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Abstract

We study the self-dual Hopf algebra HSP of special posets introduced by Malvenuto

and Reutenauer and the Hopf algebra morphism from HSP to the Hopf algebra of free

quasi-symmetric functions FQSym given by linear extensions. In particular, we construct

two Hopf subalgebras both isomorphic to FQSym; the first one is based on plane posets,

the second one on heap-ordered forests. An explicit isomorphism between these two Hopf

subalgebras is also defined, with the help of two combinatorial transformations on special

posets. The restriction of the Hopf pairing of HSP to these Hopf subalgebras and others is

also studied, as well as certain isometries between them. These problems are solved using

duplicial and dendriform structures.
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Introduction

The Hopf algebra of double posets is introduced in [17]. Recall that a double poset is a finite set
with two partial orders; the set of isoclasses of double posets is given a structure of monoid, with
a product called composition (definition 1.4). The algebra of this monoid is given a coassociative
coproduct, with the help of the notion of ideal of a double poset. We then obtain a graded,
connected Hopf algebra, non commutative and non cocommutative. This Hopf algebra HDP is
self-dual: it has a nondegenerate Hopf pairing x´,´y, such that the pairing of two double posets
is given by the number of pictures between these double posets (definition 1.6); see [8] for more
details on the nondegeneracy of this pairing.

Other algebraic structures are constructed on HDP in [8]. In particular, a second product is
defined on HDP , making it a free 2-As Hopf algebra [14]. As a consequence, this object is closely
related to operads and the theory of combinatorial Hopf algebras [15]. In particular, it contains
the free 2-As algebra on one generator: this is the Hopf subalgebra HWNP of WN posets, see
definition 1.3. Another interesting Hopf subalgebra HPP is given by plane posets, that is to say
double poset with a particular condition of (in)compatibility between the two orders (definition
1.2).

We investigate in the present text the algebraic properties of the family of special posets, that
is to say double posets such that the second order is total [17]. They generate a Hopf subalgebra
of HDP denoted by HSP . For example, as explained in [8], the two partial orders of a plane
poset allow to define a third, total order, so plane posets can also be considered as special posets:
this defines an injective morphism of Hopf algebras from HPP to HSP . Its image is denoted by
HSPP . Another interesting Hopf subalgebra of HSP is generated by the set of ordered forests; it
is the Hopf algebra HOF used in [6, 9]. A special poset is heap-ordered if its second order (recall
it is total) is a linear extension of the first one; these objects define another Hopf subalgebra
HHOP of HSP . Taking the intersections, we finally obtain a commutative diagram of six Hopf
algebras:

HSPP
� � // HHOP

� � // HSP

HSPF
� � //?�

OO

HHOF
� � //?�

OO

HOF

?�

OO

The Hopf algebra HHOF of heap-ordered forests is used in [9]; HSPF is generated by the set
of plane forests, considered as special posets, and is isomorphic to the coopposite of the non
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commutative Connes-Kreimer Hopf algebra of plane forests HSPF [3, 4, 10].

A Hopf algebra morphism Θ, from HSP to the Malvenuto-Reutenauer Hopf algebra of per-
mutations FQSym [16], also known as the Hopf algebra of free quasi-symmetric functions [2], is
defined in [17]. This construction uses the linear extensions of the first order of a special poset.
The morphism Θ is surjective and respects the Hopf pairings defined on HSP and FQSym.
Moreover, its restrictions to HSPP and HHOF are isometric Hopf algebra isomorphisms (corol-
lary 4.5). In the particular case of HSPP , this is proved using, first a bijection from the set of
special plane posets of order n to the n-th symmetric group Sn for all n ě 0, then intervals in Sn

for the right weak Bruhat order, see proposition 4.4. As a consequence, we obtain a commutative
diagram:

HSPPr�

$$■
■■

■■
■■

■■
� w

** **❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚❚

HSP
Θ // // FQSym

HHOF

, �

::✉✉✉✉✉✉✉✉✉ �'

44 44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

We then complete this diagram with a Hopf algebra morphism Υ : HSP ÝÑ HHOF , combinato-
rially defined (theorem 4.8), such that its restriction to HSPP gives the following commutative
diagram:

HSPPr�

$$■
■■

■■
■■

■■
� w

** **❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚❚_�

Υ

����

HSP
Θ // // FQSym

HHOF

, �

::✉✉✉✉✉✉✉✉✉ �'

44 44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

The definition of Υ uses two transformations of special posets, summarized by j
i

ÝÑ i j ´ i

j

and
k

i j ÝÑ i

k
j ´ i

kj

` i

j
k

.

In order to prove the cofreeness of HSPF , HSP , HHOP , HSPP , HOF and HSWNP , we in-
troduce a new product Ô on HSP making it a duplicial algebra [12], and two non associative
coproducts ∆ă and ∆ą, making it a dendriform coalgebra [11, 13], see paragraph 5.1. These two
complementary structures are compatible, and HSP is a Dup-Dend bialgebra [6]. By the theo-
rem of rigidity for Dup-Dend bialgebras, all these objects are isomorphic to non-commutative
Connes-Kreimer Hopf algebras of decorated plane forests [3, 4, 10] (note that this result was ob-
vious for HSPF), so are free and cofree. Moreover, it is possible to define a Dup-Dend structure
on FQSym in such a way that the Hopf algebra morphism Θ becomes a morphism of Dup-Dend
bialgebras. Dendriform structures are also used to show that the restriction of the pairing of
HDP on HSPF is nondegenerate, with the help of bidendriform bialgebras [5]: in fact, the pairing
of HSP restricted to HSPF respects a certain bidendriform structure.

In the seventh section, we construct an isometric Hopf algebra morphism between HPP and
HSPP . These two Hopf algebras are clearly isomorphic, with a very easily defined isomorphism,
which is not an isometry. We prove that these two objects are isometric as Hopf algebras up
to two conditions on the base field: it should be not of characteristic two and should contain a
square root of ´1. This is done using the freeness and cofreeness of HPP and manipulations of
symmetric matrices.

This text is organized as follows. The first section recalls the concepts and notations on the
Hopf algebra of double posets HDP . The second section introduces special posets, heap-ordered
posets, special plane posets and the other families of double posets here studied. The bijection
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between the set of special plane posets of order n and Sn is defined in the third section. The
properties of the morphism Θ from HSP to FQSym are investigated in the next section. In
particular, it is proved that its restrictions to HSPP or HHOF are isomorphisms, and the induced
isomorphism from HSPP to HHOF is combinatorially defined. The fifth and sixth sections intro-
duce duplicial, dendriform and bidendriform structures and gives applications of these algebraic
objects on our families of posets. The problem of finding an isometry from HSPP to HPP is
studied in the seventh section; all the obtained results are summarized up in the conclusion.

Acknowledgements. The author warmly thanks Darij Grinberg for pointing an error in
the preceding version of the paper, on a lemma on symmetric integral matrices. The proofs of
the last section have been changed accordingly.

Notations 0.1. 1. K is a commutative field. Any algebra, coalgebra, Hopf algebra. . . of the
present text will be taken over K.

2. If H “ pH,m, 1,∆, ε, Sq is a Hopf algebra, we shall denote by H` its augmentation ideal,
that is to say Kerpεq. This ideal H` has a coassociative, non counitary coproduct ∆̃,
defined by ∆̃pxq “ ∆pxq ´ xb 1 ´ 1 b x for all x P H`.

3. For all n ě 1, Sn is the n-th symmetric group. Any element σ of Sn will be represented
by the word σp1q . . . σpnq. By convention, S0 is a group with a single element, denoted by
the empty word 1.

1 Reminders on double posets

1.1 Several families of double posets

Definition 1.1. [17]. A double poset is a triple pP,ď1,ď2q, where P is a finite set and ď1, ď2

are two partial orders on P . The set of isoclasses of double posets will be denoted by DP . The
set of isoclasses of double posets of cardinality n will be denoted by DPpnq for all n P N.

Remark 1.1. Let P P DP. Then any subset Q Ď P inherits also two partial orders by restriction,
so is also a double poset: we shall speak in this way of double subposets.

Definition 1.2. A plane poset is a double poset pP,ďh,ďrq such that for all x, y P P with
x ‰ y, x and y are comparable for ďh if, and only if, x and y are not comparable for ďr. The
set of isoclasses of plane posets will be denoted by PP . For all n P N, the set of isoclasses of
plane posets of cardinality n will be denoted by PPpnq.

If pP,ďh,ďrq is a plane poset, we shall represent the Hasse graph of pP,ďhq such that x ăr y

in P , if and only if y is more on the right than x in the graph. Because of the incompatibility
condition between the two orders, this is a faithful representation of plane posets. For example,
let us consider the two following Hasse graphs:

a

❂❂
❂❂

❂❂
❂❂

b

c d

b a

✁✁
✁✁
✁✁
✁✁

d c

The first one represents the plane poset pP,ďh,ďrq such that:

• tpx, yq P P 2 | x ăh yu “ tpc, aq, pd, aq, pd, bqu,

• tpx, yq P P 2 | x ăr yu “ tpa, bq, pc, bq, pc, dqu,

whereas the second one represents the plane poset pQ,ďh,ďrq such that:
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• tpx, yq P Q2 | x ăh yu “ tpc, aq, pd, aq, pd, bqu,

• tpx, yq P Q2 | x ăr yu “ tpb, aq, pb, cq, pd, cqu.

Example 1.1. The empty double poset is denoted by 1.

PPp0q “ t1u,

PPp1q “ t u,

PPp2q “ t , u,

PPp3q “ t , , , , , u,

PPp4q “

$

’

’

&

’

’

%

, , , , , , , , , , , ,

, , , , , , , , , , ,

,

/

/

.

/

/

-

.

Remark 1.2. Let F be a plane forest. We defined in [3] two partial orders on F , which makes it
a plane poset:

• We orient the edges of the forest F from the roots to the leaves. The obtained oriented
graph is the Hasse graph of the partial order ďh. In other words, if x, y P F , x ďh y if,
and only if, there is an oriented path from x to y in F .

• if x, y are two vertices of F which are not comparable for ďh, two cases can occur.

– If x and y are in two different trees of F , then one of these trees is more on the left
than the other; this defines the order ďr on x and y.

– If x and y are in the same tree T of F , as they are not comparable for ďh they are
both different from the root of T . We then compare them in the plane forest obtained
by deleting the root of T .

This inductively defines the order ďr for any plane forest by induction on the number of
vertices.

Equivalently, a plane poset is a plane forest if, and only if its Hasse graph is a forest. The set of
plane forests will be denoted by PF ; for all n ě 0, the set of plane forests with n vertices will
be denoted by PF pnq. For example:

PFp0q “ t1u,

PFp1q “ t u,

PFp2q “ t , u,

PFp3q “ t , , , , u,

PFp4q “

$

’

&

’

%

, , , , , , , , , , , , ,

,

/

.

/

-

.

Definition 1.3. Let P be a double poset. We shall say that P is WN ("without N") if it is

plane and does not contain any double subposet isomorphic to nor . The set of isoclasses
of WN posets will be denoted by WNP . For all n P N, the set of isoclasses of WN posets of
cardinality n will be denoted by WNPpnq.
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Example 1.2.

WNPp0q “ t1u,

WNPp1q “ t u,

WNPp2q “ t , u,

WNPp3q “ t , , , , , u,

WNPp4q “

$

’

’

&

’

’

%

, , , , , , , , , , , ,

, , , , , , , , ,

,

/

/

.

/

/

-

.

Remark 1.3. PF Ĺ WNP Ĺ PP .

1.2 Products and coproducts of double posets

Definition 1.4. Let P and Q be two elements of DP . We define PQ P DP by:

• PQ is the disjoint union of P and Q as a set.

• P and Q are double subposets of PQ.

• For all x P P , y P Q, x ď2 y in PQ and x and y are not comparable for ď1 in PQ.

Remark 1.4. 1. This product is called composition in [17] and denoted by ù in [8].

2. The Hasse graph of PQ (in the sense defined below) is the concatenation of the Hasse
graphs of P and Q, that is to say the disjoint union of these graphs, the graph of P being
on the left of the graph of Q.

This associative product is linearly extended to the vector space HDP generated by the set
of double posets. Moreover, the subspaces HPP , HWNP and HPF respectively generated by the
sets PP , WNP and PF are stable under this product.

Definition 1.5. [17].

1. Let P “ pP,ď1,ď2q be a double poset and let I Ď P . We shall say that I is a 1-ideal of
P if:

@x P I, @y P P, px ď1 yq ùñ py P Iq.

We shall write shortly "ideal" instead of "1-ideal" in the sequel.

2. The associative algebra HDP is given a Hopf algebra structure with the following coproduct:
for any double poset P ,

∆pP q “
ÿ

I ideal of P

pP zIq b I.

This Hopf algebra is graded by the cardinality of the double posets.

As any double subposet of a, respectively, plane poset, WN poset, plane forest, is also a,
respectively, plane poset, WN poset, plane forest, HPP , HWNP and HPF are Hopf subalgebras
of HDP .
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Example 1.3.

