r) 2 + log S µ (r) 2 + o log B(r) 2 + log S µ (r) 2 1 -r 2 ∼ log B(r) -2 + log S µ (r) -2 1 -r 2 .
Thus to prove the estimate in (2.3) we need to prove

(2.4) log B(r) -2 1 -r 2 ≲ ϕ(1 -r) (1 -r) 2 and (2.5) log S µ (r) -2 1 -r 2 ≲ ϕ(1 -r) (1 -r) 2 .
Case 1: the Blaschke product B.

First note that from the Frostman condition (1.2) we get

1 -λ n 1 -λ n → 0. (2.6)
In particular, from a certain index n 0 on the points λ n , n ≥ n 0 , will be pseudohyperbolically far from the radius [0, 1), i.e., there is a δ such that for every n ≥ n 0 and r ∈ [0, 1),

b λn (r) ≥ δ. This implies log 1 b λn (r) 2 ≍ 1 -b λn (r) 2 . A well known calculation shows that 1 -b λn (r) 2 = (1 -r 2 )(1 -λ n 2 ) 1 -rλ n 2 . Thus log B(r) -2 1 -r 2 = 1 1 -r 2 n≥1 log 1 b λn (z) 2 ≍ n≥1 1 -λ n 2 1 -λ n r 2 . (2.7)
Now let λ n = r n e iθn . We need the following two easy estimates:

(2.8)

1 -ρe iθ 2 ≍ (1 -ρ) 2 + θ 2 , ρ ≈ 1, θ ≈ 0. ( z 2 + w 2 ) 1 2 ≍ z + w , z, w ∈ C. (2.9) In particular, 1 -λ n 2 ≍ (1 -r n ) 2 + θ 2
n . We now remember condition (2.6) which implies that

1 -r n = 1 -λ n = o( 1 -λ n ) = o((1 -r n ) + θ n ) so that necessarily 1 -r n = o(θ n ). Hence 1 -λ n r 2 ≍ (1 -r n r) 2 + θ 2 n = (1 -r n + r n (1 -r)) 2 + θ 2 n ≍ (1 -r) 2 + θ 2 n .
The estimate in (2.7) yields

log B(r) -2 1 -r 2 ≍ n≥1 1 -λ n 2 1 -λ n r 2 ≍ n≥1 1 -r n (1 -r) 2 + θ 2 n ≍ {n∶1-r<θn} 1 -r n θ 2 n + {n∶1-r≥θn} 1 -r n (1 -r) 2 = {n∶1-r<θn} 1 -r n θ 2 n + 1 (1 -r) 2 {n∶1-r≥θn} (1 -r n ).
(2.10) Let us discuss each summand in (2.10) individually. For the first, we use the fact that ϕ is admissible and so ϕ(θ) ≍ ϕ( 1 -e iθ ) to get

{n∶1-r<θn} 1 -r n θ 2 n = {n∶1-r<θn} 1 -r n ϕ(θ n )θ 2 n ϕ(θ n ) ≤ ⎛ ⎝ {n∶1-r<θn} 1 -r n ϕ(θ n ) ⎞ ⎠ 1 2 bounded by assumption ⎛ ⎝ {n∶1-r<θn} 1 -r n θ 4 n ϕ(θ n ) ⎞ ⎠ 1 2 ≲ ⎛ ⎝ {n∶1-r<θn} 1 -r n ϕ(θ n )(θ 2 n ϕ(θ n )) 2 ⎞ ⎠ 1 2
.

By assumption, x → ϕ(x) x 2 is decreasing. Hence we can bound θ 2 n ϕ(θ n ) below in this last sum by (1 -r) 2 ϕ(1 -r). Hence

{n∶1-r<θn} 1 -r n θ 2 n ≲ ϕ(1 -r) (1 -r) 2 ⎛ ⎝ {n∶1-r<θn} 1 -r n ϕ(θ n ) ⎞ ⎠ 1 2 ≲ ϕ(1 -r) (1 -r) 2 .
For the second sum in (2.10) we have

{n∶1-r≥θn} (1 -r n ) = {n∶1-r≥θn} (1 -r n ) ϕ(θ n ) ϕ(θ n ) ≤ ⎛ ⎝ {n∶1-r≥θn} (1 -r n ) ϕ(θ n ) ⎞ ⎠ 1 2
bounded by assumption

⎛ ⎝ {n∶1-r≥θn} (1 -r n )ϕ(θ n ) ⎞ ⎠ 1 2 ≲ ϕ(1 -r) ⎛ ⎝ {n∶1-r≥θn} (1 -r n ) ⎞ ⎠ 1 2
, where we have used the fact that ϕ is increasing. Dividing through the square root of the sum, this last inequality (and then squaring) implies

{n∶1-r≥θn} (1 -r n ) ≲ ϕ(1 -r).
This verifies (2.4).

