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Abstract

An easy-to-implement method to measure relevant elastic and damping properties of the constituents of a sandwich
structure, possibly with a heterogeneous core, is proposed. The method makes use of a one-point dynamical mea-
surement on a thick plate. The hysteretic model for each (possibly orthotropic) constituent is written generically
as “E(1 + jη)” for all mechanical parameters. The estimation method of the parameters relies on a mixed exper-
imental / numerical procedure. The frequencies and dampings of the natural modes of the plate are obtained from
experimental impulse responses by means of a high-resolution modal analysis technique. This allows for considerably
more experimental data to be used. Numerical modes (frequencies, dampings, and modal shapes) are computed by
means of an extended Rayleigh-Ritz procedure under the “light damping” hypothesis, for given values of the me-
chanical parameters. Minimising the differences between the modal characteristics yields an estimation of the values
of the mechanical parameters describing the hysteretic behaviour. A sensitivity analysis assess the reliability of the
method for each parameter. Validations of the method are proposed by (a) applying it to virtual plates on which a
finite-element model replaces the experimental modal analysis, (b) some comparisons with results obtained by static
mechanical measurements, and (c) by comparing the results on different plates made of the same sandwich material.

Key words: Elasticity parameters estimation, Loss factor estimation, Mixed numerical/ experimental procedure,
High-resolution modal analysis, Thick-plate vibrations

1. Introduction

For plates having a mechanical function, sandwich structures, with possibly a heterogeneous core, are often pre-
ferred to a homogeneous constitutive material because theycan be made lighter. However, the relevant mechanical
properties of the sandwich as a whole or even of its individual components may be difficult to predict accurately,
particularly when heterogeneous cores are used or if damping is considered. Here“relevant” refers to the parame-
ters that matter in the plate dynamics (see Sec. 2.1). In thispaper, a method for estimating the complex moduli of
elasticity of the constituents of sandwich structures having a heterogeneous core based on one dynamical test on a
plate is proposed. The proposed mixed experimental/ numerical procedure (for an introduction to such procedures,
see for example [1, 2]) is based on the thick-plate model and frequency-independent mechanical properties of each
constituent of the sandwich. It is intended to be easier to implement or to yield more parameters than other methods.

Using structural vibrations for the estimation of homogeneous material parameters is a widespread technique.
Compared to static measurement campaigns which must be performed on a number of isolated samples of the sand-
wich components, dynamic tests leave the sandwich structure untouched and can be performed on one single panel of
more or less arbitrary dimensions.
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The problem of the estimation of solelyelasticityparameters of a homogeneous material using plate vibrations
has been widely addressed in athin-platecontext [1–7] and in athick-platecontext [8–21]. In athin-platecontext,
only in-planeparameters can be estimated. Using athick-plateyields some of the so-calledout-of-planeparameters.

The problem of estimatingelasticity and dampingparameters of homogeneous materials by using point measure-
ments [22–25] has retained some attention in athin-platecontext. In athick-platecontext, methods involvingfull-field
measurements are currently available [26–28], but they arevery time-consuming or need sophisticated equipment. Re-
cently, some efforts have however been done to overcome these limitations byusing point measurements instead of
full-field measurements [29]. However, the experimental data used by these authors severely limits the possibilities
of estimation, as discussed below.

For heterogeneous materials, such as sandwich materials, the literature addresses mainly the estimation ofelas-
ticity parameters, using either beams [30–32] or plates [33, 34]. Afew studies have been devoted in the last years to
the problem of estimating their damping properties in beams[31, 32], in plates by means of sophisticated full-field
measurements [35, 36], and quite recently in plates by single point measurements [37, 38]. Since none of these studies
present a sensitivity analysis, the validity of the model they used for damping is difficult to assess. The following rea-
soning explains how we access to significantly more experimental data than previous studies. The sensitivity analysis
(Sec. 7) shows that these are determinant for some estimatedparameters.

Exploiting the vibrations of sandwich panels with heterogeneous cores requires that the panel dimensions meet
several conditions. In order to consider the sandwich core as homogeneous in the in-plane directions up to a given
frequencyf , the corresponding wavelengthλmust contain at least 50 cells [39]. For a typical cell side-lengthscell and
heighth, this implies that the panel’s dimensions are such thatlx,y > λ > 50scell. Moreoverout-of-planeelasticity and
damping parameters can be estimated only on thick-enough plates. In brief, the panel must be large enough and the
observed dynamics must include high-enough modes, within the limit of a plate model. Due to the intrinsic dissipation
of materials, high-order modes may be impossible to characterise with methods based on the Fourier-transform (FT):
those are limited to modal overlaps ofµ ≃ 30 % in most implementations [35] (see Sec. 4.3 for the definition of
µ). The high-resolution modal analysis (HRMA) technique recently developped by Egeet al. [40] is a successful
substitute to the FT-based modal analysis techniques up to significantly higher modal overlap values.

From a methodological point of view, the present work is an extension to heterogeneous and thick plates of the
work done by De Visscheret al. [23] on homogeneous thin plates. The proposed method is performed on large
sandwich panels which meet the above conditions. Up to≃ 40 modes are extracted by means of the HRMA. This is
considerably more than the 6 or 12 modes used in [29] for the determination of 6 elastic parameters. It will be shown
in Sec. 7 that high-frequency modes are indeed necessary fora reliable estimation of some of these parameters. As
far as damping parameters are considered, experimental data used in [29] do not allow their reliable determination (as
stated by the authors and confirmed by the sensitivity analysis in Sec. 7).

The mixed experimental/ numerical procedure yielding thein-planeand mostout-of-planeelasticity and damping
parameters (complex elasticity moduli) of the constituents of the sandwich is schematically presented in Fig. 1. The
analytical model of the sandwich panel is presented in Sec. 2. Based on this model, the numerical modal frequencies
f Num
n and dampingsαNum

n are derived by means of an extended Rayleigh-Ritz procedure(Sec. 3). The experimental
protocol and the extraction method that yield the experimental modal frequenciesf XP

n and dampingsαXP
n are presented

in Sec. 4. Given the numerical and experimental data, the optimisation procedure that estimates elasticity and damping
parameters of the constituents of the sandwich material is detailed in Sec. 5. The procedure is validated in Sec. 6 by
means of a finite-element analysis. Measurements performedon 3 real plates are shown in Sec. 7 which provides
additional validation insight as well.

2. A mechanical model of sandwich panels

In order to access the modal dampings and frequencies of a sandwich panel, an adapted mechanical model is
needed. In this section, such a complex structure is modelled as an equivalent thick-plate under the Reissner-Mindlin
hypothesis. A frequency-independent model for the materials composing the sandwich is also described. Notations
used in this section are summarized by Tabs. 7, 8 and 9 in the D.
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Figure 1: Overview of the proposed mixed experimental/ numerical procedure: modal characteristics derived experimentally and numerically are
compared; their differences tend to zero when the correct values of the mechanicalparameters are reached.

Figure 2: Geometry of the sandwich plate.

2.1. Hypothesis

The sandwich panel consists in two identical skins and a core(Fig. 2). The thicknesses of the core, skins, and
panel arehc, hs, andh = hc + 2hs respectively. In the following, “panel” designates the physical structure whereas
“plate” refers to the idealised structure made out of the equivalent homogeneous material. The following hypotheses
are made on the panel and plate:

• Displacements are small so that the materials and structures behave linearly.

• Only flexural waves of frequencies far from the delaminationfrequency (the frequency of the first transverse
mode of the panel) are considered.

• The plate is considered to follow the Reissner-Mindlin approximations (thick-plate: first order shear deforma-
tion theory, FSDT), with no direct strain in thez−direction. As pointed out by references [41–43], the accuracy
of the thick-plate model to describe the dynamics of sandwich plates having a soft core depends mainly on the

thickness to length ratio and on the skins Young modulus to core shear modulus ratio:
Es

x,y

Gc
yz,xz

. Generally, the

thicker and the softer the core, the less the thick-plate model is appropriate for modelling purposes as compared
to higher-order models. In [42, Fig. 4], a comparison between thick-plate theory (FSDT) and high-order shear
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deformation theory (HSDT) is performed on the first modal frequency of a sandwich panel with a soft core.
At least for orders of magnitude considered, it could be extended to a higher modal frequency of wavelength

λ by considering the ratio
2h
λ

instead of
h

lx,y
(the “h” written here is defined in Fig. 2 and corresponds to the

writing “2h” in [42]). According to [42, Fig. 4(c) and 4(d)], the difference between FSTD and HSDT does not

exceed 5 % for
Es

x,y

Gc
yz,xz
≃ 100 and a

2h
λ

ratio less than 0.08. The plates that are considered in this paper exhibit

a
Es

x,y

Gc
yz,xz
≃ 100 ratio and the highest modes under consideration are characterized by

2h
λ
≃ 0.08. A thick-plate

model based on FSDT is thus appropriate enough in the presentstudy.