∆̃p q “ b

∆̃p q “ 2 b ` b

∆̃p q “ b ` b

∆̃p q “ b ` 2 b

∆̃p q “ b ` 3 b ` 3 b

∆̃p q “ b ` b ` b ` b ` b

∆̃p q “ b ` b ` b ` b ` b

∆̃p q “ 2 b ` b ` b

∆̃p q “ b ` b ` b

∆̃p q “ b ` 3 b ` 3 b

∆̃p q “ b ` b ` b ` b ` b

∆̃p q “ b ` b ` b ` b ` b

∆̃p q “ 2 b ` b ` b

∆̃p q “ b ` b ` b ` b ` b ` b

∆̃p q “ b ` b ` b ` b ` b ` b

∆̃p q “ 2 b ` 2 b ` b

∆̃p q “ b ` 2 b ` b

1.3 Hopf pairing on double posets

Definition 1.6. [17]

1. For two double posets P,Q, SpP,Qq is the set of bijections σ : P ÝÑ Q such that, for all
i, j P P :

• (i ď1 j in P ) ùñ (σpiq ď2 σpjq in Q).

• (σpiq ď1 σpjq in Q) ùñ (i ď2 j in P ).

These bijections are called pictures.

2. We define a pairing on HDP by xP,Qy “ CardpSpP,Qqq for P,Q P DP. This pairing is a
symmetric Hopf pairing.

It is proved in [8] that this pairing is nondegenerate if, and only if, the characteristic of
K is zero. Moreover, the restriction of this pairing to HPP , HPF or HWNP is nondegenerate,
whatever the field K is.
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2 Several families of posets

2.1 Special posets

Definition 2.1. [17]. A double poset P “ pP,ď1,ď2q is special if the order ď2 is total. The set
of special double posets will be denoted by SP . The set of special double posets of cardinality
n will be denoted by SPpnq.

This notion is equivalent to the notion of labeled posets. If pP,ď1,ď2q is a special poset of
order n, there is a unique isomorphism from pP,ď2q to pt1, . . . , nu,ďq, and we shall often identify
them.

Example 2.1. We shall graphically represent a special poset pP,ď1,ď2q by the Hasse graph of
pP,ď1q, with indices on the vertices giving the total order ď2.

1. Here are SPpnq for n ď 3:

SPp0q “ t1u,

SPp1q “ t 1u,

SPp2q “ t 1 2 , 1

2

, 2

1

u,

SPp3q “

$

’

&

’

%

1 2 3 , 1 2

3

, 1 3

2

, 2 1

3

, 2 3

1

, 3 1

2

, 3 2

1

,

1

32

, 2

31

, 3

21

,
1

2 3,
2

1 3,
3

1 2, 1

2

3

, 1

3

2

, 2

1

3

, 2

3

1

, 3

1

2

, 3

2

1

,

/

.

/

-

.

2. See [9]. Ordered forests are special double posets. The set of ordered forests will be denoted
by OF . The set of ordered forests of cardinality n will be denoted by OFpnq. For example:

OFp0q “ t1u,

OFp1q “ t 1u,

OFp2q “ t 1 2 , 1

2

, 2

1

u,

OFp3q “

$

’

&

’

%

1 2 3 , 1 2

3

, 1 3

2

, 2 1

3

, 2 3

1

, 3 1

2

, 3 2

1

,

1

32

, 2

31

, 3

21

, 1

2

3

, 1

3

2

, 2

1

3

, 2

3

1

, 3

1

2

, 3

2

1

,

/

.

/

-

.

3. Let P “ pP,ďh,ďrq be a plane poset. From proposition 11 in [8], the relation ď defined by
x ď y if, and only if, x ďh y or x ďr y, is a total order on P , called the induced total order
on P . So pP,ďh,ďq is also a special double poset: we can consider plane posets as special
posets. The set of plane posets, seen as special double posets, will be denoted by SPP .
The set of plane posets of cardinality n, seen as special double posets, will be denoted by
SPPpnq. For example:

SPPp0q “ t1u,

SPPp1q “ t 1u,

SPPp2q “ t 1 2 , 1

2

u,

SPPp3q “

"

1 2 3 , 1 2

3

, 1

2

3 , 1

32

,
3

1 2, 1

2

3

*

.

4. We define the set SPF of plane forests, seen as special posets, and the set SWNP of WN
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posets, seen as special posets. Note that SPF “ OF X SPP . For example:

SPFp0q “ t1u,

SPFp1q “ t 1u,

SPFp2q “ t 1 2 , 1

2

u,

SPFp3q “

"

1 2 3 , 1 2

3

, 1

2

3 , 1

32

, 1

2

3

*

If P and Q are special double posets, then PQ is also special. So the space HSP generated
by special double posets is a subalgebra of pHDP ,ùq. Moreover, if P is a special double poset,
then any subposet of P is also special. As a consequence, HSP is a Hopf subalgebra of HDP ;
this Hopf algebra also appears in [1]. Similarly, the spaces HOF , HSPP , HSWNP and HSPF

generated by OF , SPP , SWNP and SPF are Hopf subalgebras of HDP .

Remark 2.1. It is clear that HPP and HSPP are isomorphic Hopf algebras, via the isomorphism
sending the plane poset pP,ďh,ďrq to the special poset pP,ďh,ďq. The same argument works
for HWNP and HSWNP , and for HPF and HSPF .

2.2 Heap-ordered posets

Definition 2.2. Let P “ pP,ď1,ď2q be a special double poset. It is heap-ordered if for all
x, y P P , x ď1 y implies that x ď2 y. The set of heap-ordered posets will be denoted by
HOP . The set of heap-ordered posets of cardinality n will be denoted by HOPpnq. We put
HOF “ HOP X OF and HOFpnq “ HOPpnq X OFpnq for all n.

Example 2.2. Here are the sets HOPpnq and HOFpnq for n ď 3:

HOPp1q “ t 1u,

HOPp2q “ t 1 2 , 1

2

u,

HOPp3q “

"

1 2 3 , 1 2

3

, 2 1

3

, 3 1

2

, 1

32

,
3

1 2, 1

2

3

*

,

HOFp1q “ t 1u,

HOFp2q “ t 1 2 , 1

2

u,

HOFp3q “

"

1 2 3 , 1 2

3

, 2 1

3

, 3 1

2

, 1

32

, 1

2

3

*

.

Note that SPP Ĺ HOP and SPF Ĺ HOF , as 2 1

3

is not a plane poset. It is well-known
that |HOFpnq| “ n! for all n ě 0.

If P and Q are two heap-ordered posets, then PQ also is. As a consequence, the spaces
HHOP , HHOF and HSPF generated by HOP , HOF and SPF are Hopf subalgebras of HDP .
Moreover, plane posets are heap-ordered, so HSPP Ď HHOP . We obtain a commutative diagram
of canonical injections:

HSPP
� � // HHOP

� � // HSP

HSPF
� � //

?�

OO

HHOF
� � //

?�

OO

HOF

?�

OO

Proposition 2.3. 1. Let P P SP. Then P is heap-ordered if, and only if, it does not contain

any double subposet isomorphic to 2

1

.
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2. Let P P SP. Then P P SPP if, and only if, it does not contain any double subposet

isomorphic to 1

3

2 nor 2

1

.

Proof. The first point is immediate.

2. ùñ. If P P SPP , then any subposet of P belongs to SPP . The conclusion comes from

the fact that 1

3

2 and 2

1

are not special plane posets.

2. ðù. By the first point, P “ pP,ď1,ď2q is heap-ordered. We define a relation ďr on P by:

x ďr y if px “ yq or ppx ă2 yq and not px ă1 yqq .

By definition, x ď2 y if, and only if, x ď1 y or x ďr y. Moreover, if x and y are comparable for
both ď1 and ďr, then x “ y by definition of ďr. It remains to prove that ďr is a partial order on
P . If x ăr y and y ăr z, then x ă2 y ă2 z, so x ă2 z, so x ă1 z or x ăr z. If x ă1 z, then the

subposet tx, y, zu of P is equal to 1

3

2 , as x, y and y, z are not comparable for ď1: contradiction.
So x ăr z.

2.3 Pairing on special posets

We restrict the pairing of HDP to HSP . The matrix of the restriction of this pairing to HSPp2q
is:

1 2 1

2

2

1

1 2 2 1 1

1

2

1 1 0

2

1

1 0 1

Remark 2.2. 1. As a consequence, 1 2 ´ 1

2

´ 2

1

is in the kernel of the pairing. Hence,
x´,´y|HSP

, x´,´y|HHOP
and x´,´y|HOF

are degenerate. The kernels of these restrictions
of the pairing are described in corollary 4.3.

2. A direct (but quite long) computation shows that the following element is in the kernel of
x´,´y|HSWNP

:

´ ´ ` ` ´ ´

` ´ ` ´ ` ` ´ ´ ` .

(We write here the double posets appearing in this element as plane poset, they have to
be considered as special posets). So x´,´y|HSWNP

is degenerate.

3. We shall see that x´,´y|HHOF
, x´,´y|HSPP

and x´,´y|HSPF
are nondegenerate, see corol-

laries 4.6, 4.9 and 6.6.

3 Links with permutations

3.1 Plane poset associated to a permutation

Proposition 3.1. Let σ P Sn. We define two relations ďh and ďr on t1, ¨ ¨ ¨ , nu by:

• (i ďh j) if (i ď j and σpiq ď σpjq).

• (i ďr j) if (i ď j and σpiq ě σpjq).

10



Then pt1, ¨ ¨ ¨ , nu,ďh,ďrq is a plane poset. The induced total order on t1, ¨ ¨ ¨ , nu is the usual
total order.

Proof. It is clear that ďh and ďr are two partial orders on t1, ¨ ¨ ¨ , nu. It is immediate for any
i, j, i and j are comparable for ďh or ďr. Moreover, if i and j are comparable for both ďh and
ďr, then σpiq “ σpjq, so i “ j. For all i, j, i ďh j or i ďr j if, and only if, i ď j.

Definition 3.2. Let n P N. We define a map:

Φn :

"

Sn ÝÑ PPpnq
σ ÝÑ pt1, ¨ ¨ ¨ , nu,ďh,ďrq ,

where ďh and ďr are defined in proposition 3.1.

Example 3.1.

1 ÝÑ 12 ÝÑ 21 ÝÑ

123 ÝÑ 132 ÝÑ 213 ÝÑ

231 ÝÑ 312 ÝÑ 321 ÝÑ

1234 ÝÑ 1243 ÝÑ 1324 ÝÑ

1342 ÝÑ 1423 ÝÑ 1432 ÝÑ

2134 ÝÑ 2143 ÝÑ 2314 ÝÑ

2341 ÝÑ 2413 ÝÑ 2431 ÝÑ

3124 ÝÑ 3142 ÝÑ 3214 ÝÑ

3241 ÝÑ 3412 ÝÑ 3421 ÝÑ

4123 ÝÑ 4132 ÝÑ 4213 ÝÑ

4231 ÝÑ 4312 ÝÑ 4321 ÝÑ

We shall prove in the next section that Φn is bijective for all n ě 0.

3.2 Permutation associated to a plane poset

We now construct the inverse bijection. For any P P PP , nonempty, we put:

κpP q “ maxpty P P { @x P P, x ď y ñ x ďh yuq.

Note that κpP q is well-defined: the smallest element of P for its total order belongs to the set
ty P P { @x P P, x ď y ñ x ďh yu.

Let P P PPpnq. Up to a unique increasing bijection, we can suppose that P “ t1, ¨ ¨ ¨ , nu as
a totally ordered set: we shall take this convention in this paragraph. We define an element σ of
Sn by:

$

’

’

’

&

’

’

’

%

σ´1pnq “ κpP q
σ´1pn´ 1q “ κ

`

P ´ tσ´1pnqu
˘

,
...

...

σ´1p1q “ κ
`

P ´ tσ´1pnq, ¨ ¨ ¨ , σ´1p2qu
˘

.

11



This defines a map:

Ψn :

"

PPpnq ÝÑ Sn

pP,ďh,ďrq ÝÑ σ.

Lemma 3.3. Ψn ˝ Φn “ IdSn
.

Proof. Let σ P Sn. We put P “ Φnpσq and τ “ ΨnpP q. Then:

ty P P { @x P P, x ď y ñ x ďh yu “ tj P t1, ¨ ¨ ¨ , nu { @1 ď i ď n, i ď j ñ σpiq ď σpjqu.

So τ´1pnq “ κpP q “ σ´1pnq. Iterating this process, we obtain σ´1 “ τ´1, so σ “ τ .

Lemma 3.4. Let P P PPpnq. We put ΨnpP q “ σ. If i ďh j in P , then σpiq ď σpjq.

