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Abstract

We study the self-dual Hopf algebra Hsp of special posets introduced by Malvenuto
and Reutenauer and the Hopf algebra morphism from Hsp to the Hopf algebra of free
quasi-symmetric functions FQSym given by linear extensions. In particular, we construct
two Hopf subalgebras both isomorphic to FQSym; the first one is based on plane posets,
the second one on heap-ordered forests. An explicit isomorphism between these two Hopf
subalgebras is also defined, with the help of two combinatorial transformations on special
posets. The restriction of the Hopf pairing of Hsp to these Hopf subalgebras and others is
also studied, as well as certain isometries between them. These problems are solved using
duplicial and dendriform structures.

Keywords. Special posets; permutations; self-dual Hopf algebras; duplicial algebras;
driform algebras.
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Introduction

The Hopf algebra of double posets is introduced in [I7]. Recall that a double poset is a finite set
with two partial orders; the set of isoclasses of double posets is given a structure of monoid, with
a product called composition (definition [[4]). The algebra of this monoid is given a coassociative
coproduct, with the help of the notion of ideal of a double poset. We then obtain a graded,
connected Hopf algebra, non commutative and non cocommutative. This Hopf algebra Hpp is
self-dual: it has a nondegenerate Hopf pairing {(—, —), such that the pairing of two double posets
is given by the number of pictures between these double posets (definition [L.6]); see [§] for more
details on the nondegeneracy of this pairing.

Other algebraic structures are constructed on Hpp in [8]. In particular, a second product is
defined on Hpp, making it a free 2-As Hopf algebra [14]. As a consequence, this object is closely
related to operads and the theory of combinatorial Hopf algebras [I5]. In particular, it contains
the free 2-As algebra on one generator: this is the Hopf subalgebra Hyyap of WN posets, see
definition Another interesting Hopf subalgebra Hpp is given by plane posets, that is to say
double poset with a particular condition of (in)compatibility between the two orders (definition

7).

We investigate in the present text the algebraic properties of the family of special posets, that
is to say double posets such that the second order is total [I7]. They generate a Hopf subalgebra
of Hpp denoted by Hsp. For example, as explained in [§], the two partial orders of a plane
poset allow to define a third, total order, so plane posets can also be considered as special posets:
this defines an injective morphism of Hopf algebras from Hpp to Hsp. Its image is denoted by
Hspp. Another interesting Hopf subalgebra of Hgp is generated by the set of ordered forests; it
is the Hopf algebra Hor used in [6, 9]. A special poset is heap-ordered if its second order (recall
it is total) is a linear extension of the first one; these objects define another Hopf subalgebra
Huop of Hsp. Taking the intersections, we finally obtain a commutative diagram of six Hopf
algebras:

Hspp—= Huop— Hsp

oo )

Hspr—— Hnor—— Hor

The Hopf algebra Hyor of heap-ordered forests is used in [9]; Hspr is generated by the set
of plane forests, considered as special posets, and is isomorphic to the coopposite of the non



commutative Connes-Kreimer Hopf algebra of plane forests Hspx [3l 4] 10].

A Hopf algebra morphism ©, from Hgsp to the Malvenuto-Reutenauer Hopf algebra of per-
mutations FQSym [I6], also known as the Hopf algebra of free quasi-symmetric functions [2], is
defined in [I7]. This construction uses the linear extensions of the first order of a special poset.
The morphism © is surjective and respects the Hopf pairings defined on Hsp and FQSym.
Moreover, its restrictions to Hspp and Hypr are isometric Hopf algebra isomorphisms (corol-
lary [L5)). In the particular case of Hspp, this is proved using, first a bijection from the set of
special plane posets of order n to the n-th symmetric group &,, for all n > 0, then intervals in &,
for the right weak Bruhat order, see proposition[4.4l As a consequence, we obtain a commutative

diagram:
HSP(P\\\

Hsp o FQSym

S

Huor

We then complete this diagram with a Hopf algebra morphism YT : Hsp — HuorF, combinato-
rially defined (theorem [L]]), such that its restriction to Hspp gives the following commutative
diagram:

T Hsp —>= FQSym

S

Huor

The definition of T uses two transformations of special posets, summarized by — i = Ii

Kk . ie
and i/Ni —> livi — Vi+ L

In order to prove the cofreeness of Hspr, Hsp, Huop, Hspp, Hor and Hsywap, we in-
troduce a new product \ on Hsp making it a duplicial algebra [12], and two non associative
coproducts A_ and A, making it a dendriform coalgebra [11],13], see paragraph 5.1l These two
complementary structures are compatible, and Hsp is a Dup-Dend bialgebra [6]. By the theo-
rem of rigidity for Dup-Dend bialgebras, all these objects are isomorphic to non-commutative
Connes-Kreimer Hopf algebras of decorated plane forests [3] [4, [10] (note that this result was ob-
vious for Hspr), so are free and cofree. Moreover, it is possible to define a Dup-Dend structure
on FQSym in such a way that the Hopf algebra morphism © becomes a morphism of Dup-Dend
bialgebras. Dendriform structures are also used to show that the restriction of the pairing of
Hpp on Hspr is nondegenerate, with the help of bidendriform bialgebras [5]: in fact, the pairing
of Hsp restricted to Hspr respects a certain bidendriform structure.

In the seventh section, we construct an isometric Hopf algebra morphism between Hpp and
Hspp. These two Hopf algebras are clearly isomorphic, with a very easily defined isomorphism,
which is not an isometry. We prove that these two objects are isometric as Hopf algebras up
to two conditions on the base field: it should be not of characteristic two and should contain a
square root of —1. This is done using the freeness and cofreeness of Hpp and manipulations of
symmetric matrices.

