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non-linearities in vibrating devices
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Abstract

In a number of vibration applications, systems under study are slightly non-linear. It is thus of great importance to have a
way to model and to measure these non-linearities in the frequency range of use. Cascade of Hammerstein models conveniently
allows one to describe a large class of non-linearities. A simple method based on a phase property of exponential sine sweeps
is proposed to identify the structural elements of such a model from only one measured response of the system. Mathematical
foundations and practical implementation of the method arediscussed. The method is afterwards validated on simulatedand
real systems. Vibrating devices such as acoustical transducers are well approximated by cascade of Hammerstein models. The
harmonic distortion generated by those transducers can be predicted by the model over the entire audio frequency range for
any desired input amplitude. Agreement with more time consuming classical distortion measurement methods was found to
be good.
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1 Introduction

Vibratory phenomena are usually assumed to be linear. However, many vibrating systems are subject to non-linear be-
haviours, such as loudspeakers [1], musical instruments [2] and vibrating plates [3]. Even wave propagation in air is not
completely linear [4]. The study of these non-linearities is thus of great importance in order to model these devices and
phenomena or to justify their “linearity”.

Identification of non-linear systems requires measurements or estimation of model’s structural elements from a finite
set of input/output data [5]. Classical linear measurementmethods [6, 7] capture only the linear behaviour of the system
under study. Traditional non-linear measurement methods [8] give total harmonic distortion (THD), harmonic distortion of
ordern (HDn) or inter-modulation products (IMP). These quantities aremeasured using pure tones at a given amplitude and
frequency. They do not describe non-linearities themselves but only some of their effects for arbitrary excitations. Moreover,
experimental processes involved in those methods are very time-consuming if a wide range of frequencies and amplitudesis
to be considered. There is thus a real need for rapid model based procedures to measure non-linearities.

Non-linear systems can be classically represented by Volterra series [9] or by “Sandwich” structures [5]. The cascade of
Hammerstein models [10] is a subclass of those models and canbe used to exactly represent systems having diagonal Volterra
Kernels. This model is composed ofN branches in parallel. Each branch comprised a static polynomial non-linearity followed
by a linear filter.

A simple method which makes it possible to quickly access thestructural elements of a cascade of Hammerstein models
is presented in this paper. This method is based on the methodinitially proposed by Farina [11]. Exponential sine sweepsare
used as input signals, and allow for the temporal separationof the different orders of non-linearity [11, 12, 13, 14]. Structural
elements of the assumed model are then extracted from only one response of the system. The method is validated on a
simulated system and the influence of the different parameters is shown.

As transducers are most often the least linear part in the audio chain, knowing their non-linear behaviour is very important.
Two major types of transducers exists: electrodynamic loudspeakers [15] and panel-based transducers (distributed mode loud-
speakers [16] or multi-actuator panels [17]). In electrodynamic loudspeakers, a motor converts the electrical signalinto motion
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and makes a cone vibrate. The piston-like movement of the cone generates the sound field. In panel-based loudspeakers, a
motor is also used but transmits its motion to a light and stiff panel. The flexural waves travelling in the panel then generate
the sound field.

In both loudspeaker types, the motor induces non-linearities because of non-uniform magnetic field, Eddy currents and
variations of the electrical inductance with displacements [15, 18]. In electrodynamic loudspeakers, significant excursion can
induce non-linear bending in the cone and a non-linear behaviour of the suspensions [1]. In panel-based loudspeakers, large
amplitude displacements occur in the plate near the exciterposition. In this case the propagation of flexural waves [3] and the
strain/stress relation of the material which compose the plate [19] can be non-linear.

In the literature, electrodynamic loudspeakers have been greatly studied from a non-linear point of view. To representtheir
non-linear behaviour, different physical models have beenbuilt. Their formulation was either completely analytical[20, 21] or
based on the finite element method [22]. In Ref. [23], Klippelproposed to reduce the Volterra series expansion to a “Sandwich”
model and identified its parameters from measurements usingthe method presented in [24]. In [11, 25], it is suggested to use
simpler models,i.e. cascade of Hammerstein models, to model and identify different audio systems, including acoustical
transducers.

In the present paper, two different acoustical transducers(an electrodynamic one and a panel-based one) are studied
experimentally under the assumption that they can be modelled using cascade of Hammerstein models. Their models are
completely identified using the previously introduced method. THD and HDn at different frequencies and amplitudes of the
input signal are evaluated for these transducers by classical means and compared to predictions made using the identified
Kernels. The agreement between the results given by the two methods is very good for a wide range of amplitudes.

After reviewing how to model and to measure non-linearities(section 2), the mathematical foundations of the current
method are presented (section 3). Implementation of the method is then described (section 4) and validated on a simulated
system (section 5). Acoustical transducers are identified using the previous method (section 6) and the resulting Kernels are
used successfully to predict the harmonic distortion generated by the two transducers (section 7).

2 Modelling and measurements of non-linearities

An overview of existing models and measurement methods of non-linearities is given in this section. Only Single-
Input/Single-Output (SISO) time-invariant causal non-linear systems without continuous component will be considered here.

2.1 Volterra series

Volterra series [9] enables one to express the relationshipbetween the non-linear system inpute(t) and outputs(t) as a
series of multiple convolution integrals :

s(t) =
+∞
∑

k=1

∫ +∞

0

...

∫ +∞

0

vk(τ1, ..., τk)e(t− τ1)...e(t− τk)dτ1...dτk (1)

The functions{vk(t1, .., tk)}k∈N∗ are called Volterra Kernels and completely characterize the system. Volterra models can
then be seen as a generalization of the simple convolution operator used for linear systems. Such models represent exactly
any non-linear “analytical” system [26], and approximate any non-linear system with a “fading memory” [27]. Measurement
methods exists to identify the first two or three terms of Volterra series [28, 29, 30, 31]. These experimental methods aretime
consuming because they require many measurements. Moreover the difficult physical interpretation of the different terms of
the Volterra series limits its use [32].