• The wavelengthsλ include at least 50 cells. According to Burtonet al. [39], this ensures that errors on the
modal frequencies of the plate (with a homogeneous equivalent core) are less than 2% when compared to those
of the panel as computed by various finite-elements models.

The skin and core materials are considered as homogeneous, orthotropic in thex− andy− directions.
The formalism chosen for describing the hysteretic behaviour is that of complex moduliE = E(1 + jη) which

do not depend on the frequency (see the model of materials in section 2.2). The Young’s and shear moduli and the
Poisson coefficient of the core areEc

x, Ec
y, Ec

z, Gc
xy, Gc

xz, Gc
yz, ν

c
yx, ν

c
xz, ν

c
yz andνcxy. The same parameters for the

skins are denoted by the index “s”. The properties of the homogeneous material equivalent to the whole sandwich are
denoted by the index “H”. Additional symmetry relationships are given in section 2.2.

The following hypotheses are made on the sandwich panel:

• The sandwich panel is symmetric with respect to its mid-plane.

• Skins are thin compared to the core and the core is softer thanthe skins so that shear stress in the skins can be

ignored:
hs

Gs
xz
≪ hc

Gc
xz

(and the same in the y direction).

• The core is very soft (Ec
x ≪ Es

x, Ec
y ≪ Es

y andGc
xy ≪ Gs

xy). Given the generic expression of the moduli of the

homogeneous equivalent materialEH =

(

hc

h

)3

Ec +















1−
(

hc

h

)3












Es, this ensures that all in-plane stress in the

plate are entirely due to those in the skins.

According to these hypotheses, there is no stress associated with Ec,s,H
z , νc,s,H

xz , ν
c,s,H
yz ,G

s
xz, Gs

yz, Ec
x, Ec

y, Gc
xy,

νcxy, ν
c
yx which are ignored in what follows. The relevant remaining mechanical parameters describing such a plate are

thus [36]:

• In-planeparameters (bending of the skins) :Es
x, Es

y, Gs
xy, ν

s
yx, ν

s
xy.

• Out-of-planeparameters (shearing in the core) :Gc
xz, Gc

yz (excludingEc
z).

In the rest of the article, it will thus be understood that“elastic parameters”means“relevant elastic parameters
for the dynamics of thick-plates”.

These hypotheses are generally fulfilled in common sandwichpanels. Typical orders of magnitude for parameters
are:

{

hs/hc ≃ 10−1

Ec
x/E

s
x ≃ Ec

y/E
s
y ≃ Gc

xy/G
s
xy ≃ 10−4 (1)

2.2. Model of the materials

The damping of plate vibrations has different origins. In the present study, it is assumed that panels vibrate below
their coincidence acoustical frequencies [44]. Consequently, damping due to acoustical radiation in surrounding air
is very small compared to the structural damping [45]. Amongthe different structural damping models, the standard
hysteretic model (which is frequency-independent, see forexample [46, 47]) has been retained. The relationship
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between the stressǫγ and the strainσγ in eachγ−material (γ =s, c, or H) involves 7 complex numbers and can be
written, to first order inηγ as:

σγ =









































Eγx(1+ jηγx) ν
γ
yxE
γ
x[1 + j(ηγνyx

+ η
γ
x)] 0 0 0

ν
γ
xyE
γ
y [1 + j(ηγνxy

+ η
γ
y)] Eγy(1+ jηγy) 0 0 0

0 0 Gγxz(1+ jηγxz) 0 0
0 0 0 Gγyz(1+ jηγyz) 0
0 0 0 0 Gγxy(1+ jηγxy)









































ǫγ (2)

The symmetry of the strain/stress relation adds the following relationshipsνγxyE
γ
y = ν

γ
yxE
γ
x andηγν = η

γ
νxy
+ η
γ
y =

η
γ
νyx
+ η
γ
x which leaves 12 independent real parameters to be identifiedfor each material (24 altogether).

2.3. Equivalent thick-plate

Under the hypothesis and for the orders of magnitude given insection 2.1, the sandwich panel behaves in the low
frequency range like a homogeneous thick-plate [48]. The thickness of the plate is chosen to beh. Its mechanical
properties are given in Eq. (3) and (4) as functions of the mechanical and geometrical properties of the skins and the
core.



































EH
x = Es

x















1−
(

hc

h

)3












EH
y = Es

y















1−
(

hc

h

)3












νHxy = ν
s
xy

GH
xy = Gs

xy















1−
(

hc

h

)3












GH
xz = Gc

xz GH
yz = Gc

yz

(3)



































ηH
x = η

c
x
Ec

x

Es
x

(

hc

h

)3

+ ηs
x















1−
(

hc

h

)3












ηH
y = η

c
y

Ec
y

Es
y

(

hc

h

)3

+ ηs
y















1−
(

hc

h

)3












ηH
xy = η

c
xy

Gc
xy

Gs
xy

(

hc

h

)3

+ ηs
xy















1−
(

hc

h

)3












ηH
xz = η

c
xz η

H
yz = η

c
yz η

H
ν = η

s
ν

(4)

The 12 independent real parameters{EH
x , η

H
x ,E

H
y , η

H
y ,G

H
xy, η

H
xy,G

H
xz, η

H
xz,G

H
yz, η

H
yz, ν

H
xy, η

H
ν } are to be estimated. Their

knowledge yields the elastic and damping properties of eachlayer of the sandwich panel provided that the 12-equation
system formed by Eqs. (3) and (4) is invertible. A sufficient condition is:

ηc
x
Ec

x

Es
x
≪ ηs

x ηc
y

Ec
y

Es
y
≪ ηs

y ηc
xy

Gc
xy

Gs
xy
≪ ηs

xy (5)

since
Ec

x

Es
x
≪ 1,

Ec
y

Es
y
≪ 1, and

Gc
xy

Gs
xy
≪ 1 (see section 2.1). This condition is not satisfied only if the ηc-coefficients

are several orders of magnitude larger than theηs-ones. This is not the case here and rarely the case in general1.
Consequently, the estimation ofEH

x , etc . . . yields an estimation of the mechanical properties of theskin and core
materials.

2.4. Potential, kinetic and dissipated energies in the equivalent thick-plate

Within the frame of the first order Reissner-Mindlin theory [49, Chap. 3], the displacements{u, v,w} in the{x, y, z}-
directions respectively can be written within a good approximation (see below) as:

u(x, y, z) = −zΦx(x, y) v(x, y, z) = −zΦy(x, y) w(x, y, z) = w0(x, y) (6)

The potential energy of the plate is:

1It can be the case when skins are made of metal and the core is made of paper honeycombs or of viscoelastic foam.
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U =
1
2

∫∫∫

V (σH)TǫH dτ

=
1
2

∫∫

S

[

D1

(

∂Φx

∂x

)2

+ D2

(

∂Φx

∂x

∂Φy

∂y

)

+ D3

(

∂Φy

∂y

)2

+ D4















Φ2
y − 2Φy

∂w0

∂y
+

(

∂w0

∂y

)2












+ ...

D5















Φ2
x − 2Φx

∂w0

∂x
+

(

∂w0

∂x

)2












+ D6















(

∂Φx

∂y

)2

+ 2
∂Φx

∂y

∂Φy

∂x
+

(

∂Φy

∂x

)2












]

dxdy

(7)

with

D1 =
EH

x h3

12(1− νxyνyx)
D2 =

νxyEH
y h3

6(1− νxyνyx)
D3 =

EH
y h3

12(1− νxyνyx)

D4 = 2κ2yzhGH
yz D5 = 2κ2xzhGH

xz D6 =
GH

xyh
3

6

(8)

The shear correction factorsκ2yz and κ2xz account for the fact that Eq. (6) is an approximation: the (functional)
anglesΦx andΦy depend lightly onz and sections of the plate do not remain plane in the flexural deformation. The
valuesκyz = κxz = 1 have been chosen according to the recommendations of [50] for sandwich panels.

By definition, the fraction of energy lost during one cycleT is:

∆U = −
∫

T

[

∫∫∫

V(σH)T ∂ǫ
H

∂t
dτ

]

dt (9)

Based on section 2.2,∆U can then be expressed as:

∆U = −π
∫∫

S

[

ηH
x D1

(

∂Φx

∂x

)2

+ ηH
ν D2

(

∂Φx

∂x

∂Φy

∂y

)

+ ηH
y D3

(

∂Φy

∂y

)2

+ ηH
yzD4















Φ2
y − 2Φy

∂w0

∂y
+

(

∂w0

∂y

)2












+ ...

ηH
xzD5















Φ2
x − 2Φx

∂w0

∂x
+

(

∂w0

∂x

)2












+ ηH
xyD6















(

∂Φx

∂y

)2

+ 2
∂Φx

∂y

∂Φy

∂x
+

(

∂Φy

∂x

)2












]

dxdy

(10)

The kinetic energyT of the system is given in Eq. (11) as a function ofΦx, Φy, andw0. In this expression,ρH is
the density of the equivalent homogeneous thick plate. It isgiven byhρH = hcρc + 2hsρs.

