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Abstract

An easy-to-implement method to measure relevant elastiadamping properties of the constituents of a sandwich
structure, possibly with a heterogeneous core, is propofad method makes use of a one-point dynamical mea-
surement on a thick plate. The hysteretic model for eachs{plysorthotropic) constituent is written generically
as “E(1 + jn)” for all mechanical parameters. The estimation methodhefgarameters relies on a mixed exper-
imental/ numerical procedure. The frequencies and dampings of theatanodes of the plate are obtained from
experimental impulse responses by means of a high-resolotodal analysis technique. This allows for considerably
more experimental data to be used. Numerical modes (freipgerdampings, and modal shapes) are computed by
means of an extended Rayleigh-Ritz procedure under thbt“dgmping” hypothesis, for given values of the me-
chanical parameters. Minimising thefdirences between the modal characteristics yields an éstimad the values

of the mechanical parameters describing the hysteretiavielr. A sensitivity analysis assess the reliability af th
method for each parameter. Validations of the method arpgsexd by (a) applying it to virtual plates on which a
finite-element model replaces the experimental modal aiglgh) some comparisons with results obtained by static
mechanical measurements, and (c) by comparing the resutigferent plates made of the same sandwich material.

Key words: Elasticity parameters estimation, Loss factor estimatidimed numerica) experimental procedure,
High-resolution modal analysis, Thick-plate vibrations

1. Introduction

For plates having a mechanical function, sandwich strestuwrith possibly a heterogeneous core, are often pre-
ferred to a homogeneous constitutive material becausecdmreype made lighter. However, the relevant mechanical
properties of the sandwich as a whole or even of its indiMidaanponents may be ficult to predict accurately,
particularly when heterogeneous cores are used or if dampioonsidered. Her&elevant” refers to the parame-
ters that matter in the plate dynamics (see Sec. 2.1). Imptper, a method for estimating the complex moduli of
elasticity of the constituents of sandwich structures igna heterogeneous core based on one dynamical test on a
plate is proposed. The proposed mixed experimgntamerical procedure (for an introduction to such proceslure
see for example [1, 2]) is based on the thick-plate model agguiency-independent mechanical properties of each
constituent of the sandwich. It is intended to be easier feément or to yield more parameters than other methods.

Using structural vibrations for the estimation of homogmure material parameters is a widespread technique.
Compared to static measurement campaigns which must berped on a number of isolated samples of the sand-
wich components, dynamic tests leave the sandwich steiontouched and can be performed on one single panel of
more or less arbitrary dimensions.
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The problem of the estimation of soledjasticity parameters of a homogeneous material using plate vibgation
has been widely addressed inhan-plate context [1-7] and in dhick-platecontext [8—21]. In ahin-plate context,
only in-planeparameters can be estimated. Usirtgiek-plateyields some of the so-callezlit-of-planeparameters.

The problem of estimatinglasticity and dampingarameters of homogeneous materials by using point measure
ments [22—25] has retained some attentiontimiaplatecontext. In ahick-platecontext, methods involvinfyll-field
measurements are currently available [26—28], but theyasetime-consuming or need sophisticated equipment. Re-
cently, some forts have however been done to overcome these limitationsimg point measurements instead of
full-field measurements [29]. However, the experimentahdesed by these authors severely limits the possibilities
of estimation, as discussed below.

For heterogeneous materials, such as sandwich matehal$itdrature addresses mainly the estimatioelat-
ticity parameters, using either beams [30—32] or plates [33, 34¢wAstudies have been devoted in the last years to
the problem of estimating their damping properties in bef8ts 32], in plates by means of sophisticated full-field
measurements [35, 36], and quite recently in plates byeiogint measurements [37, 38]. Since none of these studies
present a sensitivity analysis, the validity of the modelthsed for damping is flicult to assess. The following rea-
soning explains how we access to significantly more experaielata than previous studies. The sensitivity analysis
(Sec. 7) shows that these are determinant for some estipatatheters.

Exploiting the vibrations of sandwich panels with hetemg@us cores requires that the panel dimensions meet
several conditions. In order to consider the sandwich cereaanogeneous in the in-plane directions up to a given
frequencyf, the corresponding wavelengthmust contain at least 50 cells [39]. For a typical cell siglegiths.e; and
heighth, this implies that the panel’'s dimensions are suchlthat A > 50 s.e. Moreoverout-of-planeelasticity and
damping parameters can be estimated only on thick-enowgésplin brief, the panel must be large enough and the
observed dynamics must include high-enough modes, witleitirnit of a plate model. Due to the intrinsic dissipation
of materials, high-order modes may be impossible to chariaet with methods based on the Fourier-transform (FT):
those are limited to modal overlaps @f~ 30 % in most implementations [35] (see Sec. 4.3 for the defmiof
). The high-resolution modal analysis (HRMA) techniqueergty developped by Eget al. [40] is a successful
substitute to the FT-based modal analysis techniques ugridisantly higher modal overlap values.

From a methodological point of view, the present work is ateesion to heterogeneous and thick plates of the
work done by De Visscheet al. [23] on homogeneous thin plates. The proposed method isnpeetl on large
sandwich panels which meet the above conditions. Up #4® modes are extracted by means of the HRMA. This is
considerably more than the 6 or 12 modes used in [29] for tkeriakénation of 6 elastic parameters. It will be shown
in Sec. 7 that high-frequency modes are indeed necessaayrédiable estimation of some of these parameters. As
far as damping parameters are considered, experimengaligadl in [29] do not allow their reliable determination (as
stated by the authors and confirmed by the sensitivity aisalySec. 7).

The mixed experimentainumerical procedure yielding the-planeand mosbut-of-planeelasticity and damping
parameters (complex elasticity moduli) of the constitaafitthe sandwich is schematically presented in Fig. 1. The
analytical model of the sandwich panel is presented in SeBaged on this model, the numerical modal frequencies
fNUM and dampings\'™ are derived by means of an extended Rayleigh-Ritz proce@ee 3). The experimental
protocol and the extraction method that yield the expertalenodal frequencie§’” and dampings " are presented
in Sec. 4. Given the numerical and experimental data, thenggattion procedure that estimates elasticity and damping
parameters of the constituents of the sandwich materiataildd in Sec. 5. The procedure is validated in Sec. 6 by
means of a finite-element analysis. Measurements perfooneireal plates are shown in Sec. 7 which provides
additional validation insight as well.

2. A mechanical model of sandwich panels

In order to access the modal dampings and frequencies ofdwednpanel, an adapted mechanical model is
needed. In this section, such a complex structure is mataiean equivalent thick-plate under the Reissner-Mindlin
hypothesis. A frequency-independent model for the mdseciamposing the sandwich is also described. Notations
used in this section are summarized by Tabs. 7, 8 and 9 in the D.
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Figure 1: Overview of the proposed mixed experimehtaimerical procedure: modal characteristics derived expetgtig and numerically are
compared; their dierences tend to zero when the correct values of the mechpaicaheters are reached.

Skins

Figure 2: Geometry of the sandwich plate.

2.1. Hypothesis

The sandwich panel consists in two identical skins and a @€ie 2). The thicknesses of the core, skins, and
panel aren®, h, andh = h® + 2h® respectively. In the following, “panel” designates the giogl structure whereas
“plate” refers to the idealised structure made out of thewvedent homogeneous material. The following hypotheses
are made on the panel and plate:

e Displacements are small so that the materials and strgchatgave linearly.

e Only flexural waves of frequencies far from the delaminafi@guency (the frequency of the first transverse
mode of the panel) are considered.

e The plate is considered to follow the Reissner-Mindlin appmations (thick-plate: first order shear deforma-
tion theory, FSDT), with no direct strain in tlzedirection. As pointed out by references [41-43], the acoura
of the thick-plate model to describe the dynamics of sandwlates having a soft core depends mainly on the

S

E
thickness to length ratio and on the skins Young modulus te shear modulus ratio(:sci. Generally, the
Yz xz

thicker and the softer the core, the less the thick-plateahisdppropriate for modelling purposes as compared
to higher-order models. In [42, Fig. 4], a comparison betwtbéck-plate theory (FSDT) and high-order shear
3



deformation theory (HSDT) is performed on the first modagjfrency of a sandwich panel with a soft core.
At least for orders of magnitude considered, it could beredeel to a higher modal frequency of wavelength

A by considering the ratiez/lD instead ofL (the “h” written here is defined in Fig. 2 and corresponds to the
Xy

writing “2h” in [42]) According to [42, Fig. 4(c) and 4(d)], theftiérence between FSTD and HSDT does not

exceed 5 % for—>- ~ 100 and a27h ratio less than @8. The plates that are considered in this paper exhibit

Ggzxz
s

a

G° ~ 100 ratio and the highest modes under consideration araciesized by— 0.08. A thick-plate
Yz Xz

model based on FSDT is thus appropriate enough in the prs&eit

e The wavelengthd include at least 50 cells. According to Burteh al. [39], this ensures that errors on the
modal frequencies of the plate (with a homogeneous equivatee) are less than 2% when compared to those
of the panel as computed by various finite-elements models.

