Plane posets, special posets, and permutations

Loïc Foissy

To cite this version:

Loïc Foissy. Plane posets, special posets, and permutations. Advances in Mathematics, 2013. hal00619299 v4

HAL Id: hal-00619299
 https://hal.science/hal-00619299v4

Submitted on 19 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Plane posets, special posets, and permutations

Loïc Foissy

Univ. Littoral Côte d'Opale, UR 2597 LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville F-62100 Calais, France.

Email: foissy@univ-littoral.fr

Abstract

We study the self-dual Hopf algebra $\mathcal{H}_{\mathcal{S P}}$ of special posets introduced by Malvenuto and Reutenauer and the Hopf algebra morphism from $\mathcal{H}_{\mathcal{S} \mathcal{P}}$ to the Hopf algebra of free quasi-symmetric functions FQSym given by linear extensions. In particular, we construct two Hopf subalgebras both isomorphic to FQSym; the first one is based on plane posets, the second one on heap-ordered forests. An explicit isomorphism between these two Hopf subalgebras is also defined, with the help of two combinatorial transformations on special posets. The restriction of the Hopf pairing of $\mathcal{H}_{\mathcal{P}}$ to these Hopf subalgebras and others is also studied, as well as certain isometries between them. These problems are solved using duplicial and dendriform structures.

Keywords. Special posets; permutations; self-dual Hopf algebras; duplicial algebras; dendriform algebras.

AMS classification. 06A11, 05A05, 16W30, 17A30.

Contents

1 Reminders on double posets 4
1.1 Several families of double posets 4
1.2 Products and coproducts of double posets 6
1.3 Hopf pairing on double posets 7
2 Several families of posets 8
2.1 Special posets 8
2.2 Heap-ordered posets 9
2.3 Pairing on special posets 10
3 Links with permutations 10
3.1 Plane poset associated to a permutation 10
3.2 Permutation associated to a plane poset 11
4 A morphism to FQSym 13
4.1 Reminders on FQSym 13
4.2 Linear extensions 14
4.3 Restriction to special plane posets 15
4.4 Restriction to heap-ordered forests 16
5 More algebraic structures on special posets 18
5.1 Recalls on Dup-Dend bialgebras 18
5.2 Another product on special posets 19
5.3 Dendriform coproducts on special posets 21
5.4 Application to FQSym 23
6 Dendriform structures on special plane forests 25
6.1 Dendriform coproducts 25
6.2 Dendriform products on special plane forests 26
7 Isometries between plane and special plane posets 28
7.1 Isometric Hopf isomorphisms between free Hopf algebras 28
7.2 Existence of an isometry between plane and special plane posets 30
8 Conclusion 34
References 34

Introduction

The Hopf algebra of double posets is introduced in [17]. Recall that a double poset is a finite set with two partial orders; the set of isoclasses of double posets is given a structure of monoid, with a product called composition (definition 1.4). The algebra of this monoid is given a coassociative coproduct, with the help of the notion of ideal of a double poset. We then obtain a graded, connected Hopf algebra, non commutative and non cocommutative. This Hopf algebra $\mathcal{H}_{\mathcal{D} \mathcal{P}}$ is self-dual: it has a nondegenerate Hopf pairing $\langle-,-\rangle$, such that the pairing of two double posets is given by the number of pictures between these double posets (definition 1.6) ; see [8] for more details on the nondegeneracy of this pairing.

Other algebraic structures are constructed on $\mathcal{H}_{\mathcal{D P}}$ in [8]. In particular, a second product is defined on $\mathcal{H}_{\mathcal{D} \mathcal{P}}$, making it a free $2-A s$ Hopf algebra [14]. As a consequence, this object is closely related to operads and the theory of combinatorial Hopf algebras [15]. In particular, it contains the free $2-A s$ algebra on one generator: this is the Hopf subalgebra $\mathcal{H}_{\mathcal{W N P}}$ of $W N$ posets, see definition 1.3. Another interesting Hopf subalgebra $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ is given by plane posets, that is to say double poset with a particular condition of (in)compatibility between the two orders (definition 1.2).

We investigate in the present text the algebraic properties of the family of special posets, that is to say double posets such that the second order is total 17. They generate a Hopf subalgebra of $\mathcal{H}_{\mathcal{D P}}$ denoted by $\mathcal{H}_{\mathcal{S P}}$. For example, as explained in [8], the two partial orders of a plane poset allow to define a third, total order, so plane posets can also be considered as special posets: this defines an injective morphism of Hopf algebras from $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ to $\mathcal{H}_{\mathcal{S P}}$. Its image is denoted by $\mathcal{H}_{\mathcal{S P P}}$. Another interesting Hopf subalgebra of $\mathcal{H}_{\mathcal{S P}}$ is generated by the set of ordered forests; it is the Hopf algebra $\mathcal{H}_{\mathcal{O F}}$ used in [6, 9]. A special poset is heap-ordered if its second order (recall it is total) is a linear extension of the first one; these objects define another Hopf subalgebra $\mathcal{H}_{\mathcal{H O P}}$ of $\mathcal{H}_{\mathcal{S P}}$. Taking the intersections, we finally obtain a commutative diagram of six Hopf algebras:

The Hopf algebra $\mathcal{H}_{\mathcal{H O F}}$ of heap-ordered forests is used in [9]; $\mathcal{H}_{\mathcal{S P F}}$ is generated by the set of plane forests, considered as special posets, and is isomorphic to the coopposite of the non
commutative Connes-Kreimer Hopf algebra of plane forests $\mathcal{H}_{\mathcal{S P F}}$ [3, 4, 10].
A Hopf algebra morphism Θ, from $\mathcal{H}_{\mathcal{S P}}$ to the Malvenuto-Reutenauer Hopf algebra of permutations FQSym [16], also known as the Hopf algebra of free quasi-symmetric functions [2], is defined in [17. This construction uses the linear extensions of the first order of a special poset. The morphism Θ is surjective and respects the Hopf pairings defined on $\mathcal{H}_{\mathcal{S P}}$ and FQSym. Moreover, its restrictions to $\mathcal{H}_{\mathcal{S P P}}$ and $\mathcal{H}_{\mathcal{H O F}}$ are isometric Hopf algebra isomorphisms (corollary 4.5). In the particular case of $\mathcal{H}_{\mathcal{S P P}}$, this is proved using, first a bijection from the set of special plane posets of order n to the n-th symmetric group \mathfrak{S}_{n} for all $n \geqslant 0$, then intervals in \mathfrak{S}_{n} for the right weak Bruhat order, see proposition4.4. As a consequence, we obtain a commutative diagram:

We then complete this diagram with a Hopf algebra morphism $\Upsilon: \mathcal{H}_{\mathcal{S P}} \longrightarrow \mathcal{H}_{\mathcal{H O F}}$, combinatorially defined (theorem 4.8), such that its restriction to $\mathcal{H}_{\mathcal{S P P}}$ gives the following commutative diagram:

The definition of Υ uses two transformations of special posets, summarized by $\mathfrak{\bullet}_{j}^{i} \longrightarrow \bullet_{\bullet}{ }^{j}-\mathfrak{\bullet}_{i}^{j}$

In order to prove the cofreeness of $\mathcal{H}_{\mathcal{S P F}}, \mathcal{H}_{\mathcal{S P}}, \mathcal{H}_{\mathcal{H O P}}, \mathcal{H}_{\mathcal{S P P}}, \mathcal{H}_{\mathcal{O F}}$ and $\mathcal{H}_{\mathcal{S W N P}}$, we introduce a new product \nwarrow on $\mathcal{H}_{\mathcal{S P}}$ making it a duplicial algebra [12], and two non associative coproducts $\Delta_{<}$and $\Delta_{>}$, making it a dendriform coalgebra [11, 13, see paragraph 5.1. These two complementary structures are compatible, and $\mathcal{H}_{\mathcal{S P}}$ is a Dup-Dend bialgebra [6]. By the theorem of rigidity for Dup-Dend bialgebras, all these objects are isomorphic to non-commutative Connes-Kreimer Hopf algebras of decorated plane forests [3, 4, 10] (note that this result was obvious for $\mathcal{H}_{\mathcal{S P F}}$), so are free and cofree. Moreover, it is possible to define a Dup-Dend structure on FQSym in such a way that the Hopf algebra morphism Θ becomes a morphism of Dup-Dend bialgebras. Dendriform structures are also used to show that the restriction of the pairing of $\mathcal{H}_{\mathcal{D} \mathcal{P}}$ on $\mathcal{H}_{\mathcal{S P} \mathcal{F}}$ is nondegenerate, with the help of bidendriform bialgebras [5]: in fact, the pairing of $\mathcal{H}_{\mathcal{S P}}$ restricted to $\mathcal{H}_{\mathcal{S P \mathcal { F }}}$ respects a certain bidendriform structure.

In the seventh section, we construct an isometric Hopf algebra morphism between $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ and $\mathcal{H}_{\mathcal{S P P}}$. These two Hopf algebras are clearly isomorphic, with a very easily defined isomorphism, which is not an isometry. We prove that these two objects are isometric as Hopf algebras up to two conditions on the base field: it should be not of characteristic two and should contain a square root of -1 . This is done using the freeness and cofreeness of $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ and manipulations of symmetric matrices.

This text is organized as follows. The first section recalls the concepts and notations on the Hopf algebra of double posets $\mathcal{H}_{\mathcal{D} \mathcal{P}}$. The second section introduces special posets, heap-ordered posets, special plane posets and the other families of double posets here studied. The bijection
between the set of special plane posets of order n and \mathfrak{S}_{n} is defined in the third section. The properties of the morphism Θ from $\mathcal{H}_{\mathcal{S P}}$ to FQSym are investigated in the next section. In particular, it is proved that its restrictions to $\mathcal{H}_{\mathcal{S P P}}$ or $\mathcal{H}_{\mathcal{H O F}}$ are isomorphisms, and the induced isomorphism from $\mathcal{H}_{\mathcal{S P P}}$ to $\mathcal{H}_{\mathcal{H O F}}$ is combinatorially defined. The fifth and sixth sections introduce duplicial, dendriform and bidendriform structures and gives applications of these algebraic objects on our families of posets. The problem of finding an isometry from $\mathcal{H}_{\mathcal{S P P}}$ to $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ is studied in the seventh section; all the obtained results are summarized up in the conclusion.

Acknowledgements. The author warmly thanks Darij Grinberg for pointing an error in the preceding version of the paper, on a lemma on symmetric integral matrices. The proofs of the last section have been changed accordingly.
Notations 0.1. $1 . \mathbb{K}$ is a commutative field. Any algebra, coalgebra, Hopf algebra... of the present text will be taken over \mathbb{K}.
2. If $\mathcal{H}=(\mathcal{H}, m, 1, \Delta, \varepsilon, S)$ is a Hopf algebra, we shall denote by \mathcal{H}^{+}its augmentation ideal, that is to say $\operatorname{Ker}(\varepsilon)$. This ideal \mathcal{H}^{+}has a coassociative, non counitary coproduct $\tilde{\Delta}$, defined by $\tilde{\Delta}(x)=\Delta(x)-x \otimes 1-1 \otimes x$ for all $x \in \mathcal{H}^{+}$.
3. For all $n \geqslant 1, \mathfrak{S}_{n}$ is the n-th symmetric group. Any element σ of \mathfrak{S}_{n} will be represented by the word $\sigma(1) \ldots \sigma(n)$. By convention, \mathfrak{S}_{0} is a group with a single element, denoted by the empty word 1.

1 Reminders on double posets

1.1 Several families of double posets

Definition 1.1. [17]. A double poset is a triple $\left(P, \leqslant_{1}, \leqslant_{2}\right)$, where P is a finite set and $\leqslant_{1}, \leqslant_{2}$ are two partial orders on P. The set of isoclasses of double posets will be denoted by $\mathcal{D P}$. The set of isoclasses of double posets of cardinality n will be denoted by $\mathcal{D} \mathcal{P}(n)$ for all $n \in \mathbb{N}$.

Remark 1.1. Let $P \in \mathcal{D P}$. Then any subset $Q \subseteq P$ inherits also two partial orders by restriction, so is also a double poset: we shall speak in this way of double subposets.

Definition 1.2. A plane poset is a double poset $\left(P, \leqslant_{h}, \leqslant_{r}\right)$ such that for all $x, y \in P$ with $x \neq y, x$ and y are comparable for \leqslant_{h} if, and only if, x and y are not comparable for \leqslant_{r}. The set of isoclasses of plane posets will be denoted by $\mathcal{P} \mathcal{P}$. For all $n \in \mathbb{N}$, the set of isoclasses of plane posets of cardinality n will be denoted by $\mathcal{P} \mathcal{P}(n)$.

If $\left(P, \leqslant_{h}, \leqslant_{r}\right)$ is a plane poset, we shall represent the Hasse graph of $\left(P, \leqslant_{h}\right)$ such that $x<_{r} y$ in P, if and only if y is more on the right than x in the graph. Because of the incompatibility condition between the two orders, this is a faithful representation of plane posets. For example, let us consider the two following Hasse graphs:

The first one represents the plane poset $\left(P, \leqslant_{h}, \leqslant_{r}\right.$) such that:

- $\left\{(x, y) \in P^{2} \mid x<_{h} y\right\}=\{(c, a),(d, a),(d, b)\}$,
- $\left\{(x, y) \in P^{2} \mid x<_{r} y\right\}=\{(a, b),(c, b),(c, d)\}$,
whereas the second one represents the plane poset $\left(Q, \leqslant_{h}, \leqslant_{r}\right)$ such that:
- $\left\{(x, y) \in Q^{2} \mid x<_{h} y\right\}=\{(c, a),(d, a),(d, b)\}$,
- $\left\{(x, y) \in Q^{2} \mid x<_{r} y\right\}=\{(b, a),(b, c),(d, c)\}$.

Example 1.1. The empty double poset is denoted by 1 .

$$
\begin{aligned}
& \mathcal{P P}(0)=\{1\}, \\
& \mathcal{P P}(1)=\{\cdot\}, \\
& \mathcal{P} \mathcal{P}(2)=\{\boldsymbol{\bullet}, \mathfrak{l}\}, \\
& \mathcal{P P}(3)=\{\ldots, .!,!, \vee, \vdots, \widehat{\wedge}\},
\end{aligned}
$$

Remark 1.2. Let F be a plane forest. We defined in [3] two partial orders on F, which makes it a plane poset:

- We orient the edges of the forest F from the roots to the leaves. The obtained oriented graph is the Hasse graph of the partial order \leqslant_{h}. In other words, if $x, y \in F, x \leqslant_{h} y$ if, and only if, there is an oriented path from x to y in F.
- if x, y are two vertices of F which are not comparable for \leqslant_{h}, two cases can occur.
- If x and y are in two different trees of F, then one of these trees is more on the left than the other; this defines the order \leqslant_{r} on x and y.
- If x and y are in the same tree T of F, as they are not comparable for \leqslant_{h} they are both different from the root of T. We then compare them in the plane forest obtained by deleting the root of T.

This inductively defines the order \leqslant_{r} for any plane forest by induction on the number of vertices.

Equivalently, a plane poset is a plane forest if, and only if its Hasse graph is a forest. The set of plane forests will be denoted by $\mathcal{P F}$; for all $n \geqslant 0$, the set of plane forests with n vertices will be denoted by $\mathcal{P} \mathcal{F}(n)$. For example:

$$
\begin{aligned}
& \mathcal{P F}(0)=\{1\}, \\
& \mathcal{P F}(1)=\{\bullet\}, \\
& \mathcal{P F}(2)=\{\boldsymbol{\bullet}, \mathfrak{\ell}\}, \\
& \mathcal{P F}(3)=\{\ldots, . \mathfrak{\ell}, \mathfrak{\ell}, \boldsymbol{\gamma}, \vdots\}, \\
& \mathcal{P F}(4)=\{\ldots, \ldots,, \therefore ., \ldots, \cdot \vee, \vee \cdot,!,!,: \therefore, \vee, \vee, \vee, Y,!\} .
\end{aligned}
$$

Definition 1.3. Let P be a double poset. We shall say that P is $W N$ ("without N") if it is plane and does not contain any double subposet isomorphic to \mathfrak{L} nor \mathbb{N}. The set of isoclasses of WN posets will be denoted by $\mathcal{W N P}$. For all $n \in \mathbb{N}$, the set of isoclasses of WN posets of cardinality n will be denoted by $\mathcal{W N} \mathcal{P}(n)$.

$$
\begin{aligned}
& \mathcal{W N} \mathcal{P}(0)=\{1\}, \\
& \mathcal{W} \mathcal{N} \mathcal{P}(1)=\{\bullet\}, \\
& \mathcal{W N P}(2)=\{\boldsymbol{\bullet}, \mathfrak{!}\}, \\
& \mathcal{W N P}(3)=\{\ldots, \bullet!, \therefore, \boldsymbol{V}, \boldsymbol{\wedge}\},
\end{aligned}
$$

Remark 1.3. $\mathcal{P F} \subsetneq \mathcal{W N \mathcal { N }} \subsetneq \mathcal{P} \mathcal{P}$.

1.2 Products and coproducts of double posets

Definition 1.4. Let P and Q be two elements of $\mathcal{D} \mathcal{P}$. We define $P Q \in \mathcal{D P}$ by:

- $P Q$ is the disjoint union of P and Q as a set.
- P and Q are double subposets of $P Q$.
- For all $x \in P, y \in Q, x \leqslant_{2} y$ in $P Q$ and x and y are not comparable for \leqslant_{1} in $P Q$.

Remark 1.4. 1. This product is called composition in [17] and denoted by $m \rightarrow$ in [8].
2. The Hasse graph of $P Q$ (in the sense defined below) is the concatenation of the Hasse graphs of P and Q, that is to say the disjoint union of these graphs, the graph of P being on the left of the graph of Q.

This associative product is linearly extended to the vector space $\mathcal{H}_{\mathcal{D} \mathcal{P}}$ generated by the set of double posets. Moreover, the subspaces $\mathcal{H}_{\mathcal{P} \mathcal{P}}, \mathcal{H}_{\mathcal{W N P}}$ and $\mathcal{H}_{\mathcal{P F}}$ respectively generated by the sets $\mathcal{P} \mathcal{P}, \mathcal{W N} \mathcal{P}$ and $\mathcal{P \mathcal { F }}$ are stable under this product.

Definition 1.5. [17.

1. Let $P=\left(P, \leqslant_{1}, \leqslant_{2}\right)$ be a double poset and let $I \subseteq P$. We shall say that I is a 1 -ideal of P if:

$$
\forall x \in I, \forall y \in P,\left(x \leqslant_{1} y\right) \Longrightarrow(y \in I)
$$

We shall write shortly "ideal" instead of "1-ideal" in the sequel.
2. The associative algebra $\mathcal{H}_{\mathcal{D} \mathcal{P}}$ is given a Hopf algebra structure with the following coproduct: for any double poset P,

$$
\Delta(P)=\sum_{I \text { ideal of } P}(P \backslash I) \otimes I
$$

This Hopf algebra is graded by the cardinality of the double posets.