T =
ρHω2

2

∫∫∫

(V)

[

u2 + v2 + w2
]

dτ =
ρHω2

2

∫∫

(S)

[

h3

12
(Φ2

x + Φ
2
y) + hw2

0

]

dxdy (11)

3. Estimation of modal parameters by an extended Rayleigh-Ritz procedure

In order to compare experimental results to numerical simulations, it is necessary to evaluate the frequencies
f Num
n and damping factorsαNum

n of the numerical modes corresponding to the sandwich panel.The dynamics of the
plate is given by the hypotheses listed in section 2.1, by Eqs. (2), and by the boundary conditions. Under the “light
damping” hypothesis, which assumes that modal shapes and frequencies are unchanged by the addition of damping,
the frequenciesf Num

n of the numerical modes are easily accessible. The problem consists thus in evaluating the
relationships between theαNum

n damping factors and theηH loss-factors. Notations used in this section are summarized
by Tab. 10 in the D.

3.1. Light damping hypothesis

The honeycomb sandwich panel is considered here as a non-conservative systemPNC havingN degrees of free-
dom. The associated conservative system, without hysteretic damping and having alsoN degrees of freedom, is
denotedPC. TheN modes ofPC have their modal shapes denoted byξC

n and their real modal frequencies denoted by
f C
n . TheN modes ofPNC have their modal shapes denoted byξNC

n and their complex modal frequencies denoted by
f NC
n .
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If PNC is lightly damped, it can be shown [51] thatξNC
n ≃ ξC

n and thatf NC
n ≃ f C

n + jαn to first order. The “light
damping” hypothesis thus assumes that modal shapes and realparts of the frequencies are unchanged by the addition
of damping. This hypothesis has been shown to be acceptable for values of material loss factors lower than 0.1 [52].
This assumption is similar to the assumption made in the “Modal Strain Energy” approach used to model sandwich
panels having visco-elastic cores [52–54].

Let UNC
n be the potential energy associated with thenth mode ofPNC for a maximum vibrational amplitude of 1

on the plate. It varies in time as exp(−2αnt) so that the energy lost by this mode during one cycle,∆UNC
n , is:

∆UNC
n = −2

αn

f C
n

UNC
n (12)

SincePC andPNC have the same modal shapes,i.e. ξNC
n ≃ ξC

n , and the potential energy depends only on the modal
shapes (see Eq. (7)), thenUNC

n = UC
n . And since for the conservative systemPNC, the equalityUC

n = TC
n is true, one

then obtains:

∆UNC
n = −2

αn

f C
n

TC
n (13)

Thanks to the light damping hypothesis, Eq. (13) gives a straightforward way to obtain the modal dampingsαn

from ∆UNC
n , TC

n and, f C
n .

3.2. Derivation of fNum
n

A Rayleigh-Ritz procedure has been used to derive numerically the the modal frequenciesf Num
n and the mode

shapesξNum
n ofPC. To this end, the generalised-displacement fieldsΦx(x, y),Φy(x, y), andw0(x, y) are projected on the

elements of an orthonormal polynomial basis of orderQ satisfying partially the free-free boundary conditions [55, 56]:

Φx(x, y) =
∑

i, j

Li j pi(x)p j(y) Φy(x, y) =
∑

i, j

Mi j pi(x)p j(y) w0(x, y) =
∑

i, j

Ni j pi(x)p j(y) (14)

where the polynomialspi(κ) are generated as described in A.
This procedure generates a new set of 3Q2 generalised displacementsLi j , Mi j and Ni j . The next step consists

in writing the kinetic and potential energiesT andU which have been expressed as functions ofΦx, Φy, andw0 in
section 2.4. The Hamilton principle reads as:

∀(i, j) ∈ [0,Q− 1]2 :
∂(T − U)
∂Li j

= 0
∂(T − U)
∂Mi j

= 0
∂(T − U)
∂Ni j

= 0 (15)

The above system of 3Q2 linear equations can be re-written as [K −4π2 f 2M]q = 0. The expressions of the partial
derivatives ofU with respect toLi j ,Mi j ,Ni j yield K while the partial derivatives ofT with respect toLi j ,Mi j ,Ni j yield
M. The explicit expressions for these partial derivatives asfunctions of thepi-s and of the generalised displacements
are given in B. The resolution of this eigenvalue problem gives a straightforward access to the modal frequencies
f Num
n and mode shapesξNum

n of PC. Under the light damping hypothesis,ξNum
n and f Num

n found forPC are also the
modal shapes and frequencies ofPNC (see Sec.3.1).

3.3. Derivation ofαNum
n

Introducing the modal coefficientsξNum
n (expressed in the{Li j ,Mi j ,Ni j } system of coordinates) into Eqs. 14 yields

analytical expressions for theΦx, Φy, andw0 modal fields and also for theirx- andy-derivatives. For each of theN
modes, the potential, lost, and kinetic energies can be written by introducing these expressions into Eqs. 7, 10, and 11:

∀n ∈ [1,N] : TC
n = 4π2( f Num

n )2tn UNC
n = UC

n =

6
∑

k=1

Dku
n
k ∆UNC

n = −π
6

∑

k=1

ηkDku
n
k (16)

where the subscripts{1,2,3,4,5,6} of η stand for{x, ν, y, yz, xz, xy} respectively. The coefficientstn andun
k are given

explicitly in C. They depend on the geometry and mass parameters of the plate, and are quadratic in modal shapes
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ξNum
n . Note thattn can be considered as half the modal mass for some normalised displacement. The productDkun

k
represents thek-contribution to then-th modal stiffness (wherek stands forx, ν, y, yz, xz, or xy).

The expression (17) of the modal dampingsαNum
n can be deduced from the Eqs. (13) and the last two expressions

of (16) or, equivalently, by (12) and the first two expressions of (16):

αNum
n = −

f Num
n ∆UNC

n

2TC
n

=
1

8π f Num
n tn

6
∑

k=1

ηkDku
n
k or αNum

n = −
f Num
n ∆UNC

n

2UC
n

=
f Num
n π

2
6

∑

m=1

Dmun
m

6
∑

k=1

ηkDku
n
k (17)

One can notice thanαNum
n is a linear combination of theηk. This set of equations is a generalisation to all the

modes of a thick-plate of the expression given by De Visscheret al. [23, Eq. (13)] for three particular modes of a thin
plate. This expression is also a generalization to all the loss factors of the expression established by Johnsonet al.
[53] for sandwich structures having a visco-elastic core.

4. Estimation of modal parameters by high-resolution modal analysis

In this section, the experimental protocol that has been followed to obtain impulse responses and to extract the
modal frequenciesf XP

n and the damping factorsαXP
n is presented. This protocol combines the procedures and imple-

mentation details presented by Rébillatet al. [57, 58] and Egeet al. [40].

4.1. Experimental setup

Throughout all measurements, panels were suspended by thinwires in order to ensure free-free boundary condi-
tions. Light panels were acoustically excited by an electro-dynamical loudspeaker driven by a wide-band electrical
signal [27]. The velocity response was measured in one corner of each panel with a laser Doppler vibrometer (Ometron
VH300+ type 8329). Eventual non-linearities arising from the loudspeaker were removed and the impulse response
of the panel was reconstructed [57, 58]. Since heavy panels can hardly be excited by acoustical means, impact excita-
tions were also used; in this case, the acceleration resulting from the impact was recorded with a light accelerometer
fixed in the vicinity of one corner of the panel. The impulse response was obtained after deconvolution with the
nearly-impulsive force signal [40]. Since no nodal line goes through corners of a free vibrating plate, all excited
modes contribute to the resulting impulse response.

4.2. High resolution modal analysis

It is hypothesised that the experimental data are corruptedby additive noise. Thus, an impulse responseh(t)
is mathematically represented as a sum of decaying exponentials (natural modes) and measurement noiseb(t) as in
Eq. (18). Each contribution of a natural mode is characterised by its amplitudeAXP

n , frequencyf XP
n , dampingαXP

n and
phaseφXP

n .

h(t) =

N
∑

n=1

AXP
n exp(−αXP

n t) cos(2π f XP
n t + φXP

n ) + b(t)

=

N
∑

n=1

AXP
n

2

[

exp(−αXP
n t + j2π f XP

n t + jφXP
n ) + exp(−αXP

n t − j2π f XP
n t − jφXP

n )
]

+ b(t)

(18)

In order to extract experimental modal frequenciesf XP
n and dampingαXP

n from h(t), the recently developed “High
Resolution Modal Analysis” (HRMA) [40] has been applied andis briefly sketched below. The signal is projected
onto two subspaces: the subspace spanned by the sinusoids (signal subspace) and its supplementary (noise subspace)
according to the ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm [59]. The
frequenciesf XP

n and dampingsαXP
n of a given number of modes are the eigenvalues of a matrix obtained after some

computation on the observed signal. The amplitudesAXP
n and phasesφXP

n are estimated afterwards by a least-mean-
square method.
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In the ESPRIT procedure, the dimensions of both subspaces must be chosena priori and the quality of the esti-
mation significantly relies on a proper choice for these parameters. The best choice for the dimension of the signal
subspace is the number of exponentials (twice the number of decaying sinusoids, or real modes, see Eq. (18)). This
number can be estimated, before the analysis, by means of theESTER technique [60].