This text is organized as follows. The first section recalls the concepts and notations on the
Hopf algebra of double posets Hpp. The second section introduces special posets, heap-ordered
posets, special plane posets and the other families of double posets here studied. The bijection



between the set of special plane posets of order n and &,, is defined in the third section. The
properties of the morphism O from Hsp to FQSym are investigated in the next section. In
particular, it is proved that its restrictions to Hspp or Hyor are isomorphisms, and the induced
isomorphism from Hspp to Hyor is combinatorially defined. The fifth and sixth sections intro-
duce duplicial, dendriform and bidendriform structures and gives applications of these algebraic
objects on our families of posets. The problem of finding an isometry from Hspp to Hpp is
studied in the seventh section; all the obtained results are summarized up in the conclusion.

Acknowledgements. The author warmly thanks Darij Grinberg for pointing an error in
the preceding version of the paper, on a lemma on symmetric integral matrices. The proofs of
the last section have been changed accordingly.

Notations 0.1. 1. K is a commutative field. Any algebra, coalgebra, Hopf algebra. .. of the
present text will be taken over K.

2. It H = (H,m,1,A &, S) is a Hopf algebra, we shall denote by H™ its augmentation ideal,
that is to say Ker(g). This ideal H has a coassociative, non counitary coproduct A,
defined by A(z) = A(z) —z®1—1Qx for all x € H™.

3. For all n = 1, &, is the n-th symmetric group. Any element ¢ of &,, will be represented
by the word o(1)...0(n). By convention, & is a group with a single element, denoted by
the empty word 1.

1 Reminders on double posets

1.1 Several families of double posets

Definition 1.1. [I7]. A double poset is a triple (P, <1,<3), where P is a finite set and <;, <y
are two partial orders on P. The set of isoclasses of double posets will be denoted by DP. The
set of isoclasses of double posets of cardinality n will be denoted by DP(n) for all n € N.

Remark 1.1. Let P € DP. Then any subset () < P inherits also two partial orders by restriction,
so is also a double poset: we shall speak in this way of double subposets.

Definition 1.2. A plane poset is a double poset (P, <p,<,) such that for all z,y € P with
x # y, x and y are comparable for <y, if, and only if, x and y are not comparable for <,. The
set of isoclasses of plane posets will be denoted by PP. For all n € N, the set of isoclasses of
plane posets of cardinality n will be denoted by PP (n).

If (P, <p, <,) is a plane poset, we shall represent the Hasse graph of (P, <j,) such that = <, y
in P, if and only if y is more on the right than z in the graph. Because of the incompatibility
condition between the two orders, this is a faithful representation of plane posets. For example,
let us consider the two following Hasse graphs:

a b b a

N

c d d c

The first one represents the plane poset (P, <p,<,) such that:
o {(z.y) e P? |z <py} = {(c,a),(d, a), (d,b)},
b {(xvy) e P? | T <r y} = {(a7 b)? (c, b)? (c, d)}7

whereas the second one represents the plane poset (Q, <p, <,) such that:



i {(x,y) € Q2 ‘ T <p y} = {(Cv a’)? (d7 a)? (d7 b)},
i {(.%',y) € Q2 ‘ T <y y} = {(b7 a)? (b7 C)v (d7 C)}

Ezxample 1.1. The empty double poset is denoted by 1.
{1},
(1) ={-}
{1}
p(s);{...,.x,x.,v,f,/\}
...... .10 LA Aoy

vaIAAAAMNNo

Remark 1.2. Let F be a plane forest. We defined in [3] two partial orders on F'; which makes it
a plane poset:

e We orient the edges of the forest F' from the roots to the leaves. The obtained oriented
graph is the Hasse graph of the partial order <j. In other words, if x,y € F, x <j y if,
and only if, there is an oriented path from z to y in F'.

e if x,y are two vertices of F' which are not comparable for <, two cases can occur.

— If x and y are in two different trees of F', then one of these trees is more on the left
than the other; this defines the order <, on = and y.

— If x and y are in the same tree T of F, as they are not comparable for <; they are
both different from the root of T'. We then compare them in the plane forest obtained
by deleting the root of T'.

This inductively defines the order <, for any plane forest by induction on the number of
vertices.

Equivalently, a plane poset is a plane forest if, and only if its Hasse graph is a forest. The set of
plane forests will be denoted by PJF; for all n = 0, the set of plane forests with n vertices will
be denoted by PF(n). For example:

{1},
(1)={ 5,
{o0, 1},
F3) :{...,.1,1.,\/,{},

PFA) = e .. I,.1.,1..,.v,v.,.1,{.,11,\V,K/,\),Y,[

)

Definition 1.3. Let P be a double poset. We shall say that P is WN ("without N") if it is
plane and does not contain any double subposet isomorphic to ¥1 nor IN. The set of isoclasses
of WN posets will be denoted by WN'P. For all n € N, the set of isoclasses of WN posets of
cardinality n will be denoted by WAN'P(n).



Example 1.2.

WANP(0) = {1},
WNP(1) = {.},
WNP(2) = {.., 1},

WAPG) = (oen 11V AL
...... Lo vl b A A LY

valmhﬁxmo

Remark 1.3. PF < WNP < PP.

1.2 Products and coproducts of double posets

Definition 1.4. Let P and @ be two elements of DP. We define PQ € DP by:

e P(Q) is the disjoint union of P and () as a set.

e P and () are double subposets of PQ.

e Forallze P, ye @, x < yin PQ and x and y are not comparable for <; in PQ.
Remark 1.4. 1. This product is called composition in [17] and denoted by v~ in [§].

2. The Hasse graph of PQ (in the sense defined below) is the concatenation of the Hasse
graphs of P and @, that is to say the disjoint union of these graphs, the graph of P being
on the left of the graph of Q.

This associative product is linearly extended to the vector space Hpp generated by the set
of double posets. Moreover, the subspaces Hpp, Hywnp and Hpr respectively generated by the
sets PP, WN'P and PF are stable under this product.