Case 2: the singular inner factor S µ .

This case is very similar to the first case. Indeed,

log S µ (r) -2 1 -r 2 = 2 T 1 1 -re iθ 2 dµ(e iθ ) ≍ T 1 (1 -r) 2 + θ 2 dµ(e iθ )
where we have again used (2.8). As in the Blaschke situation we split the integral into two parts depending on which term in the denominator dominates:

log S µ (r) -2 1 -r 2 ≲ {θ∶1-r≤θ} 1 (1 -r) 2 + θ 2 dµ(e iθ ) + {θ∶1-r≥θ} 1 (1 -r) 2 + θ 2 dµ(e iθ ) ≍ {θ∶1-r≤θ} 1 θ 2 dµ(e iθ ) + 1 (1 -r) 2 {θ∶1-r≥θ}
dµ(e iθ ). (2.11) Let us consider the first integral.

{θ∶1-r≤θ} 1 θ 2 dµ(e iθ ) = {θ∶1-r≤θ} 1 ϕ(θ)θ 2 ϕ(θ) dµ(e iθ ) ≤ {θ∶1-r≤θ} 1 ϕ(θ) dµ(e iθ ) 1 2 {θ∶1-r≤θ} 1 θ 4 ϕ(θ)
dµ(e iθ ) 1 2

.

Note that 1 -e iθ ≍ θ. Then using the hypothesis of admissibility we have ϕ(θ) ≍ ϕ( 1 -e iθ ) and so

1 ϕ(θ) dµ(e iθ ) ≍ 1 ϕ( 1 -e iθ ) dµ(e iθ )
which is bounded by assumption. Hence, by the Cauchy-Schwarz inequality, {θ∶1-r≤θ}

1 θ 2 dµ(e iθ ) ≲ {θ∶1-r≤θ} 1 θ 4 ϕ(θ) dµ(e iθ ) 1 2 = {θ∶1-r≤θ} ϕ 2 (θ) ϕ(θ)θ 4 dµ(e iθ ) 1 2
. Now using the fact that x → ϕ(x) x 2 is decreasing we obtain ϕ 2 (θ)

θ 4 ≤ (ϕ(1 -r)) 2 (1 -r) 4 . Hence {θ∶1-r≤θ} 1 θ 2 dµ(e iθ ) ≲ ϕ(1 -r) (1 -r) 2 {θ∶1-r≤θ} 1 ϕ(θ) dµ(e iθ ) 1 2 ≲ ϕ(1 -r) (1 -r) 2 .
We turn to the second integral in (2.11) to get .

We have already seen above that the second factor above is bounded by assumption. Using the fact that ϕ is increasing we get

{θ∶1-r≥θ} dµ(e iθ ) ≲ {θ∶1-r≥θ} ϕ(θ)dµ(e iθ ) 1 2 ≤ ϕ(1 -r) {θ∶1-r≥θ} dµ(e iθ ) 1 2 
.

Dividing through by the integral (and then squaring), we obtain

{θ∶1-r≥θ} dµ(e iθ ) ≲ ϕ(1 -r),
which verifies (2.5). ∎

AN EXAMPLE

The Blaschke situation was discussed in [START_REF] Hartmann | Bad boundary behavior in backward shift invariant subspaces I[END_REF] where we obtained two-sided estimates for the reproducing kernels. It can be shown with concrete examples that the estimates from Theorem 2.1 are in general weaker than those obtained in [START_REF] Hartmann | Bad boundary behavior in backward shift invariant subspaces I[END_REF] for Blaschke products.