To improve the performance of the ESPRIT algorithm, signalsare split into several frequency-bands [61], thus
reducing the number of modes to be processed. In order to limit computation time, the responses of the band-pass
filters are frequency-shifted and down-sampled.

A block-diagram describing the different steps involved in HRMA is shown in Fig. 3.

Figure 3: Block diagram of the high resolution modal analysismethod, adapted from [40]. The first block is described in [57].

4.3. Uncertainties in modal parameters estimation

To give an overview of the precision offered by the HRMA, this method is applied to a synthetic signalobtained
by adding two decaying exponentials of equal amplitudes to white noise. The sampling frequency isfs = 44.1 kHz.
The two modal frequencies are 592 and 596 Hz, very close one from each other. For relatively important modal damp-
ings, these two modes overlap in the frequency-domain and therefore, their frequencies and dampings are difficult to
estimate with methods based on the Fourier transform (FT). The modal overlap factorµ (i.e. the ratio between the
half-power modal bandwidth∆ f−3 dB and the average modal spacing∆ fmode) quantifies this phenomenon [40]. If the
modal dampingα is the same for both modes,µ is:

µ =
1

∆ fmode

α

π
(19)

In practice, the FT cannot efficiently separate modes whenµ > 30 % [35]. For HRMA, this upper limit depends
on the signal/noise ratio and on the number of components which are retained in the pre-conditionning step. As an
example, estimations of modal frequencies and dampings have been performed on the synthetic signal with various
α-values (corresponding to modal overlaps fromµ = 1 % to 150 %) and a signal-to-noise ratio (SNR) increasing

from 10 dB to 50 dB. SNR is understood here as 20 log10

(

SRMS

BRMS

)

, whereSRMS is the RMS value of signal in absence

of noise andBRMS the RMS value of noise in absence of signal. For each couple{µ,SNR}, modal parameters were
estimated 50 times. For each mode of the synthetic signal, the uncertainty in frequency or damping is defined as the
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mean of the absolute values of the relative error between theoriginal and the estimated data. These uncertainties,
expressed in dB, are shown as contour plots in Fig. 4.3.

Figure 4: Contour plots of the uncertainty on the estimated “modal” frequencies and dampings of a synthetic signal containing two decaying
sinusoids as a function of the modal overlap and the signal-to-noise ratio. The uncertainty is the mean of 50 absolute values of the relative error
between original and estimated data, for 50 different realisations of the noise. (a): uncertainties on the frequency of the first mode. (b): uncertainties
on the frequency of the second mode. (c) and (d):idemrelatively to the dampings.

It can be seen in Fig. 4.3 that the uncertainties are very small for both dampings and frequencies even for high
modal overlaps and low SNR. In general, the uncertainty increases withµ and decreases slightly when SNR increases.
The HRMA gives better estimations of the eigenfrequencies and dampings than the FFT for a wide range ofµ and
SNR. Since the modal overlapµ generally increases in the impulse response of a plate, and the SNR decreases with the
frequency, the HRMA gives access to significantly more modesthan the usual FT-based modal-analysis techniques
and is thus of great interest in the present context.

5. Optimisation procedure

This section describes how to derive, in two steps, the complex moduli of elasticity of the homogenised equivalent
material of the sandwich plate{EH

x , η
H
x ,E

H
y , η

H
y ,G

H
xy, η

H
xy,G

H
xz, η

H
xz,G

H
yz, η

H
yz, ν

H
xy, η

H
ν } from the experimental and numerical

values of the modal frequencies and dampingsf XP
n , f Num

n , αXP
n , andαNum

n .

5.1. Elastic properties
The estimation of the elasticity parameters{EH

x ,E
H
y ,G

H
xy,G

H
xz,G

H
yz, ν

H
xy} is done by comparing the experimental and

numerical modal frequencies. The estimation problem to solve is non-linear and several orders of magnitude are
involved in the properties values. The following cost-function was used:
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C f =

N
∑

n=1

(

f XP
n − f Num

n

f XP
n

)2

(20)

A steepest-descent (with backtracking) algorithm [62] using rigidities{D1,D2,D3,D4,D5,D6} as design variables
has been chosen. In the present case, the coefficients of the gradient can be easily derived analytically, making the
method easy to implement and computationally light.

Estimation results obtained by gradient methods are known to be very dependent on the initial values of the
parameters. To minimise the influence of the starting point,the following initialisation strategy for the rigidities has
been chosen:

1. Initial values of in-plane rigiditiesD1, D2, D3 andD6 are the most influential; they were derived from the three
lowest modal frequencies of the panel, as proposed in [22].

2. Initial values of out-of-plane rigiditiesD4 andD5 are less critical; homogenisation theory proposed by Gib-
son [63] for honeycomb core sandwich panels is used. This theory requires a value for the elasticity moduli of
the material composing the honeycomb core. The first estimation was based on static tests.

In the following examples, 10 iterations were enough to reach convergence: 10−7 for the gradient.

5.2. Damping properties

As can be seen in Eq. (17), modal dampings depend linearly on the loss factors{ηH
x , η

H
y , η

H
xy, η

H
xz, η

H
yz, η

H
ν } once

the rigidities have been found. The estimation of the loss factors is therefore much easier than that of the elasticity
parameters. A simple least-square optimisation procedureis sufficient to estimate the loss factors from the modal
dampings.

The following cost-function has been chosen:

Cα =
N

∑

n=1

(

αXP
n − αNum

n

αXP
n

)2

(21)

The optimisation procedure is not iterative and needs no particular initialisation.

5.3. Determination of the order Q of the polynomial basis andof the number N of included modal parameters

Two parameters have to be chosen in order to apply the optimisation procedures described in Secs. 5.1 and 5.2.
These methodological parameters are the orderQ of the polynomial basis associated with the extended Rayleigh-Ritz
procedure (see Sec. 3.2) and the numberN of modal parameters (frequencies or dampings) to be included in the
optimisation procedure.

The parametersQ and N can be chosen differently for the estimation of the elastic material properties and for
the estimation of the material loss factors respectively. For the estimation of the elastic material properties, the
parametersQf andNf that minimize the cost functionsC f given by Eq. (20) are chosen. For the estimation of the
damping properties, the parametersQα and Nα that minimize the cost functionsCα given by Eq. (21) are chosen.
Selecting the optimalQ andN values is done empirically by running the optimisations fordifferent values of these
parameters, typically in the rangesN ∈ {20,40} andQ ∈ {10,18}.

5.4. Sensitivity analysis

For the estimation procedures described in sections 5.1 and5.2 to be efficient, modal frequencies and dampings
must convey a sufficient amount of information relative to each parameter to beestimated. In other words, modal
dampings and frequencies have to be sensitive to the parameters of interest.

Relevant sensitivities can be defined and calculated analytically. The sensitivity of the modal valueτ to the
parameterγ is notedSτγ and defined by Eq.(22): ifγ is increased by 1 %,τ increases bySτγ %.

Sτγ =
∆τ

∆γ

γ

τ
=

∆τ

τ
∆γ

γ

(22)
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lx (m) ly (m) h (m) ρ (kg/m3)
HVP 0.4 0.6 4× 10−3 700

VSP 0.4 0.6
Core Skin Core Skin

4× 10−3 0.2× 10−3 40 700

Table 1: Geometry and constituent densities of the homogeneous virtual plate (HVP) and of the virtual sandwich-plate (VSP).

According to Eq. (16) and with the same notations, the sensitivity S fn
Dk

of thenth modal frequencyfn to the rigidity
Dk ∈ {D1,D2,D3,D4,D5,D6} can be written as:

S fn
Dk
=

Dkunk

8π2 f 2
n tn

(23)

Similarly, using Eq. (17), the sensitivitySαn
ηk of thenth modal dampingαn to the loss factorηk ∈ {η1, η2, η3, η4, η5, η6}

can be written as:

Sαn
ηk
=
ηkDkunk

4π fnαntn
(24)

The amount of information relative to one given parameter and contained in one given mode can be easily quanti-
fied with Eq. (23) and Eq. (24). Examples are given in Figs. 7, 10, and 12 (see Sec. 7).