Definition 1.5. [I7].
1. Let P = (P, <1,<2) be a double poset and let I = P. We shall say that I is a 1-ideal of

P if:
Veel, Vye P, (x <1 y) = (ye ).

We shall write shortly "ideal" instead of "1-ideal" in the sequel.

2. The associative algebra Hpp is given a Hopf algebra structure with the following coproduct:
for any double poset P,

AP)= > (PAD®I

I ideal of P
This Hopf algebra is graded by the cardinality of the double posets.
As any double subposet of a, respectively, plane poset, WN poset, plane forest, is also a,

respectively, plane poset, WN poset, plane forest, Hpp, Hwap and Hpr are Hopf subalgebras
of Hpp.



Ezample 1.3.

AD=.®.

AV =2l®.+.®..
ab-.ot+te.

AN =..®.+2.®!

AV =.®.ee +3l®.. +3V ®.

_le.svVe.rlelile..+. 0l

>

(
ol Vet 1ol +1@.. +.@.]

/[Zz

!

):2{®.+.®V+I®..

B

)=.®{+I®I+{®.
cee®e+3ee@14+3. 0N

>

>
—
S~—
Il

)=.®{+.®/\+I®I+..®I+I.®-

)=.®{+.®/\+I®I+..®I+.I®.

,[Zz

>

R+ AR+ I+ +.@1I+.0YV
=R+ AR.+II+e®@e+.0e+.0YV
=2AR:42. 0V + e ®eo

P D
—~~ o~~~ —~~

>
S RIS > < LG

>
S~— S~— N— N—

!

B

)=Ve.+2lel+.9A

1.3 Hopf pairing on double posets

Definition 1.6. [17]

1. For two double posets P, @, S(P, Q) is the set of bijections o : P — @ such that, for all
1,5 € P:
e i<y jin P)= (0(i) <2 0(j) in Q).
e (0(i) <1 0(j)in Q) = (i <2 j in P).

These bijections are called pictures.

2. We define a pairing on Hpp by (P,Q) = Card(S(P,Q)) for P,Q € DP. This pairing is a
symmetric Hopf pairing.

It is proved in [8] that this pairing is nondegenerate if, and only if, the characteristic of
K is zero. Moreover, the restriction of this pairing to Hpp, Hpr or Hywap is nondegenerate,
whatever the field K is.



2 Several families of posets

2.1 Special posets

Definition 2.1. [17]. A double poset P = (P, <1, <2) is special if the order < is total. The set
of special double posets will be denoted by SP. The set of special double posets of cardinality
n will be denoted by SP(n).

This notion is equivalent to the notion of labeled posets. If (P, <, <2) is a special poset of
order n, there is a unique isomorphism from (P, <9) to ({1,...,n}, <), and we shall often identify
them.

Ezample 2.1. We shall graphically represent a special poset (P, <1,<3) by the Hasse graph of
(P, <1), with indices on the vertices giving the total order <s.

1. Here are SP(n) for n < 3:
SP {1},
SP(1) = {1},
SP (o122, 11, 12},
vezes,ale,ala 2ll els el sl
SP(3) = 3 92 3 o1 92 1
23 13 12 1 2 3
VA LAGALGAEERERE

2. See [9]. Ordered forests are special double posets. The set of ordered forests will be denoted
by OF. The set of ordered forests of cardinality n will be denoted by OF (n). For example:

OF(0) = {1},
OF(1) = {1},

OF(2) = {o12, 17, 12},

3 2 3 1 2 1
e1e203, 0112, 0105, w211, 205, 310 Ls 2,

O GG vEERRLE

3. Let P = (P, <p, <,) be a plane poset. From proposition 11 in [8], the relation < defined by
x <y if, and only if, x <p, y or = <, y, is a total order on P, called the induced total order
on P. So (P, <y, <) is also a special double poset: we can consider plane posets as special
posets. The set of plane posets, seen as special double posets, will be denoted by SPP.
The set of plane posets of cardinality n, seen as special double posets, will be denoted by
SPP(n). For example:

SPP(0) = {1},

SPP(1) = {1},

SPP(2) = {e1.2, 11},

S,P,P<3) - { ele243, ol Ig, I?.:’\, 2\/3;,1/3\2, {% } ’

4. We define the set SPF of plane forests, seen as special posets, and the set SWNP of WN



posets, seen as special posets. Note that SPF = OF n SPP. For example:

SPF(0) = {1},

SPF(1) = {u1},

SPF(2) = {ur2, 11},

373.7:(3) = { ele2e3, .113, If.s, 2\2, {% }

If P and @ are special double posets, then PQ is also special. So the space Hsp generated
by special double posets is a subalgebra of (Hpp, ). Moreover, if P is a special double poset,
then any subposet of P is also special. As a consequence, Hsp is a Hopf subalgebra of Hpp;
this Hopf algebra also appears in [I]. Similarly, the spaces Hor, Hspp, Hswap and Hspr
generated by OF, SPP, SWNP and SPF are Hopf subalgebras of Hpp.

Remark 2.1. Tt is clear that Hpp and Hspp are isomorphic Hopf algebras, via the isomorphism
sending the plane poset (P, <p, <,) to the special poset (P, <p,<). The same argument works
for Hyyap and Hsywap, and for Hpr and Hspr.

2.2 Heap-ordered posets

Definition 2.2. Let P = (P,<1,<2) be a special double poset. It is heap-ordered if for all

z,y € P, x <1 y implies that x <9 y. The set of heap-ordered posets will be denoted by
HOP. The set of heap-ordered posets of cardinality n will be denoted by HOP(n). We put
HOF = HOP n OF and HOF(n) = HOP(n) n OF(n) for all n.