Proof. If i “ j, this is obvious. Let us assume that i ăh j. We put k “ σpiq and l “ σpjq. Then
k ‰ l. Let us assume that k ą l. We then put:

P 1 “ P ztσ´1pnq, . . . , σ´1pk ` 1qu “ ti1, ¨ ¨ ¨ , ip, i, ip`1, ¨ ¨ ¨ , ip`q, j, ip`q`1, ¨ ¨ ¨ , ip`q`ru,

with i1 ă ¨ ¨ ¨ ă ip ă i ă ip`1 ă ¨ ¨ ¨ ă ip`q ă j ă ip`q`1 ă ¨ ¨ ¨ ă ip`q`r. Indeed, as l ă k ă k`1,
both σ´1pkq “ i and σ´1plq “ j belongs to this set. As κpP 1q “ i, i1, ¨ ¨ ¨ , ip ăh i. If i ďh ip`1,
then κpP 1q ě ip`1 ą i: contradiction. So i ăr ip`1.

Let us prove by induction on s that ip`s ďh j for 1 ď s ď q. If ip`1 ďr j, then i and j would
be comparable for ďr, so would not be comparable for ďh: contradiction. So ip`1 ďh j. Let us
suppose that ip`s´1 ďh j, 1 ă s ď q. As ip`s ă j, ip`s ăh j or ip`s ăr j. Let us assume that
ip`s ăr j. As κpP 1q “ i ă ip`s, there exists x P P 1, x ăr ip`s. By the induction hypothesis,
x R tip`1, ¨ ¨ ¨ , ip`su. As i ăh j, x ‰ i, so x P ti1, ¨ ¨ ¨ , ipu. But for such an x, x ăh i ăh j, so
x ăh j: contradiction. So ip`s ăh j.

Finally, we obtain that i1, ¨ ¨ ¨ , ip, i, ip`1, ¨ ¨ ¨ , ip`q, j ďh j, so i “ κpP 1q ě j: contradiction,
i ă j. So k ă l.

Lemma 3.5. Φn ˝ Ψn “ IdPPn
.

Proof. Let P P PPn. We put σ “ ΨnpP q and Q “ Φnpσq. As totally ordered sets, P “ Q “
t1, ¨ ¨ ¨ , nu. As they are both plane posets, it is enough to prove that pP,ďhq “ pQ,ďhq. Let us
suppose that i ďh j in P . Then i ď j and σpiq ď σpjq by lemma 3.4. So i ďh j in Q. Let us
suppose that i ďh j in Q. So i ď j and σpiq ď σpjq. We put k “ σpiq and l “ σpjq. As k ă l:

i P P 1 “ P ´ tσ´1pnq, ¨ ¨ ¨ , σ´1pl ` 1qu.

By definition of κpP 1q “ j, i ďh j in P as i ď j.

Proposition 3.6. Ψn is a bijection, of inverse Φn. As a consequence, cardpPPpnqq “ n! for all
n P N.

Here are examples of properties of the bijection Ψn:

Proposition 3.7. Let P “ pP,ďh,ďrq P PPpnq.

1. n ¨ ¨ ¨ 1 ˝ ΨnpP q “ ΨnppP,ďr,ďhqq.

2. ΨnpP q´1 “ ΨnppP,ďh,ěrqq.

12



Proof. 1. We put ΨnpP q “ σ “ pa1 ¨ ¨ ¨ anq. Then n ¨ ¨ ¨ 1 ˝ σ “ pn´ a1 ` 1q ¨ ¨ ¨ pn´ an ` 1q. We
put Q “ Φnpn ¨ ¨ ¨ 1 ˝ σq. For all i, j P t1, ¨ ¨ ¨ nu:

i ďh j in Q ðñ i ď j and n´ ai ` 1 ď n´ aj ` 1

ðñ i ď j and ai ě aj

ðñ i ďr j in P

Similarly, i ďr j in Q if, and only if, i ďh j in P . So Q “ pP,ďr,ďhq.

2. We put R “ Φnpσ´1q. Let i, j P t1, ¨ ¨ ¨ , nu.

σpiq ďh σpjq in R ðñ σpiq ď σpjq and i ď j

ðñ i ďh j in P,

σpiq ďr σpjq in R ðñ σpiq ď σpjq and i ě j

ðñ i ěr j in P.

So σ : pP,ďh,ěrq ÝÑ R is an isomorphism of plane posets.

Remark 3.1. In other terms, n ¨ ¨ ¨ 1 ˝ ΨnpP q “ Ψn ˝ ιpP q, where the involution ι is defined in [8]
by ιppP,ďh,ďrqq “ pP,ďr,ďhq.

4 A morphism to FQSym

Note that HPP , HSPP and FQSym are both free and cofree, with the same formal series. From
a result of [7], HPP , hence HSPP , is isomorphic to FQSym. Our aim in this section is to define
and study an explicit isomorphism between HSPP and FQSym.

4.1 Reminders on FQSym

Let us first recall the construction of FQSym [16, 2]. As a vector space, a basis of FQSym is
given by the disjoint union of the symmetric groups Sn, for all n ě 0. By convention, the unique
element of S0 is denoted by H. The product of FQSym is given, for σ P Sk, τ P Sl, by:

στ “
ÿ

ǫPShpk,lq

pσ b τq ˝ ǫ,

where Shpk, lq is the set of pk, lq-shuffles, that is to say permutations ǫ P Sk`l such that ǫ´1p1q ă
. . . ă ǫ´1pkq and ǫ´1pk`1q ă . . . ă ǫ´1pk` lq. In other words, the product of σ and τ is given by
shifting the letters of the word representing τ by k, and then summing all the possible shufflings
of this word and of the word representing σ. For example:

132.21 “ 13254 ` 13524 ` 15324 ` 51324 ` 13542

` 15342 ` 51342 ` 15432 ` 51432 ` 54132.

Let σ P Sn. For all 0 ď k ď n, there exists a unique triple
´

σ
pkq
1
, σ

pkq
2
, ζk

¯

P Sk ˆ Sn´k ˆ

Shpk, n ´ kq such that σ “ ζ´1

k ˝
´

σ
pkq
1

b σ
pkq
2

¯

. The coproduct of FQSym is then defined by:

∆pσq “
n

ÿ

k“0

σ
pkq
1

b σ
pkq
2
.

For example:

∆p41325q “ H b 41325 ` 1 b 1324 ` 21 b 213 ` 312 b 12 ` 4132 b 1 ` 41325 b H.
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Note that σ
pkq
1

and σ
pkq
2

are obtained by cutting the word representing σ between the k-th and
the k ` 1-th letter, and then standardizing the two obtained words, that is to say applying to
their letters the unique increasing bijection to t1, . . . , ku or t1, . . . , n ´ ku. Moreover, FQSym

has a nondegenerate, homogeneous, Hopf pairing defined by xσ, τy “ δσ,τ´1 for all permutations
σ and τ .

4.2 Linear extensions

Definition 4.1. Let P “ pP,ď1,ď2q be a special poset. Let x1 ă2 . . . ă2 xn be the elements
of P . A linear extension of P is a permutation σ P Sn such that, for all i, j P t1, . . . , nu:

pxi ď1 xjq ùñ pσ´1piq ă σ´1pjqq.

The set of linear extensions of P will be denoted by SP .

Remark 4.1. 1. Let P be a special poset. It is heap-ordered if, and only if, Idn P SP .

2. Let P be a special poset of cardinality n. By definition of the product of plane posets, the
plane poset n, seen as a special poset, has n vertices. If i ‰ j in n, then i and j are not
comparable for ďh. We also identify P and n with t1, . . . , nu as totally ordered sets. If
σ is a bijection from P to n, then σ P Sp n, P q if, and only if, σpiq ăh σpjq in P implies
that to i ă j. Hence, the set of linear extensions of P is Sp n, P q.

3. Let P be a special poset. We denote by n its cardinality. As the second order of P is total,
we can identify P with t1, . . . , nu, as totally ordered sets. By [21], seeing orders on P as
elements of P ˆ P :

tpx, yq P P 2 | x ă1 yu “
č

t!|! total order extending ď1u.

We identify the total order i1 ! . . . ! in on P with the permutation i1 . . . in. Then
permutations corresponding to total orders extending ď1 are precisely the elements of SP .
We obtain:

tpx, yq P P 2 | x ă1 yu “ tpi, jq P t1, . . . , nu2 | @σ P SP , σ
´1piq ă σ´1pjqu.

So SP entirely determines P .

The following theorem is proved in [17]:

Theorem 4.2. The following map is a surjective morphism of Hopf algebras:

Θ :

$

&

%

HSP ÝÑ FQSym

P P SP ÝÑ
ÿ

σPSP

σ.

Moreover, for any x, y P HSP , xx, yy “ xΘpxq,ΘpyqyFQSym.

Example 4.1. If ti, j, ku “ t1, 2, 3u:

Θp i j kq “ ijk ` ikj ` jik ` jki ` kij ` kji

Θp i j
k

q “ ijk ` jik ` jki

Θp i

kj

q “ ijk ` ikj

Θp i

j
k

q “ ijk

It is proved in [9] that the restriction of Θ|HHOF
is an isomorphism from HHOF to FQSym

(Proposition 7). Consequently, Θ and its restrictions to HHOP and to HOF are surjective.
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Corollary 4.3. The kernel of the pairing on HSP is KerpΘq. The kernel of the pairing restricted
to HHOP and HOF is respectively KerpΘq X HHOP and KerpΘq X HOF .

Proof. For any x P HSP , as Θ is surjective:

x P HK
SP ðñ @y P HSP , xx, yy “ 0

ðñ @y P HSP , xΘpxq,ΘpyqyFQSym “ 0

ðñ @y1 P FQSym, xΘpxq, y1y “ 0

ðñ Θpxq P FQSymK

ðñ Θpxq “ 0.

So HK
SP “ KerpΘq. The proof is similar for HHOP and HOF .

4.3 Restriction to special plane posets

Proposition 4.4. Let n P N. We partially order Sn by the right weak Bruhat order [20].

1. If P P SPPpnq, then ΘpP q “
ÿ

σPSn, σďΦnpP q´1

σ.

2. Let P P SPpnq. There exists τ P Sn, such that SP “ tσ P Sn | σ ď τu if, and only if,
P P SPP.

Proof. 1. We put τ “ ΦnpP q´1. The aim is to prove that for all σ P Sn, σ P SP if, and only if,
σ ď τ .

Let us assume that σ P SP . We put:

I “ tpi, jq | i ăr j, σ
´1piq ă σ´1pjqu.

Let us prove that σ ď τ by induction on |I|. If |I| “ 0, by definition of the elements of SP , for
all i ă j:

i ăh j ðñ σ´1piq ă σ´1pjq ðñ τ´1piq ă τ´1pjq.

So σ “ τ . Let us assume now that |I| ě 1. Let us choose pi, kq P I, such that E “ σ´1pkq´σ´1piq
is minimal. If E ě 2, let j such that σ´1piq ă σ´1pjq ă σ´1pkq. Three cases are possible.

1. If i ă j ă k, by minimality of E, i ăh j et j ăh k, so i ăh k. This contradicts i ăr k.

2. If j ă i ă k, by minimality of E, j ăh k. As σ P SP , j ăr i. As i ăr k, we obtain j ăr k.
This contradicts j ăh k.

3. If i ă k ă j, by minimality of E, i ăh j. As σ P SP , k ăr j. As i ăr k, i ăr j. This
contradicts i ăh j.

In all cases, this gives a contradiction. So E “ 1, that is to say σ´1piq “ σ´1pkq ´ 1. The
permutation σ1 obtained from σ by permuting i and k in the word representing σ is greater than
σ for the right weak Bruhat order by definition of this order; moreover, it is not difficult to show
that it is also an element of SP (as pi, kq P I), with a strictly smaller |I|. By the induction
hypothesis, σ ď σ1 ď τ .

Let us assume that σ ď τ and let us prove that σ P SP . Then τ is obtained from σ by a
certain number k of elementary transformations (that is to say the permutations of two adjacent
letters ij with i ă j in the word representing σ). We proceed by induction on k. If k “ 0, then
σ “ τ . If k ě 1 there exists σ1 P Sn, obtained from σ by one elementary transformation, such
that τ is obtained from σ1 by k ´ 1 elementary transformations. By the induction hypothesis,
σ1 P SP . We put σ “ p. . . aiai`1 . . .q, σ

1 “ p. . . ai`1ai . . .q, with ai ă ai`1. Let us prove that
σ P SP . Let k ăh l.
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• If k, l ‰ ai, ai`1, as σ1 P SP , σ´1pkq “ σ1´1pkq ă σ1´1plq “ σ´1plq.

• If k “ ai, as σ1 P SP , l ‰ ai`1. So σ´1plq “ σ1´1plq ą σ1´1pkq “ σ´1pkq ` 1, and
σ´1pkq ă σ´1plq.

• If k “ ai`1, then l ‰ ai as k ă l. So σ´1plqσ1´1plq ą σ1´1pkq ` 1 “ σ´1pkq.

• If l “ ai, then k ‰ ai`1 as k ă l. Then σ´1pkq “ σ1´1pkq ă σ1´1plq ´ 1 “ σ´1plq.

• If l “ ai`1, as σ P SP , k ‰ ai. Then σ´1pkq “ σ1´1pkq ă σ1´1plq “ σ´1plq ´ 1, and
σ´1pkq ă σ´1plq.

Indeed, σ P SP .

2. ðù. Comes from the first point, with τ “ ΦnpP q´1.