As any double subposet of a, respectively, plane poset, WN poset, plane forest, is also a, respectively, plane poset, WN poset, plane forest, $\mathcal{H}_{\mathcal{P} \mathcal{P}}, \mathcal{H}_{\mathcal{W N \mathcal { N }}}$ and $\mathcal{H}_{\mathcal{P F}}$ are Hopf subalgebras of $\mathcal{H}_{\mathcal{D P}}$.

$$
\begin{aligned}
& \tilde{\Delta}(\mathfrak{l})=\boldsymbol{\bullet} \otimes \\
& \tilde{\Delta}(\mathcal{V})=2!\otimes \cdot+\bullet \otimes \boldsymbol{\bullet} \\
& \tilde{\Delta}(!)=\cdot \otimes!+!\otimes . \\
& \tilde{\Delta}(\boldsymbol{\wedge})=\boldsymbol{\bullet} \otimes \cdot+2 \cdot \otimes! \\
& \tilde{\Delta}(\boldsymbol{V})=\bullet \otimes \boldsymbol{\omega}+3 \boldsymbol{\imath} \otimes \boldsymbol{\bullet}+3 \boldsymbol{V} \otimes . \\
& \tilde{\Delta}(V)=!\otimes \cdot+\boldsymbol{V} \otimes+!\otimes!+!\otimes \ldots+\bullet \otimes!. \\
& \tilde{\Delta}(\dot{V})=!\otimes \cdot+\boldsymbol{V} \otimes \cdot+!\otimes!+\otimes \ldots+\bullet \otimes .! \\
& \tilde{\Delta}(\grave{\zeta})=2 \vdots \otimes \cdot+\bullet \otimes \boldsymbol{V}+\otimes \ldots \\
& \tilde{\Delta}(\vdots)=\cdot \otimes!+!\otimes!+\otimes \text {. } \\
& \tilde{\Delta}(\mathbb{A})=\boldsymbol{\cdots} \otimes \cdot+3 \boldsymbol{\bullet} \otimes \mathfrak{l}+3 \cdot \otimes \AA \\
& \tilde{\Delta}(\oint)=\cdot \otimes!+\cdot \otimes \Omega+!\otimes!+\cdots \otimes!+!\otimes . \\
& \tilde{\Delta}(\grave{!})=\cdot \otimes!+. \otimes \Omega+!\otimes!+. \cdot \otimes!+.!\otimes . \\
& \tilde{\Delta}(\grave{\AA})=2 \cdot \otimes!+\Lambda \otimes \cdot+\cdots \otimes! \\
& \tilde{\Delta}(\mathfrak{l})=\mathfrak{l} \otimes \cdot+\boldsymbol{\wedge} \otimes \cdot+\mathfrak{!} \otimes!+\cdots \otimes \cdot \cdot+\bullet \otimes \cdot!+\bullet \otimes \vee \\
& \tilde{\Delta}(\mathbb{N})=!\otimes \cdot+\Lambda \otimes \cdot+!\otimes!+\cdots \otimes \cdot \cdot+\cdot \otimes!\cdot+\bullet \otimes \vee \\
& \tilde{\Delta}(\mathbb{X})=2 \boldsymbol{\aleph} \otimes \cdot+2 \cdot \otimes \boldsymbol{\gamma}+\boldsymbol{.} \otimes \boldsymbol{\bullet} \\
& \tilde{\Delta}(\hat{\forall})=\boldsymbol{\gamma} \otimes \cdot+2!\otimes!+\bullet \otimes \Omega
\end{aligned}
$$

1.3 Hopf pairing on double posets

Definition 1.6. 17

1. For two double posets $P, Q, S(P, Q)$ is the set of bijections $\sigma: P \longrightarrow Q$ such that, for all $i, j \in P$:

- $\left(i \leqslant_{1} j\right.$ in $\left.P\right) \Longrightarrow\left(\sigma(i) \leqslant_{2} \sigma(j)\right.$ in $\left.Q\right)$.
- $\left(\sigma(i) \leqslant_{1} \sigma(j)\right.$ in $\left.Q\right) \Longrightarrow\left(i \leqslant_{2} j\right.$ in $\left.P\right)$.

These bijections are called pictures.
2. We define a pairing on $\mathcal{H}_{\mathcal{D} \mathcal{P}}$ by $\langle P, Q\rangle=\operatorname{Card}(S(P, Q))$ for $P, Q \in \mathcal{D P}$. This pairing is a symmetric Hopf pairing.

It is proved in [8] that this pairing is nondegenerate if, and only if, the characteristic of \mathbb{K} is zero. Moreover, the restriction of this pairing to $\mathcal{H}_{\mathcal{P P}}, \mathcal{H}_{\mathcal{P F}}$ or $\mathcal{H}_{\mathcal{W N} \mathcal{P}}$ is nondegenerate, whatever the field \mathbb{K} is.

2 Several families of posets

2.1 Special posets

Definition 2.1. 17]. A double poset $P=\left(P, \leqslant_{1}, \leqslant_{2}\right)$ is special if the order \leqslant_{2} is total. The set of special double posets will be denoted by $\mathcal{S P}$. The set of special double posets of cardinality n will be denoted by $\mathcal{S P}(n)$.

This notion is equivalent to the notion of labeled posets. If $\left(P, \leqslant_{1}, \leqslant_{2}\right)$ is a special poset of order n, there is a unique isomorphism from $(P, \leqslant 2)$ to $(\{1, \ldots, n\}, \leqslant)$, and we shall often identify them.

Example 2.1. We shall graphically represent a special poset $\left(P, \leqslant_{1}, \leqslant_{2}\right)$ by the Hasse graph of $\left(P, \leqslant_{1}\right)$, with indices on the vertices giving the total order \leqslant_{2}.

1. Here are $\mathcal{S P}(n)$ for $n \leqslant 3$:

$$
\begin{aligned}
& \mathcal{S P}(0)=\{1\}, \\
& \mathcal{S P}(1)=\{\cdot 1\}, \\
& \mathcal{S P}(2)=\left\{\bullet \bullet_{\bullet 2}, \mathfrak{l}_{1}^{2}, \mathfrak{l}_{2}^{1}\right\},
\end{aligned}
$$

2. See 9]. Ordered forests are special double posets. The set of ordered forests will be denoted by $\mathcal{O \mathcal { F }}$. The set of ordered forests of cardinality n will be denoted by $\mathcal{O} \mathcal{F}(n)$. For example:

$$
\begin{aligned}
& \mathcal{O} \mathcal{F}(0)=\{1\}, \\
& \mathcal{O F}(1)=\{\cdot 1\}, \\
& \mathcal{O} \mathcal{F}(2)=\left\{\bullet \bullet^{2}, \mathfrak{l}_{1}^{2}, \mathfrak{l}_{2}^{1}\right\},
\end{aligned}
$$

3. Let $P=\left(P, \leqslant_{h}, \leqslant_{r}\right)$ be a plane poset. From proposition 11 in 8 , the relation \leqslant defined by $x \leqslant y$ if, and only if, $x \leqslant_{h} y$ or $x \leqslant_{r} y$, is a total order on P, called the induced total order on P. So $\left(P, \leqslant_{h}, \leqslant\right)$ is also a special double poset: we can consider plane posets as special posets. The set of plane posets, seen as special double posets, will be denoted by $\mathcal{S P} \mathcal{P}$. The set of plane posets of cardinality n, seen as special double posets, will be denoted by $\mathcal{S P \mathcal { P }}(n)$. For example:

$$
\begin{aligned}
& \operatorname{SPP}(0)=\{1\}, \\
& \mathcal{S P P}(1)=\left\{\cdot{ }^{1}\right\}, \\
& \operatorname{SPP}(2)=\left\{\bullet \bullet \bullet, \boldsymbol{\partial}_{1}^{2}\right\},
\end{aligned}
$$

4. We define the set $\mathcal{S P \mathcal { F }}$ of plane forests, seen as special posets, and the set $\mathcal{S W \mathcal { W } \mathcal { P }}$ of WN
posets, seen as special posets. Note that $\mathcal{S P \mathcal { F }}=\mathcal{O} \mathcal{F} \cap \mathcal{S P P}$. For example:

$$
\begin{aligned}
& \operatorname{SPF}(0)=\{1\}, \\
& \mathcal{S P F}(1)=\{\bullet \bullet\}, \\
& \operatorname{SPF}(2)=\left\{\bullet \bullet_{\bullet \bullet},!_{1}^{2}\right\},
\end{aligned}
$$

If P and Q are special double posets, then $P Q$ is also special. So the space $\mathcal{H}_{\mathcal{S} P}$ generated by special double posets is a subalgebra of $\left(\mathcal{H}_{\mathcal{D P}}, \leadsto \leadsto\right)$. Moreover, if P is a special double poset, then any subposet of P is also special. As a consequence, $\mathcal{H}_{\mathcal{S P}}$ is a Hopf subalgebra of $\mathcal{H}_{\mathcal{D} \mathcal{P}}$; this Hopf algebra also appears in [1]. Similarly, the spaces $\mathcal{H}_{\mathcal{O F}}, \mathcal{H}_{\mathcal{S P P}}, \mathcal{H}_{\mathcal{S W N P}}$ and $\mathcal{H}_{\mathcal{S P F}}$ generated by $\mathcal{O F}, \mathcal{S P P}, \mathcal{S W N P}$ and $\mathcal{S P F}$ are Hopf subalgebras of $\mathcal{H}_{\mathcal{D} \mathcal{P}}$.

Remark 2.1. It is clear that $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ and $\mathcal{H}_{\mathcal{S P} \mathcal{P}}$ are isomorphic Hopf algebras, via the isomorphism sending the plane poset $\left(P, \leqslant_{h}, \leqslant_{r}\right)$ to the special poset $\left(P, \leqslant_{h}, \leqslant\right)$. The same argument works for $\mathcal{H}_{\mathcal{W N P}}$ and $\mathcal{H}_{\mathcal{S W N P}}$, and for $\mathcal{H}_{\mathcal{P F}}$ and $\mathcal{H}_{\mathcal{S P F}}$.

2.2 Heap-ordered posets

Definition 2.2. Let $P=\left(P, \leqslant_{1}, \leqslant_{2}\right)$ be a special double poset. It is heap-ordered if for all $x, y \in P, x \leqslant_{1} y$ implies that $x \leqslant_{2} y$. The set of heap-ordered posets will be denoted by $\mathcal{H O P}$. The set of heap-ordered posets of cardinality n will be denoted by $\mathcal{H O P}(n)$. We put $\mathcal{H O F}=\mathcal{H O P} \cap \mathcal{O F}$ and $\mathcal{H O F}(n)=\mathcal{H O P}(n) \cap \mathcal{O F}(n)$ for all n.

Example 2.2. Here are the sets $\mathcal{H O P}(n)$ and $\mathcal{H O \mathcal { F }}(n)$ for $n \leqslant 3$:

$$
\begin{aligned}
& \mathcal{H O P}(1)=\{\bullet \cdot 1\}, \\
& \mathcal{H O P}(2)=\left\{\bullet \boldsymbol{1}_{\bullet}, \mathfrak{l}_{1}^{2}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{H O F}(1)=\{\bullet \cdot 1\}, \\
& \mathcal{H O F}(2)=\left\{\bullet 1 \cdot \bullet^{\prime}, \mathfrak{l}_{1}^{2}\right\},
\end{aligned}
$$

Note that $\mathcal{S P P} \subsetneq \mathcal{H O P}$ and $\mathcal{S P F} \subsetneq \mathcal{H O F}$, as $\cdot \mathfrak{l}_{1}^{3}$ is not a plane poset. It is well-known that $|\mathcal{H O F}(n)|=n!$ for all $n \geqslant 0$.

If P and Q are two heap-ordered posets, then $P Q$ also is. As a consequence, the spaces $\mathcal{H}_{\mathcal{H O P}}, \mathcal{H}_{\mathcal{H O F}}$ and $\mathcal{H}_{\mathcal{S P F}}$ generated by $\mathcal{H O P}, \mathcal{H O F}$ and $\mathcal{S P F}$ are Hopf subalgebras of $\mathcal{H}_{\mathcal{D P}}$. Moreover, plane posets are heap-ordered, so $\mathcal{H}_{\mathcal{S P P}} \subseteq \mathcal{H}_{\mathcal{H O P}}$. We obtain a commutative diagram of canonical injections:

Proposition 2.3. 1. Let $P \in \mathcal{S P}$. Then P is heap-ordered if, and only if, it does not contain any double subposet isomorphic to \mathfrak{l}_{2}^{1}.
2. Let $P \in \mathcal{S P}$. Then $P \in \mathcal{S P P}$ if, and only if, it does not contain any double subposet isomorphic to $\boldsymbol{\emptyset}_{1}^{3} \cdot 2$ nor $\boldsymbol{\emptyset}_{2}^{1}$.

Proof. The first point is immediate.
2. \Longrightarrow. If $P \in \mathcal{S P P}$, then any subposet of P belongs to $\mathcal{S P} \mathcal{P}$. The conclusion comes from the fact that $:_{1}^{0_{2}}$ and $:_{2}^{1}$ are not special plane posets.
$2 . \Longleftarrow$. By the first point, $P=\left(P, \leqslant_{1}, \leqslant_{2}\right)$ is heap-ordered. We define a relation \leqslant_{r} on P by:

$$
x \leqslant_{r} y \text { if }(x=y) \text { or }\left(\left(x<_{2} y\right) \text { and not }\left(x<_{1} y\right)\right) .
$$

By definition, $x \leqslant_{2} y$ if, and only if, $x \leqslant_{1} y$ or $x \leqslant_{r} y$. Moreover, if x and y are comparable for both \leqslant_{1} and \leqslant_{r}, then $x=y$ by definition of \leqslant_{r}. It remains to prove that \leqslant_{r} is a partial order on P. If $x<_{r} y$ and $y<_{r} z$, then $x<_{2} y<_{2} z$, so $x<_{2} z$, so $x<_{1} z$ or $x<_{r} z$. If $x<_{1} z$, then the subposet $\{x, y, z\}$ of P is equal to $\bullet_{1}^{3} \bullet^{2}$, as x, y and y, z are not comparable for \leqslant_{1} : contradiction. So $x<_{r} z$.

2.3 Pairing on special posets

We restrict the pairing of $\mathcal{H}_{\mathcal{D P}}$ to $\mathcal{H}_{\mathcal{S P}}$. The matrix of the restriction of this pairing to $\mathcal{H}_{\mathcal{S P}}(2)$ is:

	$\bullet_{1} \cdot 2$	\mathfrak{l}_{1}^{2}	$\mathfrak{!}_{2}^{1}$
$\bullet^{1} \bullet 2$	2	1	1
$\boldsymbol{!}_{1}^{2}$	1	1	0
$\boldsymbol{!}_{2}^{1}$	1	0	1

Remark 2.2. 1. As a consequence, $\bullet^{1} \bullet 2-\mathfrak{l}_{1}^{2}-\mathfrak{l}_{2}^{1}$ is in the kernel of the pairing. Hence, $\langle-,-\rangle_{\mid \mathcal{H}_{\mathcal{S P}}},\langle-,-\rangle_{\mathcal{H}_{\mathcal{H O P}}}$ and $\langle-,-\rangle_{\mathcal{H}_{\mathcal{O F}}}$ are degenerate. The kernels of these restrictions of the pairing are described in corollary 4.3,
2. A direct (but quite long) computation shows that the following element is in the kernel of $\langle-,-\rangle_{\mathcal{H}_{\mathcal{S W N P}}}$:

$$
\begin{aligned}
& \hat{\gamma}-\dot{\gamma}-\dot{\gamma}+\boldsymbol{V}+\boldsymbol{N}-\hat{\eta} \\
& +!-\vee \cdot+爪-\Lambda+!!+!-. \vee-. \Lambda+.!.
\end{aligned}
$$

(We write here the double posets appearing in this element as plane poset, they have to be considered as special posets). So $\langle-,-\rangle_{\mid \mathcal{H}_{\mathcal{S W N \mathcal { P }}}}$ is degenerate.
3. We shall see that $\langle-,-\rangle_{\mid \mathcal{H}_{\mathcal{H O F}}},\langle-,-\rangle_{\mid \mathcal{H}_{\mathcal{S P P}}}$ and $\langle-,-\rangle_{\mid \mathcal{H}_{\mathcal{S P F}}}$ are nondegenerate, see corollaries 4.6, 4.9 and 6.6.

3 Links with permutations

3.1 Plane poset associated to a permutation

Proposition 3.1. Let $\sigma \in \mathfrak{S}_{n}$. We define two relations \leqslant_{h} and \leqslant_{r} on $\{1, \cdots, n\}$ by:

- $(i \leqslant h j)$ if $(i \leqslant j$ and $\sigma(i) \leqslant \sigma(j))$.
- $\left(i \leqslant_{r} j\right)$ if $(i \leqslant j$ and $\sigma(i) \geqslant \sigma(j))$.

Then $\left(\{1, \cdots, n\}, \leqslant_{h}, \leqslant_{r}\right)$ is a plane poset. The induced total order on $\{1, \cdots, n\}$ is the usual total order.

Proof. It is clear that \leqslant_{h} and \leqslant_{r} are two partial orders on $\{1, \cdots, n\}$. It is immediate for any i, j, i and j are comparable for \leqslant_{h} or \leqslant_{r}. Moreover, if i and j are comparable for both \leqslant_{h} and \leqslant_{r}, then $\sigma(i)=\sigma(j)$, so $i=j$. For all $i, j, i \leqslant_{h} j$ or $i \leqslant_{r} j$ if, and only if, $i \leqslant j$.

Definition 3.2. Let $n \in \mathbb{N}$. We define a map:

$$
\Phi_{n}:\left\{\begin{array}{rll}
\mathfrak{S}_{n} & \longrightarrow \mathcal{P P}(n) \\
\sigma & \longrightarrow\left(\{1, \cdots, n\}, \leqslant_{h}, \leqslant_{r}\right),
\end{array}\right.
$$

where \leqslant_{h} and \leqslant_{r} are defined in proposition 3.1
Example 3.1.

We shall prove in the next section that Φ_{n} is bijective for all $n \geqslant 0$.

3.2 Permutation associated to a plane poset

We now construct the inverse bijection. For any $P \in \mathcal{P} \mathcal{P}$, nonempty, we put:

$$
\kappa(P)=\max \left(\left\{y \in P / \forall x \in P, x \leqslant y \Rightarrow x \leqslant_{h} y\right\}\right) .
$$

Note that $\kappa(P)$ is well-defined: the smallest element of P for its total order belongs to the set $\{y \in P / \forall x \in P, x \leqslant y \Rightarrow x \leqslant h y\}$.