2.2 Sandwich approach

Another approach to non-linear system identification is to assume that systems have a given block-structure. Following
the “Sandwich” approach [5], a non-linear system is represented asM parallel branches composed of three elements in series:
a static non-linear partPm(.) sandwiched between two linear partsllm(t) andlrm(t). Such systems are a subclass of Volterra
systems. It can be shown that any continuous non-linear system can be approximated by such a model [33].

To identify such structures, the form of the static non-linear part can be assumed and the two unknown linear parts can
be estimated from measurements at different frequencies and amplitudes [24]. This leads to only a discrete knowledge of
Ll
m(f) andLr

m(f) in the frequency domain and remains a long experimental task. In Ref. [34], Abelet al. proposed another
method to identify such structures. Unfortunately, this general method cannot be used successfully in practice due to numerical
instabilities.

2.3 Cascade of Hammerstein models

In a cascade of Hammerstein models [10], each branch is composed of one non-linear static polynomial element followed
by a linear onehn(t), as shown in Fig. 1.
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Figure 1: Block diagram representation of a cascade of Hammerstein models.

Mathematically, the relation between the inpute(t) and the outputs(t) of such a system is given by Eq. (2), where∗
denotes the convolution.

s(t) =

N
∑

n=1

hn ∗ en(t) (2)

In this model, each impulse responsehn(t) is convolved with the input signal elevated to itsnth power and the output
s(t) is the sum of these convolutions. The first impulse responseh1(t) represents the linear response of the system. The other
impulse responses{hn(t)}n∈{2...N} model the non-linearities.

The family{hn(t)}n∈{1...N} will be referred to as the Kernels of the model. These Kernelsare assumed to be integrable.
Any cascade of Hammerstein models is fully represented by its Kernels.

It can easily be shown from Eqs. (1) and (2) that cascade of Hammerstein models correspond to Volterra models having
diagonal Kernels in the temporal domain, as in Eq. (3), whereδ(t) represents the Dirac distribution. This non-linear model is
thus referred in the literature as a diagonal Volterra model[35], but also as a cascade of Hammerstein models [5] or Uryson
model [10].

∀(τ1, . . . , τk) vk(τ1, . . . , τk) = hk(τ1)δ(τ1) . . . δ(τk) (3)

As can be seen in Eq. (2), cascade of Hammerstein models are linear in the parameters to be estimated,i.e. the output of
the system is a linear combination of the Kernels{hn(t)}n∈{1...N}. A naive approach is to identify the model using a classical
least square method, as proposed for general Volterra systems in [36]. Thus the mean squared error between the actual output
of the systemy(t) and the output of the estimated models(t) given in Eq. (2) can be minimized with respect to the coefficients
of h1(t), h2(t), . . . , hN (t) and the solution is given by:

argmin
h1(t),h2(t),...,hN (t)

∑

t

‖y(t)− s(t)‖
2 (4)

However, the least square method requires the inversion of aMN×MN matrix, whereN is the order of the system under
test andM is the length of the impulse responseshn(t) in samples. This matrix can be very ill-conditioned since itis generated
from the exponent (untilN ) of the input signal. This results in important errors in parameters estimation especially in noisy
conditions. Moreover the computation of the matrix from theinput signal and of the inverse of the matrix is computationally
costly and limits in practical case the memoryM of the system. Some numerical methods are however availableto limit these
points (see for example [37, 38]), and to overcome these drawbacks alternative methods have also been developed.

Gallman [10] and Hawksford [25] proposed a method to estimate the elements of a cascade of Hammerstein models using
Gaussian noise at different amplitudes as inputs. The employed estimation procedures are strongly based on the knowledge
of the order of non-linearity of the polynomial expansion, which is unknown in practical cases. Moreover, these methodsto
identify the Kernels from the measurements are also computationally costly.

Farina proposed another method using sine sweeps with frequency varying exponentially with time [11]. An upper bound
of the order of non-linearity of the model has to be assumed. This method allows only for the separation of the different orders
of non-linearity and not for the complete identification of the Kernels of the system. Recently, Nováket al.[39] have identified
Kernels from the contributions of the different orders of non-linearity using a least mean square minimization procedure. No
results are provided to judge the influence of the different parameters on its performances.

The method proposed here gives direct mathematical access to all the Kernels{hn(t)}n∈{1...N} from the contributions
of the different orders of non-linearity obtained as in Ref.[11]. The main advantage of the proposed approach over the least
squared based technique, besides conditioning and computational problems, is that it provides a direct evaluation of the N
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impulse responseshn(t) of the system. The foundations and the key implementation ofthis simple method are explained in
detail. The whole procedure is validated on a simulated system and on two real systems.

3 Mathematical foundations of the method

Mathematical foundations of the method used for direct identification of the elements of a cascade of Hammerstein models
are given in this section. This is based on the procedure initially proposed by Farina [11].

3.1 A cascade of Hammerstein models fed with sine sweeps

To experimentally cover the frequency range on which the system under study is to be identified, cosines with time-varying
frequencies are interesting signals. Eq. (5) defines such a signal.

∀t ∈ R e(t) = cos(Φ(t)) (5)

If e(t) is the input of the cascade of Hammerstein models, the outputof the non-linear block of theith branch will have
the form of Eq. (6), as can be seen in Fig. 1.

ei(t) = cosi[Φ(t)] (6)

Using Chebyshev polynomials,ei(t) is rewritten in Eq. (7) as a linear function of{cos[kΦ(t)]}k∈[1,i] . Details of the
computation of the matrixC are provided in the appendix.

∀i ∈ {1 . . . N} cosi[Φ(t)] =

i
∑

k=0

C(i, k) cos[kΦ(t)] (7)

3.2 Exponential sine sweeps

When the instantaneous frequency ofe(t) is increasing exponentially fromf1 to f2 (f1, f2 > 0) in a timeT , such a signal
is referred to as an “exponential sine sweep” [11, 13] and itsinstantaneous phase is given by :

∀t ∈ R Φ(t) = 2π
f1T

ln f2
f1

(e
t
T

ln
f2
f1 − 1)− π/2 (8)

The corresponding instantaneous frequency ofe(t) is :

∀t ∈ R f(t) =
Φ′(t)

2π
= f1e

t
T

ln
f2
f1 (9)

Thusf(0) = f1 andf(T ) = f2. The frequency range[f1, f2] corresponds to the band of interest of the system under test.