2. ùñ. Let us assume that SP “ tσ P Sn | σ ď τu for a particular τ . Then Idn P SP , so P
is heap-ordered.

Example 4.2. Here is the Hasse graph of S3, partially ordered by the right weak Bruhat order:

321

❊❊
❊❊

❊❊
❊❊

②②
②②
②②
②②

231 312

213 132

123

②②②②②②②②

❊❊❊❊❊❊❊❊

So:

Θp q “ 312 ` 231 ` 312 ` 213 ` 132 ` 123

Θp q “ 231 ` 213 ` 123

Θp q “ 312 ` 132 ` 123

Θp q “ 213 ` 123

Θp q “ 132 ` 123

Θp q “ 123.

As Φn : SPPpnq ÝÑ Sn is a bijection:

Corollary 4.5. The restriction Θ|HSPP
: HSPP ÝÑ FQSym is an isomorphism.

Corollary 4.6. The restriction of the pairing to HSPP is nondegenerate.

Proof. As the isomorphism Θ|HSPP
is an isometry and the pairing of FQSym is nondegenerate.

4.4 Restriction to heap-ordered forests

Notations 4.1. Let P “ pP,ď1,ď2q be a special poset. If i, j P P , we denote by ri, js1 the set of
elements k of P such that i ď1 k ď1 j. We denote by RP “ tpi, jq P P 2 | ri, js1 “ ti, ju, i ‰ ju.
This set is in fact the set of edges of the Hasse graph of pP,ď1q, so allows to reconstruct the
double poset P .
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Proposition 4.7. Let P be a special poset with n elements.

1. Let i, j P P , such that pj, iq P RP . We define:

• P1 P SPpnq such that RP1
“ RP ztpj, iqu;

• P2 P SPpnq such that RP2
“ pRP ztpj, iquqYtpi, jqu, after the elimination of redundant

elements.

Then ΘpP q “ ΘpP1q ´ ΘpP2q.

2. Let i, j, k P P , all distinct, such that pi, kq and pj, kq P RP . We define:

• P3 P SPpnq, such that RP3
“ RP ztpj, kqu;

• P4 P SPpnq, such that RP4
“ pRP ztpj, kquq Y tpi, jqu, after the elimination of redun-

dant elements;

• P5 P SPpnq, such that RP5
“ pRP ztpj, kq, pi, kquqYtpi, jq, pj, kqu, after the elimination

of redundant elements.

Then ΘpP q “ ΘpP3q ´ ΘpP4q ` ΘpP5q.

Proof. 1. We denote by S the set of permutations σ P Sn such that, for all px, yq P RP ztpi, jqu,
σ´1pxq ă σ´1pyq. Then:

ΘpP1q “
ÿ

σPS

σ, ΘpP q “
ÿ

σPS,
σ´1pjqăσ´1piq

σ, ΘpP2q “
ÿ

σPS,
σ´1pjqąσ´1piq

σ.

As a consequence, ΘpP q ` ΘpP2q “ ΘpP1q.

2. Note that i and j are not comparable for ď1 (otherwise, for example if i ă1 j, then
i ă1 j ă1 k, and this contradicts the definition of RP ). We denote by S1 the set of permutations
σ P Sn, such that for all px, yq P RP ztpi, kq, pj, kqu, σ´1pxq ă σ´1pyq. Then:

ΘpP q “
ÿ

σPS1,

σ´1piq,σ´1pjqăσ´1pkq

σ, ΘpP3q “
ÿ

σPS1,

σ´1piqăσ´1pkq

σ,

ΘpP4q “
ÿ

σPS1,

σ´1piqăσ´1pjq,σ´1pkq

σ, ΘpP5q “
ÿ

σPS1,

σ´1piqăσ´1pjqăσ´1pkq

σ.

We put:

S1 “
ÿ

σPS1,

σ´1piqăσ´1pjqăσ´1pkq

σ, S2 “
ÿ

σPS1,

σ´1pjqăσ´1piqăσ´1pkq

σ,

S3 “
ÿ

σPS1,

σ´1piqăσ´1pkqăσ´1pjq

σ.

Then ΘpP q “ S1 ` S2, ΘpP3q “ S1 ` S2 ` S3, ΘpP4q “ S1 ` S3 and ΘpP5q “ S1. Hence,
ΘpP q ` ΘpP4q “ ΘpP3q ` ΘpP5q.

Remark 4.2. In other words, in the first case, one replaces a double subposet j
i

of P by i j ´ i

j

.

In the second case, one replaces a double subposet
k

i j by i

k
j ´ i

kj

` i

j
k

.
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Theorem 4.8. Let P P SP. Applying repeatedly the two transformations of proposition 4.7,
with i ă j in the first case, and i ă j ă k in the second case, we can associate to P a linear span
of heap-ordered forests. This linear span does not depend on the way the transformations are
performed, so is well-defined: we denote it by ΥpP q. Then Υ defines a Hopf algebra morphism
from HSP to HHOF , such that the following diagram commutes:

HSP
Θ //

Υ

��

FQSym

HHOF

Θ

99rrrrrrrrrr

The restriction Θ|HHOF
is an isomorphism, and Υ|HHOF

“ IdHHOF
. Moreover, xΥpxq,Υpyqy “

xx, yy for all x, y P HSP (that is to say Υ respects the pairings).

Proof. Let P P SP . It is clear that, using repeatedly the first transformation, we associate
to P a linear span of heap-ordered posets. Then, using repeatedly the second transformation,
we associate to this element of HHOP a linear span of heap-ordered forests. Let x be a linear
span of heap-ordered forests obtained in this way. Using proposition 4.7, Θpxq “ ΘpP q. As
Θ : HSP ÝÑ FQSym is surjective (as, for example, Θ|HSPP

is an isomorphism), Θ|HHOF
is

surjective. As CardpHOFpnqq “ CardpSnq “ n! for all n P N, Θ|HHOF
is bijective. So x is

the unique antecedent of ΘpP q P FQSym in HHOF , so x “
`

Θ|HHOF

˘´1
˝ ΘpP q is unique, and

ΥpP q “ x is well-defined. Moreover, Υ “
`

Θ|HHOF

˘´1
˝ Θ. Consequently, it is a Hopf algebra

morphism. As Θ respects the pairings, so does Υ.

Corollary 4.9. 1. Υ|HSPP
: HSPP ÝÑ HHOF is an isomorphism of graded Hopf algebras,

and respects the pairings.

2. x´,´y|HHOF
is nondegenerate.

Proof. By restriction in the commutative diagram of theorem 4.8, we obtain the following com-
mutative diagram:

HSPP
Θ //

Υ

��

FQSym

HHOF

Θ

99rrrrrrrrrr

As the two restrictions of Θ are isomorphisms of graded Hopf algebras and respect the pairing,
so is Υ|HSPP

“ pΘ|HSPP
q´1 ˝ Θ|FQSym. As Υ|HSPP

is an isometry and the pairing on HSPP is
nondegenerate, the pairing on HHOF is nondegenerate.

5 More algebraic structures on special posets

5.1 Recalls on Dup-Dend bialgebras

Recall that a duplicial algebra [12] is a triple pA, .,Ôq, where A is a vector space, and .,Ô are
two products on A, with the following axioms: for all x, y, z P A,

$

&

%

pxyqz “ xpyzq,
px Ô yq Ô z “ x Ô py Ô zq,

pxyq Ô z “ xpy Ô zq.
(1)

In particular, the products . and Ô are both associative. A dendriform coalgebra (dual notion
of dendriform algebra, [11, 13]) is a triple pA,∆ă,∆ąq, where A is a vector space, and ∆ă and
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∆ą are two coproducts on A, with the following axioms: for all x P A,

$

&

%

p∆ă b Idq ˝ ∆ăpxq “ pId b ∆̃q ˝ ∆ăpxq,
p∆ą b Idq ˝ ∆ăpxq “ pId b ∆ăq ˝ ∆ąpxq,

p∆̃bIdq ˝ ∆ąpxq “ pId b ∆ąq ˝ ∆ąpxq.

(2)

Note that these axioms imply that ∆̃ “ ∆ă ` ∆ą is coassociative. We shall use the following
Sweedler notations: for any a P A,

∆̃paq “ a1 b a2, ∆ăpaq “ a1
ă

b a2
ă
, ∆ąpaq “ a1

ą
b a2

ą
.

ADup-Dend bialgebra [6] is a family pA, .,Ô,∆ă,∆ąq, where A is a vector space, .,Ô: AbA ÝÑ
A and ∆ă,∆ą : A ÝÑ A bA, with the following properties:

• pA, .,Ôq is a duplicial algebra (axioms 1).

• pA,∆ă,∆ąq is a dendriform coalgebra (axioms 2).

• For all x, y P A:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

∆ăpxyq “ y b x ` y1
ă

b xy2
ă

` xy1
ă

b y2
ă

` x1y b x2 ` x1y1
ă

b x2y2
ă
,

∆ąpxyq “ xb y ` xy1
ą

b y2
ą

` y1
ą

b xy2
ą

` x1 b x2y ` x1y1
ą

b x2y2
ą
;

∆ăpx Ô yq “ x Ô y1
ă

b y2
ă

` x1
ă

Ô y b x2
ă

` x1
ă

Ô y1
ă

b x2
ă
y2

ă
,

∆ąpx Ô yq “ xb y ` x Ô y1
ą

b y2
ą

` x1
ą

b x2
ą

Ô y

`x1
ă

b x2
ă
y ` x1

ă
Ô y1

ą
b x2

ă
y2

ą
.

(3)

5.2 Another product on special posets

Definition 5.1.

1. Let P “ pP,ď1,ď2q be a nonempty special poset. The maximal element of pP,ď2q will be
denoted by gP .

2. Let P and Q be two nonempty special poset. We define P Ô Q by:

• P Ô Q “ P \Q as a set, and P,Q are special subposets of P Ô Q.

• For all x P P , y P Q, x ď2 y.

• For all x P P , y P Q, x ď1 y if, and only if, x ď1 gP .

Remark 5.1. Let P and Q be two nonempty special posets. A Hasse graph of P Ô Q is obtained
by grafting a Hasse graph of Q on the vertex representing gP of a Hasse graph of P . For example:

1 2 Ô 2

1

“ 1 2

4

3

, 1

2

Ô 1 2 “ 1

2

43

, 2

1

Ô 1 2 “ 2

431

Lemma 5.2. (H`
SP
, .,Ôq is a duplicial algebra.

Proof. Let P,Q,R be three nonempty special posets. The special posets pP Ô Qq Ô R and
P Ô pQ Ô Rq are both characterized by:

• S “ P \Q\R as a set, and P,Q,R are special subposets of S.

• For all x P P , y P Q, z P R, x ď2 y ď2 z.

• For all x P P , y P Q, z P R, x ď1 y if, and only if, x ď gP ; x ď1 z if, and only if, x ď1 gP ;
y ď1 z if, and only if, y ď1 gQ.
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The last point comes from the fact that gRÔS “ gS for any nonempty special posets R and S.
So they are equal.

The special posets pPQq Ô R and P pQ Ô Rq are both characterized by:

• S “ P \Q\R as a set, and P,Q,R are special subposets of S.

• For all x P P , y P Q, z P R, x ď2 y ď2 z.

• For all x P P , y P Q, z P R, x and y are not comparable for ď1; x and z are not comparable
for ď1; y ď1 z if, and only if, y ď1 gQ.

So H
`
SP

is a duplicial algebra.

Proposition 5.3. Let P,Q be two nonempty special posets. Then P Ô Q P HOP (respectively
OF , SPP , HOF , SPF , SWNP) if, and only if, P,Q P HOP (respectively OF , SPP, HOF ,
SPF , SWNP).

Proof. We put R “ P Ô Q.

ðù. In all the cases, this comes from the fact that P and Q are double subposets of P Ô Q.

HOP. ùñ. Recall from proposition 2.3 that R P HOP if, and only if, R does not contain a

double subposet isomorphic to 2

1

. Let us assume that P Ô Q is not a heap-ordered poset. Then
it contains two distinct elements a, b, such that a ď1 b and b ď2 a. If a P P , then, by definition
of ď2 on R, b P P , so P is not a heap-ordered poset. If a P Q, as b ď1 a, by definition of ď1 on
R, b P Q, so Q is not a heap-ordered poset.

OF . ùñ. Recall that R is an ordered forest if, and only if, pR,ď1q does not contain a double

subposet isomorphic to (see lemma 13 in [8]). Let us assume that R is not an ordered forest.
Then it contains three different elements a, b, c, with a ď2 b ď2 c, such that one of the following
assertions holds:

1. b, c ď1 a and b, c are not comparable for ď1: pta, b, cu,ď1q “
a

b c.

2. a, c ď1 b and a, c are not comparable for ď1: pta, b, cu,ď1q “
b

a c.

3. a, b ď1 c and a, b are not comparable for ď1: pta, b, cu,ď1q “
c

a b.