6. Validation of the estimation procedure

A validation of the mechanical model and procedures given insections 2, 3, and 5 is proposed as follows: the
experimental results of the modal analysis are replaced by those of the simulation of a finite-element model (FEM)
of two virtual plates with known properties. The modes of a homogeneous thick plate as modelled using the FEM
are first compared to those given by the extended Rayleigh-Ritz procedure applied to the mechanical model given in
section 2. The method for deriving elasticity and damping parameters as sketched in Fig. 1 is afterwards validated on
a virtual sandwich plate.

6.1. Finite-element model of the virtual plates

To validate the extended Rayleigh-Ritz procedure applied to the mechanical model, a homogeneous thick virtual
plate was designed. A FE-model of the sandwich panel has alsobeen built to test the accuracy of the estimation
method. The chosen sandwich plate is made of 3 homogeneous layers and is symmetrical with respect to its mid-
plane. Geometrical, mechanical and mass parameters of the two plates are given in Tab. 1 and Tab. 2.

For the two virtual plates under study, the finite element model is built on a 2D rectangular mesh made of 60 by
60 regularly spaced points. This value is justified at the endof this section. At each point an 8-nodes shell element
is placed with a linear expansion of the in-plane displacements in the thickness coordinate and a constant transverse
displacement through the thickness (COQ8 of the Cast3M code[64]). Each of these elements possess 6 degrees of
freedom (the translations in the x, y, and z directions and the rotations around the x-, y- and z-axes). In the case of the
virtual sandwich plate, the three-layers are modelled as one equivalent layer as in Sec. 2.3.

6.2. Modal frequencies and dampings of the virtual plates

Finite-element modelling and the associated computationshave been performed using Cast3M [64], a free soft-
ware developed by the French Centre for Atomic Energy (CEA).This software is used here as it allows to find
the complex modes (modal shapesξFEM

n , dampingsαFEM
n and frequenciesf FEM

n ) of a problem put in the form:
K + jωC − ω2M = 0. In this formulation,M,C andK must be real matrices to be accepted by the VIBC function of
the Cast3M code. Complex modes are then found by solving a complex valued generalized eigenvalue problem using
a QZ-algorithm. According to the possibilities offered by Cast3M, modal frequencies and dampings of the virtual
plates are computed using the following procedure:
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Ex Ey νxy Gxy Gxz Gyz

HVP Real part 4 GPa 5 GPa 0.33 1 GPa 10−2 GPa 10−2 GPa
Loss factor (%) 2 5 1 0.5 1 1

VSP Skins Real part 4 GPa 5 GPa 0.33 1 GPa 1 GPa 1 GPa
Loss factor (%) 2 5 1 0.5 1 1

VSP Core Real part 1× 10−3 GPa 1× 10−3 GPa 0.33 1× 10−3 GPa 1× 10−2 GPa 3× 10−2 GPa
Loss factor (%) 1 1 1 1 3 5

Table 2: Mechanical parameters chosen for the the homogeneousvirtual plate (HVP) and for the virtual sandwich-plate (VSP)

1. The conservative system is described according to the constitutive model of section 2.2 with no hysteretic
damping taken into account. A mass matrixM and a real stiffness matrixK′ are deduced from this model.

2. TheN first modal frequencies{ f FEM
n }n∈[1,N] of the conservative system are computed by solving, in the Fourier

domain, the real-valued eigenvalue problemK′ − ω2M = 0.
3. The non-conservative system is described according to the constitutive model of section 2.2, including hysteretic

damping. A mass matrixM and a complex stiffness matrixK = K′ + jK′′ are deduced from this model.
4. The “light damping hypothesis,” is retained. The real part of the modal frequencies of the non-conservative

system are thus already known (see Sec. 3.1).
5. For each one of the N first modes of the non-conservative system, the following operations are then performed:

(a) The dynamic equation of the dissipative system are formulated, in the Fourier domain, as−ω2Mq+ jωCq+
K′q = 0 with C = K′/(2π f FEM

n ). The problem is thus formulated as expected by the VIBC function with
C real but frequency-dependent. Its important to notice thatthis equation models correctly the hysteretic
damping model described in Sec. 2.2 only nearω ≃ 2π f FEM

n .
(b) The modal loss factorαn is obtained as the imaginary part of the eigenvalue of this new problem solved

nearω ≃ 2π f FEM
n .

For the homogeneous virtual plate, increasing the number ofelements above 60 elements per side results in less
than a 1 % relative variation of the 35 first modal frequencies(conservative and non conservative cases) and in less
than 0.4 % of the 35 first modal dampings. The same convergence is observed for the 3-layer virtual sandwich plate.
Thus, 60 elements per side are enough to ensure the desired precision on the analysis of the first 35 modes of the two
plates.

6.3. Validation of the extended Rayleigh-Ritz resolution of the mechanical model

Comparing the modal frequencies and dampings given by the extended Rayleigh-Ritz resolution method (18-
order) and by the FE-model for the homogeneous thick virtualplate provides an estimate of the reliability of the
retained mechanical model coupled with the extended Rayleigh-Ritz resolution method for the first 35 modes.

The plate under study in the present section is not a sandwichpanel as the one modelled in Sec.2 but a homoge-
neous thick plate. For such homogeneous plates, values for the shear correction factors are usually chosen between
2/3 and 5/6 instead of 1, which is recommended only for sandwich panels[50]. Values ofκyz = κxz = 0.7 have been
arbitrarily chosen here in the range [0.666,0.833].

With shear correction factorsκyz = κxz = 0.7, the mean absolute difference between FE-results and Rayleigh-Ritz
results is lower than 1.2 % for modal frequencies and lower than 25 % for modal dampings. The larger error on modal
dampings may be explained as follows. The damping matrixC provided to the FEM results from the writing of the
stiffness matrix and is not necessarily diagonal when expressed in the basis of the conservative modes. By contrast,
the extended Rayleigh-Ritz procedure accounts for dissipation by associating one damping coefficientαNum

n to each
mode, neglecting by construction any coupling between conservative modes.

6.4. Estimation results for the3-layer virtual sandwich-plate

A 3-layer virtual sandwich-plate has been used to validate the estimation procedure described in Fig. 1. Since,
for this 3-layer virtual sandwich-plate, convergence problems were encountered with the steepest-descent algorithm,
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a simplex search method [65] was used instead in this case (function “fminsearch” in MatlabTM). The initialisation
procedure remains the same as the one described in Sec. 5.1. For all other optimisations, the steepest-descent algorithm
is used.

Based on the firstN = 35 modal frequencies given by the FEM and using a Rayleigh-Ritz orderQ = 16, the
estimated values of the elasticity parameters are comparedto the original values given to the FEM. The loss factors
have been estimated withN = 28 modes and a model orderQ = 18. The estimated mechanical parameters are
presented in Fig. 5 for each layer of the sandwich.

The residual mismatch between the results of estimation andthe original values is discussed here. The mean

absolute value

〈
∣

∣

∣

∣

∣

∆ fn
fn

∣

∣

∣

∣

∣

〉

of the relative difference between experimental and numerical modal frequencies is 2.6 %. For

the dampings, the residual mismatch
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∣

∣

∣

∣
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∣

∣

∣

∣

〉

is 21.6 %. These orders of magnitude, as compared to the one obtained

in Sec. 6.3, suggest that the assumption that a 3-layer sandwich plate can be modelled as a simple homogeneous thick
plate is correct in the frequency range under study.

Figure 5: Comparison between the values of the mechanical parameters used in the FEM (Original), and their estimated values (Estimated) for
each constituent (Skins, Core) of the virtual sandwich plate. Original parameters are represented as black bars with their numerical value indicated
above. White bars represent the ratio of the estimated to the original parameters. Elasticity parameters have been estimatedwith 35 modes and
with a model orderQ = 16. Loss-factors have been estimated with 28 modes and with a model orderQ = 18.

It can be seen in Fig. 5 that the agreement between estimated and original parameters is globally very good. In-
plane elasticity parameters of the skins and out-of-plane elasticity parameters of the core are estimated with a mean
absolute relative error of 10.2 %. Principal in-plane loss-factorsηs

x andηs
y are estimated with a comparable accuracy

of 7.5 %. The imaginary part ofνsxy is largely overestimated while the imaginary part ofGs
xy is underestimated.

However, the overestimation of one parameter may be the result of the underestimation of the other, by compensation.
The imaginary parts ofGc

xz andGc
yz are assigned zero values by the estimation process. The factthat zeros values

are found illustrates the limitations of the thick-plate model under Reissner-Minldin hypothesis. Physically, this
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underestimation is due to the fact that only a marginal part of the total energy-loss per cycle is dissipated through
the mechanical couplings described byGc

xz andGc
yz. Modal dampings factors are thus here not very sensitive to these

material loss factors.
A complete validation study should have established the validity limits of the estimation method. Even though

this is not what has been done here, the above results suggestthat the mixed numerical/experimental procedure is
potentially an accurate tool for the estimation of the main elasticity moduli and loss-factors of 3-layers sandwich
plates.