3.3 Fundamental phase property

From Eq. (8), it can be shown that this type of signal exhibitsthe following phase property :

∀k ∈ N
∗, ∀t ∈ R kΦ(t) = Φ(t+

T ln k

ln f2
f1

)− (k − 1)(
π

2
+ 2π

f1T

ln f2
f1

) (10)

By choosingTm = (2mπ −
π

2
)
ln f2/f1
2πf1

with m ∈ N
∗, the second term in Eq. (7) becomes a multiple of2π and one

obtains Eq. (11) which is another way to express thekth term of the linearisation presented in Eq. (7).

∀k ∈ N
∗, cos(kΦ(t)) = cos(Φ(t+∆tk)) with ∆tk =

Tm ln k

ln (f2/f1)
(11)

For anyTm-long logarithmic sweep, multiplying the phase by a factork results in the same signal, but in advance in the
time domain by∆tk. As can be seen from Eq. (11), this time advance depends only on the sweep parametersTm, f1, f2 and
onk. In Refs. [11, 40], similar time advances were obtained using different arguments.

The fact thatTm must take only a discrete set of values to ensure the fundamental phase property Eq. (11) has been first
shown in Ref. [39] but is mathematically demonstrated here for the first time.

One should note thate(t) has been designed for allt with its instantaneous frequency increasing fromf1 to f2 between
t = 0 andt = T . In practice, signals are defined only on[0, T ]. Thus the phase property is not valid on the whole support
of the function. The phase property becomes false when the instantaneous frequency ofcos[kΦ(t)] is outside the frequency
range of interest (i.e.[f1, f2]).
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3.4 Inverse convolution

Using the Eqs. (11) and (2), one obtains :

s(t) =

N
∑

n=1

gn ∗ e(t+∆tn) +K (12)

with:

gn(t) =
N
∑

k=1

C(k, n)hk(t) and K =
N
∑

n=1

C(n, 0)

∫ +∞

−∞

hn(t)dt (13)

In Eq. (13),gn(t) corresponds to the contribution of the different Kernels tothenth harmonic.K is the global continuous
component resulting from the continuous components of the different Kernels. As the Kernels are assumed to be integrable,
K is correctly defined.

In order to separately identify each Kernel of the cascade ofHammerstein models, a signaly(t) which looks like an inverse
in the convolution sense ofe(t) is needed. Unfortunately, such an inverse does not necessarily exist mathematically. However,
a band-limited inversey(t) can easily be defined such that it satisfies the relation (14) with sinc(x) = sin(πx)/πx.

y ∗ e(t) = sinc(2f2t)− sinc(2f1t) = d(t) (14)

d(t) can be seen as a band-limited Dirac Function, since its Fourier transform is1[−f2,−f1]∩[f1,f2](f). Then,Y (f), the
Fourier transform of the inverse filtery(t) can be built in the frequency domain using Eq. (15), whereE∗(f) is the complex
conjugate ofE(f).

Y (f) =
1

E(f)
1[−f2,−f1]∩[f1,f2](f) ≃

E∗(f)

|E(f)|2 + ǫ(f)
(15)

In practice, the filterY (f) should be built by replacing the discontinuous function1[−f2,−f1]∩[f1,f2](f) by a function
which ensures a smoother transition between the two frequency domains and thus generates less unwanted side effects in the
time domain.

ǫ(f) = β×T (f) is a frequency-dependent real parameter chosen as equal to0 in the bandwidth and as having a large value

β outside of it, with a continuous transition between the two domains. In the following, a weightβ =
∫

fs
2

0
|Y (f)|2df , which

corresponds to the energy of the signal to be inverted, has been chosen. In practice, transitions between the two domainscan be
simple linear functions orC∞ Gevrey functions. An example of such a function defining aC∞ transition betweenT (fa) = 0
andT (fb) = 1 is:

∀f ∈]fa, fb[ T (f) =
1

2

[

1 + tanh

(

1

fa − f
+

1

fb − f

)]

(16)

The application of this procedure leads toy(t) that can be considered as an inverse ofe(t) in the sense of convolution in
the frequency range[f1, f2].

3.5 Kernel Identification in the temporal domain

After convolving the output of the cascade of Hammerstein modelss(t) given in Eq. (12) withy(t), one obtains :

y ∗ s(t) =
N
∑

i=1

d ∗ gi(t+∆tn) =
N
∑

i=1

g̃i(t+∆tn) (17)

where g̃i(t) corresponds togi(t) convolved withd(t), i.e. to gi(t) filtered by a bandpass filter in the frequency band
[f1, f2]. The constantK, present in Eq. (12), has thus been filtered byd(t). Moreover, if the system under study has no
significant behaviour outside of[f1, f2], theng̃i(t) = gi(t).

In Fig. 2, y ∗ s(t) is represented. Because∆tn ∝ ln(n) andf2 > f1, the higher the order of linearityn the more in
advance the corresponding̃gn(t) will be. Thus, ifTm is long enough, the different̃gn(t) will not overlap. They are then
easy to separate by windowing in the time domain. The separation of the contribution of the different orders of non-linearity
by using exponential sweeps, which is mathematically demonstrated here, is already experimentally well known in the audio
community [12, 13, 14].

Next, using Eq. (18), the family{h̃n(t)}n∈[1,N ] of the Kernels of the cascade of Hammerstein models describing the
behaviour of the system in the frequency band[f1, f2] can be fully extracted.







h̃1(t)
...

h̃N (t)






= A

T
c







g̃1(t)
...

g̃N (t)






(18)
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Figure 2: Separation of the different orders of non-linearity after convolution withy(t).

Ac is the Chebyshev matrix defined in the appendix without its first column and its first row and(.)T stands for matrix
transposition. The first column and the first row of matrixA have been removed here as there is no continuous components
here.