Let $P \in \mathcal{P} \mathcal{P}(n)$. Up to a unique increasing bijection, we can suppose that $P=\{1, \cdots, n\}$ as a totally ordered set: we shall take this convention in this paragraph. We define an element σ of \mathfrak{S}_{n} by:

$$
\left\{\begin{aligned}
\sigma^{-1}(n)= & \kappa(P) \\
\sigma^{-1}(n-1)= & \kappa\left(P-\left\{\sigma^{-1}(n)\right\}\right) \\
\vdots & \vdots \\
\sigma^{-1}(1)= & \kappa\left(P-\left\{\sigma^{-1}(n), \cdots, \sigma^{-1}(2)\right\}\right)
\end{aligned}\right.
$$

This defines a map:

$$
\Psi_{n}:\left\{\begin{array}{rll}
\mathcal{P} \mathcal{P}(n) & \longrightarrow \mathfrak{S}_{n} \\
\left(P, \leqslant_{h}, \leqslant_{r}\right) & \longrightarrow & \sigma .
\end{array}\right.
$$

Lemma 3.3. $\Psi_{n} \circ \Phi_{n}=I d_{\mathfrak{S}_{n}}$.
Proof. Let $\sigma \in \mathfrak{S}_{n}$. We put $P=\Phi_{n}(\sigma)$ and $\tau=\Psi_{n}(P)$. Then:

$$
\{y \in P / \forall x \in P, x \leqslant y \Rightarrow x \leqslant h y\}=\{j \in\{1, \cdots, n\} / \forall 1 \leqslant i \leqslant n, i \leqslant j \Rightarrow \sigma(i) \leqslant \sigma(j)\} .
$$

So $\tau^{-1}(n)=\kappa(P)=\sigma^{-1}(n)$. Iterating this process, we obtain $\sigma^{-1}=\tau^{-1}$, so $\sigma=\tau$.
Lemma 3.4. Let $P \in \mathcal{P P}(n)$. We put $\Psi_{n}(P)=\sigma$. If $i \leqslant h j$ in P, then $\sigma(i) \leqslant \sigma(j)$.
Proof. If $i=j$, this is obvious. Let us assume that $i<_{h} j$. We put $k=\sigma(i)$ and $l=\sigma(j)$. Then $k \neq l$. Let us assume that $k>l$. We then put:

$$
P^{\prime}=P \backslash\left\{\sigma^{-1}(n), \ldots, \sigma^{-1}(k+1)\right\}=\left\{i_{1}, \cdots, i_{p}, i, i_{p+1}, \cdots, i_{p+q}, j, i_{p+q+1}, \cdots, i_{p+q+r}\right\}
$$

with $i_{1}<\cdots<i_{p}<i<i_{p+1}<\cdots<i_{p+q}<j<i_{p+q+1}<\cdots<i_{p+q+r}$. Indeed, as $l<k<k+1$, both $\sigma^{-1}(k)=i$ and $\sigma^{-1}(l)=j$ belongs to this set. As $\kappa\left(P^{\prime}\right)=i, i_{1}, \cdots, i_{p}<_{h} i$. If $i \leqslant h i_{p+1}$, then $\kappa\left(P^{\prime}\right) \geqslant i_{p+1}>i$: contradiction. So $i<_{r} i_{p+1}$.

Let us prove by induction on s that $i_{p+s} \leqslant_{h} j$ for $1 \leqslant s \leqslant q$. If $i_{p+1} \leqslant_{r} j$, then i and j would be comparable for \leqslant_{r}, so would not be comparable for \leqslant_{h} : contradiction. So $i_{p+1} \leqslant_{h} j$. Let us suppose that $i_{p+s-1} \leqslant h j, 1<s \leqslant q$. As $i_{p+s}<j, i_{p+s}<_{h} j$ or $i_{p+s}<_{r} j$. Let us assume that $i_{p+s}<_{r} j$. As $\kappa\left(P^{\prime}\right)=i<i_{p+s}$, there exists $x \in P^{\prime}, x<_{r} i_{p+s}$. By the induction hypothesis, $x \notin\left\{i_{p+1}, \cdots, i_{p+s}\right\}$. As $i<_{h} j, x \neq i$, so $x \in\left\{i_{1}, \cdots, i_{p}\right\}$. But for such an $x, x<_{h} i<_{h} j$, so $x<_{h} j$: contradiction. So $i_{p+s}<_{h} j$.

Finally, we obtain that $i_{1}, \cdots, i_{p}, i, i_{p+1}, \cdots, i_{p+q}, j \leqslant_{h} j$, so $i=\kappa\left(P^{\prime}\right) \geqslant j$: contradiction, $i<j$. So $k<l$.

Lemma 3.5. $\Phi_{n} \circ \Psi_{n}=I d_{\mathcal{P P}_{n}}$.
Proof. Let $P \in \mathcal{P} \mathcal{P}_{n}$. We put $\sigma=\Psi_{n}(P)$ and $Q=\Phi_{n}(\sigma)$. As totally ordered sets, $P=Q=$ $\{1, \cdots, n\}$. As they are both plane posets, it is enough to prove that $(P, \leqslant h)=(Q, \leqslant h)$. Let us suppose that $i \leqslant_{h} j$ in P. Then $i \leqslant j$ and $\sigma(i) \leqslant \sigma(j)$ by lemma [3.4. So $i \leqslant_{h} j$ in Q. Let us suppose that $i \leqslant h j$ in Q. So $i \leqslant j$ and $\sigma(i) \leqslant \sigma(j)$. We put $k=\sigma(i)$ and $l=\sigma(j)$. As $k<l$:

$$
i \in P^{\prime}=P-\left\{\sigma^{-1}(n), \cdots, \sigma^{-1}(l+1)\right\} .
$$

By definition of $\kappa\left(P^{\prime}\right)=j, i \leqslant_{h} j$ in P as $i \leqslant j$.
Proposition 3.6. Ψ_{n} is a bijection, of inverse Φ_{n}. As a consequence, $\operatorname{card}(\mathcal{P} \mathcal{P}(n))=n!$ for all $n \in \mathbb{N}$.

Here are examples of properties of the bijection Ψ_{n} :
Proposition 3.7. Let $P=\left(P, \leqslant_{h}, \leqslant_{r}\right) \in \mathcal{P} \mathcal{P}(n)$.

1. $n \cdots 1 \circ \Psi_{n}(P)=\Psi_{n}\left(\left(P, \leqslant_{r}, \leqslant_{h}\right)\right)$.
2. $\Psi_{n}(P)^{-1}=\Psi_{n}\left(\left(P, \leqslant_{h}, \geqslant_{r}\right)\right)$.

Proof. 1. We put $\Psi_{n}(P)=\sigma=\left(a_{1} \cdots a_{n}\right)$. Then $n \cdots 1 \circ \sigma=\left(n-a_{1}+1\right) \cdots\left(n-a_{n}+1\right)$. We put $Q=\Phi_{n}(n \cdots 1 \circ \sigma)$. For all $i, j \in\{1, \cdots n\}$:

$$
\begin{aligned}
i \leqslant_{h} j \text { in } Q & \Longleftrightarrow i \leqslant j \text { and } n-a_{i}+1 \leqslant n-a_{j}+1 \\
& \Longleftrightarrow i \leqslant j \text { and } a_{i} \geqslant a_{j} \\
& \Longleftrightarrow i \leqslant r j \text { in } P
\end{aligned}
$$

Similarly, $i \leqslant_{r} j$ in Q if, and only if, $i \leqslant_{h} j$ in P. So $Q=\left(P, \leqslant_{r}, \leqslant_{h}\right)$.
2. We put $R=\Phi_{n}\left(\sigma^{-1}\right)$. Let $i, j \in\{1, \cdots, n\}$.

$$
\begin{aligned}
\sigma(i) \leqslant_{h} \sigma(j) \text { in } R & \Longleftrightarrow \sigma(i) \leqslant \sigma(j) \text { and } i \leqslant j \\
& \Longleftrightarrow i \leqslant_{h} j \text { in } P, \\
\sigma(i) \leqslant_{r} \sigma(j) \text { in } R & \Longleftrightarrow \sigma(i) \leqslant \sigma(j) \text { and } i \geqslant j \\
& \Longleftrightarrow i \geqslant_{r} j \text { in } P .
\end{aligned}
$$

So $\sigma:\left(P, \leqslant_{h}, \geqslant_{r}\right) \longrightarrow R$ is an isomorphism of plane posets.
Remark 3.1. In other terms, $n \cdots 1 \circ \Psi_{n}(P)=\Psi_{n} \circ \iota(P)$, where the involution ι is defined in [8] by $\iota\left(\left(P, \leqslant_{h}, \leqslant_{r}\right)\right)=\left(P, \leqslant_{r}, \leqslant_{h}\right)$.

4 A morphism to FQSym

Note that $\mathcal{H}_{\mathcal{P} \mathcal{P}}, \mathcal{H}_{\mathcal{S P} \mathcal{P}}$ and FQSym are both free and cofree, with the same formal series. From a result of [7], $\mathcal{H}_{\mathcal{P} \mathcal{P}}$, hence $\mathcal{H}_{\mathcal{S P P}}$, is isomorphic to FQSym. Our aim in this section is to define and study an explicit isomorphism between $\mathcal{H}_{\mathcal{S P P}}$ and FQSym.

4.1 Reminders on FQSym

Let us first recall the construction of FQSym [16, 2]. As a vector space, a basis of FQSym is given by the disjoint union of the symmetric groups \mathfrak{S}_{n}, for all $n \geqslant 0$. By convention, the unique element of \mathfrak{S}_{0} is denoted by \varnothing. The product of $\mathbf{F Q S y m}$ is given, for $\sigma \in \mathfrak{S}_{k}, \tau \in \mathfrak{S}_{l}$, by:

$$
\sigma \tau=\sum_{\epsilon \in S h(k, l)}(\sigma \otimes \tau) \circ \epsilon
$$

where $S h(k, l)$ is the set of (k, l)-shuffles, that is to say permutations $\epsilon \in \mathfrak{S}_{k+l}$ such that $\epsilon^{-1}(1)<$ $\ldots<\epsilon^{-1}(k)$ and $\epsilon^{-1}(k+1)<\ldots<\epsilon^{-1}(k+l)$. In other words, the product of σ and τ is given by shifting the letters of the word representing τ by k, and then summing all the possible shuffings of this word and of the word representing σ. For example:

$$
\begin{aligned}
132.21 & =13254+13524+15324+51324+13542 \\
& +15342+51342+15432+51432+54132
\end{aligned}
$$

Let $\sigma \in \mathfrak{S}_{n}$. For all $0 \leqslant k \leqslant n$, there exists a unique triple $\left(\sigma_{1}^{(k)}, \sigma_{2}^{(k)}, \zeta_{k}\right) \in \mathfrak{S}_{k} \times \mathfrak{S}_{n-k} \times$ $S h(k, n-k)$ such that $\sigma=\zeta_{k}^{-1} \circ\left(\sigma_{1}^{(k)} \otimes \sigma_{2}^{(k)}\right)$. The coproduct of FQSym is then defined by:

$$
\Delta(\sigma)=\sum_{k=0}^{n} \sigma_{1}^{(k)} \otimes \sigma_{2}^{(k)}
$$

For example:

$$
\Delta(41325)=\varnothing \otimes 41325+1 \otimes 1324+21 \otimes 213+312 \otimes 12+4132 \otimes 1+41325 \otimes \varnothing
$$

Note that $\sigma_{1}^{(k)}$ and $\sigma_{2}^{(k)}$ are obtained by cutting the word representing σ between the k-th and the $k+1$-th letter, and then standardizing the two obtained words, that is to say applying to their letters the unique increasing bijection to $\{1, \ldots, k\}$ or $\{1, \ldots, n-k\}$. Moreover, FQSym has a nondegenerate, homogeneous, Hopf pairing defined by $\langle\sigma, \tau\rangle=\delta_{\sigma, \tau^{-1}}$ for all permutations σ and τ.

4.2 Linear extensions

Definition 4.1. Let $P=\left(P, \leqslant_{1}, \leqslant_{2}\right)$ be a special poset. Let $x_{1}<_{2} \ldots<_{2} x_{n}$ be the elements of P. A linear extension of P is a permutation $\sigma \in \mathfrak{S}_{n}$ such that, for all $i, j \in\{1, \ldots, n\}$:

$$
\left(x_{i} \leqslant 1 x_{j}\right) \Longrightarrow\left(\sigma^{-1}(i)<\sigma^{-1}(j)\right) .
$$

The set of linear extensions of P will be denoted by S_{P}.
Remark 4.1. 1. Let P be a special poset. It is heap-ordered if, and only if, $I d_{n} \in S_{P}$.
2. Let P be a special poset of cardinality n. By definition of the product of plane posets, the plane poset \bullet^{n}, seen as a special poset, has n vertices. If $i \neq j$ in \bullet^{n}, then i and j are not comparable for \leqslant_{h}. We also identify P and \bullet^{n} with $\{1, \ldots, n\}$ as totally ordered sets. If σ is a bijection from P to \bullet^{n}, then $\sigma \in S\left(\bullet^{n}, P\right)$ if, and only if, $\sigma(i)<_{h} \sigma(j)$ in P implies that to $i<j$. Hence, the set of linear extensions of P is $S\left(\bullet^{n}, P\right)$.
3. Let P be a special poset. We denote by n its cardinality. As the second order of P is total, we can identify P with $\{1, \ldots, n\}$, as totally ordered sets. By [21], seeing orders on P as elements of $P \times P$:

$$
\left\{(x, y) \in P^{2} \mid x<_{1} y\right\}=\bigcap\{\ll \mid \ll \text { total order extending } \leqslant 1\} .
$$

We identify the total order $i_{1}<\ldots<i_{n}$ on P with the permutation $i_{1} \ldots i_{n}$. Then permutations corresponding to total orders extending $\leqslant 1$ are precisely the elements of S_{P}. We obtain:

$$
\left\{(x, y) \in P^{2} \mid x<_{1} y\right\}=\left\{(i, j) \in\{1, \ldots, n\}^{2} \mid \forall \sigma \in S_{P}, \sigma^{-1}(i)<\sigma^{-1}(j)\right\} .
$$

So S_{P} entirely determines P.
The following theorem is proved in [17]:
Theorem 4.2. The following map is a surjective morphism of Hopf algebras:

$$
\Theta:\left\{\begin{array}{rll}
\mathcal{H}_{\mathcal{S P}} & \longrightarrow & \text { FQSym } \\
P \in \mathcal{S P} & \longrightarrow & \sum_{\sigma \in S_{P}} \sigma .
\end{array}\right.
$$

Moreover, for any $x, y \in \mathcal{H}_{\mathcal{S P}},\langle x, y\rangle=\langle\Theta(x), \Theta(y)\rangle_{\text {FQSym }}$.
Example 4.1. If $\{i, j, k\}=\{1,2,3\}$:

$$
\left.\begin{array}{rl}
\Theta(\bullet i \cdot j \cdot k) & =i j k+i k j+j i k+j k i+k i j+k j i \\
\Theta\left(\cdot \bullet_{j}^{k}\right) & =i j k+j i k+j k i \\
\Theta\binom{j k}{k} & =i j k+i k j \\
\Theta\left(\mathfrak{l}_{i}^{k}\right.
\end{array}\right)=i j k
$$

It is proved in [9] that the restriction of $\Theta_{\mid \mathcal{H}_{\mathcal{H} O \mathcal{F}}}$ is an isomorphism from $\mathcal{H}_{\mathcal{H O F}}$ to FQSym (Proposition 7). Consequently, Θ and its restrictions to $\mathcal{H}_{\mathcal{H O P}}$ and to $\mathcal{H}_{\mathcal{O F}}$ are surjective.

Corollary 4.3. The kernel of the pairing on $\mathcal{H}_{\mathcal{S P}}$ is $\operatorname{Ker}(\Theta)$. The kernel of the pairing restricted to $\mathcal{H}_{\mathcal{H O P}}$ and $\mathcal{H}_{\mathcal{O F}}$ is respectively $\operatorname{Ker}(\Theta) \cap \mathcal{H}_{\mathcal{H O P}}$ and $\operatorname{Ker}(\Theta) \cap \mathcal{H}_{\mathcal{O F}}$.

Proof. For any $x \in \mathcal{H}_{\mathcal{S P}}$, as Θ is surjective:

$$
\begin{aligned}
x \in \mathcal{H}_{\mathcal{S} \mathcal{P}}^{\perp} & \Longleftrightarrow \forall y \in \mathcal{H}_{\mathcal{S P}},\langle x, y\rangle=0 \\
& \Longleftrightarrow \forall y \in \mathcal{H}_{\mathcal{S P}},\langle\Theta(x), \Theta(y)\rangle_{\mathbf{F Q S y m}}=0 \\
& \Longleftrightarrow \forall y^{\prime} \in \mathbf{F Q S y m},\left\langle\Theta(x), y^{\prime}\right\rangle=0 \\
& \Longleftrightarrow \Theta(x) \in \mathbf{F Q S}_{\mathbf{I}}{ }^{\perp} \\
& \Longleftrightarrow \Theta(x)=0 .
\end{aligned}
$$

So $\mathcal{H}_{\mathcal{S} \mathcal{P}}^{\perp}=\operatorname{Ker}(\Theta)$. The proof is similar for $\mathcal{H}_{\mathcal{H O P}}$ and $\mathcal{H}_{\mathcal{O F}}$.

4.3 Restriction to special plane posets

Proposition 4.4. Let $n \in \mathbb{N}$. We partially order \mathfrak{S}_{n} by the right weak Bruhat order [20].

1. If $P \in \mathcal{S P} \mathcal{P}(n)$, then $\Theta(P)=\sum_{\sigma \in \mathfrak{S}_{n}, \sigma \leqslant \Phi_{n}(P)^{-1}} \sigma$.
2. Let $P \in \mathcal{S P}(n)$. There exists $\tau \in \mathfrak{S}_{n}$, such that $S_{P}=\left\{\sigma \in \mathfrak{S}_{n} \mid \sigma \leqslant \tau\right\}$ if, and only if, $P \in \mathcal{S P P}$.

Proof. 1. We put $\tau=\Phi_{n}(P)^{-1}$. The aim is to prove that for all $\sigma \in \mathfrak{S}_{n}, \sigma \in S_{P}$ if, and only if, $\sigma \leqslant \tau$.

Let us assume that $\sigma \in S_{P}$. We put:

$$
I=\left\{(i, j) \mid i<_{r} j, \sigma^{-1}(i)<\sigma^{-1}(j)\right\} .
$$

Let us prove that $\sigma \leqslant \tau$ by induction on $|I|$. If $|I|=0$, by definition of the elements of S_{P}, for all $i<j$:

$$
i<_{h} j \Longleftrightarrow \sigma^{-1}(i)<\sigma^{-1}(j) \Longleftrightarrow \tau^{-1}(i)<\tau^{-1}(j)
$$

So $\sigma=\tau$. Let us assume now that $|I| \geqslant 1$. Let us choose $(i, k) \in I$, such that $E=\sigma^{-1}(k)-\sigma^{-1}(i)$ is minimal. If $E \geqslant 2$, let j such that $\sigma^{-1}(i)<\sigma^{-1}(j)<\sigma^{-1}(k)$. Three cases are possible.

1. If $i<j<k$, by minimality of $E, i<_{h} j$ et $j<_{h} k$, so $i<_{h} k$. This contradicts $i<_{r} k$.
2. If $j<i<k$, by minimality of $E, j<_{h} k$. As $\sigma \in S_{P}, j<_{r} i$. As $i<_{r} k$, we obtain $j<_{r} k$. This contradicts $j<_{h} k$.
3. If $i<k<j$, by minimality of $E, i<_{h} j$. As $\sigma \in S_{P}, k<_{r} j$. As $i<_{r} k, i<_{r} j$. This contradicts $i<_{h} j$.

In all cases, this gives a contradiction. So $E=1$, that is to say $\sigma^{-1}(i)=\sigma^{-1}(k)-1$. The permutation σ^{\prime} obtained from σ by permuting i and k in the word representing σ is greater than σ for the right weak Bruhat order by definition of this order; moreover, it is not difficult to show that it is also an element of $S_{P}($ as $(i, k) \in I)$, with a strictly smaller $|I|$. By the induction hypothesis, $\sigma \leqslant \sigma^{\prime} \leqslant \tau$.

Let us assume that $\sigma \leqslant \tau$ and let us prove that $\sigma \in S_{P}$. Then τ is obtained from σ by a certain number k of elementary transformations (that is to say the permutations of two adjacent letters $i j$ with $i<j$ in the word representing σ). We proceed by induction on k. If $k=0$, then $\sigma=\tau$. If $k \geqslant 1$ there exists $\sigma^{\prime} \in \mathfrak{S}_{n}$, obtained from σ by one elementary transformation, such that τ is obtained from σ^{\prime} by $k-1$ elementary transformations. By the induction hypothesis, $\sigma^{\prime} \in S_{P}$. We put $\sigma=\left(\ldots a_{i} a_{i+1} \ldots\right), \sigma^{\prime}=\left(\ldots a_{i+1} a_{i} \ldots\right)$, with $a_{i}<a_{i+1}$. Let us prove that $\sigma \in S_{P}$. Let $k<_{h} l$.