In the three cases, if the maximal element of ta, b, cu for ď1 is in P , then, by definition of ď1

on R, a, b, c P P , so P is not an ordered forest. Let us assume that this element is in Q. In the
first case, then, by definition of ď2 on R, b, c P Q, so Q is not an ordered forest. In the second
case, we deduce similarly that c P Q. If a P P , then a ď1 gP in P as a ď1 b in R, so a ď1 c in
R: contradiction, so a P Q. As a consequence, Q is not an ordered forest. In the last case, then:

• If a P P , b P Q, then a ď1 gP in P as a ď1 c in R, so a ď1 b in R: contradiction, this case
is impossible.

• Similarly, a P Q, b P P is impossible.

So a, b P P or a, b P Q. In the first subcase, a, b ď1 gP in P as a, b ď1 c in R, so ta, b, gP u is

a subposet of pP,ď1q isomorphic to : P is not an ordered forest. In the second subcase, Q
contains a, b, c, so is not an ordered forest.
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SPP . ùñ. Recall from proposition 2.3 that R is a plane poset if, and only if, it is heap-

ordered and does not contain a double subposet isomorphic to 1

3

2 . Let us assume that R is
not a plane poset. If it is not heap-ordered, by the first point P or Q is not heap-ordered, so
is not a plane poset. Let us assume that there exists three different elements a, b, c of R, such
that a ď2 b ď2 c, a ď1 c, a, b and b, c are not comparable for ď1. By definition of ď2 on R, if
c P P , then a, b P P , so P R SPP . If c P Q and a P Q, then b P Q as a ď2 b, so Q R SPP . If
c P Q and a P P , then a ď1 gP in P . As a and b are not comparable for ď1 in R, b P P . As
b, c are not comparable for ď1 in R, b and gP are not comparable for ď1 in P . Let us consider

ta, b, gP u Ď P . By definition of gP , a ď2 b ď2 gP , so ta, b, gP u “ 1

3

2 , so P is not plane.

HOF . ùñ. Comes from HOF “ OF X HOP .

SPF . ùñ. Comes from SPF “ OF X SPP .

SWNP. ùñ. Let us assume that P Ô Q is not a WN poset. If it is not plane, then by the
third point, P or Q is not plane, so is not WN. Let us assume that P Ô Q is plane (so P and

Q are plane). Then P Ô Q contains a subposet ta, b, c, du isomorphic to or . We assume
that a ă2 b ă2 c ă2 d in P Ô Q. If d P P , then by definition of P Ô Q, ta, b, c, du Ď P , so P is
not WN. Similarly, if a P Q, Q is not WN. We now assume that a P P and d P Q.

• If ta, b, c, du “ : as a and d are not comparable for ď1 in P Ô Q, we do not have
a ď1 gP in P . As P is plane, it is heap-ordered, so a and gP are not comparable for ď1

in P . As a ă1 c in P Ô Q, necessarily c P P . As b ă2 c in P Ô Q, b P P . Moreover,
as b ă1 d, b ă1 gP . As c and d are not comparable for ď1 in P Ô Q, c and gP are not
comparable for ď1 in P . So ta, b, c, gP u “ .

• If ta, b, c, du “ : as a ă1 d in P Ô Q, a ă1 gP in P . As a and b are not comparable for
ď1 in P Ô Q, necessarily b P P . As b ă1 d, b ă1 gP . As c and b are not comparable for
ď1 in P Ô Q, c P P . As c and d are not comparable for ď1, c and gP are not comparable
for ď1 in P . So ta, b, c, gP u “ .

In both cases, P is not WN.

Remark 5.2. 1. As a consequence, the augmentation ideals H`
SP

, H`
HOP

, H`
SPP

, H`
OF

, H`
HOF

,
H

`
SWNP

and H
`
SPF

are duplicial algebras.

2. It is proved in [6] that H
`
SPF

is the free duplicial algebra generated by : it is enough to
observe that for any plane forest F , gF is the leaf of F at most on the right, so Ô, when
restricted to plane forests, is precisely the product Ô defined in [6].

5.3 Dendriform coproducts on special posets

For any nonempty special poset P , we put:

∆ăpP q “
ÿ

I non trivial ideal of P ,
gP RI

P zI b I, ∆ąpP q “
ÿ

I non trivial ideal of P ,
gP PI

P zI b I.

Note that ∆ă `∆ą “ ∆̃. Moreover, H`
SP

, H`
HOP

, H`
SPP

, H`
OF

, H`
HOF

, H`
SWNP

and H`
SPF

are
stable under the coproducts ∆ă and ∆ą.

Proposition 5.4. H
`
SP

is a Dup-Dend bialgebra.

Proof. The proof is similar to the proof of proposition 20 in [6]. Nevertheless, in order to help
the reader, we give here a complete proof. Let us first prove that (H`

SP
,∆ă,∆ąq is a dendriform
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coalgebra. It is enough to prove (2) if x “ P is a nonempty special poset. We put, as ∆̃ is
coassociative, p∆̃bIdq ˝ ∆̃pP q “ pIdb ∆̃q ˝ ∆̃pP q “

ř

P p1q b P p2q b P p3q, where P p1q, P p2q, P p3q

are subposets of P . Then:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p∆ă b Idq ˝ ∆ăpP q “ pId b ∆̃q ˝ ∆ăpP q “
ÿ

gP PP p1q

P p1q b P p2q b P p3q,

p∆ą b Idq ˝ ∆ăpP q “ pId b ∆ăq ˝ ∆ąpP q “
ÿ

gP PP p2q

P p1q b P p2q b P p3q,

p∆̃bIdq ˝ ∆ąpP q “ pId b ∆ąq ˝ ∆ąpP q “
ÿ

gP PP p3q

P p1q b P p2q b P p3q.

So H
`
SP

is a dendriform coalgebra.

Let us now prove axioms (3). It is enough prove these formulas if x “ P , y “ Q are nonempty
plane forests. Let I be a non trivial ideal of PQ or P Ô Q. We put I 1 “ I XP and I2 “ I XQ.
As I is non trivial, I 1 and I2 are not simultaneously empty and not simultaneously total.

Let us first compute ∆ăpPQq. We have to consider non trivial ideals I of PQ, such that
gPQ R I. As gPQ “ gQ, I2 ‰ Q. So five case are possible.

• I 1 “ P , I2 “ H: this gives the term Qb P .

• I 1 “ P , I2 ‰ H, Q: this gives the term Q1
ă

b PQ2
ă
.

• I 1 “ H, I2 ‰ H, Q: this gives the term PQ1
ă

b PQ2
ă
.

• I 1 ‰ H, P , I2 “ H: this gives the term P 1Q b P 2.

• I 1 ‰ H, P , I2 ‰ H, Q: this gives the term P 1Q1
ă

b P 2Q2
ă
.

Let us compute ∆ąpPQq. We have to consider non trivial ideals I of PQ, such that gPQ P I.
As gPQ “ gQ, I2 ‰ H. So five cases are possible:

• I 1 “ H, I2 “ Q: this gives the term P bQ.

• I 1 “ H, I2 ‰ H, Q: this gives the term PQ1
ą

bQ2
ą
.

• I 1 “ P , I2 ‰ H, Q; this gives the term Q1
ą

b PQ2
ą
.

• I 1 ‰ H, P , I2 “ Q: this gives the term P 1 b P 2Q.

• I 1 ‰ H, P , I2 ‰ H, Q: this gives the term P 1Q1
ą

b P 2Q2
ą
.

We now compute ∆ăpP Ô Qq. We have to consider non trivial ideals I of P Ô Q, such that
gPÔQ R I. As gPÔQ “ gQ, I2 ‰ Q. Moreover, if gP P I, then, as I is an ideal, Q Ď I so I2 “ Q:
impossible. So gP R I 1. So three cases are possible.

• I 1 “ H, I2 ‰ H, Q; this gives the term P Ô Q1
ă

b PQ2
ă
.

• I 1 ‰ H, P , I2 “ H: this gives the term P 1
ă

Ô Qb P 2
Ô.

• I 1 ‰ H, P , I2 ‰ H, Q: this gives the term P 1
ă

Ô Q1
ă

b P 2
ă
Q2

ă
.

Finally, let us compute ∆ąpP Ô Qq. We have to consider non trivial ideals I of P Ô Q,
such that gPÔQ P I. As gPÔQ “ gQ, I2 ‰ H. Moreover, if gP P I 1, as I is an ideal, I2 “ Q. As
I 1 and I2 are not simultaneously total, this implies that I 1 ‰ P . So five cases are possible:

• I 1 “ H, I2 “ Q: this gives the term P bQ.
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• I 1 “ H, I2 ‰ H, Q: this gives the term P Ô Q1
ą

bQ2
ą
.

• I 1 ‰ H, P , gP P I 1: this gives the term P 1
ą

b P 2
ą

Ô Q.

• I 1 ‰ H, P , gP R I 1, I2 “ Q: this gives the term P 1
ă

b P 2
ă
Q.

• I 1 ‰ H, P , gP R I 1, I2 ‰ H, Q: this gives the term P 1
ă

Ô Q1
ą

b P 2
ă
Q2

ą
.

So H
`
SP

is a Dup-Dend bialgebra.

Remark 5.3. 1. As a consequence, the augmentation ideals H`
SP

, H`
HOP

, H`
SPP

, H`
OF

, H`
HOF

,
H

`
SWNP

and H
`
SPF

are Dup-Dend bialgebras.

2. The rigidity theorem of [6] implies that HSP , HHOP , HSPP , HOF , HHOF , HSWNP and
HSPF are isomorphic to non commutative Connes-Kreimer Hopf algebras of decorated
plane trees, with particular graded sets of decorations. The cardinal of the components of
these graded sets can be computed by manipulations of formal series. For example:

n 1 2 3 4 5 6 7 8

|DSPpnq| 1 1 10 148 3 336 112 376 5 591 196 406 621 996

|DOF pnq| 1 1 7 66 786 11 278 189 391 3 648 711

|DHOF pnq| “ |DSPF pnq| 1 0 1 6 39 284 2 305 20 682

|DSWNPpnq| 1 0 1 4 17 76 353 1 688

|DSPF pnq| 1 0 0 0 0 0 0 0

We obtain sequences A122705 for DOF and A122827 for DHOF in [19].

5.4 Application to FQSym

Let σ P Sn be a permutation (n ě 1). We put:

∆ăpσq “
n´1
ÿ

k“σ´1pnq

σ
pkq
1

b σ
pkq
2
, ∆ąpσq “

σ´1pnq´1
ÿ

k“1

σ
pkq
1

b σ
pkq
2
.

Remark that ∆ă ` ∆ą “ ∆̃.

Example 5.1.

∆ăpp12543qq “ p123q b p21q ` p1243q b p1q, ∆ąpp12543qq “ p1q b p1432q ` p12q b p321q.

Let σ, τ be two permutations of respective degrees k and l, with k, l ě 1. We put:

σ Ô τ “
ÿ

ζPShpk,lq
ζpk`1qěζpσ´1pkqq

pσ b τq ˝ ζ´1.

In other terms, σ Ô τ is the sum of the shufflings of the word representing σ and the word
representing τ shifted by k, such that the letters of τ are all after the greatest letter of σ. In
particular, if σ´1pkq “ k, then σ Ô τ “ σ b τ .

Example 5.2.

123 Ô 12 “ 12345,

132 Ô 12 “ 13245 ` 13425 ` 13452,

312 Ô 12 “ 31245 ` 31425 ` 34125 ` 34152 ` 34512.
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Proposition 5.5. These products and coproducts make FQSym` a Dup-Dend bialgebra. More-
over, Θ : H`

SP
ÝÑ FQSym` is a morphism of Dup-Dend bialgebras.

Proof. We first prove the compatibility of Θ with Ô. Let P and Q be two nonempty special
posets, of respective degrees k and l. We first show:

SPÔQ “
ğ

σPSP , τPSQ

ğ

ζPShpk,lq
ζpk`1qěζpσ´1pkqq

tpσ b τq ˝ ζ´1u.

Ď. Let χ P SPÔQ. There exists a unique pσ, τ, ζq P Σk ˆ Σl ˆ Shpk, lq, such that χ “
pσ b τq ˝ ζ´1. Let us prove that σ P SP . If i ą1 j in P , then i ą1 j in P Ô Q, so:

χ´1piq ě χ´1pjq,

ζ ˝ pσ´1 b τ´1qpiq ě ζ ˝ pσ´1 b τ´1qpjq,

ζ ˝ σ´1piq ě ζ ˝ σ´1pjq,

σ´1piq ě σ´1pjq,

as ζ is increasing on t1, . . . , ku. So σ P SP . Similarly, τ P SQ. Moreover, the element τp1q ` k

belongs to Q in P Ô Q, so τp1q ` k ą1 k in P Ô Q. As a consequence:

χ´1pτp1q ` kq ě χ´1pkq,

ζ ˝ pσ´1 b τ´1qpτp1q ` kq ě ζ ˝ pσ´1 b τ´1qpkq,

ζpk ` 1q ě ζ ˝ σ´1pkq.