As h̃n(t) = d ∗ hn(t), if the system under study has no significant behaviour outside of [f1, f2], thenh̃n(t) = hn(t). In
most vibration application, systems are designed for a given frequency band (typically[20Hz, 20kHz] for audio applications).
The border frequenciesf1 andf2 can thus generally be selected to identify the real Kernelshi(t). If it is not possible, Kernels
are identified betweenf1 andf2 and thus are only a band-limited version of the real Kernels.

4 Practical implementation

In this section, the practical discrete-time implementation of the method presented in section 3 is described.

4.1 Overview of the method

In Fig. 3, a global overview of the procedure is given. It can be decomposed in the following steps :

1. Design of the input sweepe(t) using Eq. (8). The choices off1, f2 andT are discussed in section 4.2.

2. Playinge(t) and recordings(t). The sampling frequencyfs must be chosen to avoid any aliasing effects caused by the
digital to analog converter in the frequency range of interest [f1, f2].

3. Generation of the inverse filtery(t) according to Eq. (15). A convenient way to implement this filter is described in
section 3.4.

4. Convolution of the output signals(t) with the inverse filtery(t) as in Eq. (17). This can be done in the frequency domain
with a sufficient number of points to avoid temporal aliasing.

5. Windowing in the temporal domain to obtain{g̃k(t+∆tk)}k∈[1,N ] (cf. Fig. 2). Rectangular windows can be chosen
to separate the different orders of non-linearity.N is the highest desired order in the cascade Hammerstein model.
Methods to chooseN and its influence are shown in sections 5.3 and 5.4.

6. Temporal shift of the different orders of non-linearity to recover{g̃k(t)}k∈[1,N ]. A shift of a non-integer number of
samples can be performed with a phase shift in the frequency domain.

7. Multiplication withA
T
c to access{h̃k(t)}k∈[1,N ], according to Eq. (18).Ac is the Chebyshev matrix defined in the

appendix without the first column and the first row. The matrixA
T
c of order 8, which is sufficient in practice, is

explicitly given is the appendix.
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Figure 3: Overview of the method used to identify a cascade ofHammerstein models.

4.2 Choice of the parameters (f1, f2, T andN )

For satisfactory measurements, the sweep parametersf1, f2, T andN must be well chosen. These choices must be made
considering the following aspects:

• The frequenciesf1 and f2 must be chosen such that the interesting behaviour of the system under study is in the
frequency range[f1, f2].

• The influence of noise on the identification results should also be minimized [40]. By itself, the exponential sweep
rejects correctly uncorrelated noise in quiet environment[7]. Moreover its energy repartition in frequency is often
adapted to the ambient noise [6, 14]. The choice of this signal is thus interesting from this point of view as will be seen
in section 5.3. If an excellent signal to noise ratio (SNR) isneeded, the longerT , the better the SNR after step 4 will be
at a given amplitude of the input signal.

• The number of points to be convolved at step 4 is limited by theavailable computational power. Thus, asT increases,
the calculation time will increase.T should not be too large in order to avoid long calculation times.

• N should not be underestimated in order to guarantee good accuracy in identification. The optimalN is reached when
is it impossible to extract the correspondingN th impulse response from the background noise. This will be shown in
sections 5.3 and 5.4.

• The different peaksgk(t) which appear in the temporal domain after the convolution with the inverse signal (step 4, see
Fig. 2) must not overlap each other. The global decay time of the systemτglobal is an upper bound of the decay times of
each order of non-linearity. Parametersf1, f2 andT such that∆tN −∆tN−1 > τglobal will thus avoid overlapping of

the different orders of non-linearity [6, 41]. Because∆tN =
Tm lnN

ln f2/f1
, considering the chosen value forN , T must be

chosen to be long enough andf2/f1 not so large in order to respect the previous condition.

5 Validation of the method

In this section, the proposed method of identification is tested on a simulated cascade of Hammerstein models.
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5.1 Design of the simulated system

A cascade of Hammerstein models of orderN = 4 has been chosen for simulation purposes. This system is fully
represented by its4 Kernelsh1(t), h2(t), h3(t) andh4(t). For these Kernels, which correspond to linear subsystems,impulse
responses of low order ARMA filters (2 poles and2 zeros) with a roughly5 ms decay time have been chosen. Parameters of
the simulated system are given in Table 1.

n fzeros(kHz) fzeros/fs |pzeros| fpoles(kHz) fpoles/fs |ppoles| Gains
1 0.15 7.81× 10−4 0.95 1.5 7.81× 10−3 0.95 10−1

2 0.4 2.1× 10−3 0.97 2 1.04× 10−2 0.96 10−2

3 2 1.04× 10−2 0.93 0.1 5.2× 10−4 0.97 10−3

4 10 5.21× 10−2 0.92 0.5 2.6× 10−3 0.95 10−5

Table 1: Parameters used for the simulation of the cascade ofHammerstein models of orderN = 4.

5.2 Identification without noise

The method presented in section 3 and implemented as described in section 4 has been applied here with the parameters
given in Table 2 in order to identify the different Kernels ofthe system.

The magnitude and phase of the frequency responses of the original and estimated KernelsH1(f), H2(f), H3(f) and
H4(f) are shown in Fig 4. The estimated Kernels are very close to theoriginal ones over almost the entire frequency range
[f1, f2]. For the frequency regions close tof1 andf2, the estimated Kernels deviates slightly from the originalones, especially
the highest orders. This illustrates the limits of the band-limited inverse filter defined by Eq. (15).

Figure 4: Magnitude (a) and phase (b) of the frequency responses of each Kernel of the simulated system. Originals are shown
in solid or dotted lines and estimations with o,+,* or x.

For a finer analysis, the relative errors in dB, defined in Eq. (19), are given for the four estimated Kernels in Fig. 5. As
magnitude estimation errors and phase estimation errors are included in this relative error, this is a more compact way to access
estimation errors.