- If $k, l \neq a_{i}, a_{i+1}$, as $\sigma^{\prime} \in S_{P}, \sigma^{-1}(k)=\sigma^{\prime-1}(k)<\sigma^{\prime-1}(l)=\sigma^{-1}(l)$.
- If $k=a_{i}$, as $\sigma^{\prime} \in S_{P}, l \neq a_{i+1}$. So $\sigma^{-1}(l)=\sigma^{\prime-1}(l)>\sigma^{\prime-1}(k)=\sigma^{-1}(k)+1$, and $\sigma^{-1}(k)<\sigma^{-1}(l)$.
- If $k=a_{i+1}$, then $l \neq a_{i}$ as $k<l$. So $\sigma^{-1}(l) \sigma^{\prime-1}(l)>\sigma^{\prime-1}(k)+1=\sigma^{-1}(k)$.
- If $l=a_{i}$, then $k \neq a_{i+1}$ as $k<l$. Then $\sigma^{-1}(k)=\sigma^{\prime-1}(k)<\sigma^{\prime-1}(l)-1=\sigma^{-1}(l)$.
- If $l=a_{i+1}$, as $\sigma \in S_{P}, k \neq a_{i}$. Then $\sigma^{-1}(k)=\sigma^{\prime-1}(k)<\sigma^{\prime-1}(l)=\sigma^{-1}(l)-1$, and $\sigma^{-1}(k)<\sigma^{-1}(l)$.

Indeed, $\sigma \in S_{P}$.
$2 . \Longleftarrow$. Comes from the first point, with $\tau=\Phi_{n}(P)^{-1}$.
2. \Longrightarrow. Let us assume that $S_{P}=\left\{\sigma \in \mathfrak{S}_{n} \mid \sigma \leqslant \tau\right\}$ for a particular τ. Then $I d_{n} \in S_{P}$, so P is heap-ordered.

Example 4.2. Here is the Hasse graph of \mathfrak{S}_{3}, partially ordered by the right weak Bruhat order:

So:

$$
\begin{aligned}
\Theta(\ldots) & =312+231+312+213+132+123 \\
\Theta(\cdot \mathbf{!}) & =231+213+123 \\
\Theta(!) & =312+132+123 \\
\Theta(\boldsymbol{\Omega}) & =213+123 \\
\Theta(\mathbf{V}) & =132+123 \\
\Theta(\vdots) & =123 .
\end{aligned}
$$

As $\Phi_{n}: \mathcal{S P P}(n) \longrightarrow \mathfrak{S}_{n}$ is a bijection:
Corollary 4.5. The restriction $\Theta_{\mid \mathcal{H}_{\mathcal{S P}}}: \mathcal{H}_{\mathcal{S P P}} \longrightarrow \mathbf{F Q S y m}$ is an isomorphism.
Corollary 4.6. The restriction of the pairing to $\mathcal{H}_{\mathcal{S P P}}$ is nondegenerate.
Proof. As the isomorphism $\Theta_{\mid \mathcal{H}_{\mathcal{S P P}}}$ is an isometry and the pairing of FQSym is nondegenerate.

4.4 Restriction to heap-ordered forests

Notations 4.1. Let $P=\left(P, \leqslant_{1}, \leqslant_{2}\right)$ be a special poset. If $i, j \in P$, we denote by $[i, j]_{1}$ the set of elements k of P such that $i \leqslant_{1} k \leqslant_{1} j$. We denote by $R_{P}=\left\{(i, j) \in P^{2} \mid[i, j]_{1}=\{i, j\}, i \neq j\right\}$. This set is in fact the set of edges of the Hasse graph of $(P, \leqslant 1)$, so allows to reconstruct the double poset P.

Proposition 4.7. Let P be a special poset with n elements.

1. Let $i, j \in P$, such that $(j, i) \in R_{P}$. We define:

- $P_{1} \in \mathcal{S P}(n)$ such that $R_{P_{1}}=R_{P} \backslash\{(j, i)\}$;
- $P_{2} \in \mathcal{S P}(n)$ such that $R_{P_{2}}=\left(R_{P} \backslash\{(j, i)\}\right) \cup\{(i, j)\}$, after the elimination of redundant elements.

Then $\Theta(P)=\Theta\left(P_{1}\right)-\Theta\left(P_{2}\right)$.
2. Let $i, j, k \in P$, all distinct, such that (i, k) and $(j, k) \in R_{P}$. We define:

- $P_{3} \in \mathcal{S P}(n)$, such that $R_{P_{3}}=R_{P} \backslash\{(j, k)\}$;
- $P_{4} \in \mathcal{S P}(n)$, such that $R_{P_{4}}=\left(R_{P} \backslash\{(j, k)\}\right) \cup\{(i, j)\}$, after the elimination of redundant elements;
- $P_{5} \in \mathcal{S P}(n)$, such that $R_{P_{5}}=\left(R_{P} \backslash\{(j, k),(i, k)\}\right) \cup\{(i, j),(j, k)\}$, after the elimination of redundant elements.

$$
\text { Then } \Theta(P)=\Theta\left(P_{3}\right)-\Theta\left(P_{4}\right)+\Theta\left(P_{5}\right)
$$

Proof. 1. We denote by S the set of permutations $\sigma \in \mathfrak{S}_{n}$ such that, for all $(x, y) \in R_{P} \backslash\{(i, j)\}$, $\sigma^{-1}(x)<\sigma^{-1}(y)$. Then:

$$
\Theta\left(P_{1}\right)=\sum_{\sigma \in S} \sigma, \quad \Theta(P)=\sum_{\substack{\sigma \in S, \sigma^{-1}(j)<\sigma^{-1}(i)}} \sigma, \quad \Theta\left(P_{2}\right)=\sum_{\substack{\sigma \in S, \sigma^{-1}(j)>\sigma^{-1}(i)}} \sigma
$$

As a consequence, $\Theta(P)+\Theta\left(P_{2}\right)=\Theta\left(P_{1}\right)$.
2. Note that i and j are not comparable for \leqslant_{1} (otherwise, for example if $i<_{1} j$, then $i<_{1} j<_{1} k$, and this contradicts the definition of R_{P}). We denote by S^{\prime} the set of permutations $\sigma \in \mathfrak{S}_{n}$, such that for all $(x, y) \in R_{P} \backslash\{(i, k),(j, k)\}, \sigma^{-1}(x)<\sigma^{-1}(y)$. Then:

$$
\begin{array}{cl}
\Theta(P)= & \Theta, \\
\Theta\left(P_{4}\right)=\sum_{\substack{\sigma \in S^{\prime}, \sigma^{-1}(i), \sigma^{-1}(j)<\sigma^{-1}(k)}}^{\sum_{\substack{\sigma \in S^{\prime},}} \sigma,} \sigma \sum_{\substack{\sigma \in S^{\prime}, \sigma^{-1}(i)<\sigma^{-1}(j), \sigma^{-1}(k)}} \sigma, \\
\sigma^{-1}(i)<\sigma^{-1}(k) \\
\sum_{\sigma \in S^{\prime},} & \Theta\left(P_{5}\right)=\underbrace{}_{\sigma^{-1}(i)<\sigma^{-1}(j)<\sigma^{-1}(k)} \sigma .
\end{array}
$$

We put:

$$
\begin{gathered}
S_{1}=\sum_{\substack{\sigma \in S^{\prime}, \sigma^{-1}(i)<\sigma^{-1}(j)<\sigma^{-1}(k)}} \sigma, \quad S_{2}=\sum_{\substack{\sigma \in S^{\prime}, S_{3}=}} \sigma, \\
\sum_{\substack{\sigma \in S^{\prime}, \sigma^{-1}(i)<\sigma^{-1}(k)<\sigma^{-1}(j)}} \sigma .
\end{gathered}
$$

Then $\Theta(P)=S_{1}+S_{2}, \Theta\left(P_{3}\right)=S_{1}+S_{2}+S_{3}, \Theta\left(P_{4}\right)=S_{1}+S_{3}$ and $\Theta\left(P_{5}\right)=S_{1}$. Hence, $\Theta(P)+\Theta\left(P_{4}\right)=\Theta\left(P_{3}\right)+\Theta\left(P_{5}\right)$.

Remark 4.2. In other words, in the first case, one replaces a double subposet $\boldsymbol{\bullet}_{j}^{i}$ of P by $\bullet \bullet^{i}-\mathfrak{\emptyset}_{i}^{j}$. In the second case, one replaces a double subposet $i \AA_{j}^{k}$ by $\mathfrak{l}_{i}^{k}{ }_{\bullet j}-V_{i}^{j}+\mathfrak{l}_{i}^{k}$.

Theorem 4.8. Let $P \in \mathcal{S P}$. Applying repeatedly the two transformations of proposition 4.7, with $i<j$ in the first case, and $i<j<k$ in the second case, we can associate to P a linear span of heap-ordered forests. This linear span does not depend on the way the transformations are performed, so is well-defined: we denote it by $\Upsilon(P)$. Then Υ defines a Hopf algebra morphism from $\mathcal{H}_{\mathcal{S P}}$ to $\mathcal{H}_{\mathcal{H O F}}$, such that the following diagram commutes:

The restriction $\Theta_{\mid \mathcal{H}_{\mathcal{H O F}}}$ is an isomorphism, and $\Upsilon_{\mid \mathcal{H}_{\mathcal{H O F}}}=I d_{\mathcal{H} \mathcal{H O F}}$. Moreover, $\langle\Upsilon(x), \Upsilon(y)\rangle=$ $\langle x, y\rangle$ for all $x, y \in \mathcal{H}_{\mathcal{S P}}$ (that is to say Υ respects the pairings).

Proof. Let $P \in \mathcal{S P}$. It is clear that, using repeatedly the first transformation, we associate to P a linear span of heap-ordered posets. Then, using repeatedly the second transformation, we associate to this element of $\mathcal{H}_{\mathcal{H O P}}$ a linear span of heap-ordered forests. Let x be a linear span of heap-ordered forests obtained in this way. Using proposition 4.7 $\Theta(x)=\Theta(P)$. As $\Theta: \mathcal{H}_{\mathcal{S P}} \longrightarrow$ FQSym is surjective (as, for example, $\Theta_{\mid \mathcal{H}_{\mathcal{S P P}}}$ is an isomorphism), $\Theta_{\mid \mathcal{H}_{\mathcal{H O F}}}$ is surjective. As $\operatorname{Card}(\mathcal{H O \mathcal { F }}(n))=\operatorname{Card}\left(\mathfrak{S}_{n}\right)=n$! for all $n \in \mathbb{N}, \Theta_{\mid \mathcal{H}_{\mathcal{H O F}}}$ is bijective. So x is the unique antecedent of $\Theta(P) \in$ FQSym in $\mathcal{H}_{\mathcal{H O F}}$, so $x=\left(\Theta_{\mid \mathcal{H}_{\mathcal{H O F}}}\right)^{-1} \circ \Theta(P)$ is unique, and $\Upsilon(P)=x$ is well-defined. Moreover, $\Upsilon=\left(\Theta_{\mid \mathcal{H}_{\mathcal{H O F}}}\right)^{-1} \circ \Theta$. Consequently, it is a Hopf algebra morphism. As Θ respects the pairings, so does Υ.

Corollary 4.9. 1. $\Upsilon_{\mid \mathcal{H}_{\mathcal{S P P}}}: \mathcal{H}_{\mathcal{S P P}} \longrightarrow \mathcal{H}_{\mathcal{H O F}}$ is an isomorphism of graded Hopf algebras, and respects the pairings.
2. $\langle-,-\rangle_{\mathcal{H}_{\mathcal{H O F}}}$ is nondegenerate.

Proof. By restriction in the commutative diagram of theorem 4.8, we obtain the following commutative diagram:

As the two restrictions of Θ are isomorphisms of graded Hopf algebras and respect the pairing, so is $\Upsilon_{\mid \mathcal{H}_{\mathcal{S P P}}}=\left(\Theta_{\mid \mathcal{H}_{\mathcal{S P P}}}\right)^{-1} \circ \Theta_{\mid \mathbf{F Q S y m}}$. As $\Upsilon_{\mid \mathcal{H}_{\mathcal{S P P}}}$ is an isometry and the pairing on $\mathcal{H}_{\mathcal{S P P}}$ is nondegenerate, the pairing on $\mathcal{H}_{\mathcal{H O F}}$ is nondegenerate.

5 More algebraic structures on special posets

5.1 Recalls on Dup-Dend bialgebras

Recall that a duplicial algebra $[12$ is a triple $(A, ., \nwarrow)$, where A is a vector space, and ., Σ are two products on A, with the following axioms: for all $x, y, z \in A$,

$$
\left\{\begin{align*}
(x y) z & =x(y z) \tag{1}\\
(x \nwarrow y) \nwarrow z & =x \nwarrow(y \nwarrow z) \\
(x y) \nwarrow z & =x(y \nwarrow z)
\end{align*}\right.
$$

In particular, the products . and \nwarrow are both associative. A dendriform coalgebra (dual notion of dendriform algebra, [11, [13]) is a triple $\left(A, \Delta_{<}, \Delta_{>}\right)$, where A is a vector space, and $\Delta_{<}$and
$\Delta_{>}$are two coproducts on A, with the following axioms: for all $x \in A$,

$$
\left\{\begin{align*}
\left(\Delta_{<} \otimes I d\right) \circ \Delta_{<}(x) & =(I d \otimes \tilde{\Delta}) \circ \Delta_{<}(x), \tag{2}\\
\left(\Delta_{>} \otimes I d\right) \circ \Delta_{<}(x) & =\left(I d \otimes \Delta_{<}\right) \circ \Delta_{>}(x), \\
(\tilde{\Delta} \otimes I d) \circ \Delta_{>}(x) & =\left(I d \otimes \Delta_{>}\right) \circ \Delta_{>}(x)
\end{align*}\right.
$$

Note that these axioms imply that $\tilde{\Delta}=\Delta_{<}+\Delta_{>}$is coassociative. We shall use the following Sweedler notations: for any $a \in A$,

$$
\tilde{\Delta}(a)=a^{\prime} \otimes a^{\prime \prime}, \quad \Delta_{<}(a)=a_{<}^{\prime} \otimes a_{<}^{\prime \prime}, \quad \Delta_{>}(a)=a_{>}^{\prime} \otimes a_{>}^{\prime \prime}
$$

A $D u p-D e n d$ bialgebra [6] is a family $\left(A, ., \nwarrow, \Delta_{<}, \Delta_{>}\right)$, where A is a vector space, ., $\nwarrow: A \otimes A \longrightarrow$ A and $\Delta_{<}, \Delta_{>}: A \longrightarrow A \otimes A$, with the following properties:

- $(A, ., \nwarrow)$ is a duplicial algebra (axioms © .
- $\left(A, \Delta_{<}, \Delta_{>}\right)$is a dendriform coalgebra (axioms 2).
- For all $x, y \in A$:

$$
\left\{\begin{align*}
\Delta_{<}(x y)= & y \otimes x+y_{<}^{\prime} \otimes x y_{<}^{\prime \prime}+x y_{<}^{\prime} \otimes y_{<}^{\prime \prime}+x^{\prime} y \otimes x^{\prime \prime}+x^{\prime} y_{<}^{\prime} \otimes x^{\prime \prime} y_{<}^{\prime \prime} \tag{3}\\
\Delta_{>}(x y)= & x \otimes y+x y_{>}^{\prime} \otimes y_{>}^{\prime \prime}+y_{>}^{\prime} \otimes x y_{>}^{\prime \prime}+x^{\prime} \otimes x^{\prime \prime} y+x^{\prime} y_{>}^{\prime} \otimes x^{\prime \prime} y_{>}^{\prime \prime} \\
\Delta_{<}(x \nwarrow y)= & x \nwarrow y_{<}^{\prime} \otimes y_{<}^{\prime \prime}+x_{<}^{\prime} \nwarrow y \otimes x_{<}^{\prime \prime}+x_{<}^{\prime} \nwarrow y_{<}^{\prime} \otimes x_{<}^{\prime \prime} y_{<}^{\prime \prime} \\
\Delta_{>}(x \nwarrow y)= & x \otimes y+x \nwarrow y_{>}^{\prime} \otimes y_{>}^{\prime \prime}+x_{>}^{\prime} \otimes x_{>}^{\prime \prime} \nwarrow y \\
& +x_{<}^{\prime} \otimes x_{<}^{\prime \prime} y+x_{<}^{\prime} \nwarrow y_{>}^{\prime} \otimes x_{<}^{\prime \prime} y_{>}^{\prime \prime}
\end{align*}\right.
$$

5.2 Another product on special posets

Definition 5.1.

1. Let $P=\left(P, \leqslant_{1}, \leqslant_{2}\right)$ be a nonempty special poset. The maximal element of $\left(P, \leqslant_{2}\right)$ will be denoted by g_{P}.
2. Let P and Q be two nonempty special poset. We define $P \nwarrow Q$ by:

- $P \nwarrow Q=P \sqcup Q$ as a set, and P, Q are special subposets of $P \nwarrow Q$.
- For all $x \in P, y \in Q, x \leqslant_{2} y$.
- For all $x \in P, y \in Q, x \leqslant_{1} y$ if, and only if, $x \leqslant_{1} g_{P}$.

Remark 5.1. Let P and Q be two nonempty special posets. A Hasse graph of $P \nwarrow Q$ is obtained by grafting a Hasse graph of Q on the vertex representing g_{P} of a Hasse graph of P. For example:

Lemma 5.2. $\left(\mathcal{H}_{\mathcal{S} \mathcal{P}}^{+}, ., \nwarrow\right)$ is a duplicial algebra.
Proof. Let P, Q, R be three nonempty special posets. The special posets $(P \nwarrow Q) \nwarrow R$ and $P \nwarrow(Q \nwarrow R)$ are both characterized by:

- $S=P \sqcup Q \sqcup R$ as a set, and P, Q, R are special subposets of S.
- For all $x \in P, y \in Q, z \in R, x \leqslant_{2} y \leqslant_{2} z$.
- For all $x \in P, y \in Q, z \in R, x \leqslant_{1} y$ if, and only if, $x \leqslant_{P} ; x \leqslant_{1} z$ if, and only if, $x \leqslant_{1} g_{P}$; $y \leqslant_{1} z$ if, and only if, $y \leqslant_{1} g_{Q}$.

The last point comes from the fact that $g_{R \backslash S}=g_{S}$ for any nonempty special posets R and S. So they are equal.

The special posets $(P Q) \nwarrow R$ and $P(Q \nwarrow R)$ are both characterized by:

- $S=P \sqcup Q \sqcup R$ as a set, and P, Q, R are special subposets of S.
- For all $x \in P, y \in Q, z \in R, x \leqslant 2 y \leqslant 2 z$.
- For all $x \in P, y \in Q, z \in R, x$ and y are not comparable for $\leqslant_{1} ; x$ and z are not comparable for $\leqslant_{1} ; y \leqslant_{1} z$ if, and only if, $y \leqslant_{1} g_{Q}$.