Ezxample 2.2. Here are the sets HOP(n) and HOF(n) for n < 3:
HOP(1) = {1},
HOP(2) = {142, 17 1},

HOP?) _{ el o2 o3 .112’,211,.311 \/1 1/\2 {f },

HOF(1) = {1},
HOF(2) = .2, I 1},

HOF(3) :{ ole243 .112,-211,0311 \/1 I }

Note that SPP < HOP and SPF < HOF, as .2 I is not a plane poset. It is well-known
that [HOF(n)| = n! for all n > 0.

If P and @Q are two heap-ordered posets, then PQ also is. As a consequence, the spaces
Huop, Huor and Hspr generated by HOP, HOF and SPF are Hopf subalgebras of Hpp.
Moreover, plane posets are heap-ordered, so Hspp S Huop. We obtain a commutative diagram
of canonical injections:

Hspp—— Hyop—— Hsp

o))

Hspr—— Huor—Hor

Proposition 2.3. 1. Let P e SP. Then P is heap-ordered if, and only if, it does not contain

any double subposet isomorphic to l2.



2. Let P € SP. Then P € SPP if, and only if, it does not contain any double subposet

. . 3 1
isomorphic to 11.2 nor l2.

Proof. The first point is immediate.

2. =. If P € SPP, then any subposet of P belongs to SPP. The conclusion comes from

3 1
the fact that [1.2 and 2 are not special plane posets.

2. <. By the first point, P = (P, <1, <9) is heap-ordered. We define a relation <, on P by:
r <, yif (x =y) or ((x <2 y) and not (x <1 y)).

By definition, x <o y if, and only if, z <1 y or x <, y. Moreover, if z and y are comparable for
both < and <,, then z = y by definition of <,.. It remains to prove that <, is a partial order on
P Ifz<,yand y <, z, then x <oy <9 2,80 x <9 2,80 x <1 z or ¢ <, z. If x <7 z, then the

3
subposet {z,y, 2z} of P is equal to [1.2, as =,y and y, z are not comparable for <;: contradiction.
So x <, z. O

2.3 Pairing on special posets

We restrict the pairing of Hpp to Hsp. The matrix of the restriction of this pairing to Hsp(2)
is:
ae 1] 1

ol o2 2 11

11110

| 1 o1

2 1
Remark 2.2. 1. As a consequence, «1.2 — 1 — [2 is in the kernel of the pairing. Hence,
(= Drspr < —DHnor a0d (—, =)z, are degenerate. The kernels of these restrictions
of the pairing are described in corollary .3

2. A direct (but quite long) computation shows that the following element is in the kernel of

(- 7>‘H8WN"P:

Q—K/—\}+W+N—{\—q
+{._V.+A\—/\.+II+.I—.V—./\+.I..

(We write here the double posets appearing in this element as plane poset, they have to

be considered as special posets). So {—, =)z, xp 1S degenerate.
3. We shall see that (—, =)12,,07» (= —DHspp a0d (=, =)|3sp» are nondegenerate, see corol-
laries [4.6] .9 and

3 Links with permutations

3.1 Plane poset associated to a permutation
Proposition 3.1. Let 0 € &,,. We define two relations <p, and <, on {1,--- ,n} by:
o (i<, 7)if (i<jando(i)<o(j))

o (i< j)if (i<jando(i)=o(j)).

10



Then ({1, ,n}, <p,<,) is a plane poset. The induced total order on {1,--- n} is the usual
total order.

Proof. Tt is clear that <j and <, are two partial orders on {1,--- ,n}. It is immediate for any
1,7, 1 and j are comparable for <; or <,. Moreover, if i and j are comparable for both <j; and
<, then o(i) = 0(j), soi = j. For all 4,7, i <p, j or i <, j if, and only if, i < j. O

Definition 3.2. Let n € N. We define a map:

@n:{ &, — PP(n)

g — ({1’ ?n}’<h7<7‘)a

where <j, and <, are defined in proposition B.11

Ezample 3.1.
1—. 12 — ! 21 —> oo

123—>{ 132 — V 213 — A
231 —> [. 312 — .1 321 —> oo
1234 —> l 1243 —> Y 1324 —> <>
1342 — k/ 1423 —> \} 1432 —
2134 —> A 2143 — X 2314 —> {\
2341 —> { 2413 — M1 2431 — V.
3124 —> /\ 3142 — N 3214 — M\
3241 — A\. 3412 — 11 3421 — I..
4123H.{ 4132 — .V 4213 — N\
4231 —> J 1. 4312 — .1 4321 —> eues

We shall prove in the next section that ®,, is bijective for all n > 0.

3.2 Permutation associated to a plane poset
We now construct the inverse bijection. For any P € PP, nonempty, we put:
k(P)=max({ye P/Voze P, x <y=x <p y}).
Note that x(P) is well-defined: the smallest element of P for its total order belongs to the set
{ye P/Voe P,z <y=x<,y}

Let P € PP(n). Up to a unique increasing bijection, we can suppose that P = {1,--- ,n} as
a totally ordered set: we shall take this convention in this paragraph. We define an element o of

G, by:

o~ 1(n) K(P)
ol n=-1) = w(P—{o ')},

071(1)‘ = /<;(P —{o7(n),--- ,071(2)}) .

11



This defines a map:
PP(n) — 6,
q[ .
{ (P7\ha\7') — 0.

Lemma 3.3. ¥, 0 ®,, = Idg,, .

Proof. Let 0 € &,,. We put P = ®,(0) and 7 = ¥,,(P). Then:
{yeP/VeePe<y=zx<pyt={je{l,--- ,n}/Vi<i<n,i<j=o0(i) <o(j)}

So 771(n) = K(P) = 0! (n). Iterating this process, we obtain c~! =771 so o0 = 7. O

Lemma 3.4. Let P € PP(n). We put ¥,,(P) = 0. Ifi <, j in P, then (i) < o(j).