The skin and core materials are considered as homogenethwropic in thex— andy— directions.

The formalism chosen for describing the hysteretic behavi® that of complex module = E(1 + ji) which
do not depend on the frequency (see the model of materialescilios 2. 2) The Young’s and shear moduli and the
Poisson coficient of the core aré&s, EC ES, GC G5, GS, Vo VS, Z andyS, . The same parameters for the
skins are denoted by the index “s”. The propertles of the rgnrneous matenal equwalent to the whole sandwich are
denoted by the index “H”. Additional symmetry relationshgre given in section 2.2.

The following hypotheses are made on the sandwich panel:

e The sandwich panel is symmetric with respect to its mid-@plan

e Skins are thin compared to the core and the core is softertti@askins so that shear stress in the skins can be
C

ignored: — (and the same in the y direction).

Gy G
e The core is very softf§ < E}, Ey < Ej andG§, < G5). Given the generic expression of the moduli of the

c\3 c
homogeneous equivalent materi#l = (%) EC + Il (T}) ] ES, this ensures that all in-plane stress in the

plate are entirely due to those in the skins.

Accordlng to these hypotheses, there is no stress assbuidtle E3>, v5>" 51 G5, G°, ES, ES. G,

" ¢ which are ignored in what follows. The relevant remaining:hanical parameters desan)lng such a plate are

thus [v36]
e In-planeparameters (bending of the skindgj, EJ, giy, Yo Yy

e Out-of-planeparameters (shearing in the core?,, ;Z (excludingEy).

In the rest of the article, it will thus be understood te&stic parameters’means‘relevant elastic parameters
for the dynamics of thick-plates”

These hypotheses are generally fulfilled in common sandpaciels. Typical orders of magnitude for parameters
are:

{hS/hC 10! O
ES/ES ~ ES/ES ~ GS,/GS, ~ 10

2.2. Model of the materials

The damping of plate vibrations hadférent origins. In the present study, it is assumed that pasiteiate below
their coincidence acoustical frequencies [44]. Consetlyjatamping due to acoustical radiation in surrounding air
is very small compared to the structural damping [45]. Amthegdiferent structural damping models, the standard
hysteretic model (which is frequency-independent, seeekample [46, 47]) has been retained. The relationship
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between the stresg and the straim” in eachy—material ¢ =s, c, or H) involves 7 complex numbers and can be
written, to first order iny” as:

Ex(1+ jn}) vyxEX[1 + J'(nvyx + 1] 0 0 0
ViyEy[1 + j(n),, + 1)) EJ(1+ jm) 0 0 0
o7 = 0 0 GL(1+ jnl) 0 0 e (2
0 0 0 GlAL+ jn} 0
0 0 0 0 Gly(1+ nly)

The symmetry of the straistress relation adds the following relationshigge) = vj,E) andn) = ), + 7y =
zﬂyx + nk which leaves 12 independent real parameters to be idenfiifiethch material (24 altogether).

2.3. Equivalent thick-plate

Under the hypothesis and for the orders of magnitude giveedtion 2.1, the sandwich panel behaves in the low
frequency range like a homogeneous thick-plate [48]. Thekitkess of the plate is chosen to belts mechanical
properties are given in Eq. (3) and (4) as functions of thehaeical and geometrical properties of the skins and the

core.
he\® he\®
BN = Ei[l—(ﬁ) ] B = E}S,{l—(ﬁ) } W=,
3
he\?
G = Giy[l— (F) } Gh -G, GH=GE
EC /h¢ he 3 ; he he 3
n§‘=n§E—§(F) +n§1—(ﬁ)} n§'=n§g§(h) +n§1—(ﬁ) @

Cy c 3 C 3
nxy nxsz (F) +77§<y 1_(F)] T]xz 77xz 77yz lez T]VH:T]\S/

The 12 independent real parametgEs, ni!, E!', nl, G}, iy, Gis. nil, UL it vii,. b} are to be estimated. Their
knowledge yields the elastic and damping propert|es of &g of the sandwich panel provided that the 12-equation
system formed by Egs. (3) and (4) is invertible. Afszient condition is:

EC c ; S c gy s
nx Es < nx nyE_)S, < le TlxyGiy < 77xy (5)
ES Ey Gy : . L - . .
since = « 1, < 1, and—= < 1 (see section 2.1). This condition is not satisfied only & iifrcoeficients
ES ES Gy

are several orders of magnitude larger thanithenes. This is not the case here and rarely the case in gkneral
Consequently, the estimation &/, etc... yields an estimation of the mechanical properties ofskia and core
materials.

2.4. Potential, kinetic and dissipated energies in the eajent thick-plate

Within the frame of the first order Reissner-Mindlin theo#@[ Chap. 3], the displacemerits v, w} in the{x, y, z}-
directions respectively can be written within a good appr@tion (see below) as:

U(X’ Y, Z) = _Zq)X(Xv y) V(X» Y, Z) = _Z(Dy(x’ y) W(X7 Y, Z) = WO(X’ y) (6)
The potential energy of the plate is:

11t can be the case when skins are made of metal and the core is fraaieeo honeycombs or of viscoelastic foam.



U= [ff, et dr

HDy JDy ODy 9wy \? Wy _(awo 2
ffs[ ( ) +D, ((9 3y +Ds 3y + Dy | @2 - 20— 6y ay + ... 7)
Mo (AW a0, \2 oDy acby Ay \?
Ds | @2 — 2 -0 D 22 X YV [
5( * ox (ax)]+ 6(( 6y) T %y x| ax dxdy
with
R _wER e
LT 12(1= vigvy) 27 B(1— veyry) 3T 12(1= viyvy) @
Gih?
D4 = 263G, Ds = 2hG, De = —5

The shear correction facton&%Z and«2, account for the fact that Eq. (6) is an approximation: the¢fional)
anglesd, and®, depend lightly orz and sections of the plate do not remain plane in the flexurfalaation. The
valuesky; = kx, = 1 have been chosen according to the recommendations ofd68fhdwich panels.

By definition, the fraction of energy lost during one cyglds:

k| e dr} ©)

Based on section 2.AU can then be expressed as:

a0, \? HD, OD oDy \? oy O\
= -7 ffs[n;'Dl( 5 X) +7]VD ([)XX ayy)+,7§‘D3(a_;/) +77?2D4( Z(Dy ay (By) +

oWy [Owg 0Dy Oy 0Dy ad>y
2 2 A
ntDs ((D — 20y x (6x )) Ds(( 6y) +2 3y ox + x dxdy

(10

The kinetic energyl” of the system is given in Eq. (11) as a functiondaf, @, andwy. In this expressiorp is
the density of the equivalent homogeneous thick plate.divien byho™ = h%p® + 2hSS.

p“’ v vvsz_pw [ D2 + D2 hV\F]d 11
u++] ff(s) (D% + @) + xdy (11)

v)

3. Estimation of modal parametersby an extended Rayleigh-Ritz procedure

In order to compare experimental results to numerical satins, it is necessary to evaluate the frequencies

fNum and damping factors\™ of the numerical modes corresponding to the sandwich pdine.dynamics of the
plate is given by the hypotheses listed in section 2.1, by Efysand by the boundary conditions. Under the “light

damping” hypothesis, which assumes that modal shapes eqdeincies are unchanged by the addition of damping,

the frequenciedN'™ of the numerical modes are easily accessible. The problemsists thus in evaluating the
relationships between thé!“™ damping factors and thg' loss-factors. Notations used in this section are sumnthrize
by Tab. 10 in the D.