So $\mathcal{H}_{\mathcal{S} \mathcal{P}}^{+}$is a duplicial algebra.
Proposition 5.3. Let P, Q be two nonempty special posets. Then $P \nwarrow Q \in \mathcal{H O P}$ (respectively $\mathcal{O} \mathcal{F}, \mathcal{S P P}, \mathcal{H O \mathcal { F }}, \mathcal{S P \mathcal { F }}, \mathcal{S W N P}$) if, and only if, $P, Q \in \mathcal{H O P}$ (respectively $\mathcal{O} \mathcal{F}, \mathcal{S P \mathcal { P }}, \mathcal{H O \mathcal { F }}$, $\mathcal{S P \mathcal { F }}, \mathcal{S W N})$.

Proof. We put $R=P \nwarrow Q$.
\Longleftarrow. In all the cases, this comes from the fact that P and Q are double subposets of $P \nwarrow Q$.
$\mathcal{H O P} . \Longrightarrow$ Recall from proposition 2.3 that $R \in \mathcal{H O P}$ if, and only if, R does not contain a double subposet isomorphic to \boldsymbol{l}_{2}^{1}. Let us assume that $P \nwarrow Q$ is not a heap-ordered poset. Then it contains two distinct elements a, b, such that $a \leqslant_{1} b$ and $b \leqslant_{2} a$. If $a \in P$, then, by definition of \leqslant_{2} on $R, b \in P$, so P is not a heap-ordered poset. If $a \in Q$, as $b \leqslant_{1} a$, by definition of \leqslant_{1} on $R, b \in Q$, so Q is not a heap-ordered poset.
$\mathcal{O F} . \Longrightarrow$ Recall that R is an ordered forest if, and only if, $\left(R, \leqslant_{1}\right)$ does not contain a double subposet isomorphic to \triangle (see lemma 13 in [8]). Let us assume that R is not an ordered forest. Then it contains three different elements a, b, c, with $a \leqslant_{2} b \leqslant_{2} c$, such that one of the following assertions holds:

1. $b, c \leqslant_{1} a$ and b, c are not comparable for $\leqslant_{1}:\left(\{a, b, c\}, \leqslant_{1}\right)={ }_{b} \stackrel{a}{\circ} \cdot$.
2. $a, c \leqslant_{1} b$ and a, c are not comparable for $\leqslant_{1}:\left(\{a, b, c\}, \leqslant_{1}\right)=a \bigwedge^{b} c$.
3. $a, b \leqslant_{1} c$ and a, b are not comparable for $\leqslant_{1}:\left(\{a, b, c\}, \leqslant_{1}\right)={ }_{a} \AA_{b}$.

In the three cases, if the maximal element of $\{a, b, c\}$ for \leqslant_{1} is in P, then, by definition of \leqslant_{1} on $R, a, b, c \in P$, so P is not an ordered forest. Let us assume that this element is in Q. In the first case, then, by definition of $\leqslant 2$ on $R, b, c \in Q$, so Q is not an ordered forest. In the second case, we deduce similarly that $c \in Q$. If $a \in P$, then $a \leqslant_{1} g_{P}$ in P as $a \leqslant_{1} b$ in R, so $a \leqslant_{1} c$ in R : contradiction, so $a \in Q$. As a consequence, Q is not an ordered forest. In the last case, then:

- If $a \in P, b \in Q$, then $a \leqslant_{1} g_{P}$ in P as $a \leqslant_{1} c$ in R, so $a \leqslant_{1} b$ in R : contradiction, this case is impossible.
- Similarly, $a \in Q, b \in P$ is impossible.

So $a, b \in P$ or $a, b \in Q$. In the first subcase, $a, b \leqslant_{1} g_{P}$ in P as $a, b \leqslant_{1} c$ in R, so $\left\{a, b, g_{P}\right\}$ is a subposet of $\left(P, \leqslant_{1}\right)$ isomorphic to $\aleph: P$ is not an ordered forest. In the second subcase, Q contains a, b, c, so is not an ordered forest.
$\mathcal{S P P} . \Longrightarrow$. Recall from proposition 2.3 that R is a plane poset if, and only if, it is heapordered and does not contain a double subposet isomorphic to $\bullet_{1}^{3} \cdot{ }^{2}$. Let us assume that R is not a plane poset. If it is not heap-ordered, by the first point P or Q is not heap-ordered, so is not a plane poset. Let us assume that there exists three different elements a, b, c of R, such that $a \leqslant_{2} b \leqslant_{2} c, a \leqslant_{1} c, a, b$ and b, c are not comparable for \leqslant_{1}. By definition of \leqslant_{2} on R, if $c \in P$, then $a, b \in P$, so $P \notin \mathcal{S P P}$. If $c \in Q$ and $a \in Q$, then $b \in Q$ as $a \leqslant_{2} b$, so $Q \notin \mathcal{S P P}$. If $c \in Q$ and $a \in P$, then $a \leqslant_{1} g_{P}$ in P. As a and b are not comparable for \leqslant_{1} in $R, b \in P$. As b, c are not comparable for \leqslant_{1} in R, b and g_{P} are not comparable for \leqslant_{1} in P. Let us consider $\left\{a, b, g_{P}\right\} \subseteq P$. By definition of $g_{P}, a \leqslant_{2} b \leqslant_{2} g_{P}$, so $\left\{a, b, g_{P}\right\}=\mathfrak{l}_{1 \cdot 2}^{3}$, so P is not plane.
$\mathcal{H O \mathcal { F }} . \Longrightarrow$. Comes from $\mathcal{H O \mathcal { F }}=\mathcal{O} \mathcal{F} \cap \mathcal{H O P}$.
$\mathcal{S P \mathcal { F }} . \Longrightarrow$. Comes from $\mathcal{S P \mathcal { F }}=\mathcal{O} \mathcal{F} \cap \mathcal{S P \mathcal { P }}$.
$\mathcal{S W N P} . \Longrightarrow$. Let us assume that $P \nwarrow Q$ is not a WN poset. If it is not plane, then by the third point, P or Q is not plane, so is not WN. Let us assume that $P \nwarrow Q$ is plane (so P and Q are plane). Then $P \nwarrow Q$ contains a subposet $\{a, b, c, d\}$ isomorphic to \mathbb{N} or \mathscr{L}. We assume that $a \ll_{2} b<_{2} c<_{2} d$ in $P \nwarrow Q$. If $d \in P$, then by definition of $P \nwarrow Q,\{a, b, c, d\} \subseteq P$, so P is not WN. Similarly, if $a \in Q, Q$ is not WN. We now assume that $a \in P$ and $d \in Q$.

- If $\{a, b, c, d\}=\mathbb{N}:$ as a and d are not comparable for \leqslant_{1} in $P \nwarrow Q$, we do not have $a \leqslant_{1} g_{P}$ in P. As P is plane, it is heap-ordered, so a and g_{P} are not comparable for \leqslant_{1} in P. As $a<_{1} c$ in $P \nwarrow Q$, necessarily $c \in P$. As $b<_{2} c$ in $P \nwarrow Q, b \in P$. Moreover, as $b<_{1} d, b<_{1} g_{P}$. As c and d are not comparable for \leqslant_{1} in $P \nwarrow Q, c$ and g_{P} are not comparable for \leqslant_{1} in P. So $\left\{a, b, c, g_{P}\right\}=\mathbf{N}$.
- If $\{a, b, c, d\}=\mathscr{\ddots}:$ as $a<1 d$ in $P \nwarrow Q, a<1 g_{P}$ in P. As a and b are not comparable for \leqslant_{1} in $P \nwarrow Q$, necessarily $b \in P$. As $b<_{1} d, b<_{1} g_{P}$. As c and b are not comparable for \leqslant_{1} in $P \nwarrow Q, c \in P$. As c and d are not comparable for \leqslant_{1}, c and g_{P} are not comparable for \leqslant_{1} in P. So $\left\{a, b, c, g_{P}\right\}=: \ddots$.

In both cases, P is not WN.
Remark 5.2. 1. As a consequence, the augmentation ideals $\mathcal{H}_{\mathcal{S P}}^{+}, \mathcal{H}_{\mathcal{H O P}}^{+}, \mathcal{H}_{\mathcal{S P P}}^{+}, \mathcal{H}_{\mathcal{O F}}^{+}, \mathcal{H}_{\mathcal{H O F}}^{+}$, $\mathcal{H}_{\mathcal{S W N P}}^{+}$and $\mathcal{H}_{\mathcal{S P F}}^{+}$are duplicial algebras.
2. It is proved in [6] that $\mathcal{H}_{\mathcal{S P \mathcal { F }}}^{+}$is the free duplicial algebra generated by $\cdot:$ it is enough to observe that for any plane forest F, g_{F} is the leaf of F at most on the right, so \nwarrow, when restricted to plane forests, is precisely the product Σ defined in [6].

5.3 Dendriform coproducts on special posets

For any nonempty special poset P, we put:

$$
\Delta_{<}(P)=\sum_{\substack{I \text { non trivial ideal of } P, g_{P} \notin I}} P \backslash I \otimes I, \quad \Delta_{>}(P)=\sum_{\substack{I \text { non trivial ideal of } P, g_{P} \in I}} P \backslash I \otimes I .
$$

Note that $\Delta_{<}+\Delta_{>}=\tilde{\Delta}$. Moreover, $\mathcal{H}_{\mathcal{S P P}}^{+}, \mathcal{H}_{\mathcal{H O P}}^{+}, \mathcal{H}_{\mathcal{S P P}}^{+}, \mathcal{H}_{\mathcal{O F}}^{+}, \mathcal{H}_{\mathcal{H O F}}^{+}, \mathcal{H}_{\mathcal{S} W \mathcal{N P}}^{+}$and $\mathcal{H}_{\mathcal{S P F}}^{+}$are stable under the coproducts $\Delta_{<}$and $\Delta_{>}$.

Proposition 5.4. $\mathcal{H}_{\mathcal{S} \mathcal{P}}^{+}$is a Dup-Dend bialgebra.
Proof. The proof is similar to the proof of proposition 20 in [6]. Nevertheless, in order to help the reader, we give here a complete proof. Let us first prove that $\left(\mathcal{H}_{\mathcal{S} \mathcal{P}}^{+}, \Delta_{<}, \Delta_{>}\right)$is a dendriform
coalgebra. It is enough to prove (2) if $x=P$ is a nonempty special poset. We put, as $\tilde{\Delta}$ is coassociative, $(\tilde{\Delta} \otimes I d) \circ \tilde{\Delta}(P)=(I d \otimes \tilde{\Delta}) \circ \tilde{\Delta}(P)=\sum P^{(1)} \otimes P^{(2)} \otimes P^{(3)}$, where $P^{(1)}, P^{(2)}, P^{(3)}$ are subposets of P. Then:

$$
\left\{\begin{array}{rl}
\left(\Delta_{<} \otimes I d\right) \circ \Delta_{<}(P) & =(I d \otimes \tilde{\Delta}) \circ \Delta_{<}(P)
\end{array}=\sum_{g_{P} \in P^{(1)}} P^{(1)} \otimes P^{(2)} \otimes P^{(3)}, ~ \Delta_{>} \otimes I d\right) \circ \Delta_{<}(P)=\left(I d \otimes \Delta_{<}\right) \circ \Delta_{>}(P)=\sum_{g_{P} \in P^{(2)}} P^{(1)} \otimes P^{(2)} \otimes P^{(3)}, ~ \sum_{g_{P} \in P^{(3)}}^{\left(\Delta^{(1)} \otimes P^{(2)} \otimes P^{(3)}\right.} .
$$

So $\mathcal{H}_{\mathcal{S} \mathcal{P}}^{+}$is a dendriform coalgebra.
Let us now prove axioms (3). It is enough prove these formulas if $x=P, y=Q$ are nonempty plane forests. Let I be a non trivial ideal of $P Q$ or $P \backslash Q$. We put $I^{\prime}=I \cap P$ and $I^{\prime \prime}=I \cap Q$. As I is non trivial, I^{\prime} and $I^{\prime \prime}$ are not simultaneously empty and not simultaneously total.

Let us first compute $\Delta_{<}(P Q)$. We have to consider non trivial ideals I of $P Q$, such that $g_{P Q} \notin I$. As $g_{P Q}=g_{Q}, I^{\prime \prime} \neq Q$. So five case are possible.

- $I^{\prime}=P, I^{\prime \prime}=\varnothing$: this gives the term $Q \otimes P$.
- $I^{\prime}=P, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $Q_{<}^{\prime} \otimes P Q_{<}^{\prime \prime}$.
- $I^{\prime}=\varnothing, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $P Q_{<}^{\prime} \otimes P Q_{<}^{\prime \prime}$.
- $I^{\prime} \neq \varnothing, P, I^{\prime \prime}=\varnothing$: this gives the term $P^{\prime} Q \otimes P^{\prime \prime}$.
- $I^{\prime} \neq \varnothing, P, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $P^{\prime} Q_{<}^{\prime} \otimes P^{\prime \prime} Q_{<}^{\prime \prime}$.

Let us compute $\Delta_{>}(P Q)$. We have to consider non trivial ideals I of $P Q$, such that $g_{P Q} \in I$. As $g_{P Q}=g_{Q}, I^{\prime \prime} \neq \varnothing$. So five cases are possible:

- $I^{\prime}=\varnothing, I^{\prime \prime}=Q$: this gives the term $P \otimes Q$.
- $I^{\prime}=\varnothing, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $P Q_{>}^{\prime} \otimes Q_{>}^{\prime \prime}$.
- $I^{\prime}=P, I^{\prime \prime} \neq \varnothing, Q$; this gives the term $Q_{>}^{\prime} \otimes P Q_{>}^{\prime \prime}$.
- $I^{\prime} \neq \varnothing, P, I^{\prime \prime}=Q$: this gives the term $P^{\prime} \otimes P^{\prime \prime} Q$.
- $I^{\prime} \neq \varnothing, P, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $P^{\prime} Q_{>}^{\prime} \otimes P^{\prime \prime} Q_{>}^{\prime \prime}$.

We now compute $\Delta_{<}(P \backslash Q)$. We have to consider non trivial ideals I of $P \backslash Q$, such that $g_{P \backslash Q} \notin I$. As $g_{P \nwarrow Q}=g_{Q}, I^{\prime \prime} \neq Q$. Moreover, if $g_{P} \in I$, then, as I is an ideal, $Q \subseteq I$ so $I^{\prime \prime}=Q$: impossible. So $g_{P} \notin I^{\prime}$. So three cases are possible.

- $I^{\prime}=\varnothing, I^{\prime \prime} \neq \varnothing, Q$; this gives the term $P \backslash Q_{<}^{\prime} \otimes P Q_{<}^{\prime \prime}$.
- $I^{\prime} \neq \varnothing, P, I^{\prime \prime}=\varnothing$: this gives the term $P_{<}^{\prime} \backslash Q \otimes P_{\nwarrow}^{\prime \prime}$.
- $I^{\prime} \neq \varnothing, P, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $P_{<}^{\prime} \backslash Q_{<}^{\prime} \otimes P_{<}^{\prime \prime} Q_{<}^{\prime \prime}$.

Finally, let us compute $\Delta_{>}(P \backslash Q)$. We have to consider non trivial ideals I of $P \backslash Q$, such that $g_{P \nwarrow Q} \in I$. As $g_{P \nwarrow Q}=g_{Q}, I^{\prime \prime} \neq \varnothing$. Moreover, if $g_{P} \in I^{\prime}$, as I is an ideal, $I^{\prime \prime}=Q$. As I^{\prime} and $I^{\prime \prime}$ are not simultaneously total, this implies that $I^{\prime} \neq P$. So five cases are possible:

- $I^{\prime}=\varnothing, I^{\prime \prime}=Q$: this gives the term $P \otimes Q$.
- $I^{\prime}=\varnothing, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $P^{\wedge} Q_{>}^{\prime} \otimes Q_{>}^{\prime \prime}$.
- $I^{\prime} \neq \varnothing, P, g_{P} \in I^{\prime}$: this gives the term $P_{>}^{\prime} \otimes P_{>}^{\prime \prime} \backslash Q$.
- $I^{\prime} \neq \varnothing, P, g_{P} \notin I^{\prime}, I^{\prime \prime}=Q$: this gives the term $P_{<}^{\prime} \otimes P_{<}^{\prime \prime \prime} Q$.
- $I^{\prime} \neq \varnothing, P, g_{P} \notin I^{\prime}, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $P_{<}^{\prime} \backslash Q_{>}^{\prime} \otimes P_{<}^{\prime \prime} Q_{>}^{\prime \prime}$.

So $\mathcal{H}_{\mathcal{S} \mathcal{P}}^{+}$is a Dup-Dend bialgebra.
Remark 5.3. 1. As a consequence, the augmentation ideals $\mathcal{H}_{\mathcal{S P}}^{+}, \mathcal{H}_{\mathcal{H O P}}^{+}, \mathcal{H}_{\mathcal{S P P}}^{+}, \mathcal{H}_{\mathcal{O F}}^{+}, \mathcal{H}_{\mathcal{H O F}}^{+}$, $\mathcal{H}_{\mathcal{S W N P}}^{+}$and $\mathcal{H}_{\mathcal{S} \mathcal{P F}}^{+}$are Dup-Dend bialgebras.
2. The rigidity theorem of [6] implies that $\mathcal{H}_{\mathcal{S P}}, \mathcal{H}_{\mathcal{H O P}}, \mathcal{H}_{\mathcal{S P P}}, \mathcal{H}_{\mathcal{O F}}, \mathcal{H}_{\mathcal{H O F}}, \mathcal{H}_{\mathcal{S W N P}}$ and $\mathcal{H}_{\mathcal{S P F}}$ are isomorphic to non commutative Connes-Kreimer Hopf algebras of decorated plane trees, with particular graded sets of decorations. The cardinal of the components of these graded sets can be computed by manipulations of formal series. For example:

n	1	2	3	4	5	6	7	8
$\left\|\mathcal{D}_{\mathcal{S P}}(n)\right\|$	1	1	10	148	3336	112376	5591196	406621996
$\left\|\mathcal{D}_{\mathcal{O F}}(n)\right\|$	1	1	7	66	786	11278	189391	3648711
$\left\|\mathcal{D}_{\mathcal{H O F}}(n)\right\|=\left\|\mathcal{D}_{\mathcal{S P F}}(n)\right\|$	1	0	1	6	39	284	2305	20682
$\left\|\mathcal{D}_{\mathcal{S W N P}}(n)\right\|$	1	0	1	4	17	76	353	1688
$\left\|\mathcal{D}_{\mathcal{S P F}}(n)\right\|$	1	0	0	0	0	0	0	0

We obtain sequences A 122705 for $\mathcal{D}_{\mathcal{O F}}$ and A 122827 for $\mathcal{D}_{\mathcal{H O F}}$ in [19].

5.4 Application to FQSym

Let $\sigma \in \mathfrak{S}_{n}$ be a permutation $(n \geqslant 1)$. We put:

$$
\Delta_{<}(\sigma)=\sum_{k=\sigma^{-1}(n)}^{n-1} \sigma_{1}^{(k)} \otimes \sigma_{2}^{(k)}, \quad \quad \Delta_{>}(\sigma)=\sum_{k=1}^{\sigma^{-1}(n)-1} \sigma_{1}^{(k)} \otimes \sigma_{2}^{(k)}
$$

Remark that $\Delta_{<}+\Delta_{>}=\tilde{\Delta}$.