Proof. 1f i = j, this is obvious. Let us assume that i <; j. We put k = o(i) and [ = o(j). Then
k # 1. Let us assume that k£ > [. We then put:

-1 -1 . ... . .. .
= P\{U (n)a <0 (k + 1)} = {217 Ul Llply s tptgs Iy bpbgtls 72p+q+7’}7
with iy <+ <ip <1 <ipp1 < <lpyg < J <lptgr1 < -+ < lpyger- Indeed, asl < k < k+1,

both 0~1(k) = i and o71(l) = j belongs to this set. As k(P') =1, i1, ,ip <p i. If i <p ipi1,
then k(P’) = ipy1 > 4: contradiction. So ¢ <, ip1.

Let us prove by induction on s that i, <j, j for 1 < s <gq. If ip41 <, j, then 7 and j would
be comparable for <,, so would not be comparable for <j: contradiction. So ip4+1 <p j. Let us
suppose that 1451 <p J, 1 <5< q. Asipys < J, Iprs <p J OF Ipys <, j. Let us assume that
ipts <r j. As K(P') =i < ip4s, there exists x € P/, x <, ip4s. By the induction hypothesis,
¢ {ipt1, - ,lprs). ASi <p j, x #1i,80x € {1'1,--- ,ip}. But for such an z, z <j, i <p, j, so
x <p, j: contradiction. So ip4s <p J.

Finally, we obtain that 41, ,ip, %, 0pt1, - ,iptq,J <n J, S0 @ = k(P') = j: contradiction,
1<j. Sok<l. O

Lemma 3.5. &, 0V, = Idpp,,.

Proof. Let P € PP,. We put 0 = ¥, (P) and @Q = ®,,(0). As totally ordered sets, P = Q =
{1,--- ,n}. As they are both plane posets, it is enough to prove that (P, <) = (Q,<p). Let us
suppose that ¢ <j, j in P. Then ¢ < j and o(i) < o(j) by lemma B4l So i <;, j in Q. Let us
suppose that i <j j in Q. Soi < j and o(i) < o(j). We put k =0 (i) and [ = 0(j). As k < [:

ieP' =P—{ot(n), -0 (1 +1)}.
By definition of k(P') = j, i <, j in P as i < j. O

Proposition 3.6. VU, is a bijection, of inverse ®,,. As a consequence, card(PP(n)) = n! for all
neN.

Here are examples of properties of the bijection W,,:
Proposition 3.7. Let P = (P,<;,<,) € PP(n).
1. n---1lo \I’n(P) = \I/n((P, <r, <h))

2. U, (P)™' = U, ((P,<p,=r)).
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PTOOf. 1 Weput \Iln(P):O':(alan) Thennloo—:(n_a1+1)(n_an+1) We
pthz(I)n(n...loo'), Foraﬂi’je{l,...n}:

i<pjin@Qe=i<jandn—a +1<n—a;+1

<)
<)

<= i< janda; > aqj

— i<, jinP

Similarly, ¢ <, 7 in @ if, and only if, i <; j in P. So Q = (P, <, <p).

2. We put R = ®,(c71). Let i,j€{1,---,n}.

(i) <po(j)in R<=>0(i) <o(j) and i < j

— i<y Jin P,

0(i) <, 0(j)in Re=o0(i) <o(j) and i = j
<1 >=,7in P.
So o : (P,<p,>,) — R is an isomorphism of plane posets. O

Remark 3.1. In other terms, n---10 W, (P) = ¥, ot(P), where the involution ¢ is defined in [§]
by L((P? Xhs \T')) = (P, <Ta <h)

4 A morphism to FQSym

Note that Hpp, Hspp and FQSym are both free and cofree, with the same formal series. From
a result of [7], Hpp, hence Hspp, is isomorphic to FQSym. Our aim in this section is to define
and study an explicit isomorphism between Hspp and FQSym.

4.1 Reminders on FQSym

Let us first recall the construction of FQSym [I6] 2]. As a vector space, a basis of FQSym is
given by the disjoint union of the symmetric groups G,,, for all n > 0. By convention, the unique
element of & is denoted by ¢ZJ. The product of FQSym is given, for o € &, 7 € &, by:

oT = Z (c®T)oe

ceSh(k,l)

where Sh(k, 1) is the set of (k,[)-shuffles, that is to say permutations ¢ € & ; such that e (1) <

.<el(k)and e 1(k+1) <... < e (k+1). In other words, the product of & and 7 is given by
shifting the letters of the word representing 7 by k, and then summing all the possible shufflings
of this word and of the word representing ¢. For example:

132.21 = 13254 + 13524 + 15324 + 51324 + 13542
+ 15342 + 51342 + 15432 + 51432 + 54132.

Let 0 € 6,,. For all 0 < k < n, there exists a unique triple <01 ,02 ,Ck) € G x 6,_ X
Sh(k,n — k) such that o = Ck_l o <a§k) ® aék)). The coproduct of FQSym is then defined by:

ZO’ ®02 .

For example:

A(41325) = g ®41325 + 1® 1324 + 21 ® 213 + 312® 12 + 4132 ® 1 + 41325 ® .

13



Note that UYC) and O'ék) are obtained by cutting the word representing o between the k-th and
the k + 1-th letter, and then standardizing the two obtained words, that is to say applying to
their letters the unique increasing bijection to {1,...,k} or {1,...,n — k}. Moreover, FQSym
has a nondegenerate, homogeneous, Hopf pairing defined by {o,7) = ¢, ,-1 for all permutations
o and T.

4.2 Linear extensions

Definition 4.1. Let P = (P,<1,<2) be a special poset. Let x1 <3 ... <2 z,, be the elements
of P. A linear extension of P is a permutation o € &,, such that, for all 7,7 € {1,...,n}:

(z; <1 a5) = (071 (i) < o1 (4))-
The set of linear extensions of P will be denoted by Sp.
Remark 4.1. 1. Let P be a special poset. It is heap-ordered if, and only if, Id, € Sp.