3.1. Light damping hypothesis

The honeycomb sandwich panel is considered here as a nee+wative syster®yc havingN degrees of free-
dom. The associated conservative system, without hystetamping and having alsN degrees of freedom, is
denotedPc. TheN modes ofP¢ have their modal shapes denoted4yyand their real modal frequencies denoted by

f€. TheN modes ofPyc have their modal shapes denotedd)§ and their complex modal frequencies denoted by
fNC.



If Pnc is lightly damped, it can be shown [51] thiC ~ £S5 and thatfNC ~ € + ja, to first order. The “light
damping” hypothesis thus assumes that modal shapes anghréabf the frequencies are unchanged by the addition
of damping. This hypothesis has been shown to be acceptablalfies of material loss factors lower thad (52].

This assumption is similar to the assumption made in the “dM&irain Energy” approach used to model sandwich
panels having visco-elastic cores [52-54].

Let UNC be the potential energy associated with iffemode ofPyc for a maximum vibrational amplitude of 1

on the plate. It varies in time as ex{fant) so that the energy lost by this mode during one cy&lg)\C, is:

@n

AUNC = -2fc
n

une (12)

SincePc andPyc have the same modal shapies, £\C ~ £5, and the potential energy depends only on the modall
shapes (see Eq. (7)), ther® = US. And since for the conservative systéc, the equalityu$ = TS is true, one
then obtains:

AUNC = —2%TnC (13)
n
Thanks to the light damping hypothesis, Eq. (13) gives agitiorward way to obtain the modal dampings
from AUNC, TS and, fE.

3.2. Derivation of flum

A Rayleigh-Ritz procedure has been used to derive numéyritta the modal frequencie§"™ and the mode
shapegh'™ of Pc. To this end, the generalised-displacement fidigs, y), ®,(x, y), andwo(x, y) are projected on the
elements of an orthonormal polynomial basis of oi@eatisfying partially the free-free boundary conditionS,[56]:

Dx(xY) = D Lp(Opy)  Dy(6¥) = D Mipi(Ipsy)  wo(xy) = > Nypi(x)p;(y) (14)
i, i, i,

where the polynomialg;(x) are generated as described in A.

This procedure generates a new set QF Yeneralised displacemerits, Mj; andN;;. The next step consists
in writing the kinetic and potential energidsandU which have been expressed as function®gf®,, andwyg in
section 2.4. The Hamilton principle reads as:

. 5. O(T-U) T -U) AT -U)
Y(i,]) €[0,Q-1]*: i, 0 Y 0 Ny 0 (15)
The above system ofQ@¥ linear equations can be re-written & 472f2M]q = 0. The expressions of the partial

derivatives olU with respect td;;, M;;, N;; yield K while the partial derivatives of with respect td.;, Mij, N;; yield

M. The explicit expressions for these partial derivativeBiastions of thep;-s and of the generalised displacements
are given in B. The resolution of this eigenvalue problenegia straightforward access to the modal frequencies
fNum and mode shaped™ of Pc. Under the light damping hypothesg'™ and f\'™ found for P¢ are also the

modal shapes and frequenciesRyjc (see Sec.3.1).

3.3. Derivation of\u™

Introducing the modal cdicientséN'™ (expressed in thelij, Mij, Njj} system of coordinates) into Egs. 14 yields
analytical expressions for the,, @y, andwy modal fields and also for their andy-derivatives. For each of thid
modes, the potential, lost, and kinetic energies can béenrity introducing these expressions into Egs. 7, 10, and 11:

6 6
vne[LN]: TE =4%(f)' ™%, UNC=UF =) D AUNC = -7 )" iy (16)
k=1 k=1

where the subscriptd, 2, 3,4, 5, 6} of 5 stand for{x, v,y,yz Xz xy} respectively. The cdgcientst, anduy are given
explicitly in C. They depend on the geometry and mass paensef the plate, and are quadratic in modal shapes
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E“m. Note thatt, can be considered as half the modal mass for some normalisgldacement. The produ@yuy,
represents thk-contribution to then-th modal stifness (wheré stands forx, v, y, yz Xz or xy).
The expression (17) of the modal damping$™ can be deduced from the Egs. (13) and the last two expressions
of (16) or, equivalently, by (12) and the first two expressioh (16):

Num

Num [ INC Num 6
3 friMAU, B f
an = —

fa AU 1 i Dl or @Num Z Dyl (17)
-_— ol a’ = =
2T§ 8rr FNUMt, £ TR " 2U§ J k=1 G
- 2> Dty
m=1

One can notice thaa\U™ is a linear combination of the,. This set of equations is a generalisation to all the
modes of a thick-plate of the expression given by De Vissehat.[23, Eq. (13)] for three particular modes of a thin
plate. This expression is also a generalization to all tee factors of the expression established by Johesah
[53] for sandwich structures having a visco-elastic core.

4. Estimation of modal parameters by high-resolution modal analysis

In this section, the experimental protocol that has bedovi@d to obtain impulse responses and to extract the
modal frequencie$” and the damping factorg'" is presented. This protocol combines the procedures aniimp
mentation details presented bglgtllatet al. [57, 58] and Egeet al. [40].

4.1. Experimental setup

Throughout all measurements, panels were suspended byitleisiin order to ensure free-free boundary condi-
tions. Light panels were acoustically excited by an elediypamical loudspeaker driven by a wide-band electrical
signal [27]. The velocity response was measured in one cofe@ach panel with a laser Doppler vibrometer (Ometron
VH300+ type 8329). Eventual non-linearities arising from the Ispelaker were removed and the impulse response
of the panel was reconstructed [57, 58]. Since heavy paneldardly be excited by acoustical means, impact excita-
tions were also used; in this case, the acceleration regutbm the impact was recorded with a light accelerometer
fixed in the vicinity of one corner of the panel. The impulsep@nse was obtained after deconvolution with the
nearly-impulsive force signal [40]. Since no nodal line gdkrough corners of a free vibrating plate, all excited
modes contribute to the resulting impulse response.

4.2. High resolution modal analysis

It is hypothesised that the experimental data are corrupyeddditive noise. Thus, an impulse respohég
is mathematically represented as a sum of decaying expalge(ratural modes) and measurement nbigeas in
Eq. (18). Each contribution of a natural mode is charaadrisy its amplitudedX?, frequencyfX?, dampingaXF and
phasepX”.

N
h(t) = ZA;“’ expa’Pt) cos(Z £XPt + ¢P) + b(t)
N N (18)
> [exptay™t+ j2n P+ jor) + expafPt - j2rfi®t - k)] + bit)

In order to extract experimental modal frequendigs and dampingrX* from h(t), the recently developed “High
Resolution Modal Analysis” (HRMA) [40] has been applied dadbriefly sketched below. The signal is projected
onto two subspaces: the subspace spanned by the sinusigitisl Subspadeand its supplementaryfise subspage
according to the ESPRIT (Estimation of Signal Parameterfwatational Invariance Techniques) algorithm [59]. The
frequenciesf;® and dampinggX* of a given number of modes are the eigenvalues of a matriratafter some
computation on the observed signal. The amplitufsand phaseg," are estimated afterwards by a least-mean-
square method.
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In the ESPRIT procedure, the dimensions of both subspacssbaichosem priori and the quality of the esti-
mation significantly relies on a proper choice for these ipeters. The best choice for the dimension of the signal
subspace is the number of exponentials (twice the numbegazying sinusoids, or real modes, see Eq. (18)). This
number can be estimated, before the analysis, by means BERER technique [60].

To improve the performance of the ESPRIT algorithm, sigaaéssplit into several frequency-bands [61], thus
reducing the number of modes to be processed. In order tbdmniputation time, the responses of the band-pass
filters are frequency-shifted and down-sampled.