Ě. Let σ P SP , τ P SQ and ζ P Shpk, lq, such that ζpk ` 1q ě ζpσ´1pkqq. We put χ “
pσ b τq ˝ ζ´1. Let i, j be two elements of P Ô Q, such that i ą1 j. Three cases can occur:

• i, j are elements of P . Then σ´1piq ě σ´1pjq, so pσ´1 b τ´1qpiq ě pσ´1 b τ´1qpjq, and
finally σ´1piq “ ζ ˝ pσ´1 b τ´1qpiq ě ζ ˝ pσ´1 b τ´1qpjq “ σ´1pjq.

• i, j are elements of Q. The same proof holds.

• i is an element of Q and j is an element of P . Then i ą1 k in P Ô Q. By definition of
P Ô Q, k ą1 j in P , so by the first point σ´1pkq ě σ´1pjq.

Moreover, i` 1 ě k` 1, so σ´1piq ě ζpk` 1q as ζ is increasing on tk` 1, . . . , k` lu. Then:

σ´1piq ě ζpk ` 1q ě ζpσ´1pkqq “ σ´1pkq ě σ´1pjq.

Finally, for any nonempty special posets P and Q of respective degrees k and l:

ΘpP Ô Qq “
ÿ

σPSP , τPSQ

ÿ

ζPShpk,lq
ζpk`1qěζpσ´1pkqq

pσ b τq ˝ ζ´1 “
ÿ

σPSP , τPSQ

σ Ô τ “ ΘpP q Ô ΘpQq.

We now prove the compatibility of Θ and the two coproducts ∆ă and ∆ą. Let P P SPpnq.
As Θ is a morphism of Hopf algebras, there exists a bijection:

$

’

&

’

%

SP ˆ t1, . . . , n´ 1u ÞÝÑ
ğ

I non trivial ideal of P

SP zI ˆ SI

pσ, kq ÞÝÑ
´

σ
pkq
1
, σ

pkq
2

¯

,

where this pair belongs to the term of the union indexed by I “ tσpk ` 1q, . . . , σpnqu. So, if
pσ, kq P SF ˆ t1, . . . , n´ 1u, k ě σ´1pnq if, and only if, n “ gP is not an element of I. So:

pΘbΘq˝∆ăpF q “
ÿ

gP RI

P zIbI
ÿ

σPSP zI

τPSI

σbτ “
ÿ

σPSP

n´1
ÿ

k“σ´1pnq

σ
pkq
1

bσ
pkq
2

“
ÿ

σPSP

∆ăpσq “ ∆̃ ˝ΘpF q.
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Similarly, pΘ b Θq ˝ ∆ą “ ∆ą ˝ Θ.

As Θ|HHOF
ÝÑ FQSym is an isomorphism and H

`
HOF

is a Dup-Dend bialgebra, FQSym`

is also a Dup-Dend bialgebra.

Remark 5.4. 1. It is of course possible to prove directly that FQSym` aDup-Dend bialgebra.

2. A similar structure of Dup-Dend bialgebra structure exists on the Hopf algebra of parking
functions PQSym [18], replacing, for a parking function σ, σ´1pnq by the maximal integer
i such that σpiq is maximal.

6 Dendriform structures on special plane forests

The aim of this section is to prove that the restriction of the pairing to HSPF is nondegenerate
(corollary 6.6). We first recall the classical result:

Lemma 6.1. The restriction of x´,´y to Kr s is nondegenerate if, and only if, the characteristic
of K is zero.

Proof. As the homogeneous components of Kr s are one-dimensional, this restriction is nonde-
generate if, and only if, x n, ny is a non-zero element of K for all n P N. Moreover, it is not
difficult to show that x n, ny “ n!.

6.1 Dendriform coproducts

Notations 6.1. Let P be a plane poset, seen as a special poset. The smallest element for the
total order of P will be denoted by sP .

Proposition 6.2. For any nonempty plane poset P , we put:

∆1
ă

pP q “
ÿ

I non trivial ideal of P
sP RI

P zI b I, ∆1
ą

pP q “
ÿ

I non trivial ideal of P
sP PI

P zI b I.

Then pH`
SPP

,∆1
ă
,∆1

ą
q is a dendriform coalgebra. Moreover, for all x, y P H

`
SPP

:

∆1
ă

pxyq “ x b y ` x1
ă
y b y2

ă
` x1

ă
b x2

ă
y ` xy1 b y2 ` x1

ă
y1 b x2

ă
y2, (4)

∆1
ą

pxyq “ y b x` x1
ą
y b x2

ą
` x1

ą
b x2

ą
y ` y1 b xy2 ` x1

ą
y1 b x2

ą
y2. (5)

Proof. Let us first prove the (2) for all x P H
`
SPP

. It is enough to prove this if x “ P is a
nonempty special poset. We put, as ∆̃ is coassociative, p∆̃bIdq ˝ ∆̃pP q “ pId b ∆̃q ˝ ∆̃pP q “
ř

P p1q b P p2q b P p3q, where P p1q, P p2q, P p3q are subposets of P . Then:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p∆1
ă

b Idq ˝ ∆1
ă

pP q “ pId b ∆̃q ˝ ∆1
ă

pP q “
ÿ

sP PP p1q

P p1q b P p2q b P p3q,

p∆1
ą

b Idq ˝ ∆1
ă

pP q “ pId b ∆1
ă

q ˝ ∆1
ą

pP q “
ÿ

sP PP p2q

P p1q b P p2q b P p3q,

p∆̃bIdq ˝ ∆1
ą

pP q “ pId b ∆1
ą

q ˝ ∆1
ą

pP q “
ÿ

sP PP p3q

P p1q b P p2q b P p3q.

So H
`
SP

is a dendriform coalgebra.

It is enough prove formulas (4) and (5) if x “ P , y “ Q are nonempty plane forests. Let I
be a non trivial ideal of PQ. We put I 1 “ I X P and I2 “ I X Q. As I is non trivial, I 1 and I2

are not simultaneously empty and not simultaneously total.

Let us first compute ∆1
ă

pPQq. We have to consider non trivial ideals I of PQ, such that
sPQ R I. As sPQ “ sP , I 1 ‰ P . So five case are possible.
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• I 1 “ H, I2 “ Q: this gives the term P bQ.

• I 1 “ H, I2 ‰ H, Q: this gives the term PQ1 bQ2.

• I 1 ‰ H, P , I2 “ H: this gives the term P 1
ă
Q b P 2

ă
.

• I 1 ‰ H, P , I2 “ Q: this gives the term P 1
ă

b P 2
ă
Q.

• I 1 ‰ H, P , I2 ‰ H, Q: this gives the term P 1
ă
Q1 b P 2

ă
Q2.

The proof of formula (5) is similar.

Remark 6.1. 1. In other words, pH`
SPP

, .op, p∆1
ą

qop, p∆1
ă

qopq is a codendriform bialgebra in
the sense of [3].

2. H
`
SPF

is clearly stable under both coproducts ∆1
ă

et ∆1
ą
, so pH`

SPF
, .op, p∆1

ą
qop, p∆1

ă
qopq

is a codendriform subcoalgebra of H`
SPP

.

6.2 Dendriform products on special plane forests

From [4], H`
SPF

is the free dendriform algebra generated by . Moreover, for all nonempty plane
forest F , ă F “ B`pF q, the rooted tree obtained by grafting the roots of F on a common root.
It is also proved that pH`

SPF
,ă,ą, ∆̃

op
q is a dendriform Hopf algebra [15], so, for all x, y P H

`
SPF

:

∆̃px ă yq “ xb y ` x ă y1 b y2 ` x1 b x2y ` x1
ă y b x2 ` x1

ă y1 b x2y2, (6)

∆̃px ą yq “ y b x` x ą y1 b y2 ` y1 b xy2 ` x1
ą y b x2 ` x1

ą y1 b x2y2. (7)

Proposition 6.3. For all x, y P H`
SPF

:

∆1
ă

px ă yq “ xb y ` x ă y1 b y2 ` x1
ă

b x2
ă
y ` x1

ă
ă y b x2

ă
` x1

ă
ă y1 b x2

ă
y2, (8)

∆1
ą

px ă yq “ x1
ą

b x2
ą
y ` x1

ą
ă y b x2

ą
` x1

ą
ă y1 b x2

ą
y2, (9)

∆1
ă

px ą yq “ x1
ă

ą y b x2
ă

` x ą y1 b y2 ` x1
ă

ą y1 b x2
ă
y2, (10)

∆1
ą

px ą yq “ y b x` y1 b xy2 ` x1
ą

ą y b x2
ą

` x1
ą

ą y1 b x2
ą
y2. (11)

Proof. For fixed x, y, note that p8q`p10q “ p4q, p9q`p11q “ p5q, p8q`p9q “ p6q, and p10q`p11q “
p7q. As a consequence, for fixed x, y, (8), (9), (10) and (11) are equivalent.

We now prove (8)-(11) for x, y two non empty plane forest, by induction on the degree n of
x. If n “ 1, then x “ . Then:

∆1
ă

px ă yq “ b y `B`py1q b y2 “ xb y ` x ă y1 b y2.

So (8) (hence, (9)-(11)) holds for x “ , as ∆1
ă

pxq “ 0. Let us assume the result at all rank ă n.
Two subcases occur.

• The plane forest x is a tree. Then there exists x1 of degree n´ 1, such that x “ B`px1q “
x ă x1. So x ă y “ p ă x1q ă y “ ă px1yq. So:

∆1
ă

px ă yq “ ∆1
ă

p ă px1yqq

“ b px1yq `B`ppx1yq1q b px1yq2

“ b px1yq ` ă x1 b y ` ă y b x1 ` ă px1
1yq b x2

1 ` ă x1
1 b x2

1y

` ă px1y
1q b y2 ` ă y1 b x1y

2 ` ă px1
1y

1q b x2
1y

2

“ p ă x1 b yq ` p ă px1y
1q b y2q ` p b px1yq ` ă x1

1 b x2
1yq

` p ă y b x1 ` ă px1
1yq b x2

1q ` p ă y1 b x1y
2 ` ă px1

1y
1q b x2

1y
2q

“ x b y ` x ă y1 b y2 ` x1
ă

b x2
1y ` x1

ă
ă y b x2

ă
` x1

ă
ă y1 b x2

ă
y2.
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• The plane forest x is not a tree. Then it can be written as x “ x1x2, such that the induction
hypothesis holds for x1 and x2. Hence:

x ă y “ px1 ă x2q ă y ` px1 ą x2q ă y “ x1 ă px2yq ` x1 ą px2 ă yq.

Applying (8) and (10) for x1 (induction hypothesis), then (4) for x2, then arranging the
terms, gives (8) for x.

So the induction hypothesis holds for x in both cases.

Remark 6.2. In other words, pH`
SPF

,ąop,ăop, p∆1
ą

qop, p∆1
ă

qopq is a bidendriform bialgebra in the
sense of [5]. By the bidendriform rigidity theorem, it is a free dendriform algebra, and a cofree
dendriform coalgebra. As a direct consequence:

Lemma 6.4. As a dendriform algebra, H
`
SPF

is freely generated by . Moreover, the space
PrimtotpH

`
SPF

q “ Kerp∆1
ă

q X Kerp∆1
ą

q is one-dimensional, generated by .

Lemma 6.5. For all x, y, z P H
`
SPF

:

xx ă y, zy “ xxb y,∆1
ă

pyqy and xx ą y, zy “ xxb y,∆1
ą

pyqy.

Proof. As x´,´y is a Hopf pairing, it is enough to prove one of these two formulas. Moreover,
it is enough to prove it for x, y, z three non empty plane forests. We prove the first one, by
induction on the degree n of x. If n “ 1, then x “ and x ă y “ B`pyq. Let σ P SpB`pyq, zq.
As 1 is the root of B`pyq, for all j, 1 ďh j in B`pyq. As σ P SpB`pyq, zq, σp1q ď σpiq for all i,
so σp1q “ 1. Let us denote by z1 the plane forest obtained by deleting the vertex 1 of z; then
SpB`pyq, zq is in bijection by Spy, z1q. Moreover, by definition of ∆1

ă
:

∆1
ă

pzq “ b z1 ` terms z1 b z2, z1 homogeneous of degree ě 2.

So, by homogeneity of the pairing:

xxb y,∆1
ă

pzqy “ x , yxy, z1y ` 0 “ |Spy, z1q| “ |SpB`pyq, zq| “ xx ă y, zy.

Let us assume the result at all rank ă n. Two subcases occur.

• The plane forest x is a tree. Let us put x “ B`px1q “ ă x1. Using the result at rank 1:

xx ă y, zy “ x ă px1yq, zy

“ x b x1y,∆
1
ă

pzqy

“ x b x1 b y, pId b ∆̃q ˝ ∆1
ă

pzqy

“ x b x1 b y, p∆1
ă

b Idq ˝ ∆1
ă

pzqy

“ x ă x1,∆
1
ă

pzqy.