Parameter Value Normalized value
f1 20 Hz f1/fs = 1.04× 10−4

f2 20 kHz f2/fs = 1.04× 10−1

fs 192 kHz
T 15 s T × fs = 2.88× 106 samples
N 4

Table 2: Parameters chosen to identify the simulated system.
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γk(f) = 20 log10

∣

∣

∣

∣

∣
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k (f)−Hmeas

k (f)
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k (f)

∣

∣

∣

∣

∣

(19)

In Fig. 5, it can be seen that the relative estimation error islower than−20 dB over a large portion of the frequency range
[f1, f2]. The consequences of the errors made in magnitude and phase near the border of[f1, f2] are clearly visible. To avoid
these side effects, the frequency range of the sweep can be chosen larger than the frequency range of interest, dependingon
the desired accuracy. Near the poles and zeros of the ARMA filters, estimation errors also increase slightly.

The method proposed here gives very good results for identification purposes over a given frequency range, without added
noise.

Figure 5: Relative errors made during the estimation of the different Kernels. (a) :H1(f), (b) :H2(f), (c) :H3(f), (d) :H4(f).

5.3 Sensitivity to noise

In a second step, the influence of noise on the estimated Kernels has been studied on the simulated system. A white
Gaussian noise at different levels has been added to the output s(t) of the system under study (see Fig. 3). Signal to noise
ratios relatively to the input (SNRI ) and before convolution (SNRB), i.e. before step4 (Sec. 4 and Fig. 3) are presented in
Table 3. Kernel to noise ratios (SNRA) after step7 are also given in Table 3. SNR is understood here as the ratio between
the root-mean-square (RMS) level of the signal (or of the Kernel for SNRA) in absence of noise and the RMS level of noise
in absence of signal (respectively in absence of Kernel). Signals are recorded at the input of the system for SNRI and at the
output of the system for SNRB . Kernels are taken after the complete identification procedure for SNRA. SNRA corresponding
to each identified Kernel is given individually. The different Kernels of the system under study have been estimated using the
parameters of Table 2 in the different noise conditions. In Table 3, it can be seen that SNRA for N = 1 is 13.6 dB higher than
SNRB . This confirms the fact that exponential sine sweeps reject agreat part of the uncorrelated noise.

SNRI (dB) SNRB (dB) SNRA (dB)
N = 1 N = 2 N = 3 N = 4

37 15.2 29.8 0.4 −7.1 −38.6
57 35.2 49.8 20.4 12.8 −18.6
77 55.2 68.8 40.4 32.8 1.4

Table 3: Signal to noise ratio relatively to the input (SNRI ), before convolution (SNRB) and after the complete identification
procedure (SNRA). SNRA is indicated relatively to thenth Kernel (n ∈ {1, 2, 3, 4}).

In Fig. 6, the relative estimation errors, according to Eq. (19), are given for the different Kernels and for the different noise
levels. It can be seen that the noise level has an influence on the quality of the estimation. For each Kernel, when the noise
level is decreasing, the relative estimation error is decreasing too.

For a SNRI of 37 dB (SNRB of 15.2 dB), only the estimation of the first Kernel is acceptable. The three other Kernels,
which have gains at least20 dB lower than the first one (see Fig. 4), cannot be estimated correctly in this case. Let’s consider
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Figure 6: Relative errors made during the estimation of the different Kernels for different noise levels. (a) :H1(f), (b) :H2(f),
(c) :H3(f), (d) :H4(f).

in Tab. 3 the SNRA for n ≥ 2. They are all around or below0 dB. That means that after identification, resulting noises
have a RMS level equal to, or higher than, that of identified Kernels. This explains whyH2(f), H3(f) andH4(f) cannot be
estimated correctly in this case.

When SNRI is 57 dB (SNRB of 35.2 dB), the SNRA corresponding to the second and third Kernels are higher than 10 dB.
The second and third Kernels,H2(f) andH3(f), are then correctly estimated. But the last Kernel, with SNRA = −18.6 dB
is still not identified.

When the SNRI is 77 dB (SNRB of 55.2 dB), the SNRA corresponding to the fourth Kernel will be1.4 dB, and the fourth
KernelH4(f) is then finally correctly estimated.

So, with the parameters given in Table 2 applied to the chosensystem, it seems that any Kernel can be correctly estimated
until its SNRA reaches≃ 0 dB. Otherwise, the corresponding Kernel is completely mixed with noise and no information can
be extracted. In practice, this defines a measurability criterion (see [42]) that can be used to estimate the optimal value ofN
for a given amplitude of the input signal.

5.4 Influence of the assumed order of non-linearity

A study of the influence of the order of non-linearityN on estimation has been conducted on the simulated system. The
simulated system of order4 has been identified using the parameters of Table 2 but with different assumed orders of non-
linearity N ranging from2 to 6. A white Gaussian noise with a SNRI of 80 dB (SNRB of 57.2 dB) has also been added
to the outputs(t) of the simulated system. In Fig. 7, the relative estimation errors made on the Kernels estimated with the
different orders of non-linearity are shown. The caseN = 4 will be the reference as it is the exact order of non-linearity of
the simulated system.

If this order of non-linearity is underestimated (casesN = 2 andN = 3), the method gives inaccurate results. This is
because of the link which exists between the different estimated Kernels{hn(t)}n∈{1...N} and the extracted impulse responses
{gn(t)}n∈{1...N}. This link is the matrixAT

c , as seen in Eq. (18). The first coefficients of the matrixA
T
c are given in Eq. (29)

in the appendix. By viewing these coefficients, it’s obviousthat odd Kernels depend only on odd extracted impulse responses
and that the same stands for even Kernels. If an impulse response of ordern odd (or even) is not taken into consideration, it
will have consequences on all the Kernels of orderi odd (or even) lower thann. WhenN = 2, the non-linearities of order3
and4 are not taken into consideration and induce estimation errors on the Kernels of order1 and2. And whenN = 3, the
non-linearity of order4 is not taken into consideration and induces estimation errors on the Kernel of order2 only.

On the other hand, if the order of non-linearityN is over-estimated (caseN = 6), some portion of noise will be interpreted
as extracted impulse responses. As a consequence, estimations of the Kernels are slightly less precise than in the reference
case. However, as can be seen in Fig. 7, the loss in accuracy isacceptable.