2. Let P be a special poset of cardinality n. By definition of the product of plane posets, the
plane poset ", seen as a special poset, has n vertices. If i # j in "%, then ¢ and j are not
comparable for <. We also identify P and ." with {1,...,n} as totally ordered sets. If
o is a bijection from P to .", then o € S(.", P) if, and only if, (i) <j, o(j) in P implies
that to ¢ < j. Hence, the set of linear extensions of P is S(.", P).

3. Let P be a special poset. We denote by n its cardinality. As the second order of P is total,
we can identify P with {1,...,n}, as totally ordered sets. By [21], seeing orders on P as
elements of P x P:

{(z,y)e P? |z <, y} = ﬂ{<<|<< total order extending <i}.

We identify the total order i1 « ... « i, on P with the permutation ¢;...7,. Then
permutations corresponding to total orders extending <; are precisely the elements of Sp.
We obtain:

{(z,y) € p? |z <1y} ={(,5) e{1,... ,n}2 | Vo e Sp,a_l(i) < O'_l(j)}.

So Sp entirely determines P.

The following theorem is proved in [17]:

Theorem 4.2. The following map is a surjective morphism of Hopf algebras:

Hsp — FQSym
©:{ PesSP — Z o.
oceSp

Moreover, for any x,y € Hsp, (x,y) = (O(z),O(y))FQsym-
Ezxample 4.1. If {i,j,k} = {1,2,3}:

O(eieiok) =ijk + ikj + jik + jki + kij + kji

O(vi 1) = ijk + jik + jki
ik
O(Vh) = ijk + ikj
k
@({i) = ijk
It is proved in [9] that the restriction of O34,,0+ 15 an isomorphism from Hyor to FQSym
(Proposition 7). Consequently, © and its restrictions to Hyop and to Hor are surjective.
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Corollary 4.3. The kernel of the pairing on Hsp is Ker(0). The kernel of the pairing restricted
to Hyop and Hor is respectively Ker(©) n Hyop and Ker(0) n Hor.

Proof. For any x € Hgp, as O is surjective:

x € Hgp <= Vy € Hsp, (x,y) =0
= Yy € Hsp, (O(2),0(y))rqsym = 0
«— ¥y € FQSym, (O(z),y') =0
«— O(z) e FQSym"
= O(z) =0.

So 7—%7; = Ker(0). The proof is similar for Hyop and Hor. O

4.3 Restriction to special plane posets

Proposition 4.4. Let n € N. We partially order &,, by the right weak Bruhat order [20)].

1. If P e SPP(n), then ©(P) = > 0.
0€G,, 0<P,(P)~1

2. Let P € SP(n). There exists T € &y, such that Sp = {0 € &, | 0 < 7} if, and only if,
PeSPP.

Proof. 1. We put 7 = ®,(P)~!. The aim is to prove that for all 0 € &, o € Sp if, and only if,
o<T.
Let us assume that ¢ € Sp. We put:

I={(i,§) | i<, 0 (i) <o '(j)}.

Let us prove that ¢ < 7 by induction on |I|. If |I| = 0, by definition of the elements of Sp, for
all ¢ < j:

i<pje— o i) <o }(j) = 776) < 7).
So o = 7. Let us assume now that |I| > 1. Let us choose (i, k) € I, such that E = o= 1(k)—o~1(¥)
is minimal. If E > 2, let j such that 0=1(i) < 0~ !(j) < 07! (k). Three cases are possible.

1. If i < j < k, by minimality of E, i <p j et j <p k, so i <p k. This contradicts ¢ <, k.

2. If j < < k, by minimality of E, j <p k. As 0 € Sp, j <, i. Asi <, k, we obtain j <, k.
This contradicts j <p, k.

3. If i < k < j, by minimality of F, ¢ <p, j. Aso € Sp, k <, j. Asi <, k, i <, 7. This
contradicts 7 <jp, j.

In all cases, this gives a contradiction. So E = 1, that is to say o~ !(i) = o~ !(k) — 1. The
permutation ¢’ obtained from o by permuting ¢ and k in the word representing o is greater than
o for the right weak Bruhat order by definition of this order; moreover, it is not difficult to show
that it is also an element of Sp (as (i,k) € I), with a strictly smaller |/|. By the induction
hypothesis, 0 < o’/ < 7.

Let us assume that ¢ < 7 and let us prove that ¢ € Sp. Then 7 is obtained from ¢ by a
certain number k of elementary transformations (that is to say the permutations of two adjacent
letters ij with i < j in the word representing o). We proceed by induction on k. If k = 0, then
o= 7. If k > 1 there exists ¢’ € &,,, obtained from ¢ by one elementary transformation, such
that 7 is obtained from o’ by k — 1 elementary transformations. By the induction hypothesis,
o' € Sp. We put ¢ = (...a;ai41-...), ' = (...a;410;...), with a; < a;41. Let us prove that
o € Sp. Let k <hn l.

15



If k,l # a;,a;41, as o’ € Sp, o H(k) = o' L(k) < o'~ 1(1) = o= 1(1).

elfk =a;, as 0 € Sp, | # ajy1. So o t(l) = o 1() > o' 1(k) = o71(k) + 1, and
o~ (k) <o YI).

o If k=a;y1, thenl #a; as k <1. So o ()o'~1(1) > o1 (k) + 1 = o~ (k).

If | = a;, then k # a;11 as k <. Then o~ 1(k) = o/} (k) <o’ 1(I) =1 = o7 1(I).

e Ifl = aji1, as 0 € Sp, k # a;. Then o= (k) = o/ Y(k) < o/ 1(l) = 07(I) — 1, and
o (k) <o ).

Indeed, o € Sp.

2. <. Comes from the first point, with 7 = ®,,(P)~!.