• The plane forest x is not a tree. Then it can be written as x “ x1x2, such that the induction
hypothesis holds for x1 and x2. Hence:

xpx1x2q ă y, zy “ xx1 ă px2yq, zy ` xx1 ą px2 ă yq, zy

“ xx1 b x2 b y, pId b ∆̃q ˝ ∆1
ă

pzqy ` xx1 b x2 b y, pId b ∆1
ă

q ˝ ∆1
ą

pzqy

“ xx1 b x2 b y, p∆1
ă

b Idq ˝ ∆1
ă

pzqy ` xx1 b x2 b y, p∆1
ą

b Idq ˝ ∆1
ă

pzqy

“ xx1 ă x2 b y,∆1
ă

pzqy ` xx1 ą x2 b y,∆1
ă

pzqy

“ xx1x2 b y,∆1
ă

pzqy.

So the induction hypothesis holds for x in both cases.

Corollary 6.6. The restriction of the pairing x´,´y to HSPF is nondegenerate.

Proof. Let us assume it is degenerate. By lemma 6.5, its kernel I is a non trivial dendriform
biideal of H`

SPF
. Any non-zero element of I of minimal degree is then in PrimtotpH

`
SPF

q, as I
is a dendriform coideal. By lemma 6.4, we obtain that P I: absurd, as x , y “ 1 ‰ 0.
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7 Isometries between plane and special plane posets

All the pairs of isomorphic Hopf algebras HPP and HSPP , HWNP and HSWNP , HPF and
HSPF have Hopf pairings. The isomorphism between these Hopf algebras are not isometries: for

example, x , y “ 0 whereas x 1

2

, 1

2

y “ 1. Our aim in this section is to answer the question if
there is an isometric Hopf isomorphism between them. The answer is immediately negative for
HWNP and HSWNP , as the first one is nondegenerate whereas the second is degenerate.

7.1 Isometric Hopf isomorphisms between free Hopf algebras

Proposition 7.1. Let us assume that the characteristic of the base field is not 2. Let H and
H 1 be two graded, connected Hopf algebras, both with a homogeneous, symmetric, nondegenerate
Hopf pairing, and both free. The following assertions are equivalent:

1. There exists a homogeneous, isometric Hopf algebra isomorphism between H and H 1.

2. For all n ě 0, the spaces Hn and H 1
n are isometric.

Proof. 1 ùñ 2. Obvious.

2 ùñ 1. Let us fix for all n P N
˚ a complement Vn of pH`2qn in Hn, where H` is the aug-

mentation ideal of H. As H is free, the direct sum V of the Vn’s freely generates H. Moreover,
any subspace of V generates a free subalgebra of H. In particular, the subalgebra Hxny of H
generated by V1 ‘ . . .‘Vn is free. Moreover, it contains H0 ‘ . . .‘Hn, so for all v P V0 ‘ . . .‘Vn,
∆pvq P Hxny bHxny. So Hxny is a Hopf subalgebra of H. Finally, it is the algebra generated by
H0 ‘ . . . ‘Hn, so does not depend of the choice of V . We similarly define H 1

xny for all n.

We are going to construct for all n ě 0 a Hopf algebra isomorphism φn : Hxny ÝÑ H 1
xny such

that:

1. φn is homogeneous of degree 0.

2. For all x, y P Hxny, xφnpxq, φnpyqy “ xx, yy.

3. φn restricted to Hxn´1y is φn´1 if n ě 1.

4. For all i ď n, H 1
i “ pH 1`2qi ‘ φnpViq.

As Hx0y “ H 1
x0y “ K, we define φ0 by φ0p1q “ 1. Let us assume that φn´1 is defined. Then

Hn “ pH`2qn ‘ Vn “ pHxn´1yqn ‘ Vn. By the induction hypothesis, φn´1 induces an isometry
between pHxn´1yqn and pH 1

xn´1yqn “ pH 1`2qn. As Hn and H 1
n are nondegenerate and isometric,

by Witt extension theorem, it can be extended into an isometry φ̃n´1 : Hn ÝÑ H 1
n. As Hxny

is freely generated by V0 ‘ . . . ‘ Vn, we can define an algebra morphism φn : Hxny ÝÑ H 1
xny by

φnpvq “ φn´1pvq if v P Vi, i ď n ´ 1 and φnpvq “ φ̃n´1pvq if v P Vn. This algebra morphism
immediately satisfies the points 3 and 4 of the induction, by construction of φ̃n´1, and also
extends φ̃n´1. Moreover, by the fourth point, φnpV1 ‘ . . . ‘ Vnq freely generated H 1

xny, so φn is

an algebra isomorphism from Hxny to H 1
xny.

Let us prove that φn is a Hopf algebra isomorphism. Let x P Hk, k ď n. For all y P Hi,
z P Hj, i ` j “ k, as φn extends both φn´1 and φ̃n´1, its restriction in all degree ď n is an
isometry, so:

x∆ ˝ φnpxq, φnpyq b φnpzqy “ xφnpxq, φnpyqφnpzqy

“ xφnpxq, φnpyzqy

“ xx, yzy

“ x∆pxq, y b zy

“ xpφn b φnq ˝ ∆pxq, φnpyq b φnpzqy.
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As φn is surjective in degree ď n, and by homogeneity of the pairing of H 1, we deduce that
pφn b φnq ˝ ∆pxq ´ ∆ ˝ φnpxq P pH 1 b H 1qK “ p0q, as the pairing of H 1 is nondegenerate. As
H1 ‘ . . . ‘Hn generates Hxny, φn is a Hopf algebra morphism.

Finally, let us prove the second point of the induction. By homogeneity of the pairings of
H and H 1, it is enough to prove it for x, y homogeneous of the same degree k. We proceed by
induction on k. If k ď n, we already noticed that φn is an isometry in degree k. Let us assume
that the result is true at all rank ă k, with k ą n. As pHxnyqk “ ppHxnyq`2qk, we can assume
that x “ x1x2, with x1, x2 homogeneous of degree ă k. Then, using the induction hypothesis on
x1 and x2:

xφnpxq, φnpyqy “ xφnpx1qφnpx2q, φnpyqy

“ xφnpx1q b φnpx2q,∆ ˝ φnpyqy

“ xφnpx1q b φnpx2q, pφn b φnq ˝ ∆pyqy

“ xx1 b x2,∆pyqy

“ xx, yy.

Conclusion. We define φ : H ÝÑ H 1 by φpxq “ φnpxq for all x P Hxny. By the third
point of the induction, this does not depend of the choice of n. Then φ is clearly an isometric,
homogeneous Hopf algebra isomorphism.

We can improve this result, in the following sense:

Proposition 7.2. Let us assume that the characteristic of the base field is not 2. Let H and
H 1 be two graded, connected Hopf algebras, both with a homogeneous, symmetric, nondegenerate
Hopf pairing, and both free. Let V and V 1 be subspaces of respectively H and H 1, W and W 1

graded subspaces of respectively V and V 1 generating Hopf subalgebras h and h1 of H and H 1.
We assume that h is a non isotropic subspace of H. The following assertions are equivalent:

1. There exists a homogeneous, isometric Hopf algebra isomorphism φ between H and H 1,
such that φphq “ h1.

2. For all n ě 0, the spaces Hn and H 1
n are isometric and the spaces hn and h1

n are isometric.

Proof. 1 ùñ 2. Obvious.

2 ùñ 1. For all n ě 1, let us choose a complement Un of Wn in Vn.
By proposition 7.1, there exists an isometric, homogeneous Hopf algebra isomorphism ψ :

h ÝÑ h1. Let us construct inductively a Hopf algebra isomorphism φn : Hxny ÝÑ H 1
xny, isometric,

such that:

1. φn is homogeneous of degree 0.

2. For all x, y P Hxny, xφnpxq, φnpyqy “ xx, yy.

3. φn restricted to Hxn´1y is φn´1 if n ě 1.

4. φnpxq “ ψpxq for all x P hxny.

5. For all i ď n, H 1
i “ pH 1`2qi ‘ ψpWiq ‘ φnpUiq.

As Hx0y “ H 1
x0y “ K, we define φ0 by φ0p1q “ 1. Let us assume that φn´1 is defined. Then

Hn “ pH`2qn ‘ Wn ‘ Un “ pHxn´1yqn ‘ Wn ‘ Un. By the induction hypothesis, φn´1 and ψ

induces an isometry between pHxn´1yqn ‘ Wn and pH 1
xn´1yqn ‘ W 1

n “ pH 1`2qn ‘ W 1
n. As Hn

and H 1
n are nondegenerate and isometric, by the extension theorem of Witt, it can be extended

into an isometry φ̃n´1 : Hn ÝÑ H 1
n. As Hxnyn is freely generated by V0 ‘ . . . ‘ Vn, we can

define an algebra morphism φn : Hxny ÝÑ H 1
xny by φnpvq “ φn´1pvq if v P Vi, i ď n ´ 1 and

φnpvq “ φ̃n´1pvq if v P Vn. This morphisms clearly satisfy the fourth point of the definition. The
end of the proof is similar to the proof of proposition 7.1.
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We shall apply these propositions with H “ HPP , H 1 “ HSPP , V being the subspace
generated by plane posets and V 1 being the subspace generated by special plane posets, W the
subspace generated by plane trees and W 1 the subspace generated by special plane trees. We
obtain the following results:

Lemma 7.3. 1. The following assertions are equivalent:

(a) There exists a homogeneous, isometric Hopf algebra isomorphism between HPP and
HSPP .

(b) For all n ě 1, pHPPqn and pHSPPqn are isometric.

2. The following assertions are equivalent:

(a) There exists a homogeneous, isometric Hopf algebra isomorphism φ between HPF and
HSPF .

(b) For all n ě 1, pHPF qn and pHSPF qn are isometric.

3. The following assertions are equivalent:

(a) There exists a homogeneous, isometric Hopf algebra isomorphism φ between HPP and
HSPP , such that φpHSPF q “ HSPF .

(b) For all n ě 1, pHPPqn and pHSPPqn, pHPF qn and pHSPFqn are isometric.

In particular, if K is an algebraically closed field of characteristic ‰ 2, two nondegenerate
spaces are isometric, if, and only if, they have the same dimension. Hence, conditions (b) of
Lemma 7.3 are all satisfied.

Proposition 7.4. If K is an algebraically closed field of characteristic ‰ 2, there exists a homo-
geneous, isometric Hopf algebra isomorphism φ between HPP and HSPP , such that φpHSPF q “
HSPF .

7.2 Existence of an isometry between plane and special plane posets

Let us precise the condition on the field for HPP and HSPP to be isometric:

Theorem 7.5. The following assertions are equivalent:

1. There exists a homogeneous, isometric Hopf algebra isomorphism between HPP and HSPP .

2. The characteristic of the base field K is not 2 and there exists i P K such that i2 “ ´1.

Proof. By lemma 7.3, the question is essentially to know if pHPPqn and pHSPPqn are isometric.
More precisely, we are going to prove that the following assertions are equivalent:

1. For all n ě 1, pHPPqn and pHSPPqn are isometric.

2. For all n ě 1, pHPPqn and pHSPPqn have orthonormal bases.

3. The characteristic of the base field K is not 2 and there exists i P K such that i2 “ ´1.

This will immediately imply theorem 7.5. Obviously, 2 ùñ 1, as pHPPqn and pHSPPqn have the
same dimension.

1 ùñ 3. We choose n “ 2. In the basis p , q of pHPPq2 “ pHWNPq2, the matrix of the

pairing is

ˆ

0 1

1 2

˙

. In the basis p 1

2

, 1 2q of pHSPPq2 “ pHSWNPq2, the matrix of the pairing

is

ˆ

1 1

1 2

˙

. Considering the determinants of both matrices, we obtain that 1 and ´1 differ
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multiplicatively from a square of K, so ´1 is a square of K. For all x “ a ` b P pHPPq2,
xx, xy “ 2pab ` b2q. As pHPPq2 is isometric with pHSPPq2, there exists x P pHPPq2, such that
xx, xy “ 1. As a consequence, charpKq ‰ 2.

3 ùñ 2. As HSPP is isometric to FQSym, it is equivalent to prove that both HPP and
FQSym have an orthonormal basis. Let us fix V “ pHSPPqn or pFQSymqn for a given n. Then
V has a basis peiqiPI , with the following properties: there exists a partial order Î on I and an
involution ι : I ÝÑ I, such that for any i, j P I,

xei, ejy ‰ 0 ùñ i Î ιpjq.

Moreover, xei, eιpiqy “ 1. For FQSym, any partial order Î on permutations is suitable, with
ιpσq “ σ´1. For HSPP , this is Lemma 35 of [8]. Let us put I 1 “ ti P I, ιpiq “ iu and I2 “ IzI 1.

• Let i, j P I 1. If xei, ejy ‰ 0, then i Î ιpjq “ j; by symmetry, xej , eiy ‰ 0, so j Î ιpiq “ i.
As Î is an order, i “ j.

• Let i P I 1 and j P I2. If xei, ejy ‰ 0, then i Î ιpjq. By symmetry, j Î ιpiq “ i, so
j Î i Î ιpjq.

Hence, considering a convenient total extension of Î, in the basis peiqiPI the matrix of the pairing
has the form

M “

¨

˝

˚ ˚ A

˚ Il 0

AT 0 0

˛

‚,

where A is antidiagonal, that is to say has the form:

A “

¨

˚

˚

˚

˚

˝

˚ . . . ˚ 1
... . .