A block-diagram describing thefiiérent steps involved in HRMA is shown in Fig. 3.

h(t)

Measurements ——— | Deconvolution

Sighal conditiohing

Time | |Band-pass | |Frequency-| [ Down- | | Time
reversal filter shift sampling reversal

Order detection and determination of modal parameters

4
4

N XP
ESTER ESPRIT ={Q’;<P

n

Figure 3: Block diagram of the high resolution modal analys&thod, adapted from [40]. The first block is described in [57]

4.3. Uncertainties in modal parameters estimation

To give an overview of the precisiorftered by the HRMA, this method is applied to a synthetic sigidhined
by adding two decaying exponentials of equal amplitudeshideanoise. The sampling frequencyfis= 44.1 kHz.
The two modal frequencies are 592 and 596 Hz, very close onedach other. For relatively important modal damp-
ings, these two modes overlap in the frequency-domain aeréfibre, their frequencies and dampings afgatilt to
estimate with methods based on the Fourier transform (Hig.modal overlap factqe (i.e. the ratio between the
half-power modal bandwidth f_3 45 and the average modal spacififi,oge quantifies this phenomenon [40]. If the
modal dampingy is the same for both modesjs:

1 «a
_ ¢ 19
Afmode ( )

In practice, the FT cannofiiciently separate modes whan> 30 % [35]. For HRMA, this upper limit depends
on the signahoise ratio and on the number of components which are retamthe pre-conditionning step. As an
example, estimations of modal frequencies and dampings been performed on the synthetic signal with various
a-values (corresponding to modal overlaps franx 1 % to 150 %) and a signal-to-noise ratio (SNR) increasing

from 10 dB to 50 dB. SNR is understood here as ZQdégm), whereSgys is the RMS value of signal in absence
RMS

u

of noise andBrus the RMS value of noise in absence of signal. For each coup®NR}, modal parameters were
estimated 50 times. For each mode of the synthetic sigralnicertainty in frequency or damping is defined as the
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mean of the absolute values of the relative error betweemtigénal and the estimated data. These uncertainties,
expressed in dB, are shown as contour plots in Fig. 4.3.

(a) (b)

50 50
45 45
40 -100 - -90 40100
-100 100
g 35 ’ &g 35 100
e 30 x 30
& 25 Aty & a5 Afy
71 |4m T2 |4
20 20 -90 -80
15 15 }
10 1 1 10 1 1
50 100 150 50 100 150
Modal Overlap (\%) Modal Overlap (\%)
(c) ()]
50 T . 50 .
45 45 I
40 -35 -30 -25 40 -35 -30 -25|
~ 35 ~ 35
8 S
E’ 30 E’ 30
% 25 Aoy & 2 Aay
Q1 |an @2 |an
20 20 40
15 15 \
10 . . 10 . .
50 100 150 50 100 150
Modal Overlap (\%) Modal Overlap (\%)

Figure 4: Contour plots of the uncertainty on the estimateddafiofrequencies and dampings of a synthetic signal conmtginivo decaying
sinusoids as a function of the modal overlap and the signabtse ratio. The uncertainty is the mean of 50 absolute gadfi¢he relative error
between original and estimated data, for 5@efent realisations of the noise. (a): uncertainties onrguiency of the first mode. (b): uncertainties
on the frequency of the second mode. (c) and i@gmrelatively to the dampings.

It can be seen in Fig. 4.3 that the uncertainties are veryldoraboth dampings and frequencies even for high
modal overlaps and low SNR. In general, the uncertaintyeimees withu and decreases slightly when SNR increases.
The HRMA gives better estimations of the eigenfrequenciesdampings than the FFT for a wide rangeucdind
SNR. Since the modal overlapgenerally increases in the impulse response of a plateharf8NR decreases with the
frequency, the HRMA gives access to significantly more mdbea the usual FT-based modal-analysis techniques
and is thus of great interest in the present context.

5. Optimisation procedure

This section describes how to derive, in two steps, the cexploduli of elasticity of the homogenised equivalent
material of the sandwich plat&}, n{, EJ!, ni!, Gl n}\. GIL. ni. GIb mif. Vi, nf'} from the experimental and numerical
values of the modal frequencies and dampiffs fNu™, oXP, anda\u™,

5.1. Elastic properties

The estimation of the elasticity parametég', EJ', G}, G, G}, vy} is done by comparing the experimental and
numerical modal frequencies. The estimation problem tees@ non-linear and several orders of magnitude are
involved in the properties values. The following cost-ftioc was used:

10



N fgqv _ anum 2
Ct = Z (T) (20)
n=1 n

A steepest-descent (with backtracking) algorithm [62hgsigidities{D;, D,, D3, D4, Ds, Dg} as design variables
has been chosen. In the present case, théicieats of the gradient can be easily derived analyticallgkimg the
method easy to implement and computationally light.

Estimation results obtained by gradient methods are knamoetvery dependent on the initial values of the
parameters. To minimise the influence of the starting pdfiret following initialisation strategy for the rigiditiesah
been chosen:

1. Initial values of in-plane rigiditie®;, D, D3 andDg are the most influential; they were derived from the three
lowest modal frequencies of the panel, as proposed in [22].

2. Initial values of out-of-plane rigiditie®, and Ds are less critical; homogenisation theory proposed by Gib-
son [63] for honeycomb core sandwich panels is used. Th@yhequires a value for the elasticity moduli of
the material composing the honeycomb core. The first eStmatas based on static tests.

In the following examples, 10 iterations were enough to memmvergence: 13 for the gradient.

5.2. Damping properties

As can be seen in Eq. (17), modal dampings depend linearhheross factorgny, nt', 7, i njk. nf'} once
the rigidities have been found. The estimation of the lostofa is therefore much easier than that of the elasticity
parameters. A simple least-square optimisation proceduseficient to estimate the loss factors from the modal
dampings.

The following cost-function has been chosen:

N/ XP _ _Num\2
_ an —
Co = Z (T) (21)
n=1
The optimisation procedure is not iterative and needs nticpdar initialisation.

5.3. Determination of the order Q of the polynomial basis ahthe number N of included modal parameters

Two parameters have to be chosen in order to apply the ojtiimisprocedures described in Secs. 5.1 and 5.2.
These methodological parameters are the o@lef the polynomial basis associated with the extended RgtyiRiitz
procedure (see Sec. 3.2) and the numiiesf modal parameters (frequencies or dampings) to be indlili¢he
optimisation procedure.

The parameter® andN can be chosen fierently for the estimation of the elastic material promsrtand for
the estimation of the material loss factors respectivelpr the estimation of the elastic material properties, the
parameter®); andN; that minimize the cost functionS; given by Eq. (20) are chosen. For the estimation of the
damping properties, the paramet€ys and N, that minimize the cost functionS, given by Eq. (21) are chosen.
Selecting the optima® andN values is done empirically by running the optimisationsdiferent values of these
parameters, typically in the rangbise {20, 40} andQ € {10, 18}.

5.4. Sensitivity analysis

For the estimation procedures described in sections 5.52hth be #icient, modal frequencies and dampings
must convey a dticient amount of information relative to each parameter testémated. In other words, modal
dampings and frequencies have to be sensitive to the paresdtinterest.

Relevant sensitivities can be defined and calculated acallyt The sensitivity of the modal value to the
parametet is notedS] and defined by Eq.(22): if is increased by 1 %; increases bys] %.

At
Aty ¢
s =Y _ T 22
7oAyt Ay (22)
Y
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Ix (m) 1y (m) h (m) p (kg/m?)

HVP | 04 06 4%x10°3 700
Core Skin Core Skin

VSP | 04 06 4x10°% 02x10°| 40 700

Table 1: Geometry and constituent densities of the homogenedual plate (HVP) and of the virtual sandwich-plate (WSP

According to Eq. (16) and with the same notations, the sj(a"r'lyil‘SfD"k of then™ modal frequencyf, to the rigidity
Dy € {D4, Dy, D3, D4, Ds, Dg} can be written as:

f, _  DikUnk
Dc " gr2f2t,

(23)

Similarly, using Eq. (17), the sensitivity;; of then™ modal dampingy, to the loss factony € {71, 72, 173, 74, 75, 176}

can be written as: b
o Nk DxUnk
n = 24
™ Anfaant, (24)

The amount of information relative to one given parameter@ntained in one given mode can be easily quanti-
fied with Eq. (23) and Eq. (24). Examples are given in Figs07 ahd 12 (see Sec. 7).

6. Validation of the estimation procedure

A validation of the mechanical model and procedures giveseictions 2, 3, and 5 is proposed as follows: the
experimental results of the modal analysis are replacedhdiget of the simulation of a finite-element model (FEM)
of two virtual plates with known properties. The modes of albgeneous thick plate as modelled using the FEM
are first compared to those given by the extended RayleighpgRocedure applied to the mechanical model given in
section 2. The method for deriving elasticity and dampingpeeters as sketched in Fig. 1 is afterwards validated on
a virtual sandwich plate.