7. Experimental results

7.1. Plate specimens

Three different sandwich panels with heterogeneous cores have been investigated. The first two – HC1 and HC2

– are rectangular lightweight honeycomb sandwich panels. Their skins and honeycomb cores are made of epoxy and
paper. The third panel, made of two stainless steel sheets (skins) and two bidirectionally corrugated steel layers witha
20 % relative density (core), is denoted CC (for ”corrugatedcore”). The geometry and mass parameters of each panel
are given in Tab. 3.

lx (cm) ly (cm) hs (mm) hc (mm) scell (mm) ρc (kg/m3) ρs (kg/m3)
HC1 39.15 59.10 0.20 4.88 4.0 37.8 713
HC2 80.00 99.95 0.20 3.80 4.0 37.8 713
CC 17.78 22.86 0.20 1.48 1.0 2164 7800

Table 3: Geometry and constituent-densities of three sandwich panels HC1, HC2, and CC. The characteristic side-length of the core-cells is scell.

The
Es

x,y

Gc
yz,xz
≃ 100 criterium (see Sec. 2.1) that must be satisfied turns out to be met for all the plates that have been

tested. According to section 1, the sandwich core can be considered as homogeneous in the in-plane directions up to a
given frequencyfmax if the corresponding wavelengthλmin contains at least 50 cells [39]. For a typical cell side-length

scell and heighth, this implies that
λmin

scell
> 50. Moreover, plates must be thick-enough in order that out-of-plane

elasticity parameters and loss-factors be estimated, but not too thick for the thick-plate theory to remain valid. This

implies
2h

λmin
< 0.08 [42]. The validity of these assumptions will be discussed.

7.2. Results for panel HC1
Panel HC1 was acoustically excited [27] and 46 modes were identified. Elasticity parameters and loss-factors

were estimated withN = 40 modes and a model orderQ = 14 using the steepest-descent algorithm of Sec. 5.1. The
estimated parameters of the equivalent homogeneous plate and the corresponding skin and core parameters are given
in Tab. 4.

The equivalent plate corresponding to panel HC1 was found to be slightly orthotropic. This is a consequence of
the laminated skins and of the orthotropy of the honeycomb structure. One can also notice that very low values are
found for the loss factors associated with the Poisson ratio: little energy is dissipated via the Poisson effect in panel
HC1. Also, out-of-plane loss factors are relatively larger than the in-plane loss factors; this denotes that dissipation in
honeycomb core structures is larger for out-of-plane shearing than for bending.

Static tensile tests have been performed on two samples of the skin material in the x- and y-directions respectively.
The results are:Es

x = 5.3± 0.5 GPa,νsxy = 0.28± 0.04, Es
y = 7.3 ± 0.7 GPa,νsyx = 0.27± 0.04. These values are in

excellent agreement with the values estimated using the proposed method. This constitutes an additional validation
for the proposed method.

The optimisation procedure consists in minimising the difference between the experimental modal frequencies and
dampings and numerical modal frequencies and dampings. Theresidual differences are presented in Fig. 6 and provide
an estimation of the reliability of the method. One can observe that there is a very low relative difference between
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Ex Ey νxy Gxy Gxz Gyz

Equivalent Real part 1.0 GPa 1.4 GPa 0.25 0.46 GPa 12 MPa 26 MPa
plate Loss factor (%) 1.5 1.3 0 1.2 5.5 4.1
Core Real part - - - - 12 MPa 26 MPa

Loss factor (%) - - - - 5.5 4.1
Skins Real part 4.8 GPa 6.8 GPa 0.25 5.6 GPa - -

Loss factor (%) 1.5 1.3 0 1.2 - -
Skins Tensile tests 5.3 GPa 7.3 GPa 0.28 - - -

±0.5 GPa ±0.7 GPa ±0.04

Table 4: Estimated mechanical parameters for panel HC1. Parameters relative to the skins and the core are obtained after inversion of Eqs. (3) and
(4).

Figure 6: Residual differences on eigenfrequencies (a) and dampings (b) for panel HC1. Numerical values have been obtained using elasticity and
damping parameters from Tab. 4.

the measured and numerical modal frequencies:
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= 2 %. Thus, the homogeneous thick plate model based on

the Reissner-Mindlin hypothesis agrees with the real dynamical behavior of panel HC1. Moreover, there is also a low

relative difference between measured and numerical modal dampings:
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= 10 %. The frequency-independant

loss factors combined with the “light damping” hypothesis appears to be a good model for the constitutive material of
panel HC1.

Based on the estimated values given in Tab. 4, the modal shapes can be computed by means of the extended
Rayleigh-Ritz procedure. In they− direction, panel HC1 has a maximum of 8 nodal lines in the frequency range
under consideration. This corresponds to 4.5λmin: the shortest wavelength is 13 cm and containsλmin

y /scell ≃ 30 cells.
In the x− direction, there are up to 6 nodal lines:λmin

x = 11 cm,λmin
x /scell ≃ 28 cells. Theoretically, this is hardly

sufficient for the core to be considered as homogeneous. The condition
2h

λmin
≤ 0.08 is met for almost all modes since

2h

λmin
= 0.08 in they−direction and

2h

λmin
= 0.1 in they−direction. However, a very good agreement is observed

in Fig. 6 between the homogeneous model and the experimentalvalues. Therefore, 30 cells per wavelength may be
enough in the present case for the core to be considered as homogeneous. The thick-plate theory also seems sufficient

for
2h

λmin
= 0.1.
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Figure 7: Sensitivities of the modal frequencies to the in-plane (a) and the out-of-plane (b) elasticity parameters. Sensitivities of the modal
dampings to the in-plane (c) and the out-of-plane (d) loss factors for panel HC1. Modes are identified by the numbers of their nodal lines in thex-
and y-directions (top and bottom numbers respectively, on top of each bar).

Sensitivities of the modal frequencies and dampings to the in-plane and out-of-plane mechanical parameters for
panel HC1 are shown in Fig. 7. Modal frequencies and dampings are sensitive to all the in-plane elasticity and
damping parameters. The estimated in-plane mechanical properties are thus reliable. Sensitivities to the out-of plane
mechanical properties are relatively important. This ensure a high degree of confidence for the estimated values of
Re(GH

xz) and Re(GH
yz) since a large number of sensitive modes are involved in the optimisation procedure. Sensitivity

to the out-of-plane loss factors is one order of magnitude lower. Thus, estimated out-of-plane loss factors are less
reliable than in-plane loss factors.

7.3. Results for panel HC2
Panel HC2 was excited by an impact hammer and 26 modes were extracted. Elasticity parameters and loss-factors

were estimated withN = 26 modes and a model orderQ = 14 using the steepest-descent algorithm of Sec. 5.1. The
estimated parameters of the equivalent homogeneous plate are given in Tab. 5.

As can be seen in Fig. 8, in-plane and out-of plane elasticityand damping parameters are similar to those of
panel HC1. Theoretically, if the cores of the two plates were made of the same material (which is not known with
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Ex Ey νxy Gxy Gxz Gyz

Equivalent Real part 1.0 GPa 1.2 GPa 0.27 0.48 GPa 13 MPa 28 MPa
plate Loss factor (%) 1.0 1.1 0.0 3.2 44 30
Skins Real part 3.8 GPa 4.7 GPa 0.27 1.9 GPa - -

Loss factor (%) 1.0 1.1 0.0 1.2 - -
Core Real part - - - - 13 MPa 28 MPa

Loss factor (%) - - - - 44 30

Table 5: Estimated mechanical parameters for panel HC2. Parameters relative the skins and the core are obtained after inversion of Eqs. (3) and (4)

certainty but seems to be the case), Re(GH
xz) and Re(GH

yz) should be equal for both panels, according to Eq. (3). This is
verified here with a good degree of precision. This robustness against the size of test-panels constitutes an additional
indication that the proposed method is reliable with regardto material properties.

The residual differences
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for panel HC2 are shown in Fig. 9. They are approximately 3.8 % and

16.7 % respectively. Plate and material models can be considered as appropriate for these honeycomb core sandwich
panels (panels HC1 and HC2).

Based on the estimated values given in Tab. 5, the modal shapes of the extracted modes can be computed with
the extended Rayleigh-Ritz procedure (Sec. 3.2). In they− direction, panel HC2 has a maximum of 5 nodal lines in
the frequency range under consideration: its side-length is 3λmin

y andλmin
y = 33 cm, containing≃ 80 cells. In thex−

direction, panel HC2 has a maximum of 5 nodal lines:λmin
x = 26.5 cm,

λmin
x

scell
≃ 65 cells. This is more than sufficient

for the core to be considered as homogeneous. Moreover in both directions,
2h

λmin
≃ 2.4 × 10−2 < 0.08, which is

theoretically sufficient for modal frequencies to be predicted using thick-plate theory. The core of panel HC2 can be
considered as homogeneous and all the modal frequencies canbe predicted using thick-plate theory.