Example 5.1.

$$
\Delta_{<}((12543))=(123) \otimes(21)+(1243) \otimes(1), \quad \Delta_{>}((12543))=(1) \otimes(1432)+(12) \otimes(321) .
$$

Let σ, τ be two permutations of respective degrees k and l, with $k, l \geqslant 1$. We put:

$$
\sigma \backslash \tau=\sum_{\substack{\zeta \in S h(k, l) \\ \zeta(k+1) \geqslant \zeta\left(\sigma^{-1}(k)\right)}}(\sigma \otimes \tau) \circ \zeta^{-1} .
$$

In other terms, $\sigma \backslash \tau$ is the sum of the shufflings of the word representing σ and the word representing τ shifted by k, such that the letters of τ are all after the greatest letter of σ. In particular, if $\sigma^{-1}(k)=k$, then $\sigma \nwarrow \tau=\sigma \otimes \tau$.

Example 5.2.

$$
\begin{aligned}
& 123 \nwarrow 12=12345, \\
& 132 \nwarrow 12=13245+13425+13452, \\
& 312 \nwarrow 12=31245+31425+34125+34152+34512 .
\end{aligned}
$$

Proposition 5.5. These products and coproducts make $\mathbf{F Q S y m}^{+}$a Dup-Dend bialgebra. Moreover, $\Theta: \mathcal{H}_{\mathcal{S} \mathcal{P}}^{+} \longrightarrow \mathbf{F Q S y m}^{+}$is a morphism of Dup-Dend bialgebras.
Proof. We first prove the compatibility of Θ with \nwarrow. Let P and Q be two nonempty special posets, of respective degrees k and l. We first show:

$$
S_{P \nwarrow Q}=\bigsqcup_{\sigma \in S_{P}, \tau \in S_{Q}} \bigsqcup_{\substack{\zeta \in S h(k, l) \\ \zeta(k+1) \geqslant \zeta\left(\sigma^{-1}(k)\right)}}\left\{(\sigma \otimes \tau) \circ \zeta^{-1}\right\}
$$

\subseteq. Let $\chi \in S_{P \backslash Q}$. There exists a unique $(\sigma, \tau, \zeta) \in \Sigma_{k} \times \Sigma_{l} \times S h(k, l)$, such that $\chi=$ $(\sigma \otimes \tau) \circ \zeta^{-1}$. Let us prove that $\sigma \in S_{P}$. If $i>_{1} j$ in P, then $i>_{1} j$ in $P \nwarrow Q$, so:

$$
\begin{aligned}
\chi^{-1}(i) & \geqslant \chi^{-1}(j), \\
\zeta \circ\left(\sigma^{-1} \otimes \tau^{-1}\right)(i) & \geqslant \zeta \circ\left(\sigma^{-1} \otimes \tau^{-1}\right)(j), \\
\zeta \circ \sigma^{-1}(i) & \geqslant \zeta \circ \sigma^{-1}(j), \\
\sigma^{-1}(i) & \geqslant \sigma^{-1}(j),
\end{aligned}
$$

as ζ is increasing on $\{1, \ldots, k\}$. So $\sigma \in S_{P}$. Similarly, $\tau \in S_{Q}$. Moreover, the element $\tau(1)+k$ belongs to Q in $P \nwarrow Q$, so $\tau(1)+k>_{1} k$ in $P \nwarrow Q$. As a consequence:

$$
\begin{aligned}
\chi^{-1}(\tau(1)+k) & \geqslant \chi^{-1}(k), \\
\zeta \circ\left(\sigma^{-1} \otimes \tau^{-1}\right)(\tau(1)+k) & \geqslant \zeta \circ\left(\sigma^{-1} \otimes \tau^{-1}\right)(k), \\
\zeta(k+1) & \geqslant \zeta \circ \sigma^{-1}(k) .
\end{aligned}
$$

〇. Let $\sigma \in S_{P}, \tau \in S_{Q}$ and $\zeta \in S h(k, l)$, such that $\zeta(k+1) \geqslant \zeta\left(\sigma^{-1}(k)\right)$. We put $\chi=$ $(\sigma \otimes \tau) \circ \zeta^{-1}$. Let i, j be two elements of $P \nwarrow Q$, such that $i>_{1} j$. Three cases can occur:

- i, j are elements of P. Then $\sigma^{-1}(i) \geqslant \sigma^{-1}(j)$, so $\left(\sigma^{-1} \otimes \tau^{-1}\right)(i) \geqslant\left(\sigma^{-1} \otimes \tau^{-1}\right)(j)$, and finally $\sigma^{-1}(i)=\zeta \circ\left(\sigma^{-1} \otimes \tau^{-1}\right)(i) \geqslant \zeta \circ\left(\sigma^{-1} \otimes \tau^{-1}\right)(j)=\sigma^{-1}(j)$.
- i, j are elements of Q. The same proof holds.
- i is an element of Q and j is an element of P. Then $i>_{1} k$ in $P \nwarrow Q$. By definition of $P \nwarrow Q, k>_{1} j$ in P, so by the first point $\sigma^{-1}(k) \geqslant \sigma^{-1}(j)$.
Moreover, $i+1 \geqslant k+1$, so $\sigma^{-1}(i) \geqslant \zeta(k+1)$ as ζ is increasing on $\{k+1, \ldots, k+l\}$. Then:

$$
\sigma^{-1}(i) \geqslant \zeta(k+1) \geqslant \zeta\left(\sigma^{-1}(k)\right)=\sigma^{-1}(k) \geqslant \sigma^{-1}(j)
$$

Finally, for any nonempty special posets P and Q of respective degrees k and l :

$$
\Theta(\mathcal{P} \nwarrow Q)=\sum_{\sigma \in S_{P}, \tau \in S_{Q}} \sum_{\substack{\zeta \in S h(k, l) \\ \zeta(k+1) \geqslant \zeta\left(\sigma^{-1}(k)\right)}}(\sigma \otimes \tau) \circ \zeta^{-1}=\sum_{\sigma \in S_{P}, \tau \in S_{Q}} \sigma \nwarrow \tau=\Theta(P) \nwarrow \Theta(Q)
$$

We now prove the compatibility of Θ and the two coproducts $\Delta_{<}$and $\Delta_{>}$. Let $P \in \mathcal{S P}(n)$. As Θ is a morphism of Hopf algebras, there exists a bijection:

$$
\left\{\begin{array}{rll}
S_{P} \times\{1, \ldots, n-1\} & \longmapsto & \begin{array}{l}
I \text { non trivial ideal of } P
\end{array} \\
(\sigma, k) & \longmapsto & S_{P \backslash I} \times S_{I} \\
& \left.\sigma_{1}^{(k)}, \sigma_{2}^{(k)}\right),
\end{array}\right.
$$

where this pair belongs to the term of the union indexed by $I=\{\sigma(k+1), \ldots, \sigma(n)\}$. So, if $(\sigma, k) \in S_{F} \times\{1, \ldots, n-1\}, k \geqslant \sigma^{-1}(n)$ if, and only if, $n=g_{P}$ is not an element of I. So:
$(\Theta \otimes \Theta) \circ \Delta_{<}(F)=\sum_{g_{P} \notin I} P \backslash I \otimes I \sum_{\substack{\sigma \in S_{P \backslash I} \\ \tau \in S_{I}}} \sigma \otimes \tau=\sum_{\sigma \in S_{P}} \sum_{k=\sigma^{-1}(n)}^{n-1} \sigma_{1}^{(k)} \otimes \sigma_{2}^{(k)}=\sum_{\sigma \in S_{P}} \Delta_{<}(\sigma)=\tilde{\Delta} \circ \Theta(F)$.

Similarly, $(\Theta \otimes \Theta) \circ \Delta_{\succ}=\Delta_{\succ} \circ \Theta$.
As $\Theta_{\mid \mathcal{H}_{\mathcal{H O F}}} \longrightarrow$ FQSym is an isomorphism and $\mathcal{H}_{\mathcal{H} \mathcal{O}}^{+}$is a Dup-Dend bialgebra, FQSym $^{+}$ is also a Dup-Dend bialgebra.

Remark 5.4. 1. It is of course possible to prove directly that FQSym $^{+}$a Dup-Dend bialgebra.
2. A similar structure of Dup-Dend bialgebra structure exists on the Hopf algebra of parking functions PQSym [18], replacing, for a parking function $\sigma, \sigma^{-1}(n)$ by the maximal integer i such that $\sigma(i)$ is maximal.

6 Dendriform structures on special plane forests

The aim of this section is to prove that the restriction of the pairing to $\mathcal{H}_{\mathcal{S P F}}$ is nondegenerate (corollary 6.6). We first recall the classical result:

Lemma 6.1. The restriction of $\langle-,-\rangle$ to $\mathbb{K}[\cdot]$ is nondegenerate if, and only if, the characteristic of \mathbb{K} is zero.

Proof. As the homogeneous components of $\mathbb{K}[\cdot]$ are one-dimensional, this restriction is nondegenerate if, and only if, $\left\langle\cdot{ }^{n}, \cdot{ }^{n}\right\rangle$ is a non-zero element of \mathbb{K} for all $n \in \mathbb{N}$. Moreover, it is not difficult to show that $\left\langle\cdot{ }^{n}, \cdot{ }^{n}\right\rangle=n!$.

6.1 Dendriform coproducts

Notations 6.1. Let P be a plane poset, seen as a special poset. The smallest element for the total order of P will be denoted by s_{P}.

Proposition 6.2. For any nonempty plane poset P, we put:

$$
\Delta_{<}^{\prime}(P)=\sum_{\substack{\text { I non trivial ideal of } P \\ s_{P} \notin I}} P \backslash I \otimes I, \quad \Delta_{>}^{\prime}(P)=\sum_{\substack{\text { I non trivial ideal of } P \\ s_{P} \in I}} P \backslash I \otimes I .
$$

Then $\left(\mathcal{H}_{\mathcal{S P P}}^{+}, \Delta_{<}^{\prime}, \Delta_{>}^{\prime}\right)$ is a dendriform coalgebra. Moreover, for all $x, y \in \mathcal{H}_{\mathcal{S P P}}^{+}$:

$$
\begin{align*}
& \Delta_{<}^{\prime}(x y)=x \otimes y+x_{<}^{\prime} y \otimes y_{<}^{\prime \prime}+x_{<}^{\prime} \otimes x_{<}^{\prime \prime} y+x y^{\prime} \otimes y^{\prime \prime}+x_{<}^{\prime} y^{\prime} \otimes x_{<}^{\prime \prime} y^{\prime \prime}, \tag{4}\\
& \Delta_{>}^{\prime}(x y)=y \otimes x+x_{>}^{\prime} y \otimes x_{>}^{\prime \prime}+x_{>}^{\prime} \otimes x_{>}^{\prime \prime} y+y^{\prime} \otimes x y^{\prime \prime}+x_{>}^{\prime} y^{\prime} \otimes x_{>}^{\prime \prime} y^{\prime \prime} . \tag{5}
\end{align*}
$$

Proof. Let us first prove the (2) for all $x \in \mathcal{H}_{\mathcal{S} \mathcal{P} \mathcal{P}}^{+}$. It is enough to prove this if $x=P$ is a nonempty special poset. We put, as $\tilde{\Delta}$ is coassociative, $(\tilde{\Delta} \otimes I d) \circ \tilde{\Delta}(P)=(I d \otimes \tilde{\Delta}) \circ \tilde{\Delta}(P)=$ $\sum P^{(1)} \otimes P^{(2)} \otimes P^{(3)}$, where $P^{(1)}, P^{(2)}, P^{(3)}$ are subposets of P. Then:

So $\mathcal{H}_{\mathcal{S} \mathcal{P}}^{+}$is a dendriform coalgebra.
It is enough prove formulas (4) and (5) if $x=P, y=Q$ are nonempty plane forests. Let I be a non trivial ideal of $P Q$. We put $I^{\prime}=I \cap P$ and $I^{\prime \prime}=I \cap Q$. As I is non trivial, I^{\prime} and $I^{\prime \prime}$ are not simultaneously empty and not simultaneously total.

Let us first compute $\Delta_{<}^{\prime}(P Q)$. We have to consider non trivial ideals I of $P Q$, such that $s_{P Q} \notin I$. As $s_{P Q}=s_{P}, I^{\prime} \neq P$. So five case are possible.

- $I^{\prime}=\varnothing, I^{\prime \prime}=Q$: this gives the term $P \otimes Q$.
- $I^{\prime}=\varnothing, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $P Q^{\prime} \otimes Q^{\prime \prime}$.
- $I^{\prime} \neq \varnothing, P, I^{\prime \prime}=\varnothing$: this gives the term $P_{<}^{\prime} Q \otimes P_{<}^{\prime \prime}$.
- $I^{\prime} \neq \varnothing, P, I^{\prime \prime}=Q$: this gives the term $P_{<}^{\prime} \otimes P_{<}^{\prime \prime \prime} Q$.
- $I^{\prime} \neq \varnothing, P, I^{\prime \prime} \neq \varnothing, Q$: this gives the term $P_{<}^{\prime} Q^{\prime} \otimes P_{<}^{\prime \prime} Q^{\prime \prime}$.

The proof of formula (5) is similar.
Remark 6.1. 1. In other words, $\left(\mathcal{H}_{\mathcal{S} P \mathcal{P}}^{+},{ }^{o p},\left(\Delta_{>}^{\prime}\right)^{o p},\left(\Delta_{<}^{\prime}\right)^{o p}\right)$ is a codendriform bialgebra in the sense of [3].
2. $\mathcal{H}_{\mathcal{S P F}}^{+}$is clearly stable under both coproducts $\Delta_{<}^{\prime}$ et $\Delta_{>}^{\prime}$, so $\left(\mathcal{H}_{\mathcal{S P F}}^{+},{ }^{o p},\left(\Delta_{>}^{\prime}\right)^{o p},\left(\Delta_{<}^{\prime}\right)^{o p}\right)$ is a codendriform subcoalgebra of $\mathcal{H}_{\mathcal{S} \mathcal{P} \mathcal{P}}^{+}$.

6.2 Dendriform products on special plane forests

From [4], $\mathcal{H}_{\mathcal{S} \mathcal{P F}}^{+}$is the free dendriform algebra generated by .. Moreover, for all nonempty plane forest $F, .<F=B^{+}(F)$, the rooted tree obtained by grafting the roots of F on a common root. It is also proved that $\left(\mathcal{H}_{\mathcal{S P F}}^{+},<,>, \tilde{\Delta}^{o p}\right)$ is a dendriform Hopf algebra [15], so, for all $x, y \in \mathcal{H}_{\mathcal{S P F}}^{+}$:

$$
\begin{align*}
& \tilde{\Delta}(x<y)=x \otimes y+x<y^{\prime} \otimes y^{\prime \prime}+x^{\prime} \otimes x^{\prime \prime} y+x^{\prime}<y \otimes x^{\prime \prime}+x^{\prime}<y^{\prime} \otimes x^{\prime \prime} y^{\prime \prime}, \tag{6}\\
& \tilde{\Delta}(x>y)=y \otimes x+x>y^{\prime} \otimes y^{\prime \prime}+y^{\prime} \otimes x y^{\prime \prime}+x^{\prime}>y \otimes x^{\prime \prime}+x^{\prime}>y^{\prime} \otimes x^{\prime \prime} y^{\prime \prime} . \tag{7}
\end{align*}
$$

Proposition 6.3. For all $x, y \in \mathcal{H}_{\mathcal{S P F}}^{+}$:

$$
\begin{align*}
& \Delta_{<}^{\prime}(x<y)=x \otimes y+x<y^{\prime} \otimes y^{\prime \prime}+x_{<}^{\prime} \otimes x_{<}^{\prime \prime} y+x_{<}^{\prime}<y \otimes x_{<}^{\prime \prime}+x_{<}^{\prime}<y^{\prime} \otimes x_{<}^{\prime \prime} y^{\prime \prime}, \tag{8}\\
& \Delta_{>}^{\prime}(x<y)=x_{>}^{\prime} \otimes x_{>}^{\prime \prime} y+x_{>}^{\prime}<y \otimes x_{>}^{\prime \prime}+x_{>}^{\prime}<y^{\prime} \otimes x_{>}^{\prime \prime} y^{\prime \prime}, \tag{9}\\
& \Delta_{<}^{\prime}(x>y)=x_{<}^{\prime}>y \otimes x_{<}^{\prime \prime}+x>y^{\prime} \otimes y^{\prime \prime}+x_{<}^{\prime}>y^{\prime} \otimes x_{<}^{\prime \prime} y^{\prime \prime}, \tag{10}\\
& \Delta_{>}^{\prime}(x>y)=y \otimes x+y^{\prime} \otimes x y^{\prime \prime}+x_{>}^{\prime}>y \otimes x_{>}^{\prime \prime}+x_{>}^{\prime}>y^{\prime} \otimes x_{>}^{\prime \prime} y^{\prime \prime} . \tag{11}
\end{align*}
$$

Proof. For fixed x, y, note that (8) $+(10)=(4),(9)+(11)=(5),(8)+(9)=(6)$, and (10) $+(11)=$ (77). As a consequence, for fixed x, y, (8), (9), (10) and (11) are equivalent.

We now prove (8)-(11) for x, y two non empty plane forest, by induction on the degree n of x. If $n=1$, then $x=\boldsymbol{.}$ Then:

$$
\Delta_{<}^{\prime}(x<y)=\cdot \otimes y+B^{+}\left(y^{\prime}\right) \otimes y^{\prime \prime}=x \otimes y+x<y^{\prime} \otimes y^{\prime \prime} .
$$

So (8) (hence, (9)-(111) holds for $x=\bullet$, as $\Delta_{<}^{\prime}(x)=0$. Let us assume the result at all rank $<n$. Two subcases occur.

- The plane forest x is a tree. Then there exists x_{1} of degree $n-1$, such that $x=B^{+}\left(x_{1}\right)=$ $x<x_{1}$. So $x<y=\left(\cdot<x_{1}\right)<y=\cdot<\left(x_{1} y\right)$. So:

$$
\begin{aligned}
& \Delta_{<}^{\prime}(x<y)=\Delta_{<}^{\prime}\left(\cdot<\left(x_{1} y\right)\right) \\
& =\cdot \otimes\left(x_{1} y\right)+B^{+}\left(\left(x_{1} y\right)^{\prime}\right) \otimes\left(x_{1} y\right)^{\prime \prime} \\
& =\boldsymbol{\bullet} \otimes\left(x_{1} y\right)+\bullet<x_{1} \otimes y+\cdot<y \otimes x_{1}+\cdot<\left(x_{1}^{\prime} y\right) \otimes x_{1}^{\prime \prime}+\cdot<x_{1}^{\prime} \otimes x_{1}^{\prime \prime} y \\
& +\cdot<\left(x_{1} y^{\prime}\right) \otimes y^{\prime \prime}+\cdot<y^{\prime} \otimes x_{1} y^{\prime \prime}+\cdot<\left(x_{1}^{\prime} y^{\prime}\right) \otimes x_{1}^{\prime \prime} y^{\prime \prime} \\
& =\left(\cdot<x_{1} \otimes y\right)+\left(\cdot<\left(x_{1} y^{\prime}\right) \otimes y^{\prime \prime}\right)+\left(\bullet \otimes\left(x_{1} y\right)+\bullet<x_{1}^{\prime} \otimes x_{1}^{\prime \prime} y\right) \\
& +\left(\cdot<y \otimes x_{1}+\cdot<\left(x_{1}^{\prime} y\right) \otimes x_{1}^{\prime \prime}\right)+\left(\cdot<y^{\prime} \otimes x_{1} y^{\prime \prime}+\cdot<\left(x_{1}^{\prime} y^{\prime}\right) \otimes x_{1}^{\prime \prime} y^{\prime \prime}\right) \\
& =x \otimes y+x<y^{\prime} \otimes y^{\prime \prime}+x_{<}^{\prime} \otimes x_{1}^{\prime \prime} y+x_{<}^{\prime}<y \otimes x_{<}^{\prime \prime}+x_{<}^{\prime}<y^{\prime} \otimes x_{<}^{\prime \prime} y^{\prime \prime} .
\end{aligned}
$$

- The plane forest x is not a tree. Then it can be written as $x=x_{1} x_{2}$, such that the induction hypothesis holds for x_{1} and x_{2}. Hence:

$$
x<y=\left(x_{1}<x_{2}\right)<y+\left(x_{1}>x_{2}\right)<y=x_{1}<\left(x_{2} y\right)+x_{1}>\left(x_{2}<y\right) .
$$

Applying (8) and (10) for x_{1} (induction hypothesis), then (4) for x_{2}, then arranging the terms, gives (8) for x.