.
. .
.

0

˚ . .
.

. .
. ...

1 0 . . . 0

˛

‹

‹

‹

‹

‚

.

First step. Let us assume that l “ 0, that is to say M is antidiagonal. Let us prove that
there exists a basis B of V such that the matrix of the pairing in this basis is

Jp “

¨

˚

˚

˚

˚

˝

0 . . . 0 1
... . .

.
. .
.

0

0 . .
.

. .
. ...

1 0 . . . 0

˛

‹

‹

‹

‹

‚

.

We proceed on the dimension p of V . If p “ 0 or 1, there is nothing to prove. Otherwise,
applying the result to V 1 “ V ectpe2, . . . , ep´1q (which is orthogonal to ep), we can assume that

M2ďi,jďp´1 “ Jp´2.

For any 1 ď i ď p, let us put e1
i “ ei ´ λiep, with:

λi “

$

’

’

&

’

’

%

1

2
xe1, e1y if i “ 1,

xei, e1y if 2 ď i ď p´ 1,

0 if i “ p.

Then pe1
1
, . . . , e1

pq is a basis of V . As xep, epy “ 0, for any i, j:

xe1
i, e

1
jy “ xei, ejy ´ λixei, epy ´ λjxej , epy.

Consequently:
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• If 2 ď i, j ď p´ 1, xe1
i, e

1
jy “ xei, ejy.

• If i “ 1 and 1 ď j ď p´ 1, by choice of λi, xe1
i, e

1
jy “ 0.

• If 1 ď i ď p´ 1 and j “ p, then xe1
i, e

1
py “ xei, epy “ δ1,p.

So the matrix of the pairing is in this basis is Jp.

Second step. We apply the first step to V ectpei, i P I2q. Up to a change of basis of this
subspace, we can assume that

M “

¨

˝

0 B Jk
BT Il 0

Jk 0 0

˛

‚

with k, l ě 0 and B P Mk,lpKq. Let us consider the matrix

P “

¨

˝

Ik 0 0

0 Il 0

0 ´J´1

k B Ik

˛

‚.

This is invertible, and:

P TMP “

¨

˝

0 0 Jk
0 Il 0

Jk 0 0

˛

‚.

Hence, up to a permutation of the vectors of the basis formed by the column of P , there exists
a basis pe1

1
, . . . , e1

pq of V , such that the matrix of the pairing in this basis is diagonal by blocks,

with diagonal blocks equal to p1q or

ˆ

0 1

1 0

˙

. Now, observe that, denoting by i one of the

square root of ´1 in K:

ˆ

i
2

´i
1

2
1

˙ ˆ

0 1

1 0

˙ ˆ

i
2

1

2

´i 1

˙

“

ˆ

1 0

0 1

˙

.

So V has an orthogonal basis.

As a conclusion, pHPPqn and pHSPPqn have an orthogonal basis.

Remark 7.1. The same proof can be applied to HPF and HWNP : if Condition 2 of Theorem 7.5
is satisfied, then for any n ě 1, pHPF qn and pHWNPqn have orthonormal bases. We conjecture
that if Condition 2 of Theorem 7.5 is satisfied, then HSPF has also an orthonormal basis, giving
Condition 3.(b) of Lemma 7.3.

Example 7.1. Let i be one of the two square roots of ´1 in K. We define an isometry from
pHPPqx2y to pHSPPqx2y by:

$

&

%

φp q “ 1 ,

φp q “ i 1

2

`
1 ` i

2
1 2 .

Using direct computations, it is possible to extend φ from pHPPqx3y to pHSPPqx3y sending
pHWNPqx3y to pHSWNPqx3y in four families of isometries parametrized by an element x P K

by:
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1.
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

φ1p q “ 1

2

3

` pix ´ iq 1

2

3 ` p´1 ´ ixq 1 2

3

`
1 ` i

2
1 2 3 ,

φ1p q “ p´1 ´ i ` 3xq 1

2

3

´ i 1

32

`
3ix2 ´ 2ix

2
1

2

3

`
´3ix2 ` p´3 ` iqx ` 2 ` i

2
1 2

3

` x 1 2 3 ,

φ1p q “ p´3x` 2 ` 2iq 1

2

3

´ i
3

1 2 `
3ix2 ´ 2ix

2
1

2

3

`
3ix2 ` p6 ´ 4iqx ´ 4 ´ 2i

2
1 2

3

` p´x ` 1 ` iq 1 2 3 .

2.
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

φ2p q “ 1

2

3

` pix ´ iq 1

2

3 ` p´1 ´ ixq 1 2

3

`
1 ` i

2
1 2 3 ,

φ2p q “ p´1 ´ i ` 3xq 1

2

3

´ i 1

32

`
3ix2 ´ 2ix

2
1

2

3

`
´3ix2 ` p´3 ` iqx ` 2 ` i

2
1 2

3

` x 1 2 3 ,

φ2p q “ p´3x` 2q 1

2

3

` 2i 1

32

` i
3

1 2 `
´3ix2 ` 4ix ´ 6i

2
1

2

3

`
3ix2 ` p6 ´ 4iqx ´ 4 ´ 2i

2
1 2

3

` p´x ` 1 ` iq 1 2 3 .

3. If the characteristic of the base field is not 2, nor 3:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

φ3p q “ ´ 1

2

3

`
´3ix´ i

3
1

2

3 `
3ix ´ 2i ` 3

3
1 2

3

`
3i ´ 1

6
1 2 3 ,

φ3p q “ p´1 ´ i ` 3xq 1

2

3

´ i 1

32

`
3ix2 ´ 2ix

2
1

2

3

`
´3ix2 ` p´3 ` iqx` 2 ` i

2
1 2

3

` x 1 2 3 ,

φ3p q “ p´3x ` 2iq 1

2

3

´ i
3

1 2 `
´9ix2 ´ 2i

6
1

2

3

`
9ix2 ` 18x ´ 10i

6
1 2

3

`
´3x` 3i ` 1

3
1 2 3 .

4. If the characteristic of the base field is neither 2, nor 3:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

φ4p q “ ´ 1

2

3

`
´3ix´ i

3
1

2

3 `
3ix ´ 2i ` 3

3
1 2

3

`
3i ´ 1

6
1 2 3 ,

φ4p q “ p´1 ´ i ` 3xq 1

2

3

´ i 1

32

`
3ix2 ´ 2ix

2
1

2

3

`
´3ix2 ` p´3 ` iqx` 2 ` i

2
1 2

3

` x 1 2 3 ,

φ4p q “ ´3x 1

2

3

` 2i 1

32

` i
3

1 2 `
´9ix2 ´ 14i

6
1

2

3

`
9ix2 ` 18x ´ 10i

6
1 2

3

`
´3x` 3i ` 1

3
1 2 3 .

33



8 Conclusion

We finally obtain the following commuting diagram:
❴④

✙ ✤
❀❨

✤
❀
❨❴ ④

✙HDP

HSP

7 W

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

Υ

�� ��✿
✿

✿
✿

✿
✿

✿
✿

✿
Θ // // FQSym

HOF

3 S

ff▲▲▲▲▲▲▲▲▲▲

HHOP

?�

OO

_^]\XYZ[HHOF

� ?

OO

? _oo

„
Θ

AA

WVUTPQRSHPP
„ //❴❴❴❴❴❴❴❴❴❴

?�

OO

WVUTPQRSHSPP

Υ

„

::t
tt

tt
t?�

OO
„

Θ

NN

_^]\XYZ[HWNP
„ //❴❴❴❴❴❴❴❴❴

?�

OO

HSWNP

?�

OO

WVUTPQRSHPF
„ //❴❴❴R2

dd■■■■■■■■■■ WVUTPQRSHSPF

?�

OO

� 4

✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎

GG✎✎✎✎✎✎✎✎

❴④
✙ ✤

❀❨
✤
❀
❨❴ ④

✙Kr s

� ?

OO

�,

::✈✈✈✈✈✈✈✈✈✈✈

On the first column, algebras stable under  and ι (see definitions in [8]). On the third and
fourth columns, algebras stable under Ô, ∆ă and ∆ą. The algebras such that the restriction of
the pairing x´,´y is nondegenerate are circled. If the circle is dotted, the result is true if, and
only if, the characteristic of the base field is zero. The three horizontal dotted lines correspond
to the isomorphisms sending pP,ďh,ďrq to pP,ďh,ďq. Moreover, it is not difficult to show that
the intersection of two Hopf algebras of this diagram is given by the smallest common ancestor
in the oriented graph formed by the black edges of this diagram. This lies on the fact the only
plane posets pP,ďh,ďrq which are special (recall that this means that ďr is total) are the double
posets n, for all n ě 0.

All the arrows of the diagram are isometries, at the exception of the three horizontal dotted
lines. There exists isometric Hopf algebra isomorphisms between HPP and HSPP , if, and only
if, the characteristic of the base field K is not 2 and ´1 is a square of K.

If the characteristic of K is zero, all these Hopf algebras are free, cofree, and self-dual.

References

[1] Dieter Blessenohl and Manfred Schocker, Noncommutative character theory of the symmetric
group, Imperial College Press, London, 2005.

[2] Gérard Duchamp, Florent Hivert, and Jean-Yves Thibon, Noncommutative symmetric func-
tions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput.
12 (2002), no. 5, 671–717.

34



[3] Loïc Foissy, Les algèbres de Hopf des arbres enracinés décorés. I, Bull. Sci. Math. 126 (2002),
no. 3, 193–239, arXiv:math/0105212.

[4] , Les algèbres de Hopf des arbres enracinés décorés. II, Bull. Sci. Math. 126 (2002),
no. 4, 249–288, arXiv:math/0105212.

[5] , Bidendriform bialgebras, trees, and free quasi-symmetric functions, J. Pure Appl.
Algebra 209 (2007), no. 2, 439–459, arXiv:math/0505207.

[6] , Ordered forests and parking functions, Int. Math. Res. Notices (2011),
doi:10.1093/imrn/rnr061, arXiv:1007.1547.

[7] , Free and cofree Hopf algebras, J. Pure Appl. Algebra 216 (2012), no. 2, 480–494,
arXiv:1010.5402.

[8] , Algebraic structures on double and plane posets, Journal Algebraic Combin. 37

(2013), no. 1, 39–66, arXiv:1101.5231.

[9] Loïc Foissy and Jérémie Unterberger, Ordered forests, permutations, and iterated integrals,
Int. Math. Res. Not. IMRN (2013), no. 4, 846–885.

[10] Ralf Holtkamp, Comparison of Hopf algebras on trees, Arch. Math. (Basel) 80 (2003), no. 4,
368–383.

[11] Jean-Louis Loday, Dialgebras, Dialgebras and related operads, Lecture Notes in Math., vol.
1763, Springer, Berlin, 2001, arXiv:math/0102053, pp. 7–66.

[12] , Generalized bialgebras and triples of operads, Astérisque (2008), no. 320, x+116.

[13] Jean-Louis Loday and María Ronco, Hopf algebra of the planar binary trees, Adv. Math.
139 (1998), no. 2, 293–309.

[14] , On the structure of cofree Hopf algebras, J. Reine Angew. Math. 592 (2006), 123–
155, arXiv:math/0405330.

[15] , Combinatorial Hopf algebras, Quanta of maths, Clay Math. Proc., vol. 11, Amer.
Math. Soc., Providence, RI, 2010, arXiv:0810.0435, pp. 347–383.

[16] Claudia Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions
and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967–982.

[17] , A self paired Hopf algebra on double posets and a Littlewood-Richardson rule, J.
Combin. Theory Ser. A 118 (2011), no. 4, 1322–1333, arXiv:0905.3508.

[18] Jean-Christophe Novelli and Jean-Yves Thibon, Hopf algebras and dendriform structures
arising from parking functions, Fund. Math. 193 (2007), no. 3, 189–241.

[19] N. J. A Sloane, On-line encyclopedia of integer sequences, https://oeis.org/.

[20] Richard P. Stanley, Enumerative combinatorics. Vol. I, The Wadsworth & Brooks/Cole
Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey,
CA, 1986, With a foreword by Gian-Carlo Rota.

[21] William T. Trotter, Combinatorics and partially ordered sets, Johns Hopkins Series in the
Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1992, Dimension
theory.

35

https://oeis.org/

	Reminders on double posets
	Several families of double posets
	Products and coproducts of double posets
	Hopf pairing on double posets

	Several families of posets
	Special posets
	Heap-ordered posets
	Pairing on special posets

	Links with permutations
	Plane poset associated to a permutation
	Permutation associated to a plane poset

	A morphism to FQSym
	Reminders on FQSym
	Linear extensions
	Restriction to special plane posets
	Restriction to heap-ordered forests

	More algebraic structures on special posets
	Recalls on Dup-Dend bialgebras
	Another product on special posets
	Dendriform coproducts on special posets
	Application to FQSym

	Dendriform structures on special plane forests
	Dendriform coproducts
	Dendriform products on special plane forests

	Isometries between plane and special plane posets
	Isometric Hopf isomorphisms between free Hopf algebras
	Existence of an isometry between plane and special plane posets

	Conclusion
	References