Thus, to ensure an estimation which is as close as possible toreality, it is better to choose the order of non-linearityN as
large as possible. The upper limit ofN is reached when it is impossible to extract the corresponding impulse response from
the background noise. As has been shown in section 5.3, this case occurs when the SNRA corresponding to theN th Kernel
reaches a certain level (≃ 0 dB for the chosen system and parameters). In practice, experimental SNRA can be calculated and
used to determine the upper limit ofN , as in Sec. 6.2.
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Figure 7: Relative errors made during the estimation of the different Kernels for different chosen orders of non-linearity N .
(a) : H1(f) estimated withN = {2, 3, 4, 6}. (b) : H2(f) estimated withN = {2, 3, 4, 6}. (c) : H3(f) estimated with
N = {3, 4, 6}. (d) :H4(f) estimated withN = {4, 6}.

6 Modelling acoustical transducers with cascade of Hammerstein models

In this section, acoustical transducers are represented bycascade of Hammerstein models and their Kernels are identified
using the method presented in section 3.

6.1 Experimental setup

Experiments have been conducted on two acoustical transducers to identify their Kernels in a cascade of Hammerstein
models representation. A standard electrodynamic loudspeaker and a prototype panel-type transducer have been tested. The
panel-type transducer consists of a light and stiff plate ofsandwich material (40 cm× 60 cm) on the back of which an exciter
has been glued. The plate is suspended by elastics at the middle of two of its side to approximate free boundary conditions.
All measurements have been made on axis at one meter from the motor of both transducers with a microphone. Measurements
have been done in a semi-anechoic room.

6.2 Measured cascade of Hammerstein models Kernels

The Kernels corresponding to both systems have been measured using the previously described experimental setup. As the
cascade of Hammerstein models is a non-linear model, its Kernels should be independent of the amplitude of measurement.
To assess this, measurements of the Kernels corresponding to both transducers have been done using parameters given in
Table 4 for10 different amplitudes. Amplitudes were ranging from74 to 94 dB in pressure at1 kHz for the electro-dynamic
loudspeaker. This corresponds to normal and relatively high listening levels. For the panel-based transducer, amplitude where
higher, ranging from90 dB to110 dB in pressure at1 kHz.

Parameter Value Normalized value
f1 20 Hz f1/fs = 1.04× 10−4

f2 20 kHz f2/fs = 1.04× 10−1

fs 192 kHz
T 15 s T × fs = 2.88× 106 samples
N 5

Table 4: Parameters chosen to identify the real system.

Measurability of each Kernels, using the criterion defined in Sec. 5.3, has been studied for the different amplitudes at
which Kernels have been identified. As it is not possible to experimentally remove noise from measurements, an experimental
Kernel to noise ratio (SNRXP ) is defined which corresponds to the ratio between the RMS level of the Kernel with noise and
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the RMS level of noise in absence of Kernel, after the complete identification procedure. This SNRXP can be computed for
each Kernel separately and can be interpreted as SNRA (see Sec. 5.3).

For both transducers, SNRXP corresponding to each Kernel are presented in Fig. 8 as a function of the measurement
amplitude. As expected, the SNRXP for N = 1, i.e. for the linear transfer function is linear with the measurement amplitude.
One can notice that it is not the case for Kernels of ordern ≥ 2. From Fig. 8, it can also be seen that for the lower
amplitudes, Kernels of order3, 4 and5 have a SNRXP close to0 dB. They are thus not measurable and pollute slightly the
other Kernels. As has been seen in Sec. 5.4 a limited pollution is acceptable. Moreover, these Kernels become measurable
as the measurement amplitude increases. On the other hand, Kernels of ordern ≥ 6 are always hardly measurable for both
transducers in the chosen range of amplitude with the present experimental setup. Consequently, the choice ofN = 5 in the
identification procedures (see Tab. 4) seems to be a reasonable compromise between pollution of the identified Kernels by
noise and incomplete modelling of the system.

Figure 8: Experimental Kernel to noise ratio after the complete identification procedure (SNRXP ) as a function of the ampli-
tude of measurement for each Kernel. (a) Electro-dynamic loudspeaker. (b) Panel-based transducer.

Mean measured Kernels and their corresponding standard deviation across measurement amplitude are then given in Fig. 9
for the electro-dynamical loudspeaker and in Fig. 10 for thepanel-based loudspeaker. Due to their different underlying
physical principles, the linear and non-linear responses of the two transducers are quite different. The panel-based transducer
has a modal behaviour and as a consequence exhibits a linear response with more dips than the electrodynamic loudspeaker.
The amplitude of the different Kernels of ordern ≥ 2 decreases with frequency for the electrodynamic loudspeaker, which is
consistent with the physical analysis of Ref. [21]. For the panel-based loudspeaker, the amplitude stays globally constant with
frequency. The major non-linear phenomena involved in these two transducers do not have the same physical origins.

The variability of the measured Kernels with the excitationamplitude is studied afterwards. The linear part, which is
by definition independent of amplitude, exhibits no variations among the different measurements for both transducers.The
non-linearities have thus been removed successfully from the linear part using the proposed method. The identified Kernels
of ordern ≥ 2 depends slightly on the amplitude at which they have been measured. As a consequence, the assumption that
these two transducers can be represented by a cascade of Hammerstein models is a correct approximation in the chosen range
of amplitude.

7 Prediction of the harmonic distortion generated by transducers

In this section, the previously identified cascade of Hammerstein models will be used to predict the harmonic distortion
generated by both transducers.

7.1 Link between HDn, THD and cascade of Hammerstein models

To characterize distortion generated by an acoustic transducer, the following approach is classically adopted. The input of
the system is assumed to be sinusoidal and non-linearities generate harmonic components at frequencies higher than theinput
fundamental frequency. The amplitudes of these harmonics compared to the amplitude of the fundamental are considered
as representative of the non-linearity of the transducer. Total harmonic distortion (THD) and harmonic distortion of ordern
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Figure 9: Mean measured Kernels of the cascade of Hammerstein models for the electrodynamic loudspeaker (solid line) and
the corresponding standard deviations (dashed lines). (a): H1(f), (b) :H2(f), (c) :H3(f), (d) :H4(f).