So the induction hypothesis holds for x in both cases.
Remark 6.2. In other words, $\left(\mathcal{H}_{\mathcal{S P F}}^{+},>^{o p},<^{o p},\left(\Delta_{>}^{\prime}\right)^{o p},\left(\Delta_{<}^{\prime}\right)^{o p}\right)$ is a bidendriform bialgebra in the sense of [5]. By the bidendriform rigidity theorem, it is a free dendriform algebra, and a cofree dendriform coalgebra. As a direct consequence:
Lemma 6.4. As a dendriform algebra, $\mathcal{H}_{\mathcal{S P F}}^{+}$is freely generated by •. Moreover, the space $\operatorname{Prim}_{\text {tot }}\left(\mathcal{H}_{\mathcal{S P F}}^{+}\right)=\operatorname{Ker}\left(\Delta_{<}^{\prime}\right) \cap \operatorname{Ker}\left(\Delta_{\succ}^{\prime}\right)$ is one-dimensional, generated by \cdot.
Lemma 6.5. For all $x, y, z \in \mathcal{H}_{\mathcal{S P F}}^{+}$:

$$
\left\langle x\langle y, z\rangle=\left\langle x \otimes y, \Delta_{<}^{\prime}(y)\right\rangle \text { and }\langle x\rangle y, z\right\rangle=\left\langle x \otimes y, \Delta_{>}^{\prime}(y)\right\rangle .
$$

Proof. As $\langle-,-\rangle$ is a Hopf pairing, it is enough to prove one of these two formulas. Moreover, it is enough to prove it for x, y, z three non empty plane forests. We prove the first one, by induction on the degree n of x. If $n=1$, then $x=\cdot$ and $x<y=B^{+}(y)$. Let $\sigma \in S\left(B^{+}(y), z\right)$. As 1 is the root of $B^{+}(y)$, for all $j, 1 \leqslant_{h} j$ in $B^{+}(y)$. As $\sigma \in S\left(B^{+}(y), z\right), \sigma(1) \leqslant \sigma(i)$ for all i, so $\sigma(1)=1$. Let us denote by z_{1} the plane forest obtained by deleting the vertex 1 of z; then $S\left(B^{+}(y), z\right)$ is in bijection by $S\left(y, z_{1}\right)$. Moreover, by definition of $\Delta_{<}^{\prime}$:

$$
\Delta_{<}^{\prime}(z)=\cdot \otimes z_{1}+\text { terms } z^{\prime} \otimes z^{\prime \prime}, z^{\prime} \text { homogeneous of degree } \geqslant 2
$$

So, by homogeneity of the pairing:

$$
\left\langle x \otimes y, \Delta_{<}^{\prime}(z)\right\rangle=\langle\bullet, \bullet\rangle\left\langle y, z_{1}\right\rangle+0=\left|S\left(y, z_{1}\right)\right|=\left|S\left(B^{+}(y), z\right)\right|=\langle x\langle y, z\rangle .
$$

Let us assume the result at all rank $<n$. Two subcases occur.

- The plane forest x is a tree. Let us put $x=B^{+}\left(x_{1}\right)=\bullet<x_{1}$. Using the result at rank 1:

$$
\begin{aligned}
\langle x<y, z\rangle & =\left\langle\cdot\left\langle\left(x_{1} y\right), z\right\rangle\right. \\
& =\left\langle\bullet \otimes x_{1} y, \Delta_{<}^{\prime}(z)\right\rangle \\
& =\left\langle\bullet \otimes x_{1} \otimes y,(I d \otimes \tilde{\Delta}) \circ \Delta_{<}^{\prime}(z)\right\rangle \\
& =\left\langle\bullet \otimes x_{1} \otimes y,\left(\Delta_{<}^{\prime} \otimes I d\right) \circ \Delta_{<}^{\prime}(z)\right\rangle \\
& =\left\langle\cdot\left\langle x_{1}, \Delta_{<}^{\prime}(z)\right\rangle\right.
\end{aligned}
$$

- The plane forest x is not a tree. Then it can be written as $x=x_{1} x_{2}$, such that the induction hypothesis holds for x_{1} and x_{2}. Hence:

$$
\begin{aligned}
\left\langle\left(x_{1} x_{2}\right)<y, z\right\rangle & =\left\langle x_{1}<\left(x_{2} y\right), z\right\rangle+\left\langle x_{1}\right\rangle\left(x_{2}\langle y), z\right\rangle \\
& =\left\langle x_{1} \otimes x_{2} \otimes y,(I d \otimes \tilde{\Delta}) \circ \Delta_{<}^{\prime}(z)\right\rangle+\left\langle x_{1} \otimes x_{2} \otimes y,\left(I d \otimes \Delta_{<}^{\prime}\right) \circ \Delta_{>}^{\prime}(z)\right\rangle \\
& =\left\langle x_{1} \otimes x_{2} \otimes y,\left(\Delta_{<}^{\prime} \otimes I d\right) \circ \Delta_{<}^{\prime}(z)\right\rangle+\left\langle x_{1} \otimes x_{2} \otimes y,\left(\Delta_{>}^{\prime} \otimes I d\right) \circ \Delta_{<}^{\prime}(z)\right\rangle \\
& =\left\langle x_{1}<x_{2} \otimes y, \Delta_{<}^{\prime}(z)\right\rangle+\left\langle x_{1}>x_{2} \otimes y, \Delta_{<}^{\prime}(z)\right\rangle \\
& =\left\langle x_{1} x_{2} \otimes y, \Delta_{<}^{\prime}(z)\right\rangle .
\end{aligned}
$$

So the induction hypothesis holds for x in both cases.
Corollary 6.6. The restriction of the pairing $\langle-,-\rangle$ to $\mathcal{H}_{\mathcal{S P F}}$ is nondegenerate.
Proof. Let us assume it is degenerate. By lemma 6.5] its kernel I is a non trivial dendriform biideal of $\mathcal{H}_{\mathcal{S P F}}^{+}$. Any non-zero element of I of minimal degree is then in $\operatorname{Prim}_{\text {tot }}\left(\mathcal{H}_{\mathcal{S} \mathcal{P F}}^{+}\right)$, as I is a dendriform coideal. By lemma 6.4 we obtain that $\bullet \in I$: absurd, as $\langle\bullet, \bullet\rangle=1 \neq 0$.

7 Isometries between plane and special plane posets

All the pairs of isomorphic Hopf algebras $\mathcal{H}_{\mathcal{P P}}$ and $\mathcal{H}_{\mathcal{S P P}}, \mathcal{H}_{\mathcal{W N P}}$ and $\mathcal{H}_{\mathcal{S W N P}}, \mathcal{H}_{\mathcal{P F}}$ and $\mathcal{H}_{\mathcal{S P F}}$ have Hopf pairings. The isomorphism between these Hopf algebras are not isometries: for example, $\langle\mathfrak{l}, \mathfrak{l}\rangle=0$ whereas $\left\langle\mathfrak{l}_{1}^{2}, \mathfrak{l}_{1}^{2}\right\rangle=1$. Our aim in this section is to answer the question if there is an isometric Hopf isomorphism between them. The answer is immediately negative for $\mathcal{H}_{\mathcal{W N P}}$ and $\mathcal{H}_{\mathcal{S W N P}}$, as the first one is nondegenerate whereas the second is degenerate.

7.1 Isometric Hopf isomorphisms between free Hopf algebras

Proposition 7.1. Let us assume that the characteristic of the base field is not 2. Let H and H^{\prime} be two graded, connected Hopf algebras, both with a homogeneous, symmetric, nondegenerate Hopf pairing, and both free. The following assertions are equivalent:

1. There exists a homogeneous, isometric Hopf algebra isomorphism between H and H^{\prime}.
2. For all $n \geqslant 0$, the spaces H_{n} and H_{n}^{\prime} are isometric.

Proof. $1 \Longrightarrow 2$. Obvious.
$2 \Longrightarrow 1$. Let us fix for all $n \in \mathbb{N}^{*}$ a complement V_{n} of $\left(H^{+2}\right)_{n}$ in H_{n}, where H^{+}is the augmentation ideal of H. As H is free, the direct sum V of the V_{n} 's freely generates H. Moreover, any subspace of V generates a free subalgebra of H. In particular, the subalgebra $H_{\langle n\rangle}$ of H generated by $V_{1} \oplus \ldots \oplus V_{n}$ is free. Moreover, it contains $H_{0} \oplus \ldots \oplus H_{n}$, so for all $v \in V_{0} \oplus \ldots \oplus V_{n}$, $\Delta(v) \in H_{\langle n\rangle} \otimes H_{\langle n\rangle}$. So $H_{\langle n\rangle}$ is a Hopf subalgebra of H. Finally, it is the algebra generated by $H_{0} \oplus \ldots \oplus H_{n}$, so does not depend of the choice of V. We similarly define $H_{\langle n\rangle}^{\prime}$ for all n.

We are going to construct for all $n \geqslant 0$ a Hopf algebra isomorphism $\phi_{n}: H_{\langle n\rangle} \longrightarrow H_{\langle n\rangle}^{\prime}$ such that:

1. ϕ_{n} is homogeneous of degree 0 .
2. For all $x, y \in H_{\langle n\rangle},\left\langle\phi_{n}(x), \phi_{n}(y)\right\rangle=\langle x, y\rangle$.
3. ϕ_{n} restricted to $H_{\langle n-1\rangle}$ is ϕ_{n-1} if $n \geqslant 1$.
4. For all $i \leqslant n, H_{i}^{\prime}=\left(H^{\prime+2}\right)_{i} \oplus \phi_{n}\left(V_{i}\right)$.

As $H_{\langle 0\rangle}=H_{\langle 0\rangle}^{\prime}=\mathbb{K}$, we define ϕ_{0} by $\phi_{0}(1)=1$. Let us assume that ϕ_{n-1} is defined. Then $H_{n}=\left(H^{+2}\right)_{n} \oplus V_{n}=\left(H_{\langle n-1\rangle}\right)_{n} \oplus V_{n}$. By the induction hypothesis, ϕ_{n-1} induces an isometry between $\left(H_{\langle n-1\rangle}\right)_{n}$ and $\left(H_{\langle n-1\rangle}^{\prime}\right)_{n}=\left(H^{\prime+2}\right)_{n}$. As H_{n} and H_{n}^{\prime} are nondegenerate and isometric, by Witt extension theorem, it can be extended into an isometry $\tilde{\phi}_{n-1}: H_{n} \longrightarrow H_{n}^{\prime}$. As $H_{\langle n\rangle}$ is freely generated by $V_{0} \oplus \ldots \oplus V_{n}$, we can define an algebra morphism $\phi_{n}: H_{\langle n\rangle} \longrightarrow H_{\langle n\rangle}^{\prime}$ by $\phi_{n}(v)=\phi_{n-1}(v)$ if $v \in V_{i}, i \leqslant n-1$ and $\phi_{n}(v)=\tilde{\phi}_{n-1}(v)$ if $v \in V_{n}$. This algebra morphism immediately satisfies the points 3 and 4 of the induction, by construction of $\tilde{\phi}_{n-1}$, and also extends $\tilde{\phi}_{n-1}$. Moreover, by the fourth point, $\phi_{n}\left(V_{1} \oplus \ldots \oplus V_{n}\right)$ freely generated $H_{\langle n\rangle}^{\prime}$, so ϕ_{n} is an algebra isomorphism from $H_{\langle n\rangle}$ to $H_{\langle n\rangle}^{\prime}$.

Let us prove that ϕ_{n} is a Hopf algebra isomorphism. Let $x \in H_{k}, k \leqslant n$. For all $y \in H_{i}$, $z \in H_{j}, i+j=k$, as ϕ_{n} extends both ϕ_{n-1} and $\tilde{\phi}_{n-1}$, its restriction in all degree $\leqslant n$ is an isometry, so:

$$
\begin{aligned}
\left\langle\Delta \circ \phi_{n}(x), \phi_{n}(y) \otimes \phi_{n}(z)\right\rangle & =\left\langle\phi_{n}(x), \phi_{n}(y) \phi_{n}(z)\right\rangle \\
& =\left\langle\phi_{n}(x), \phi_{n}(y z)\right\rangle \\
& =\langle x, y z\rangle \\
& =\langle\Delta(x), y \otimes z\rangle \\
& =\left\langle\left(\phi_{n} \otimes \phi_{n}\right) \circ \Delta(x), \phi_{n}(y) \otimes \phi_{n}(z)\right\rangle .
\end{aligned}
$$

As ϕ_{n} is surjective in degree $\leqslant n$, and by homogeneity of the pairing of H^{\prime}, we deduce that $\left(\phi_{n} \otimes \phi_{n}\right) \circ \Delta(x)-\Delta \circ \phi_{n}(x) \in\left(H^{\prime} \otimes H^{\prime}\right)^{\perp}=(0)$, as the pairing of H^{\prime} is nondegenerate. As $H_{1} \oplus \ldots \oplus H_{n}$ generates $H_{\langle n\rangle}, \phi_{n}$ is a Hopf algebra morphism.

Finally, let us prove the second point of the induction. By homogeneity of the pairings of H and H^{\prime}, it is enough to prove it for x, y homogeneous of the same degree k. We proceed by induction on k. If $k \leqslant n$, we already noticed that ϕ_{n} is an isometry in degree k. Let us assume that the result is true at all rank $<k$, with $k>n$. As $\left(H_{\langle n\rangle}\right)_{k}=\left(\left(H_{\langle n\rangle}\right)^{+2}\right)_{k}$, we can assume that $x=x_{1} x_{2}$, with x_{1}, x_{2} homogeneous of degree $<k$. Then, using the induction hypothesis on x_{1} and x_{2} :

$$
\begin{aligned}
\left\langle\phi_{n}(x), \phi_{n}(y)\right\rangle & =\left\langle\phi_{n}\left(x_{1}\right) \phi_{n}\left(x_{2}\right), \phi_{n}(y)\right\rangle \\
& =\left\langle\phi_{n}\left(x_{1}\right) \otimes \phi_{n}\left(x_{2}\right), \Delta \circ \phi_{n}(y)\right\rangle \\
& =\left\langle\phi_{n}\left(x_{1}\right) \otimes \phi_{n}\left(x_{2}\right),\left(\phi_{n} \otimes \phi_{n}\right) \circ \Delta(y)\right\rangle \\
& =\left\langle x_{1} \otimes x_{2}, \Delta(y)\right\rangle \\
& =\langle x, y\rangle .
\end{aligned}
$$

Conclusion. We define $\phi: H \longrightarrow H^{\prime}$ by $\phi(x)=\phi_{n}(x)$ for all $x \in H_{\langle n\rangle}$. By the third point of the induction, this does not depend of the choice of n. Then ϕ is clearly an isometric, homogeneous Hopf algebra isomorphism.

We can improve this result, in the following sense:
Proposition 7.2. Let us assume that the characteristic of the base field is not 2. Let H and H^{\prime} be two graded, connected Hopf algebras, both with a homogeneous, symmetric, nondegenerate Hopf pairing, and both free. Let V and V^{\prime} be subspaces of respectively H and H^{\prime}, W and W^{\prime} graded subspaces of respectively V and V^{\prime} generating Hopf subalgebras h and h^{\prime} of H and H^{\prime}. We assume that h is a non isotropic subspace of H. The following assertions are equivalent:

1. There exists a homogeneous, isometric Hopf algebra isomorphism ϕ between H and H^{\prime}, such that $\phi(h)=h^{\prime}$.
2. For all $n \geqslant 0$, the spaces H_{n} and H_{n}^{\prime} are isometric and the spaces h_{n} and h_{n}^{\prime} are isometric.

Proof. $1 \Longrightarrow 2$. Obvious.
$2 \Longrightarrow 1$. For all $n \geqslant 1$, let us choose a complement U_{n} of W_{n} in V_{n}.
By proposition 7.1, there exists an isometric, homogeneous Hopf algebra isomorphism ψ : $h \longrightarrow h^{\prime}$. Let us construct inductively a Hopf algebra isomorphism $\phi_{n}: H_{\langle n\rangle} \longrightarrow H_{\langle n\rangle}^{\prime}$, isometric, such that:

1. ϕ_{n} is homogeneous of degree 0 .
2. For all $x, y \in H_{\langle n\rangle},\left\langle\phi_{n}(x), \phi_{n}(y)\right\rangle=\langle x, y\rangle$.
3. ϕ_{n} restricted to $H_{\langle n-1\rangle}$ is ϕ_{n-1} if $n \geqslant 1$.
4. $\phi_{n}(x)=\psi(x)$ for all $x \in h_{\langle n\rangle}$.
5. For all $i \leqslant n, H_{i}^{\prime}=\left(H^{\prime+2}\right)_{i} \oplus \psi\left(W_{i}\right) \oplus \phi_{n}\left(U_{i}\right)$.

As $H_{\langle 0\rangle}=H_{\langle 0\rangle}^{\prime}=K$, we define ϕ_{0} by $\phi_{0}(1)=1$. Let us assume that ϕ_{n-1} is defined. Then $H_{n}=\left(H^{+2}\right)_{n} \oplus W_{n} \oplus U_{n}=\left(H_{\langle n-1\rangle}\right)_{n} \oplus W_{n} \oplus U_{n}$. By the induction hypothesis, ϕ_{n-1} and ψ induces an isometry between $\left(H_{\langle n-1\rangle}\right)_{n} \oplus W_{n}$ and $\left(H_{\langle n-1\rangle}^{\prime}\right)_{n} \oplus W_{n}^{\prime}=\left(H^{\prime+2}\right)_{n} \oplus W_{n}^{\prime}$. As H_{n} and H_{n}^{\prime} are nondegenerate and isometric, by the extension theorem of Witt, it can be extended into an isometry $\tilde{\phi}_{n-1}: H_{n} \longrightarrow H_{n}^{\prime}$. As $H_{\langle n\rangle n}$ is freely generated by $V_{0} \oplus \ldots \oplus V_{n}$, we can define an algebra morphism $\phi_{n}: H_{\langle n\rangle} \longrightarrow H_{\langle n\rangle}^{\prime}$ by $\phi_{n}(v)=\phi_{n-1}(v)$ if $v \in V_{i}, i \leqslant n-1$ and $\phi_{n}(v)=\tilde{\phi}_{n-1}(v)$ if $v \in V_{n}$. This morphisms clearly satisfy the fourth point of the definition. The end of the proof is similar to the proof of proposition 7.1.