6.1. Finite-element model of the virtual plates

To validate the extended Rayleigh-Ritz procedure appteitié mechanical model, a homogeneous thick virtual
plate was designed. A FE-model of the sandwich panel hashba&lsno built to test the accuracy of the estimation
method. The chosen sandwich plate is made of 3 homogenegars land is symmetrical with respect to its mid-
plane. Geometrical, mechanical and mass parameters ofithglates are given in Tab. 1 and Tab. 2.

For the two virtual plates under study, the finite element eh@glbuilt on a 2D rectangular mesh made of 60 by
60 regularly spaced points. This value is justified at the @this section. At each point an 8-nodes shell element
is placed with a linear expansion of the in-plane displaggmi the thickness coordinate and a constant transverse
displacement through the thickness (COQ8 of the Cast3M @4¢ Each of these elements possess 6 degrees of
freedom (the translations in the x, y, and z directions arddiations around the x-, y- and z-axes). In the case of the
virtual sandwich plate, the three-layers are modelled aseguivalent layer as in Sec. 2.3.

6.2. Modal frequencies and dampings of the virtual plates

Finite-element modelling and the associated computatiane been performed using Cast3M [64], a free soft-

ware developed by the French Centre for Atomic Energy (CEAJs software is used here as it allows to find
the complex modes (modal shap&€M, dampingsa,FM and frequencied™ ) of a problem put in the form:
K + jwC — w?M = 0. In this formulation,M,C andK must be real matrices to be accepted by the VIBC function of
the Cast3M code. Complex modes are then found by solving alexwalued generalized eigenvalue problem using
a QZ-algorithm. According to the possibilitiesfered by Cast3M, modal frequencies and dampings of the Virtua
plates are computed using the following procedure:

12



Ex Ey ny gxy gxz Qyz
HVP Real part 4 GPa 5GPa 83 1GPa 16 GPa 10?2 GPa
Loss factor (%)| 2 5 1 Q5 1 1
VSP Skins Real part 4 GPa 5 GPa 383 1GPa 1 GPa 1 GPa
Loss factor (%)| 2 5 1 Q5 1 1
VSP Core  Real part 1x103GPa 1x103GPa 033 1x103GPa 1x102GPa 3x10?GPa
Loss factor (%)| 1 1 1 1 3 5

Table 2: Mechanical parameters chosen for the the homogeretuwa plate (HVP) and for the virtual sandwich-plate (JSP

1. The conservative system is described according to thetitative model of section 2.2 with no hysteretic
damping taken into account. A mass matkixand a real sfiness matriX<’ are deduced from this model.
2. TheN first modal frequencief” EM}ne[l,N] of the conservative system are computed by solving, in thei&o
domain, the real-valued eigenvalue probl&m- w?>M = 0.
3. The non-conservative system is described accordingtodhstitutive model of section 2.2, including hysteretic
damping. A mass matrii and a complex sfiness matriXK = K’ + jK” are deduced from this model.
4. The “light damping hypothesis,” is retained. The realt pdithe modal frequencies of the non-conservative
system are thus already known (see Sec. 3.1).
5. For each one of the N first modes of the non-conservativesyshe following operations are then performed:
(@) The dynamic equation of the dissipative system are ftated, in the Fourier domain, ag»’>M g+ jwCa+
K’q = 0with C = K’/(2x fFEM). The problem is thus formulated as expected by the VIBCtfanavith
C real but frequency-dependent. Its important to notice tifiatequation models correctly the hysteretic
damping model described in Sec. 2.2 only neas 2 fFEM,

(b) The modal loss factar, is obtained as the imaginary part of the eigenvalue of this m@blem solved
nearw ~ 2 fEM,

For the homogeneous virtual plate, increasing the numbelenfients above 60 elements per side results in less
than a 1 % relative variation of the 35 first modal frequen¢@mservative and non conservative cases) and in less
than 04 % of the 35 first modal dampings. The same convergence isvaustor the 3-layer virtual sandwich plate.

Thus, 60 elements per side are enough to ensure the dese@dipn on the analysis of the first 35 modes of the two
plates.

6.3. Validation of the extended Rayleigh-Ritz resolutibthe mechanical model

Comparing the modal frequencies and dampings given by ttenéed Rayleigh-Ritz resolution method (18-
order) and by the FE-model for the homogeneous thick vinplate provides an estimate of the reliability of the
retained mechanical model coupled with the extended RghyRitz resolution method for the first 35 modes.

The plate under study in the present section is not a sandvaichl as the one modelled in Sec.2 but a homoge-
neous thick plate. For such homogeneous plates, valuekdm®hear correction factors are usually chosen between
2/3 and 96 instead of 1, which is recommended only for sandwich pgs€ls Values ofky, = kx, = 0.7 have been
arbitrarily chosen here in the range66 0.833].

With shear correction factorg, = «x, = 0.7, the mean absoluteftérence between FE-results and Rayleigh-Ritz
results is lower than.2 % for modal frequencies and lower than 25 % for modal dangpimte larger error on modal
dampings may be explained as follows. The damping m&nprovided to the FEM results from the writing of the
stiffthess matrix and is not necessarily diagonal when expreasthe ibasis of the conservative modes. By contrast,
the extended Rayleigh-Ritz procedure accounts for diisipéy associating one damping ¢beienta\'™ to each
mode, neglecting by construction any coupling between@masive modes.

6.4. Estimation results for th&-layer virtual sandwich-plate
A 3-layer virtual sandwich-plate has been used to validageeistimation procedure described in Fig. 1. Since,
for this 3-layer virtual sandwich-plate, convergence peots were encountered with the steepest-descent alggrithm
13



a simplex search method [65] was used instead in this casetidn “fminsearch” in Matlab™). The initialisation
procedure remains the same as the one described in Secobadll dther optimisations, the steepest-descent alguarith
is used.

Based on the firsNh = 35 modal frequencies given by the FEM and using a Rayleigh-&tderQ = 16, the
estimated values of the elasticity parameters are comparte original values given to the FEM. The loss factors
have been estimated witd = 28 modes and a model ord€r = 18. The estimated mechanical parameters are
presented in Fig. 5 for each layer of the sandwich.

The residual mismatch between the results of estimationtlaariginal values is discussed here. The mean

Af _ . . .
absolute vaIu%‘f—” > of the relative diference between experimental and numerical modal freqeeisc26 %. For
n
the dampings, the residual misma (@ﬂ is 216 %. These orders of magnitude, as compared to the one othtaine
Qn

in Sec. 6.3, suggest that the assumption that a 3-layer seimgVate can be modelled as a simple homogeneous thick
plate is correct in the frequency range under study.
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Figure 5: Comparison between the values of the mechanicamegteas used in the FEM (Original), and their estimated valk&ssirbated) for
each constituent (Skins, Core) of the virtual sandwichepl@triginal parameters are represented as black bars wittntireerical value indicated
above. White bars represent the ratio of the estimated to thmal parameters. Elasticity parameters have been estimate®5 modes and
with a model orde@ = 16. Loss-factors have been estimated with 28 modes and with alroaerQ = 18.

It can be seen in Fig. 5 that the agreement between estimatkdrainal parameters is globally very good. In-
plane elasticity parameters of the skins and out-of-pldastieity parameters of the core are estimated with a mean
absolute relative error of 1D %. Principal in-plane loss-factorg andny are estimated with a comparable accuracy
of 7.5 %. The imaginary part ofiy is largely overestimated while the imaginary part@j‘y is underestimated.
However, the overestimation of one parameter may be thé idghe underestimation of the other, by compensation.
The imaginary parts oG5, and 9;2 are assigned zero values by the estimation process. Théh&cteros values

X
are found illustrates the limitations of the thick-plate debunder Reissner-Minldin hypothesis. Physically, this
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underestimation is due to the fact that only a marginal phthe total energy-loss per cycle is dissipated through
the mechanical couplings described®§, and§§z. Modal dampings factors are thus here not very sensitiviedset
material loss factors.

A complete validation study should have established thilitsalimits of the estimation method. Even though
this is not what has been done here, the above results supgéshe mixed numericgxperimental procedure is
potentially an accurate tool for the estimation of the mdastcity moduli and loss-factors of 3-layers sandwich
plates.

7. Experimental results

7.1. Plate specimens

Three diferent sandwich panels with heterogeneous cores have besstigated. The first two — HCand HG
— are rectangular lightweight honeycomb sandwich pandisirgkins and honeycomb cores are made of epoxy and
paper. The third panel, made of two stainless steel shdéts)snd two bidirectionally corrugated steel layers veith
20 % relative density (core), is denoted CC (for "corrugaterk”). The geometry and mass parameters of each panel
are given in Tab. 3.