2. =. Let us assume that Sp = {0 € &,, | 0 < 7} for a particular 7. Then Id, € Sp, so P
is heap-ordered. O

Ezxample 4.2. Here is the Hasse graph of &3, partially ordered by the right weak Bruhat order:

PN

231 312

213 132

N

So:
O(ees) =312 + 231 + 312 + 213 + 132 + 123
O(.1) =231 +213 +123
O(l.) =312+ 132+ 123
O(/N) =213 +123
(V) =132+123
@({)2123

As @, : SPP(n) — &, is a bijection:
Corollary 4.5. The restriction Oy, : Hspp — FQSym is an isomorphism.
Corollary 4.6. The restriction of the pairing to Hspp is nondegenerate.
Proof. As the isomorphism O3, is an isometry and the pairing of FQSym is nondegenerate.
O
4.4 Restriction to heap-ordered forests

Notations 4.1. Let P = (P, <1, <2) be a special poset. If i, j € P, we denote by [i,j]; the set of
elements k of P such that i <; k <; j. We denote by Rp = {(i,5) € P% | [i,j]1 = {i,j}, i # j}.
This set is in fact the set of edges of the Hasse graph of (P, <;), so allows to reconstruct the
double poset P.
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Proposition 4.7. Let P be a special poset with n elements.
1. Let i,j € P, such that (j,i) € Rp. We define:

o P, e SP(n) such that Rp, = Rp\{(J,1)};
o P, e SP(n) such that Rp, = (Rp\{(J,7)}) v {(3,)}, after the elimination of redundant
elements.
Then @(P) = @(Pl) — @(PQ)
2. Leti,j,k € P, all distinct, such that (i,k) and (j,k) € Rp. We define:

e P3e SP(n), such that Rp, = Rp\{(j, k)};

o Py e SP(n), such that Rp, = (Rp\{(7,k)}) v {(3,7)}, after the elimination of redun-
dant elements;

e P; e SP(n), such that Rp, = (Rp\{(J, k), (i, k)})u{(i, ), (J, k)}, after the elimination

of redundant elements.
Then @(P) = @(Pg) - @(P4) + @(P5)
Proof. 1. We denote by S the set of permutations o € &,, such that, for all (x,y) € Rp\{(4,4)},
o1 (z) < o7 (y). Then:

o(P) =Y o, o(P) = oo O(P,) = oo

oeS €S, o€l
o~ (j)<oT (i) o7 (j)>o7(9)

As a consequence, O(P) + O(FP2) = O(FP).

2. Note that ¢ and j are not comparable for <; (otherwise, for example if i <; j, then
i <1 j <1 k, and this contradicts the definition of Rp). We denote by S’ the set of permutations
o € 6, such that for all (z,y) € Rp\{(, k), (j, k)}, o1 (x) < o7 1(y). Then:

@(P) = Z g, ®(P3) = Z g,
oes’, oesS’,
o1 (i)0 () <o (B) o (B0 (k)
O(Py) = > o, O(Ps) = > o.
oes’, oes’,
o~ (i)<o1(5),0 (k) o) <o~ (j) <o~ (k)
We put:
Sl = Z g, 52 = Z o,
oes’, oes’,
o~ 1(i) <o (j)<o™ 1 (k) o~ 1(j)<o " (i)<o" (k)
S = Z o.
oes’,

o (i) <o  (k)<o ()

Then @(P) =51+ 95, @(Pg) =51+ 5 + 53, @(P4) = 57 + 53 and @(Pg)) = S;. Hence,
@(P) + @(P4) = @(Pg) + @(P5) |

Remark 4.2. In other words, in the first case, one replaces a double subposet I of P by eiei — Iz

. k
k k ]k :
In the second case, one replaces a double subposet i/\i by liei — Vi + {Z

17



Theorem 4.8. Let P € SP. Applying repeatedly the two transformations of proposition [4.7],
with © < j in the first case, and i < j < k in the second case, we can associate to P a linear span
of heap-ordered forests. This linear span does not depend on the way the transformations are
performed, so is well-defined: we denote it by Y(P). Then Y defines a Hopf algebra morphism
from Hsp to Hyox, such that the following diagram commutes:

Hsp o FQSym

| A

Huor

The restriction Oy, 15 an isomorphism, and Yy, = Id3y0r- Moreover, (Y (x), Y (y)) =
{x,y)y for all x,y € Hsp (that is to say Y respects the pairings).

Proof. Let P € SP. It is clear that, using repeatedly the first transformation, we associate
to P a linear span of heap-ordered posets. Then, using repeatedly the second transformation,
we associate to this element of Hyop a linear span of heap-ordered forests. Let x be a linear
span of heap-ordered forests obtained in this way. Using proposition L7 ©(z) = ©(P). As
O : Hsp — FQSym is surjective (as, for example, Oy, is an isomorphism), O 3y05 18
surjective. As Card(HOF(n)) = Card(&,) = n! for all n € N, Oy, is bijective. So x is
the unique antecedent of O(P) € FQSym in Hyor, so z = (@mvwf)*1 o O(P) is unique, and
YT (P) = x is well-defined. Moreover, T = (@"H’HO]—‘)_l o ©. Consequently, it is a Hopf algebra
morphism. As © respects the pairings, so does Y. O

Corollary 4.9. 1. Tyyspp + Hspp —> Huor is an isomorphism of graded Hopf algebras,
and respects the pairings.

2. {=, =)Moy 15 nondegenerate.

Proof. By restriction in the commutative diagram of theorem (4.8 we obtain the following com-
mutative diagram:
Hspp — > FQSym
Tl /
Huor

As the two restrictions of © are isomorphisms of graded Hopf algebras and respect the pairing,
$0 18 Tipgpp = (@\Hsm:)il © OpQsym- As Tjpspp is an isometry and the pairing on Hspp is
nondegenerate, the pairing on Hyor is nondegenerate. O

5 More algebraic structures on special posets

5.1 Recalls on Dup-Dend bialgebras

Recall that a duplicial algebra [12] is a triple (A,.,~\), where A is a vector space, and .,\_are
two products on A, with the following axioms: for all x,y,z € A,

(xzy)z = z(y2),
NNz = 2\ (y\ 2), (1)
(zy) Nz = 2(y\ 2).