We shall apply these propositions with $H=\mathcal{H}_{\mathcal{P P}}, H^{\prime}=\mathcal{H}_{\mathcal{S P P}}, V$ being the subspace generated by plane posets and V^{\prime} being the subspace generated by special plane posets, W the subspace generated by plane trees and W^{\prime} the subspace generated by special plane trees. We obtain the following results:

Lemma 7.3. 1. The following assertions are equivalent:
(a) There exists a homogeneous, isometric Hopf algebra isomorphism between $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ and $\mathcal{H}_{\mathcal{S P P}}$.
(b) For all $n \geqslant 1$, $\left(\mathcal{H}_{\mathcal{P P}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{n}$ are isometric.
2. The following assertions are equivalent:
(a) There exists a homogeneous, isometric Hopf algebra isomorphism ϕ between $\mathcal{H}_{\mathcal{P F}}$ and $\mathcal{H}_{\text {SPF }}$.
(b) For all $n \geqslant 1$, $\left(\mathcal{H}_{\mathcal{P F}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{S P F}}\right)_{n}$ are isometric.
3. The following assertions are equivalent:
(a) There exists a homogeneous, isometric Hopf algebra isomorphism ϕ between $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ and $\mathcal{H}_{\mathcal{S P P}}$, such that $\phi\left(\mathcal{H}_{\mathcal{S P F}}\right)=\mathcal{H}_{\mathcal{S P F}}$.
(b) For all $n \geqslant 1,\left(\mathcal{H}_{\mathcal{P P}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{n},\left(\mathcal{H}_{\mathcal{P F}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{S P F}}\right)_{n}$ are isometric.

In particular, if \mathbb{K} is an algebraically closed field of characteristic $\neq 2$, two nondegenerate spaces are isometric, if, and only if, they have the same dimension. Hence, conditions (b) of Lemma 7.3 are all satisfied.

Proposition 7.4. If \mathbb{K} is an algebraically closed field of characteristic $\neq 2$, there exists a homogeneous, isometric Hopf algebra isomorphism ϕ between $\mathcal{H}_{\mathcal{P P}}$ and $\mathcal{H}_{\mathcal{S P P}}$, such that $\phi\left(\mathcal{H}_{\mathcal{S P F}}\right)=$ $\mathcal{H}_{\mathcal{S P F}}$.

7.2 Existence of an isometry between plane and special plane posets

Let us precise the condition on the field for $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ and $\mathcal{H}_{\mathcal{S P} \mathcal{P}}$ to be isometric:
Theorem 7.5. The following assertions are equivalent:

1. There exists a homogeneous, isometric Hopf algebra isomorphism between $\mathcal{H}_{\mathcal{P P}}$ and $\mathcal{H}_{\mathcal{S P P}}$.
2. The characteristic of the base field \mathbb{K} is not 2 and there exists $i \in \mathbb{K}$ such that $i^{2}=-1$.

Proof. By lemma 7.3, the question is essentially to know if $\left(\mathcal{H}_{\mathcal{P P}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{n}$ are isometric. More precisely, we are going to prove that the following assertions are equivalent:

1. For all $n \geqslant 1,\left(\mathcal{H}_{\mathcal{P P}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{n}$ are isometric.
2. For all $n \geqslant 1,\left(\mathcal{H}_{\mathcal{P P}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{n}$ have orthonormal bases.
3. The characteristic of the base field \mathbb{K} is not 2 and there exists $i \in \mathbb{K}$ such that $i^{2}=-1$.

This will immediately imply theorem 7.5. Obviously, $2 \Longrightarrow 1$, as $\left(\mathcal{H}_{\mathcal{P P}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{n}$ have the same dimension.
$1 \Longrightarrow 3$. We choose $n=2$. In the basis $(!, \ldots)$ of $\left(\mathcal{H}_{\mathcal{P P}}\right)_{2}=\left(\mathcal{H}_{\mathcal{W N P}}\right)_{2}$, the matrix of the pairing is $\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right)$. In the basis $\left(\boldsymbol{\bullet}_{1}^{2}, \bullet_{\bullet} \cdot 2\right)$ of $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{2}=\left(\mathcal{H}_{\mathcal{S W N P}}\right)_{2}$, the matrix of the pairing is $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$. Considering the determinants of both matrices, we obtain that 1 and -1 differ
multiplicatively from a square of \mathbb{K}, so -1 is a square of \mathbb{K}. For all $x=a!+b \boldsymbol{\quad .} \in\left(\mathcal{H}_{\mathcal{P} \mathcal{P}}\right)_{2}$, $\langle x, x\rangle=2\left(a b+b^{2}\right)$. As $\left(\mathcal{H}_{\mathcal{P P}}\right)_{2}$ is isometric with $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{2}$, there exists $x \in\left(\mathcal{H}_{\mathcal{P P}}\right)_{2}$, such that $\langle x, x\rangle=1$. As a consequence, $\operatorname{char}(\mathbb{K}) \neq 2$.
$3 \Longrightarrow 2$. As $H_{\mathcal{S P P}}$ is isometric to FQSym, it is equivalent to prove that both $\mathcal{H}_{\mathcal{P P}}$ and FQSym have an orthonormal basis. Let us fix $V=\left(H_{\mathcal{S P P}}\right)_{n}$ or $(\mathbf{F Q S y m})_{n}$ for a given n. Then V has a basis $\left(e_{i}\right)_{i \in I}$, with the following properties: there exists a partial order \ll on I and an involution $\iota: I \longrightarrow I$, such that for any $i, j \in I$,

$$
\left\langle e_{i}, e_{j}\right\rangle \neq 0 \Longrightarrow i \ll \iota(j) .
$$

Moreover, $\left\langle e_{i}, e_{\iota(i)}\right\rangle=1$. For FQSym, any partial order \ll on permutations is suitable, with $\iota(\sigma)=\sigma^{-1}$. For $H_{\mathcal{S P P}}$, this is Lemma 35 of [8]. Let us put $I^{\prime}=\{i \in I, \iota(i)=i\}$ and $I^{\prime \prime}=I \backslash I^{\prime}$.

- Let $i, j \in I^{\prime}$. If $\left\langle e_{i}, e_{j}\right\rangle \neq 0$, then $i \ll \iota(j)=j$; by symmetry, $\left\langle e_{j}, e_{i}\right\rangle \neq 0$, so $j \ll \iota(i)=i$. As \ll is an order, $i=j$.
- Let $i \in I^{\prime}$ and $j \in I^{\prime \prime}$. If $\left\langle e_{i}, e_{j}\right\rangle \neq 0$, then $i \ll \iota(j)$. By symmetry, $j<\iota(i)=i$, so $j \ll i \ll \iota(j)$.
Hence, considering a convenient total extension of \ll, in the basis $\left(e_{i}\right)_{i \in I}$ the matrix of the pairing has the form

$$
M=\left(\begin{array}{ccc}
* & * & A \\
* & I_{l} & 0 \\
A^{T} & 0 & 0
\end{array}\right),
$$

where A is antidiagonal, that is to say has the form:

$$
A=\left(\begin{array}{cccc}
* & \ldots & * & 1 \\
\vdots & . & . & . \\
& 0 \\
* & . & . & . \\
1 & 0 & \ldots & \vdots
\end{array}\right) .
$$

First step. Let us assume that $l=0$, that is to say M is antidiagonal. Let us prove that there exists a basis \mathcal{B} of V such that the matrix of the pairing in this basis is

$$
J_{p}=\left(\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
\vdots & . & . & . \\
0 \\
0 & . & . & . \\
1 & 0 & \ldots & \vdots \\
1
\end{array}\right) .
$$

We proceed on the dimension p of V. If $p=0$ or 1 , there is nothing to prove. Otherwise, applying the result to $V^{\prime}=\operatorname{Vect}\left(e_{2}, \ldots, e_{p-1}\right)$ (which is orthogonal to e_{p}), we can assume that

$$
M_{2 \leqslant i, j \leqslant p-1}=J_{p-2} .
$$

For any $1 \leqslant i \leqslant p$, let us put $e_{i}^{\prime}=e_{i}-\lambda_{i} e_{p}$, with:

$$
\lambda_{i}=\left\{\begin{array}{l}
\frac{1}{2}\left\langle e_{1}, e_{1}\right\rangle \text { if } i=1 \\
\left\langle e_{i}, e_{1}\right\rangle \text { if } 2 \leqslant i \leqslant p-1, \\
0 \text { if } i=p
\end{array}\right.
$$

Then $\left(e_{1}^{\prime}, \ldots, e_{p}^{\prime}\right)$ is a basis of V. As $\left\langle e_{p}, e_{p}\right\rangle=0$, for any i, j :

$$
\left\langle e_{i}^{\prime}, e_{j}^{\prime}\right\rangle=\left\langle e_{i}, e_{j}\right\rangle-\lambda_{i}\left\langle e_{i}, e_{p}\right\rangle-\lambda_{j}\left\langle e_{j}, e_{p}\right\rangle .
$$

Consequently:

- If $2 \leqslant i, j \leqslant p-1,\left\langle e_{i}^{\prime}, e_{j}^{\prime}\right\rangle=\left\langle e_{i}, e_{j}\right\rangle$.
- If $i=1$ and $1 \leqslant j \leqslant p-1$, by choice of $\lambda_{i},\left\langle e_{i}^{\prime}, e_{j}^{\prime}\right\rangle=0$.
- If $1 \leqslant i \leqslant p-1$ and $j=p$, then $\left\langle e_{i}^{\prime}, e_{p}^{\prime}\right\rangle=\left\langle e_{i}, e_{p}\right\rangle=\delta_{1, p}$.

So the matrix of the pairing is in this basis is J_{p}.
Second step. We apply the first step to $\operatorname{Vect}\left(e_{i}, i \in I^{\prime \prime}\right)$. Up to a change of basis of this subspace, we can assume that

$$
M=\left(\begin{array}{ccc}
0 & B & J_{k} \\
B^{T} & I_{l} & 0 \\
J_{k} & 0 & 0
\end{array}\right)
$$

with $k, l \geqslant 0$ and $B \in M_{k, l}(\mathbb{K})$. Let us consider the matrix

$$
P=\left(\begin{array}{ccc}
I_{k} & 0 & 0 \\
0 & I_{l} & 0 \\
0 & -J_{k}^{-1} B & I_{k}
\end{array}\right) .
$$

This is invertible, and:

$$
P^{T} M P=\left(\begin{array}{ccc}
0 & 0 & J_{k} \\
0 & I_{l} & 0 \\
J_{k} & 0 & 0
\end{array}\right) .
$$

Hence, up to a permutation of the vectors of the basis formed by the column of P, there exists a basis $\left(e_{1}^{\prime}, \ldots, e_{p}^{\prime}\right)$ of V, such that the matrix of the pairing in this basis is diagonal by blocks, with diagonal blocks equal to (1) or $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Now, observe that, denoting by i one of the square root of -1 in \mathbb{K} :

$$
\left(\begin{array}{cc}
\frac{i}{2} & -i \\
\frac{1}{2} & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{i}{2} & \frac{1}{2} \\
-i & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

So V has an orthogonal basis.
As a conclusion, $\left(\mathcal{H}_{\mathcal{P P}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{n}$ have an orthogonal basis.

Remark 7.1. The same proof can be applied to $\mathcal{H}_{\mathcal{P F}}$ and $\mathcal{H}_{\mathcal{W N P}}$: if Condition 2 of Theorem 7.5 is satisfied, then for any $n \geqslant 1,\left(\mathcal{H}_{\mathcal{P F}}\right)_{n}$ and $\left(\mathcal{H}_{\mathcal{W N P}}\right)_{n}$ have orthonormal bases. We conjecture that if Condition 2 of Theorem 7.5 is satisfied, then $\mathcal{H}_{\mathcal{S P F}}$ has also an orthonormal basis, giving Condition 3.(b) of Lemma 7.3

Example 7.1. Let i be one of the two square roots of -1 in \mathbb{K}. We define an isometry from $\left(\mathcal{H}_{\mathcal{P P}}\right)_{\langle 2\rangle}$ to $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{\langle 2\rangle}$ by:

$$
\left\{\begin{aligned}
\phi(\cdot) & =\bullet^{1} \\
\phi(\boldsymbol{l}) & =i \bullet^{2}+\frac{1+i}{2} \cdot \bullet^{1} \cdot \boldsymbol{2}
\end{aligned}\right.
$$

Using direct computations, it is possible to extend ϕ from $\left(\mathcal{H}_{\mathcal{P P}}\right)_{\langle 3\rangle}$ to $\left(\mathcal{H}_{\mathcal{S P P}}\right)_{\langle 3\rangle}$ sending $\left(\mathcal{H}_{\mathcal{W N P}}\right)_{\langle 3\rangle}$ to $\left(\mathcal{H}_{\mathcal{S W N P}}\right)_{\langle 3\rangle}$ in four families of isometries parametrized by an element $x \in \mathbb{K}$ by:
1.

$$
\begin{aligned}
& \phi_{1}(\stackrel{\bullet}{\bullet})=\stackrel{\bullet}{2}_{1}^{3}+(i x-i) \mathfrak{l}_{1}^{2} \bullet 3+(-1-i x) \cdot \bullet_{1}^{3}+\frac{1+i}{2} \cdot 1 \cdot 2 \cdot 3, \\
& \begin{aligned}
\phi_{1}(\boldsymbol{V})= & (-1-i+3 x) \mathfrak{!}_{1}^{3}-i \grave{\vee}_{1}^{2}+\frac{3 i x^{2}-2 i x}{2} \mathfrak{l}_{1}^{2} \cdot 3 \\
& +\frac{-3 i x^{2}+(-3+i) x+2+i}{2} \cdot 1 \mathfrak{l}_{2}^{3}+x \cdot 1 \cdot 2 \cdot 3,
\end{aligned} \\
& \phi_{1}(\AA)=(-3 x+2+2 i) \bullet_{2}^{3}{ }_{1}^{2}-i_{1} \AA_{2}^{3}+\frac{3 i x^{2}-2 i x}{2} \boldsymbol{\emptyset}_{1}^{2} \cdot 3 \\
& +\frac{3 i x^{2}+(6-4 i) x-4-2 i}{2} \cdot 1 \mathfrak{l}_{2}^{3}+(-x+1+i) \cdot 1 \cdot 2 \cdot 3 .
\end{aligned}
$$

2.
3. If the characteristic of the base field is not 2 , nor 3 :

$$
\begin{aligned}
& \phi_{3}(\mathfrak{d})=-\mathfrak{t}_{1}^{3}+\frac{-3 i x-i}{3} \mathfrak{\bullet}_{1}^{2} \cdot 3+\frac{3 i x-2 i+3}{3} \cdot \bullet_{1}^{3} \cdot \frac{3 i-1}{6} \cdot 1 \cdot 2 \cdot 3, \\
& \phi_{3}(\boldsymbol{V})=(-1-i+3 x) \mathfrak{l}_{1}^{3}-i \grave{V}_{1}^{2}+\frac{3 i x^{2}-2 i x}{2} \boldsymbol{\emptyset}_{1}^{2} \bullet 3 \\
& +\frac{-3 i x^{2}+(-3+i) x+2+i}{2} \cdot{ }_{\bullet}^{2} \stackrel{1}{2}_{2}^{3}+x \cdot 1 \cdot 2 \cdot 3,
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{9 i x^{2}+18 x-10 i}{6} \cdot 1 \mathfrak{l}_{2}^{3}+\frac{-3 x+3 i+1}{3} \cdot 1 \cdot 2 \cdot 3 .
\end{aligned}
$$

4. If the characteristic of the base field is neither 2 , nor 3 :

8 Conclusion

We finally obtain the following commuting diagram:

On the first column, algebras stable under $亡$ and ι (see definitions in [8). On the third and fourth columns, algebras stable under $\backslash, \Delta_{<}$and $\Delta_{>}$. The algebras such that the restriction of the pairing $\langle-,-\rangle$ is nondegenerate are circled. If the circle is dotted, the result is true if, and only if, the characteristic of the base field is zero. The three horizontal dotted lines correspond to the isomorphisms sending ($P, \leqslant_{h}, \leqslant_{r}$) to ($P, \leqslant_{h}, \leqslant$). Moreover, it is not difficult to show that the intersection of two Hopf algebras of this diagram is given by the smallest common ancestor in the oriented graph formed by the black edges of this diagram. This lies on the fact the only plane posets ($P, \leqslant_{h}, \leqslant_{r}$) which are special (recall that this means that \leqslant_{r} is total) are the double posets \bullet^{n}, for all $n \geqslant 0$.

All the arrows of the diagram are isometries, at the exception of the three horizontal dotted lines. There exists isometric Hopf algebra isomorphisms between $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ and $\mathcal{H}_{\mathcal{S P P}}$, if, and only if, the characteristic of the base field \mathbb{K} is not 2 and -1 is a square of \mathbb{K}.

If the characteristic of \mathbb{K} is zero, all these Hopf algebras are free, cofree, and self-dual.

References

[1] Dieter Blessenohl and Manfred Schocker, Noncommutative character theory of the symmetric group, Imperial College Press, London, 2005.
[2] Gérard Duchamp, Florent Hivert, and Jean-Yves Thibon, Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (2002), no. 5, 671-717.
[3] Loïc Foissy, Les algèbres de Hopf des arbres enracinés décorés. I, Bull. Sci. Math. 126 (2002), no. 3, 193-239, arXiv:math/0105212.
[4] L_, Les algèbres de Hopf des arbres enracinés décorés. II, Bull. Sci. Math. 126 (2002), no. 4, 249-288, arXiv:math/0105212.
[5] _ Bidendriform bialgebras, trees, and free quasi-symmetric functions, J. Pure Appl. Algebra 209 (2007), no. 2, 439-459, arXiv:math/0505207.
[6] , Ordered forests and parking functions, Int. Math. Res. Notices (2011), doi:10.1093/imrn/rnr061, arXiv:1007.1547.
[7] _, Free and cofree Hopf algebras, J. Pure Appl. Algebra 216 (2012), no. 2, 480-494, arXiv:1010.5402.
[8] _ Algebraic structures on double and plane posets, Journal Algebraic Combin. 37 (2013), no. 1, 39-66, arXiv:1101.5231.
[9] Loïc Foissy and Jérémie Unterberger, Ordered forests, permutations, and iterated integrals, Int. Math. Res. Not. IMRN (2013), no. 4, 846-885.
[10] Ralf Holtkamp, Comparison of Hopf algebras on trees, Arch. Math. (Basel) 80 (2003), no. 4, 368-383.
[11] Jean-Louis Loday, Dialgebras, Dialgebras and related operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, arXiv:math/0102053, pp. 7-66.
[12] \qquad , Generalized bialgebras and triples of operads, Astérisque (2008), no. 320, x+116.
[13] Jean-Louis Loday and María Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), no. 2, 293-309.
[14] _, On the structure of cofree Hopf algebras, J. Reine Angew. Math. 592 (2006), 123155, arXiv:math/0405330.
[15] , Combinatorial Hopf algebras, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, arXiv:0810.0435, pp. 347-383.
[16] Claudia Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967-982.
[17] _, A self paired Hopf algebra on double posets and a Littlewood-Richardson rule, J. Combin. Theory Ser. A 118 (2011), no. 4, 1322-1333, arXiv:0905.3508.
[18] Jean-Christophe Novelli and Jean-Yves Thibon, Hopf algebras and dendriform structures arising from parking functions, Fund. Math. 193 (2007), no. 3, 189-241.
[19] N. J. A Sloane, On-line encyclopedia of integer sequences, https://oeis.org/
[20] Richard P. Stanley, Enumerative combinatorics. Vol. I, The Wadsworth \& Brooks/Cole Mathematics Series, Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, CA, 1986, With a foreword by Gian-Carlo Rota.
[21] William T. Trotter, Combinatorics and partially ordered sets, Johns Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1992, Dimension theory.