Ix(cm) Iy (cm) h°(mm) h°(mm) scer (mm) | p° (kg/m®) p° (kgm’)
HC, | 3915 5910 020 488 40 3738 713
HC, | 8000 9995 020 380 40 37.8 713
CC | 1778 2286 020 148 10 2164 7800

Table 3: Geometry and constituent-densities of three sardpanels HE, HC,, and CC. The characteristic side-length of the core-cebgj.

S

The Cx’y ~ 100 criterium (see Sec. 2.1) that must be satisfied turnsdg tnet for all the plates that have been
ZXZ

Yy
tested. According to section 1, the sandwich core can bedrenesi as homogeneous in the in-plane directions up to a

given frequencyfnay if the corresponding wavelengtfi"" contains at least 50 cells [39]. For a typical cell side-téng
min

Scell @nd heighth, this implies that/l

s > 50. Moreover, plates must be thick-enough in order thatobyttane
I
elasticity parameters and loss-factors be estimated, diubo thick for the thick-plate theory to remain valid. This

implies j:n < 0.08 [42]. The validity of these assumptions will be discussed

7.2. Results for panel HC

Panel HG was acoustically excited [27] and 46 modes were identifielhstieity parameters and loss-factors
were estimated wittN = 40 modes and a model ordé = 14 using the steepest-descent algorithm of Sec. 5.1. The
estimated parameters of the equivalent homogeneous pldtihe corresponding skin and core parameters are given
in Tab. 4.

The equivalent plate corresponding to panel;Hias found to be slightly orthotropic. This is a consequerfce o
the laminated skins and of the orthotropy of the honeycomiztre. One can also notice that very low values are
found for the loss factors associated with the Poisson:rétite energy is dissipated via the Poissdieet in panel
HC;. Also, out-of-plane loss factors are relatively largentliae in-plane loss factors; this denotes that dissipation i
honeycomb core structures is larger for out-of-plane shedhan for bending.

Static tensile tests have been performed on two samples gkth material in the x- and y-directions respectively.
The results areE§ = 5.3 + 0.5 GPa,v;, = 0.28+ 0.04, Ej = 7.3 £ 0.7 GPa,vy, = 0.27 + 0.04. These values are in
excellent agreement with the values estimated using thgogeal method. This constitutes an additional validation
for the proposed method.

The optimisation procedure consists in minimising théedence between the experimental modal frequencies and
dampings and numerical modal frequencies and dampings.eual diferences are presented in Fig. 6 and provide
an estimation of the reliability of the method. One can obséhat there is a very low relativeftBrence between
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Ex Ey ny gxy gxz gyz
Equivalent| Real part 10GPa 14GPa @5 046GPa 12MPa 26 MPa
plate Loss factor (%)| 1.5 13 0 12 55 41
Core Real part - - - - 12 MPa 26 MPa
Loss factor (%)| - - - - 55 4.1
Skins Real part 4.8 GPa GPa ®5 56 GPa - -
Loss factor (%)| 1.5 13 0 12 - -
Skins Tensile tests 5.3 GPa 73 GPa 28 - - -
+0.5GPa +0.7 GPa +0.04

Table 4: Estimated mechanical parameters for panel. HR@rameters relative to the skins and the core are obtaitexdrafersion of Egs. (3) and

(4).
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Figure 6: Residual dierences on eigenfrequencies (a) and dampings (b) for panelRi@nerical values have been obtained using elasticity and
damping parameters from Tab. 4.

= 2 %. Thus, the homogeneous thick plate model based on

. [|Af
the measured and numerical modal frequencéﬁz—” >
n
the Reissner-Mindlin hypothesis agrees with the real dyocalrbehavior of panel HC Moreover, there is also a low

. . A :
relative diference between measured and numerical modal damp(%g%? > =10 %. The frequency-independant
an

loss factors combined with the “light damping” hypothegip@ars to be a good model for the constitutive material of
panel HG.

Based on the estimated values given in Tab. 4, the modal shagebe computed by means of the extended
Rayleigh-Ritz procedure. In the- direction, panel HE has a maximum of 8 nodal lines in the frequency range
under consideration. This corresponds 4" the shortest wavelength is 13 cm and contd{ﬂ'@/sce” ~ 30 cells.

In the x— direction, there are up to 6 nodal lineg™ = 11 cm,AT"/s.e ~ 28 cells. Theoretically, this is hardly
. . . h . .
suficient for the core to be considered as homogeneous. Thetmnﬁ&rm < 0.08 is met for almost all modes since
2h . N 2h . — .
—-— = 0.08 in they-direction and—- = 0.1 in they—direction. However, a very good agreement is observed
in Fig. 6 between the homogeneous model and the experimeiteds. Therefore, 30 cells per wavelength may be
enough in the present case for the core to be considered axjeoeous. The thick-plate theory also seenfiscient
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Figure 7: Sensitivities of the modal frequencies to the Bampl (a) and the out-of-plane (b) elasticity parameters. iBetiss of the modal
dampings to the in-plane (c) and the out-of-plane (d) losfador panel HG. Modes are identified by the numbers of their nodal lines inxthe
and y-directions (top and bottom numbers respectively, prof@ach bar).

Sensitivities of the modal frequencies and dampings tortfiddane and out-of-plane mechanical parameters for
panel HG are shown in Fig. 7. Modal frequencies and dampings are tsensgd all the in-plane elasticity and
damping parameters. The estimated in-plane mechanicaépies are thus reliable. Sensitivities to the out-of plan
mechanical properties are relatively important. This emsuhigh degree of confidence for the estimated values of
Re@ﬂz) and RerHZ) since a large number of sensitive modes are involved in piengsation procedure. Sensitivity
to the out-of-plane loss factors is one order of magnituseeto Thus, estimated out-of-plane loss factors are less

reliable than in-plane loss factors.

7.3. Results for panel HC
Panel HG was excited by an impact hammer and 26 modes were extradesticity parameters and loss-factors
were estimated wittN = 26 modes and a model ord@ = 14 using the steepest-descent algorithm of Sec. 5.1. The

estimated parameters of the equivalent homogeneous péatgvan in Tab. 5.
As can be seen in Fig. 8, in-plane and out-of plane elastaiity damping parameters are similar to those of
panel HG. Theoretically, if the cores of the two plates were made efshme material (which is not known with
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Ex Ey ny gxy gxz 9yZ
Equivalent| Real part 10GPa 12GPa @27 048GPa 13MPa 28 MPa
plate Loss factor (%)| 1.0 11 00 32 44 30
Skins Real part 38GPa 47GPa ®7 19GPa - -
Loss factor (%)| 1.0 11 00 12 - -
Core Real part - - - - 13 MPa 28 MPa
Loss factor (%)| - - - - 44 30

Table 5: Estimated mechanical parameters for panel. if@rameters relative the skins and the core are obtainedraféesion of Egs. (3) and (4)

certainty but seems to be the case), G{j(;Xand RegH) should be equal for both panels, according to Eq. (3). Ehis i
verified here with a good degree of precision. Th|s robustagainst the size of test-panels constitutes an additional
indication that the proposed method is reliable with reganchaterial properties.

The residual dference{ Afy >and<‘Aa”
n an

16.7 % respectively. Plate and material models can be consi@gerappropriate for these honeycomb core sandwich
panels (panels HCand HG).

Based on the estimated values given in Tab. 5, the modal stadfibe extracted modes can be computed with
the extended Rayleigh-Ritz procedure (Sec. 3.2). Inythdirection, panel Hghas a maximum of 5 nodal lines in
the frequency range under consideration: its side—ler&gﬂﬂ{‘,?i“ and/lg““ = 33 cm, containing= 80 cells. In thex—

min
direction, panel Hg has a maximum of 5 nodal Iineﬁ?‘” = 265cm, s:
ell

> for panel HG are shown in Fig. 9. They are approximatelg 36 and

~ 65 cells. This is more than flicient

for the core to be considered as homogeneous. Moreover mdiections,—- =~ 2.4 x 102 < 0.08, which is

theoretically stficient for modal frequencies to be predicted using thickeptheory. The core of panel H@an be
considered as homogeneous and all the modal frequencidmgaedicted using thick-plate theory.