Let us discuss the simplest case, in fact close enough to a Blaschke product, that a singular inner function S µ with a discrete measure µ. Let

µ = n≥1 α n δ ζn ,
where δ ζn ∈ T and α n are positive numbers with ∑ n α n < ∞ guaranteeing that µ is a finite measure on T. Let us fix

ζ n = e iθn = e i n , α n = 1 n 1+ε , n = 1, 2, . . . . Also let ϕ(t) = t γ
which defines an admissible function for 1 < γ < 2. In order to have condition (2.2) it is necessary and sufficient to have

n α n 1 ϕ( 1 -e iθn ) ≃ n 1 n 1+ε 1 ϕ(1 n) ≃ n n γ n 1+ε = n 1 n 1+ε-γ < ∞ which is equivalent to γ < ε. We suppose that 1 < ε < 2. (3.1)
By Theorem 2.1 we deduce that

k I r 2 ≲ ϕ(1 -r) (1 -r) 2 = 1 1 -r 2-γ .
In this situation we have

f (r) ≲ 1 (1 -r) 1-γ 2 , f ∈ (S µ H 2 ) ⊥ ,
which is slower growth than the standard estimate

f (r) ≲ 1 (1 -r) 1 2 , f ∈ H 2 .
In this situation, it is actually possible to get a double-sided estimate for the reproducing kernel: since ϕ is admissible, Theorem 1.1 implies that I(r) → η ∈ T when r → 1 -. In particular for r ∈ (0, 1), this implies that

I(r) = exp - n α n 1 -r 2 ζ n -r 2 ∼ 1 - n α n 1 -r 2 ζ n -r 2 .
Let us consider the reproducing kernel of

(S µ H 2 ) ⊥ at r = ρ N = 1 -2 -N . Indeed, k I ρ N 2 = 1 -I(ρ N ) 2 1 -ρ 2 N ≍ 2 N 1 -exp - n α n 1 -ρ 2 N ζ n -ρ N 2 ≍ 2 N 1 -1 - n α n 1 2 N ζ n -ρ N 2 ≍ n α n ζ n -ρ N 2 . Now using (2.8) ζ n -ρ N 2 ≍ 1 n 2 + 1 2 2N ,
and so

k I ρ N 2 ≍ n α n 1 n 2 + 1 2 2N = n≤2 N α n 1 n 2 + n>2 N α n 1 2 2N ≍ n≤2 N n 2 n 1+ε + 2 2N n>2 N 1 n 1+ε ≍ 2 (2-ε)N = 1 1 -ρ N 2-ε or, equivalently, k I ρ N ≍ 1 1 -ρ N 1-ε 2 (3.2)
(the estimate extends to the whole radius). As a consequence, the estimate from Theorem 2.1 is not optimal, though it is possible to come closer to it by choosing e.g., ϕ(t) = t ε log 1+γ (1 t), γ > 0.

A LOWER ESTIMATE

We finish the paper with a construction of an f ∈ (S µ H 2 ) ⊥ , with µ the discrete measure discussed in the previous section, getting close to the growth given by the norm of the reproducing kernels thoughout the whole radius (0, 1). As in [START_REF] Hartmann | Bad boundary behavior in backward shift invariant subspaces I[END_REF] our construction will be based on unconditional sequences. We need to recall some material on generalized interpolation in Hardy spaces for which we refer the reader to [Nik02, Section C3]. Let I = ∏ n I n be a factorization of an inner function I into inner functions I n , n ∈ N. The sequence {I n } n≥1 satisfies the generalized Carleson condition, sometimes called the Carleson-Vasyunin condition, which we will write {I n } n≥1 ∈ (CV ), if there is a δ > 0 such that

I(z) ≥ δ inf n≥1 I n (z) , z ∈ D. (4.1)
In the special case of a Blaschke product B = B Λ with simple zeros Λ = {λ n } n≥1 and I n = b λn , this is equivalent to the well-known Carleson condition inf n B Λ∖{λn} (λ n ) ≥ δ > 0.

If {I n } n≥1 ∈ (CV ) then {(I n H 2 ) ⊥ } n≥1 is an unconditional basis for (IH 2 ) ⊥ meaning that every f ∈ (IH 2 ) ⊥ can be written uniquely as

f = n≥1 f n , f n ∈ (I n H 2 ) ⊥ , with f 2 ≍ n≥1 f n 2 .
In our situation we have I = S µ and

I n = e α n z + ζ n z -ζ n .
The corresponding spaces (I n H 2 ) ⊥ are known to be isometrically isomorphic to the Paley-Wiener space of analytic functions of exponential type α n 2 and square integrable on the real axis. In this situation a sufficient condition for (4.1) is known:

sup n≥1 k≠n µ({ζ n })µ({ζ k }) ζ n -ζ k 2 < ∞
(see [Nik86, Corollary 6, p. 247]). So, since ε > 1 by (3.1), we have

sup n≥1 k≠n 1 n 1+ε 1 k 1+ε 1 n -1 k 2 = sup n≥1 k≠n 1 n ε-1 1 k ε-1 n -k 2 ≤ π 2 3 < ∞.
Hence (IH 2 ) ⊥ is an ℓ 2 -sum of Paley-Wiener spaces (each of which possesses for instance the harmonic unconditional basis). In particular, picking