Figure 10: Mean measured Kernels of the cascade of Hammerstein models for the panel-based loudspeaker (solid line) and
the corresponding standard deviations (dashed lines). (a): H1(f), (b) :H2(f), (c) :H3(f), (d) :H4(f).

(HDn) are common tools to quantify this [8]. The THD is the square root of the ratio of the power contained in the harmonics
to the power contained in the fundamental. The HDn is the same but for thenth harmonic only.

For a sinusoidal input signalx(t) = X cos(2πft) which enters a cascade of Hammerstein models identified at the ampli-
tudeX0, the output signalz(t) can be written as in Eqs. (20) by using Eq. (2) and (7).

z(t) =
N
∑

n=1

|Γn(X,nf)| cos [2πnft+ ∠(Γn(X,nf))] (20a)

with Γn(X, f) =
N
∑

k=1

(

X

X0

)k

C(k, n)Hk(f) (20b)

THD and HDn can thus be directly identified from Eq. (20) and expressed as:
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HDn(X, f) =

∣

∣

∣

∣

Γn(X,nf)

ΓTot(X, f)

∣

∣

∣

∣

(21a)

THD(X, f) =

√

√

√

√

N
∑

n=2

[

Γn(X,nf)

ΓTot(X, f)

]2

(21b)

with ΓTot(X, f) =

√

√

√

√

N
∑

n=1

[Γn(X,nf)]2 (21c)

The knowledge of the Kernels in the frequency range[f1, f2] allows for the direct computation of the THD and HDn using
Eqs. (21). This can be done for any value of input amplitudeX and for any frequencyf in [f1, f2].

7.2 Prediction of HDn and THD at a given amplitude

Using the different sets of Kernels measured in the previoussection, the HDn and THD for the two transducers has been
predicted using Eqs. (21). To compare with predictions, traditional measurements using pure tones have been done usingthe
experimental protocol depicted in section 6.1. HDn and THD have been measured this way for50 frequencies between50 Hz
and12 kHz. This has been done for10 different amplitudes ranging from74 to 94 dB in pressure for the electro-dynamic
loudspeaker and from90 to 110 dB for the panel-based one.

In Figs. 11 and 12 the predictions for the total harmonic distortion (THD), and for the harmonic distortion of order2 and
3 (HD2 and HD3) made using equations (21) are shown for the electrodynamicloudspeaker and the panel-based loudspeaker.
It can be seen that the agreement between measured and predicted data is satisfying over the entire frequency range for the
electrodynamic loudspeaker (Fig. 11). For the panel-basedloudspeakers, the agreement is also good (Fig. 12). Below200 Hz
the predictions sometime underestimate HD2, HD3.

Figure 11: Comparisons between measurements (circles) andpredictions (solid lines) at85 dB for the HD2, HD3 and THD
of the electrodynamic loudspeaker. Kernels identified at86 dB have been used for predictions withN = 5. (a) Harmonic
distortion of order2, HD2. (b) Harmonic distortion of order3, HD3. (c) Total harmonic distortion, THD.

However, evaluation of harmonic distortion using series does not necessary converge to the desired result [42, 43]. Indeed,
the number of termsN to be used in the series of Eq. (21) has to be carefully chosen for predictions to converge to measure-
ments. To study that point, THD has been predicted using2, 3, 4 or 5 terms in Eqs. (21) and compared to measurements. The
mean error in frequency between predictions and measurements for different values ofN is presented in Fig. 13 for both trans-
ducers. It has been computed for the following frequency bands: [45, 180] Hz (octave bands63 Hz and125 Hz), [180, 710] Hz
(octave bands250 Hz and500 Hz), [710, 2800] Hz (octave bands1 kHz and2 kHz) and[2800, 11200] Hz (octave bands4 kHz
and8 kHz). For the electro-dynamic loudspeaker in the two upper frequency bands, asN increases the mean error become
lower. For the lower frequency bands, the mean error increases withN until N = 4 where it starts decreasing. For the
panel-based loudspeaker, mean error globally decreases with N . Thus, the choice ofN = 5 (see Tab. 4) in the identification
procedure and for the predictions leads to globally convergent results in the chosen ranges of amplitude and frequency.
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Figure 12: Comparisons between measurements (circles) andpredictions (solid lines) at101 dB for the HD2, HD3 and THD
of the panel-based transducer. Kernels identified at105.5 dB have been used for predictions withN = 5. (a) Harmonic
distortion of order2, HD2. (b) Harmonic distortion of order3, HD3. (c) Total harmonic distortion, THD.

Figure 13: Convergence of the prediction error averaged over different frequency bands for the electro-dynamic and panel-
based transducers. (a) Electro-dynamic loudspeaker: Kernels identified at88 dB have been used for predictions at85.1 dB.
(b) Panel-based loudspeaker: Kernels identified at99.5 dB have been used for predictions at92.2 dB.

7.3 Prediction of HDn and THD for different amplitudes

To have an overview of the quality of the predictions depending on the amplitude at which Kernels have been measured
(Xm) and on the amplitude at which prediction are made (Xp), a mean error has been introduced. This error is defined in
Eq. 22. This error has been computed for the following frequency bands:[45, 355] Hz (octave bands63 Hz to 250 Hz),
[355, 2800] Hz (octave bands500 Hz to2 kHz) and[2800, 11200] Hz (octave bands4 kHz to8 kHz). The error in dB in each
of these frequency bands is shown for the two transducers in Figs. 14 and 15.

∆[fA,fB ](Xm, Xp) = ...

20 log10 mean
[fA,fB ]

∣

∣

∣

∣

THDmeas(Xp, f)− THDpred(Xm, Xp, f)

THDmeas(Xp, f)

∣

∣

∣

∣

(22)
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Figs. 14 (a), (b), and (c) give the resulting error for the electrodynamic loudspeaker. In Fig. 14 (a), the error in the frequency
band[45, 355] Hz is shown. It can be seen that this error is acceptable, around −6 dB. The minimum of−8 dB is reached
when the THD is predicted for low values ofXp. As the amplitude of predictionXp increases, the error increases too in this
frequency band. In Figs. 14 (b) and (c), errors for frequencybands[355, 2800] and[2800, 11200] Hz are shown. Error values
in these frequency bands are significantly lower than in the previous one. The minimums of these errors, which are−12 dB
and−10 dB, can be seen around the diagonals. Predictions are then precise in these frequency bands.