Sensitivities of the modal frequencies and dampings to the in-plane and out-of-plane mechanical parameters for
panel HC2 are shown in Fig. 10. Sensitivities to the elastic out-of-plane mechanical properties are lower for panel
HC2 than for panel HC1. However, since results obtained on panel HC2 are in close agreement with those obtained
with panel HC1, this suggests that a sensitivity of≃ 10−2 may still yield reliable results. Very low sensitivities to
the out-of-plane loss factors explain that values of loss factors estimated on panel HC2 deviate significantly from the
values obtained with panel HC1.

7.4. Results for panel CC

Panel CC was excited with an impact hammer. Elasticity material parameters have been estimated withN = 35
modes and a model orderQ = 14 using the steepest-descent algorithm of Sec. 5.1. Loss factors have been estimated
with N = 23 modes and a model orderQ = 13. The estimated parameters of the equivalent homogeneousplate are
given in Tab. 6.

Ex Ey νxy Gxy Gxz Gyz

Equivalent Real part 117 GPa 102 GPa 0.33 43 GPa 77 GPa 163 GPa
plate Loss factor (%) 0.1 0.1 0.0 0.1 0.0 0.7
Skins Real part 229 GPa 200 GPa 0.33 84 GPa - -

Loss factor (%) 0.1 0.1 0.0 0.1 - -
Core Real part - - - - 77 GPa 163 GPa

Loss factor (%) - - - - 0.0 0.7

Table 6: Estimated mechanical parameters for panel CC. Parameters relative the skins and the core are obtained after inversion of Eqs. (3) and (4)

At first, it can been seen from Tab. 6 that the real parts ofEx and Ey for skins match standard values for the
18



Figure 8: Comparison between the skins and core mechanical parameters estimated from panels HC1 and HC2. Numerical values indicated as
references black bars correspond to the results obtained for the panel HC1. White bars represent the ratio of the estimated value for HC2 relatively
to the one estimated for HC1.

elasticity modulus of steel (≃ 210 GPa [49]). Since panel CC is a metallic sandwich panel, its loss factors are much
lower than those of panels HC1 and HC2. The residual differences on eigenfrequencies and dampings are shown in

Fig. 11. It can be seen that the uncertainty on the estimationof damping is large
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= 34 % and increases with

frequency. Since the estimated structural loss factors arevery low, the measured modal dampings are very sensitive
to the way the panel is suspended (thin wires) and to damping due to acoustical radiation. Moreover, these damping
mechanisms are also mode-dependant. In the high-frequencyrange, a systematic discrepancy appears between the
measured and the (numerically) modelled damping factors. For the equivalent homogeneous plate, the coincidence
frequency fc is estimated to be approximately 4 kHz. Damping due to acoustical radiation increases as the modal
frequency comes close tofc. In the same spirit, the difference betweenf XP

n and f Num
n seems to be systematically

negative by≃ 2 %. By order of magnitude, this is consistent with air loading in the low frequency range. The relative

differences between experimental and numerical modal frequencies remain small
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= 2.3 %.

Based on the estimated values given in Tab. 6, the modal shapes of the extracted modes can be computed by means
of the extended Rayleigh-Ritz procedure of Sec. 3.2. In they− direction, panel CC has a maximum of 7 nodal lines in

the studied frequency range: its side-length is 4λmin
y andλmin

y = 5.7 cm, containing
λmin

y

scell
≃ 55 cells. In thex− direction,

panel CC has a maximum of 6 nodal lines:λmin
x = 5 cm, containing

λmin
x

scell
≃ 50 cells. This is sufficient for the core to
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Figure 9: Residual differences on eigenfrequencies (a) and dampings (b) for panel HC2. Numerical values have been obtained with elasticity and
damping parameters given in Tab. 5.

be considered as homogeneous. Also,
2h

λmin
= 6.6× 10−2 < 0.08 in they− direction, and

2h

λmin
= 7.52× 10−2 < 0.08

in the y− direction, which is also sufficient for modal frequencies to be predicted by the thick-plate theory. In the
frequency range under consideration, the core of panel CC can be considered as homogeneous and the high modal
frequencies are expected to be well predicted by the thick-plate theory.

Results of the sensitivity analysis are presented in Fig. 12for panel CC. It can be seen that sensitivities to the
out-of-plane properties are very low compared to sensitivities relative to the in-plane properties and also as compared
to sensitivities to the out-of-plane properties of panels HC1 and HC2. This means that the modal frequencies and
modal dampings are hardly influenced by the out-of-plane complex moduli. As a consequence, the estimations of
these parameters must be interpreted very carefully. In this case the core material is too stiff (the last hypothesis listed
in Sec. 2.1 is not valid): the out-of-plane shear moduli are too high to allow for their precise identification.

8. Conclusion

In this paper, a method for the measurement of six elasticitymoduli and six loss-factors of the constituents of a
three-layer symmetrical sandwich material, namelyEs

x, Es
y, ν

s
xy, Gs

xy, Gc
xz, Gc

yz, has been presented (sandwich structure
in the xy-plane). The method directly extends the work of de Visscheret al. [23] by proposing a means to measure
alsoout-of-planecomplex moduli. It continues the work of Bastoset al. [33] with the inclusion of loss factors in
the mixed experimental/ numerical procedure. Compared to the work of Pagnaccoet al. [26] and to that of Matter
et al. [27, 36], the present method does not require full-field measurements and is thus much simpler to implement
and faster to execute. Compared to the method of [29, 37, 66],High Resolution Modal Analysis allows for more
modal data to be extracted and used for the estimation of the elastic and damping properties of sandwich materials.
Moreover, residuals obtained in the present paper for modalfrequencies (≃ 1 %) and dampings (≃ 10 %) are fully in
agreement with residuals obtained in [36–38] which estimate mechanical parameters of sandwich panels using much
less modal data than does the present study.

The method is suited to sandwich structures with heterogeneous cores (e.g. honeycomb cores) provided that the
panels on which the tests are performed satisfy several geometrical requirements. It has been validated successfully on
virtual plates. Results obtained on three sandwich panels suggest that the dynamic behaviour of the sandwich material
can be accurately modelled using (1) an equivalent homogeneous plate modelled with first order shear deformation
theory, (2) a simple hysteretic model of the type “E(1+ jη)” for each constituent material and (3) the “light damping”
hypothesis for the panel. The consistency of the results with those obtained by static measurements, or on two different
panels having the same sandwich structure, also contributes to the validation of the method. The extensive sensitivity
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Figure 10: Sensitivities of the modal frequencies to the in-plane (a) and out-of-plane (b) elasticity parameters. Sensitivities of the modal dampings
to the in-plane (c) and out-of-plane (d) loss factors for panel HC2. Modes are identified by the numbers of their nodal lines in thex- and y-direction
(top and bottom numbers respectively, on top of each bar).

analysis combined with the examination of the residual differences left by the optimisation process yields the degree
of confidence that can be attributed to the value of each extracted mechanical parameter.

Since this method is simple and needs no heavy experimental apparatus, it is suited to the in-line control of the
production of sandwich-materials. This method can also replace classical tensile tests (with some profit) and also,
within the frame of the proposed model, the dynamical mechanical analysis (DMA) for the measurement of elastic
and damping material properties.
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Figure 11: Residual difference on eigenfrequencies (a) and dampings (b) for panel CC.Numerical values have been obtained using elasticity and
damping parameters given in Tab. 6.

A. Generation of the orthonormal polynomial basis

The orthonormal polynomial basis{pi(κ)}i∈[0,N] [55, 56] used in the extended Rayleigh-Ritz procedure of Sec. 3 is
generated by an iterative Gram-Schmidt process as follows:



























i = 0 p̃0(κ) =
1
√

2
i = 1 p̃1(κ) = (κ− < κp0(κ), p0(κ) >)p0(κ)
i > 1 p̃i(κ) = (κ− < κpi−1(κ), pi−1(κ) >)pi−1(κ)− < κpi−2(κ), pi−2(κ) > pi−2(κ)

(25)

The scalar product between two polynomialsa(κ) andb(κ) is: < a(κ),b(κ) >=
∫ 1

−1
a(κ)b(κ)dκ. The normalized

and not-normalized versions of theith element of the polynomial basis are denoted respectively bypi(κ) and p̃i(κ).
The former is derived from the latter by: ˜pi(κ) =

√

< p̃i(κ), p̃i(κ) >pi(κ). The basis is orthonormal since the following
equation is satisfied:∀(i, j) ∈ [0,N]2 < pi(κ), p j(κ) >= δi j , whereδi j is the Kronecker symbol.