λ n ∶= r n ζ n = r n e i n , r n = 1 - 1 n ,
the sequence {K n } n≥1 , where

K n = k In λn k In λn ∈ (I n H 2 ) ⊥ ,
is an unconditional sequence in (IH 2 ) ⊥ . Observe that Λ = {λ n } n≥1 is not a Blaschke sequence. We can introduce the family of functions

f β ∶= n≥1 β n K n where f β 2 ≍ ∑ n≥1 β n 2 < ∞.
Let us estimate the norms k In λn . First observe that

α n λ n + ζ n λ n -ζ n = α n r n + 1 r n -1 = 1 n 1+ε 2 -1 n -1 n = - 2 -1 n n ε → 0, n → ∞. Hence k In λn 2 = 1 -I n (λ n ) 2 1 -r 2 n ≍ 1 -I n (λ n ) 1 -r n = 1 -exp log I n (λ n ) 1 -r n = 1 -exp α n λn+ζn λn-ζn 1 -r n ∼ 1 -1 + α n rn+1 rn-1 1 -r n ∼ 2α n (1 -r n ) 2 , so that k In λn ≍ α n (1 -r n ) 2 = √ n 1 n = n 1-1 2-ε 2 = n (1-ε) 2 .
Observe now that the λ n 's belong to a Stolz domain with vertex at 1. Indeed,

1 -λ n = 1 -r n = 1 n ≃ 1 -ζ n ≍ 1 -λ n (this follows from (2.8)). For fixed β = {β n } n≥1 with β n ≥ 0 we compute Ref β (λ N ) ≃ n≥1 β n n (ε-1) 2 Re 1 -I n (λ n )I n (λ N ) 1 -λ n λ N .
We have already seen that R ∋ I n (λ n ) → 1, n → ∞, and

I n (λ n ) ∼ 1 -α n 1 + r n 1 -r n ∼ 1 - 2 n ε . We have to consider α n λ N + ζ n λ N -ζ n .
For n or N big enough, Re(λ

N + ζ n ) ≍ Im(λ N + ζ n ) ≍ λ N + ζ n ≍ 1.
We thus have to consider the denominator. We observe that by Lemma 2.8

λ N -ζ n = 1 -ζ n λ N ≍ (1 -r N ) + 1 n - 1 N = 1 N + 1 n - 1 N ≍ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1 n if n ≤ N 1 N if n > N (4.2)
As a consequence,

α n λ N + ζ n λ N -ζ n → 0, n → ∞.
Again:

I n (λ N ) ∼ 1 + α n λ N + ζ n λ N -ζ n .
Pick for instance β n = n -(1+η) 2 , where η > 0 is arbitrary, so that obvioulsy β n ≥ 0 and β ∈ ℓ 2 . Then

Ref β (λ N ) ≳ N n≥2N 1 n 1+(ε+η) 2 ∼ N 1 N (ε+η) 2 = N 1-ε 2-η 2 ≍ 1 1 -λ N 1-ε 2-η 2
where η > 0 is arbitrarily small. Compare this with the estimate of the reproducing kernel (3.2). With better choices of β it is of course clear that we can come closer to the maximal growth given by the reproducing kernel.

Finally, we point out that when I(z) → 1 when z → 1 in a fixed Stolz domain, it is, in general, particularly difficult to decide whether or not a sequence of reproducing kernels for (IH 2 ) ⊥ , with the parameter in a Stolz domain with vertex at 1, is an unconditional basis or not. Even when sup n I(λ n ) < 1, there is a characterization known for unconditional basis which is, in general, difficult to check.

( 3 )

 3 The following condition holdsn≥1 1λ n ζλ n + T 1 ζe it dµ(e it ) < ∞. (1.2)

Hence

.

From here we have

We claim that at least for n ≥ 2N,

, so that for the claim to hold it is sufficient to check that

for n ≥ 2N. We have already seen in (4.2) that

which proves the claim. We thus can pass in (4.3) to real parts so that for n ≥ 2N

Re