Sensitivities of the modal frequencies and dampings tortfiddane and out-of-plane mechanical parameters for
panel HG are shown in Fig. 10. Sensitivities to the elastic out-af@ mechanical properties are lower for panel
HC, than for panel Hg. However, since results obtained on panel,H{e in close agreement with those obtained
with panel HG, this suggests that a sensitivity of 1072 may still yield reliable results. Very low sensitivities to
the out-of-plane loss factors explain that values of lostofa estimated on panel H@eviate significantly from the
values obtained with panel HC

7.4. Results for panel CC

Panel CC was excited with an impact hammer. Elasticity netparameters have been estimated Witk 35
modes and a model ord€r = 14 using the steepest-descent algorithm of Sec. 5.1. Logwr$ahave been estimated
with N = 23 modes and a model ordé = 13. The estimated parameters of the equivalent homogemtatesare
given in Tab. 6.

=N E, Y Sy Gy, G,
Equivalent| Real part 117GPa 102GPa .B3 43GPa 77GPa 163 GRa
plate Loss factor (%)| 0.1 01 00 o1 0.0 0.7
Skins Real part 229 GPa 200 GPa .83 84 GPa - -
Loss factor (%)| 0.1 01 00 o1 - -
Core Real part - - - - 77 GPa 163 GPa
Loss factor (%)| - - - - 0.0 0.7

Table 6: Estimated mechanical parameters for panel CC. Panamelzgive the skins and the core are obtained after irmeisd Egs. (3) and (4)

At first, it can been seen from Tab. 6 that the real partEp&nd E, for skins match standard values for the
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Figure 8: Comparison between the skins and core mechanicanpéers estimated from panels Hénd HG. Numerical values indicated as
references black bars correspond to the results obtaimedd@anel HE. White bars represent the ratio of the estimated value for téGtively

to the one estimated for HC

elasticity modulus of steek{210 GPa [49]). Since panel CC is a metallic sandwich parglpés factors are much
lower than those of panels H@nd HG. The residual dferences on eigenfrequencies and dampings are shown in

n > = 34 % and increases with

an
frequency. Since the estimated structural loss factorsamelow, the measured modal dampings are very sensitive
to the way the panel is suspended (thin wires) and to dampiegaacoustical radiation. Moreover, these damping
mechanisms are also mode-dependant. In the high-frequangg, a systematic discrepancy appears between the
measured and the (humerically) modelled damping factoos.tie equivalent homogeneous plate, the coincidence
frequencyf. is estimated to be approximately 4 kHz. Damping due to agmalstadiation increases as the modal
frequency comes close . In the same spirit, the fierence betweerX” and fN'™ seems to be systematically
negative by~ 2 %. By order of magnitude, this is consistent with air logdimthe low frequency range. The relative

‘A—fn =23 %.
fn

. . . _ A
Fig. 11. It can be seen that the uncertainty on the estimaficdiamping is Iargs{'

differences between experimental and numerical modal fretggerenain sma

Based on the estimated values given in Tab. 6, the modal slodiiee extracted modes can be computed by means

of the extended Rayleigh-Ritz procedure of Sec. 3.2. Irythdirection, panel CC has a maximum of 7 nodal lines in
min

the studied frequency range: its side—lengthﬁ?‘ﬂandﬂ{‘,"” =57cm, containingSCy— ~ 55 cells. In thex— direction,
ell
. N . Amin . .
panel CC has a maximum of 6 nodal ling§" = 5 cm, contalnlngS:— ~ 50 cells. This is sficient for the core to
ell
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Figure 9: Residual dlierences on eigenfrequencies (a) and dampings (b) for panel NM@nerical values have been obtained with elasticity and
damping parameters given in Tab. 5.

. 2h _ N 2h
be considered as homogeneous. A% = 6.6 x 102 < 0.08 in they- direction, andﬁ =752x 1072 < 0.08

in the y— direction, which is also dficient for modal frequencies to be predicted by the thickeptheory. In the
frequency range under consideration, the core of panel @®eaonsidered as homogeneous and the high modal
frequencies are expected to be well predicted by the thiatepheory.

Results of the sensitivity analysis are presented in Figiotpanel CC. It can be seen that sensitivities to the
out-of-plane properties are very low compared to senséiielative to the in-plane properties and also as condpare
to sensitivities to the out-of-plane properties of panets ldnd HG. This means that the modal frequencies and
modal dampings are hardly influenced by the out-of-planeptexnmoduli. As a consequence, the estimations of
these parameters must be interpreted very carefully. $cise the core material is tooBfthe last hypothesis listed
in Sec. 2.1 is not valid): the out-of-plane shear moduli ateltigh to allow for their precise identification.

8. Conclusion

In this paper, a method for the measurement of six elastis@guli and six loss-factors of the constituents of a
three-layer symmetrical sandwich material, nantgjyE}, v5,, G5, G5, G, has been presented (sandwich structure
in the xy-plane). The method directly extends the work of de Viss&tel. [23] by proposing a means to measure
alsoout-of-planecomplex moduli. It continues the work of Bastesal. [33] with the inclusion of loss factors in
the mixed experimentdlnumerical procedure. Compared to the work of Pagn&t@d. [26] and to that of Matter
et al. [27, 36], the present method does not require full-field mesments and is thus much simpler to implement
and faster to execute. Compared to the method of [29, 37,HiGh Resolution Modal Analysis allows for more
modal data to be extracted and used for the estimation ofléisticand damping properties of sandwich materials.
Moreover, residuals obtained in the present paper for moelgliencies# 1 %) and dampings~{ 10 %) are fully in
agreement with residuals obtained in [36—38] which eseénma¢chanical parameters of sandwich panels using much
less modal data than does the present study.

The method is suited to sandwich structures with heterageneoresé€.g. honeycomb cores) provided that the
panels on which the tests are performed satisfy several gieicad requirements. It has been validated successfually o
virtual plates. Results obtained on three sandwich pangigest that the dynamic behaviour of the sandwich material
can be accurately modelled using (1) an equivalent homagenglate modelled with first order shear deformation
theory, (2) a simple hysteretic model of the tyg&(t + jn)” for each constituent material and (3) the “light damping”
hypothesis for the panel. The consistency of the resultstise obtained by static measurements, or on titieréint
panels having the same sandwich structure, also contsilbottae validation of the method. The extensive sensitivity
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Figure 10: Sensitivities of the modal frequencies to thelame (a) and out-of-plane (b) elasticity parameters. Sgitgs of the modal dampings
to the in-plane (c) and out-of-plane (d) loss factors forgd&C,. Modes are identified by the numbers of their nodal lines inxtrand y-direction
(top and bottom numbers respectively, on top of each bar).

analysis combined with the examination of the residufiedences left by the optimisation process yields the degree
of confidence that can be attributed to the value of each@rtianechanical parameter.

Since this method is simple and needs no heavy experimeupalatus, it is suited to the in-line control of the
production of sandwich-materials. This method can alstaoepclassical tensile tests (with some profit) and also,
within the frame of the proposed model, the dynamical meiciadanalysis (DMA) for the measurement of elastic

and damping material properties.
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Figure 11: Residual flierence on eigenfrequencies (a) and dampings (b) for paneNG@erical values have been obtained using elasticity and
damping parameters given in Tab. 6.

A. Generation of the orthonormal polynomial basis

The orthonormal polynomial basjg;(«)}ieo,n) [55, 56] used in the extended Rayleigh-Ritz procedure of Séx
generated by an iterative Gram-Schmidt process as follows:

=0 0=

i=1 Pak) = (k= < xPo(), Po(k) >)Po(«)
i>1 Pik) = (k= < «pi-1(x), Pi-1(x) >)pi-1(k)— < kPi-2(), Pi-2(x) > Pi-2(x)

(25)

The scalar product between two polynomia(g) andb(x) is: < a(k), b(k) >= f_ll a(k)b(x)d«. The normalized
and not-normalized versions of i element of the polynomial basis are denoted respectivelg; @y and ().
The former is derived from the latter by; (<) = /< fi(x), Bi(x) >pi(x). The basis is orthonormal since the following
equation is satisfied/(i, j) € [0,N]?> < pi(x), pj(k) >= dij, wheresj; is the Kronecker symbol.