Figs. 15 (a), (b), and (c) give the same errors for the panel-based transducer. In Figs. 15 (a) and (c), the errors in frequency
bands[45, 355] Hz and [2800, 11200] Hz are shown. These results are acceptable though less satisfying than the results
obtained for the electrodynamic loudspeaker. In Fig. 15 (b), errors for frequency band[355, 2800] Hz are shown. Error values
in these frequency bands for the panel-type loudspeakers are of the same magnitude as for the electrodynamic loudspeaker,
remaining low, around−10 dB.

8 Discussion

The presented method has been applied to two real acoustic transducers, a classic electro-dynamical loudspeaker and a
panel-based transducer. As a complete model describing thenon-linear behaviour of these transducers is accessible using the
previous method (see section 6), an analysis of the two systems can be performed from this point of view. The first difference
between them appears when viewing their linear response. The panel-based transducer exhibits a well known diffuse behaviour
in the high frequency range, whereas the electrodynamic loudspeaker does not. This diffuse behaviour is also present inthe
Kernels of higher order. For the two transducers, the amplitudes of the higher order Kernels can also be compared. Kernels
of the panel-based loudspeaker generally have a lower amplitude than Kernels of the electro-dynamic loudspeaker. For the
electro-dynamic loudspeaker, the amplitude of Kernels of ordern ≥ 2 have a tendency to decrease with the frequency, which is
coherent with Refs. [20, 21], whereas for the panel-based loudspeaker there is no global variation with frequency. Panel-based
transducers thus seems to generate less distortion than electrodynamic loudspeakers, and such distortion is almost constant
with frequency.

In section 7, prediction of the harmonic distortion of ordern (HDn) and the total harmonic distortion (THD) from the
identified Kernels have been performed. The originality of the present approach is that an analytical formula involvingthe
identified Kernels and the amplitude at which they have been identified allows one to predict HDn and THD at different
amplitudes. This is an advancement compared to current literature where HDn and THD are usually predicted only for a given
amplitude [6, 11, 20]. The results obtained for the two systems when comparing this approach to the traditional one at different
amplitudes for HDn and THD are satisfying. These results validate that cascadeof Hammerstein models are a well adapted
model.

9 Conclusion

In this paper a simple and rapid model based procedure to measure non-linearities of a vibrating system has been presented
mathematically, validated by simulation and finally applied to two acoustical transducers. Cascade of Hammerstein models
have been chosen here to model the non-linearities. It has been shown on simulations that the identification method is very
accurate. Harmonic distortion generated by these devices is afterwards precisely predicted using this model.

This method, coming from the audio community, can be of greatinterest in the more general field of vibrations. In modal
analysis, for example, a common limitation to access high frequencies is the signal to noise ratio (SNR). Continuous acoustical
excitations with high levels are thus of great interest to increase the SNR, but only if the resulting signals are not polluted by
non-linearities. Using the presented method, structures can be acoustically excited at high amplitude levels with theassurance
that the non-linear part of the excitation present in the measurements can be completely removed. This method can thus help
to solve practical problems which are commonly encounteredin experimentations involving vibrations.

This method can also be interesting for transducer quality assessment. It is now known that traditional non-linear measure-
ments tools (such as HDn and THD) correlate poorly with subjective experiences [44]. However, the present approach gives
a fine, input-independent representation of the linear and non-linear characteristics of real transducers. As a consequence,
simulations of the non-linear responses of identified or calculated transducers can be easily performed. This can be useful
when searching for new criteria to assess the decrease of quality caused by non-linearities in acoustical transducers.
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Appendix: Computation of the matrix C

Chebyshev polynomials{Tk[cos(φ)]}k∈N are defined by Eq. (23).
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∀k ∈ N, cos(kφ) = Tk[cos(φ)] (23)

Subsequently, it can easily be shown that they satisfy the recurrence relation given in Eq. (24).

k = 0 T0(x) = 1 (24a)

k = 1 T1(x) = x (24b)

k > 1 Tk+1(x) = 2xTk(x)− Tk−1(x) (24c)

Then, by writing the polynomials as in Eq. 25 , one can obtain Eq. (26), using Eq. (24), and find the coefficients of the
matrixA.

Tk(x) =

k
∑

i=0

A(i, k)xi (25)

i = 0 A(0, k + 1) = −A(0, k − 1) (26a)

0 < i < k A(i, k + 1) = 2A(i− 1, k)−A(i, k − 1) (26b)

i > k A(i, k + 1) = 2A(i− 1, k) (26c)

The linearisation of the polynomials can now be rewritten ina matrix form, as in Eq. (27).








1
cos(x)
...

cos(Nx)









= A









1
cos(x)
...

cosN (x)









(27)

By inverting Eq. (27), Eq. (7) is directly obtained and this results in Eq. (28) which gives explicitly theC matrix.

C = A
−1 (28)

The matrixAT
c , necessary to access to{hn(t)}n∈[1,N ], is the matrixA without the first column and the first row, as seen

in Eq. (18). To avoid the implementation of the recurrence, the transpose of theAc matrix of order8, which is sufficient for
practical use, is given in Eq. (29).

A
T
c =

























1 0 −3 0 5 0 −7 0
0 2 0 −8 0 18 0 −32
0 0 4 0 −20 0 56 0
0 0 0 8 0 −48 0 160
0 0 0 0 16 0 −112 0
0 0 0 0 0 32 0 −256
0 0 0 0 0 0 64 0
0 0 0 0 0 0 0 128

























(29)
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Figure 14: Mean error in the frequency band[45, 355] Hz (a), [355, 2800] Hz (b) and[2800, 11200] Hz (c) for the electrody-
namic loudspeaker. Amplitude of measurements of the Kernels are given on the x-axis.
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Figure 15: Mean error in the frequency band[45, 355] (a), [355, 2800] (b) and [2800, 11200] Hz (c) for the panel-based
transducer. Amplitude of measurements of the Kernels are given on the x-axis.
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