B. Analytical expressions of the derivatives of T and U

The matricesK and M of the eigenvalue problem [K − 4π2 f 2M]q = 0 (Sec. 3.2) are derived from the analytical
expressions of the derivatives ofT andU relatively to the generalised displacementsLi j , Mi j , Ni j . Those are related
to the ”natural” displacementsΦx, Φy, andw0 by:

Φx(x, y) =
∑

i, j

Li j pi(x)p j(y) Φy(x, y) =
∑

i, j

Mi j pi(x)p j(y) w0(x, y) =
∑

i, j

Ni j pi(x)p j(y) (26)

The derivatives of the kinetic energyT =
ρHω2

2

∫∫

(S)

[

h3

12
(Φ2

x + Φ
2
y) + hw2

0

]

dxdy are:
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4
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∂T
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4
Mi j

∂T
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=
ρHlxlyhω2

4
Ni j

(27)
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Figure 12: Sensitivities of the modal frequencies to the in-plane (a) and out-of-plane (b) elasticity parameters. Sensitivities of the modal dampings
to the in-plane (c) and out-of-plane (d) loss factors for panel CC. Modes are identified by the numbers of their nodal lines in the x- and y-directions
(top and bottom numbers respectively, on top of each bar).

The simplicity of the formulas is due to the fact that no spacederivatives appear in the expression of the kinetic
energy and that all productspi p j (i , j) cancel out once integrated (orthogonality of the polynomials).

23



The derivatives of the potential energyU (given by Eq. 7) are:

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where
∑

k,l

stands for
∑

(k,l) ∈ [0,N]2

and where the following integrals have been introduced:

I (i, j) =<
dpi(κ)

dκ
, p j(κ) >=

∫ 1

−1

dpi(κ)
dκ

p j(κ)dκ , J(i, j) =<
dpi(κ)

dκ
,
dpj(κ)

dκ
>=

∫ 1

−1

dpi(κ)
dκ

dpj(κ)

dκ
dκ (29)

C. Analytical expressions of tn and un
k

The explicit expression of the coefficients tn and un
k, representing respectively then-th modal mass (for some

normalised displacement) and thek-contribution to then-th modal stiffness, are necessary to compute the numerical
modal dampings and the sensitivities of the modal frequencies and dampings to the rigidities and loss factors respec-
tively, as explained in Secs. 3.3 and 5.4. The coordinates ofthenth modal shape are denoted by{Ln

lm,M
n
lm,N

n
lm}. The

calculation is sketched in section 3.3. The expression oftn is:

tn =
ρHlxlyh

8
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l,m

[

(Ln
lm)2 +

h2

12

(

(Mn
lm)2 + (Nn

lm)2
)

]

(30)

The expressions of{un
k}k ∈ [1,6] are:
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where theI (l, p) andJ(l, p) are defined at the end of B.

D. Nomenclature

lx (m) Length of thex-side of the plate
ly (m) Length of they-side of the plate
hs (m) Skin thickness
hc (m) Core thickness

h = hc + 2hs (m) Sandwich panel thickness
ρs (kg×m−3) Skin mass density
ρc (kg×m−3) Core mass density

ρH = 1/h× (hcρc + 2hsρs) (kg×m−3) Equivalent homogeneous plate mass density
scell (m) Characteristic side-length of the core-cells

Table 7: Notations for the geometrical and mass parameters of the panels

Core Skin Equivalent homogeneous plate
Young modulus in thex-direction Ec

x = Ec
x(1+ jηc

x) Es
x = Es

x(1+ jηs
x) EH

x = EH
x (1+ jηH

x )
Young modulus in they-direction Ec

y = Ec
y(1+ jηc

y) Es
y = Es

y(1+ jηs
y) EH

y = EH
y (1+ jηH

y )
Young modulus in thez-direction Ec

z = Ec
z(1+ jηc

z) Es
z = Es

z(1+ jηs
z) EH

z = EH
z (1+ jηH

z )
Shear modulus in thexy-plane Gc

xy = Gc
xy(1+ jηc

xy) Gs
xy = Gs

xy(1+ jηs
xy) GH

xy = GH
xy(1+ jηH

xy)
Poisson ratio in thexy-plane νcxy = ν

c
xy(1+ jηc

νxy
) νsxy = ν

s
xy(1+ jηs

νxy
) νHxy = ν

H
xy(1+ jηH

νxy
)

Shear modulus in thexz-plane Gc
xz = Gc

xz(1+ jηc
xz) Gs

xz = Gs
xz(1+ jηs

xz) GH
xz = GH

xz(1+ jηH
xz)

Poisson ratio in thexz-plane νcxz = ν
c
xz(1+ jηc

νxz
) νsxz = ν

s
xz(1+ jηs

νxz
) νHxz = ν

H
xz(1+ jηH

νxz
)

Shear modulus in theyz-plane Gc
yz = Gc

yz(1+ jηc
yz) Gs

yz = Gs
yz(1+ jηs

yz) GH
yz = GH

yz(1+ jηH
yz)

Poisson ratio in theyz-plane νcyz = ν
c
yz(1+ jηc

νyz
) νsyz = ν

s
yz(1+ jηs

νyz
) νHyz = ν

H
yz(1+ jηH

νyz
)

Table 8: Notations for the complex mechanical parameters (elastic parameters and loss factors) of the panels (j2 = −1)
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u(x, y, z) (m) Displacement in thex-direction
v(x, y, z) (m) Displacement in they-direction
w(x, y, z) (m) Displacement in thez-direction
Φx(x, y) (rad) Rotation around thex-axis (Reissner-Mindlin hypothesis)
Φy(x, y) (rad) Rotation around they-axis (Reissner-Mindlin hypothesis)
w0(x, y) (m) Displacement in thez-direction (Reissner-Mindlin hypothesis)

U (J) Potential energy
∆U (J) Energy lost per cycle

T (J) Kinetic energy

D1 =
EH

x h3

12(1− νxyνyx)
(N×m) Plate rigidity in thex-direction

D2 =
νxyEH

y h3

6(1− νxyνyx)
(N×m) Plate rigidity in thexy-plane

D3 =
EH

y h3

12(1− νxyνyx)
(N×m) Plate rigidity in they-direction

D4 = 2κ2yzhGH
yz (N×m) Plate rigidity in theyz-plane

D5 = 2κ2xzhGH
xz (N×m) Plate rigidity in thexz-plane

D6 =
GH

xyh
3

6
(N×m) Plate rigidity in thexy-plane

κxz - Shear correction factor in thexz-plane
κyz - Shear correction factor in theyz-plane

η
c,s,H
ν = η

c,s,H
νxy
+ η

c,s,H
y = η

c,s,H
νyx
+ η

c,s,H
x - Global loss factor due to the Poisson ratio effects in thexy-plane

η1 = η
H
x - Loss factor in thex-direction

η2 = η
H
ν - Global loss factor due to the Poisson ratio effects in thexy-plane

η3 = η
H
y - Loss factor in they-direction

η4 = η
H
yz - Loss factor in theyz-plane

η5 = η
H
xz - Loss factor in thexz-plane

η6 = η
H
xy - Loss factor in thexy-plane
f (Hz) Frequency

ω = 2π f (rad×s−1) Angular frequency
λ (m) Wavelength of the flexural vibrations

λmin
x (m) Minimal wavelength of the flexural vibrations in thex-direction

in the frequency range under study
λmin

y (m) Minimal wavelength of the flexural vibrations in they-direction
in the frequency range under study

Table 9: Notations used in the dynamical model of the panels
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K (N×m−1) Stiffness matrix
M (kg) Mass matrix
C (N×m−1×s−1) Damping matrix

f XP
n (Hz) Experimentally obtained modal frequency of thenth-mode
αXP

n (s−1) Experimentally obtained modal damping of thenth-mode
f Num
n (Hz) Numerically obtained modal frequency of thenth-mode
αNum

n (s−1) Numerically obtained modal damping of thenth-mode
ξNum

n (m) Numerically obtained modal shape of thenth-mode
µ - Modal overlap
PC - Conservative system associated to the plate
UC

n (J) Potential energy of thenth-mode ofPC

TC
n (J) Kinetic energy of thenth-mode ofPC

PNC - Non-conservative system associated to the plate
UNC

n (J) Potential energy of thenth-mode ofPNC

TNC
n (J) Kinetic energy of thenth-mode ofPNC

∆UNC
n (J) Energy lost per cycle by thenth-mode ofPNC

Q - Order of the polynomial basis (Rayleigh-Ritz procedure)
pi(x) - ith element of the polynomial basis in thex-direction (Rayleigh-Ritz procedure)
p j(y) - jth element of the polynomial basis in they-direction (Rayleigh-Ritz procedure)

Li j (rad) Coordinates ofΦx(x, y) in the polynomial basis (Rayleigh-Ritz procedure)
Mi j (rad) Coordinates ofΦy(x, y) in the polynomial basis (Rayleigh-Ritz procedure)
Ni j (m) Coordinates ofw0(x, y) in the polynomial basis (Rayleigh-Ritz procedure)

Table 10: Notations used in the numerical model of the panels
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