B. Analytical expressionsof thederivativesof T and U

The matriceK and M of the eigenvalue problenK[— 47?f2M]q = 0 (Sec. 3.2) are derived from the analytical
expressions of the derivatives ©fandU relatively to the generalised displacemenfs M;;, N;;. Those are related
to the "natural” displacements,, @y, andwg by:

Ox(xY) = D Lip(Op(y)  Dy06¥) = D Mipi(Ipsy)  wo(xy) = > Nypi(x)pi(y) (26)
i ij ij

H, 2 3
- o prw h
The derivatives of the kinetic energy= —— Ils [1—2(<D§ +@2) + hwg

dxdy are:

T Pdyhw?

L, 4 1
aT  p"llyhw?
IM;; 4

oT P lyhw?
oNj 4 N
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The simplicity of the formulas is due to the fact that no spaegvatives appear in the expression of the kinetic
energy and that all productsp; (i # j) cancel out once integrated (orthogonality of the polyrais)i
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The derivatives of the potential energy(given by Eq. 7) are:

6Tij = kgo [—§D4N|k| (J,K) + ED4LIKJ(L k) — §D5MKJ| (i, k) + KDSLKJJ(I’ k)}

ou 1
yD5M.,+Z DM d(0.K) - stLk,I(k|)+ 7 DsMicd(i. )| +

oM 4
...Z[7I(l,k)l(l, )+D6|(k,|)|<1,l)] Ni (28)
WLy

2 D,N;; +Z[ D3N J(k, j) — —D4Lkl(k i)+ —yDeNkJJ(k |+

oN; 4

[—I(k DI(1) + Dol (K10, )| M

whereZ stands for Z and where the following integrals have been introduced:
kI (k) € [0,N]2

dp(x) 1 dn(K)

1.3y =< 208 g 5= [} odk . 3 ) =< dp() dpiK) _ a dp()dpi) | (29)

d« ~ dk -1 de  dk

C. Analytical expressionsof t, and uE

The explicit expression of the cfieientst, and uy, representing respectively theth modal mass (for some
normalised displacement) and tkeontribution to then-th modal stifhess, are necessary to compute the numerical
modal dampings and the sensitivities of the modal freqsnand dampings to the rigidities and Ioss factors respec-

tively, as explained in Secs. 3.3 and 5.4. The coordinatéiseaf" modal shape are denoted iy, , M /N }. The
calculation is sketched in section 3.3. The expressidp isf
H
prlxyh ) )
th="g %; [(L Y+ — ((M,m) +(N?) (30)
The expressions dti )k < (1.6) are:
ly N
n_ _Y n n
4 =51, 2 M ;} Mpm(. p)}
1
W= Z MP Z NRg! (1. p)I(Iq)}
I,m p.q
| N
n_ X n n
Uz = 2, %; Ny pZ::‘) NjpJ(m, P)l
’ (31)

N

N
Mg, I(p,m)} 3 ZL {ZL J(m,p)]
p=0 0
I
+Ey)(§L“ml

D Nagl(p.DI(m. )
p.q

y 2

?1:?2(’\' ) “ZN

[l I
=" S - S

I,m I,m

Ix
n_ X n
u6_2|y%;Mml

N

2 Lol (P1)
p=0

+ Z MP,
I,m

N

> Lamd(l. )
p=0
Iy
+ —X IZ N

m

N
D MM, p)
p=0

N
12 Namd(, p)}
p=0



where thel (I, p) and J(l, p) are defined at the end of B.

D. Nomenclature

I« (m) Length of thex-side of the plate

ly (m) Length of they-side of the plate

h® (m) Skin thickness

h¢ (m) Core thickness

h=ht+ 2h® (m) Sandwich panel thickness
p°  (kgxm3) Skin mass density
p°  (kgxm=3) Core mass density
oM =1/hx (h%° + 2h%%)  (kgxm=3) Equivalent homogeneous plate mass density
Scell (m) Characteristic side-length of the core-cells

Table 7: Notations for the geometrical and mass parameterg @fthels

Core

Skin

Equivalent homogeneous pla

te

Young modulus in the-direction
Young modulus in thg-direction
Young modulus in the-direction
Shear modulus in they-plane
Poisson ratio in they-plane
Shear modulus in thezplane
Poisson ratio in thezplane
Shear modulus in thgzplane
Poisson ratio in thgzplane

ES = E(1+ jn)

EJ = EJ(1+ jn))

E; = ES(1+ jnS
giy = G?(y(l + jﬂ?(y)
Yoy = V(L +my,)
giz = G?(z(l + 177(;(2)
Vi = Vil + i)
G, = GElL+ 1)
Ve = Ve L+ nS,)

EL=EQ+in)

B = B+ i)

E=E1+in
g)s(y = Giy(l + jniy)
Vay = V(L +m5,)
giz = Gf(z(l + J’ﬁ(z)
Vi = V(1 +Jm3,)
Gl = Go+ )
Z)S/z = 3512(1 + jniyz)

EV=E/1+jny)
E}=E'Q+jn)
N = L i

ny = G;iy(l + jnyy)
Z%, = viy(L+ jmyl)
G, = GL(1+ jnk)
v = v+ i)
Gl =Gl (1+ jnly)
V2= l;z(l + jﬂt'yz)

Table 8: Notations for the complex mechanical parametersti@fzarameters and loss factors) of the pangls<(-1)
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u(x.y,2
V(X Y,2)
W(X.Y,2)
Dy (X, Y)
q)y(x9 y)
WO(X7 y)
U
AU
T
EHh?
12(1— vyyvyx)
vxyEyﬁg
6(1— veyvyx)
Eth3y y
12(1— vxyvyy)
D, = 2¢ G,
Ds = xthxz
B Gﬂyh?’
6
Kxz
Kyz
+ "
m= 77?
2 =1t
13 = nz
N4 = nziz
15 = 1x;
6 =11ty
f
w = 2nf
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min
/lx

D,

D>

Ds

Ds

c,sH c,sH

_ c.sH
v =Ty

c,sH
+ Ny

= oy

min
/1)’

(H2)
(radxs-1)
(m)
(m)

(m)

Displacement in the-direction

Displacement in thg-direction

Displacement in the-direction

Rotation around the-axis (Reissner-Mindlin hypothesis)
Rotation around thgaxis (Reissner-Mindlin hypothesis)
Displacement in the-direction (Reissner-Mindlin hypothesis)
Potential energy

Energy lost per cycle

Kinetic energy

Plate rigidity in thex-direction
Plate rigidity in thexy-plane

Plate rigidity in they-direction

Plate rigidity in theyzplane
Plate rigidity in thexzplane

Plate rigidity in thexy-plane

Shear correction factor in the=plane

Shear correction factor in the-plane

Global loss factor due to the Poisson ratffeets in thexy-plane
Loss factor in thex-direction

Global loss factor due to the Poisson ratiteets in thexy-plane
Loss factor in the/-direction

Loss factor in theyzplane

Loss factor in thexzplane

Loss factor in thexy-plane

Frequency

Angular frequency

Wavelength of the flexural vibrations

Minimal wavelength of the flexural vibrations in tixedirection

in the frequency range under study

Minimal wavelength of the flexural vibrations in tlgedirection

in the frequency range under study

Table 9: Notations used in the dynamical model of the panels
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(Nxm™)
(kg)
(Nxmxs™)
(Hz)
(s
(Hz)
(s
(m)

()
()
()

()
()

(rad)
(rad)
(m)

Stiffness matrix

Mass matrix

Damping matrix

Experimentally obtained modal frequency of tifemode

Experimentally obtained modal damping of thi&-mode

Numerically obtained modal frequency of thi&-mode

Numerically obtained modal damping of th8-mode

Numerically obtained modal shape of thi&-mode

Modal overlap

Conservative system associated to the plate

Potential energy of the™-mode ofPc

Kinetic energy of th@"-mode of¢

Non-conservative system associated to the plate

Potential energy of the-mode ofPyc

Kinetic energy of th@-mode ofPyc

Energy lost per cycle by th#'-mode ofPyc

Order of the polynomial basis (Rayleigh-Ritz procedure)

i element of the polynomial basis in thedirection (Rayleigh-Ritz procedure
j'" element of the polynomial basis in tigedirection (Rayleigh-Ritz procedure
Coordinates aby(x, y) in the polynomial basis (Rayleigh-Ritz procedure)
Coordinates aby(x,y) in the polynomial basis (Rayleigh-Ritz procedure)
Coordinates oivy(X, y) in the polynomial basis (Rayleigh-Ritz procedure)

Table 10: Notations used in the numerical model of the panels
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