In particular, the products . and N\ are both associative. A dendriform coalgebra (dual notion
of dendriform algebra, [11] [13]) is a triple (A, A, A, ), where A is a vector space, and A~ and
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A, are two coproducts on A, with the following axioms: for all x € A,

(A-@Id)oA(z) = (Id®A)oA_(z),
(A~ ®Id) o Ac(z) (Id® A<) o A, (x), (2)
(A®Id) o A, (z) (Id@ AL) o A (z).

Note that these axioms imply that A = A + A, is coassociative. We shall use the following
Sweedler notations: for any a € A,

Aa) =d ®@d", A_(a) =d. ®d", A (a) =d_®ad..

A Dup-Dend bialgebra [0] is a family (A, .,\, A<, A, ), where A is a vector space, ., \: AQA —>
Aand AL, A, : A—> A® A, with the following properties:

e (A,.,\) is a duplicial algebra (axioms [I).
o (A,A_,A.) is a dendriform coalgebra (axioms [2]).

e For all z,y € A:

Ac(ry) = y®@z+yl@ayl +ayl @yl + 2’y ®@a" + 2’y ®@a"y~,
As(zy) = 2@y +ayl @yl +yl @yl + 2’ @a"y + 'yl ®a"yL;
1 A<zNy) = Nyl ®yl +al Nyl +a2l Nyl ®@z%yl, (3)
As(zNy) = 2Qy+r Ny @yl +2l @zl Ny
+al @aly + 2l Nyl @alyl.

5.2 Another product on special posets

Definition 5.1.

1. Let P = (P, <1,<2) be a nonempty special poset. The maximal element of (P, <3) will be
denoted by gp.

2. Let P and @ be two nonempty special poset. We define P \_ @ by:

e PN _Q =PuQ as aset, and P,(Q are special subposets of P \_Q.
e Forallze P,ye @, r <9 .

e Forallze P, ye Q, x <y y if, and only if, x <1 gp.

Remark 5.1. Let P and @ be two nonempty special posets. A Hasse graph of P \_(Q is obtained
by grafting a Hasse graph of @) on the vertex representing gp of a Hasse graph of P. For example:

3 4
134

3
.1.2'\1%:.1}3, I?\.l.Q:Yi, I;\.1.2:\Vz
Lemma 5.2. (H{p,.,\) is a duplicial algebra.

Proof. Let P,Q, R be three nonempty special posets. The special posets (P \_ Q) "\ R and
P N (Q \R) are both characterized by:

e S=Pu@uRasaset, and P,Q, R are special subposets of S.
eforallze P,ye@,ze R,z <oy <o 2.

e Forallze P,ye @, ze R, x <1 y if, and only if, z < gp; x <1 z if, and only if, x <q gp;
y <1 z if, and only if, y <41 gg.
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The last point comes from the fact that gr~ s = gs for any nonempty special posets R and S.
So they are equal.

The special posets (PQ) N\ R and P(Q "\ R) are both characterized by:
e S=Pu@uRasaset, and P,Q, R are special subposets of S.
etorallze P,ye@,ze R,z <oy <o 2.

e Forallze P,ye Q, z € R, x and y are not comparable for <;; x and z are not comparable
for <1; y <1 2z if, and only if, y < gg-.

So 7—[;73 is a duplicial algebra. O

Proposition 5.3. Let P,Q be two nonempty special posets. Then P\ Q € HOP (respectively
OF, SPP, HOF, SPF, SWN'P) if, and only if, P,Q € HOP (respectively OF, SPP, HOF,
SPF, SWNP).

Proof. We put R =P \_Q.
<. In all the cases, this comes from the fact that P and ) are double subposets of P \_Q.

HOP. =>. Recall from proposition 2.3 that R € HOP if, and only if, R does not contain a

double subposet isomorphic to 12. Let us assume that P "\ @ is not a heap-ordered poset. Then
it contains two distinct elements a, b, such that a <; b and b <5 a. If a € P, then, by definition
of <o on R, be P, so P is not a heap-ordered poset. If a € @), as b <y a, by definition of <; on
R, be @, so @ is not a heap-ordered poset.

OF.=. Recall that R is an ordered forest if, and only if, (R, <;) does not contain a double
subposet isomorphic to /\ (see lemma 13 in [§]). Let us assume that R is not an ordered forest.
Then it contains three different elements a, b, ¢, with a <o b <5 ¢, such that one of the following
assertions holds:

1. b,c <1 a and b, ¢ are not comparable for <;: ({a,b,c},<1) =+ \e.
b
2. a,c < b and a, ¢ are not comparable for <;: ({a,b,c},<1) = a/\e.

3. a,b <y c and a,b are not comparable for <;: ({a,b,c},<1) = a/\s.

In the three cases, if the maximal element of {a,b,c} for <; is in P, then, by definition of <
on R, a,b,ce P, so P is not an ordered forest. Let us assume that this element is in ). In the
first case, then, by definition of <5 on R, b,c € @, so @ is not an ordered forest. In the second
case, we deduce similarly that ce Q. If a € P, then a <y gpin Pasa <y bin R, s0 a <1 ¢ in
R: contradiction, so a € Q). As a consequence, () is not an ordered forest. In the last case, then:

e lfae P, be@Q,thena <y gpin Pasa<;cin R, soa <y bin R: contradiction, this case
is impossible.

e Similarly, a € Q, b € P is impossible.

So a,b e P or a,b e @. In the first subcase, a,b <; gp in P as a,b <1 ¢ in R, so {a,b,gp} is
a subposet of (P, <;) isomorphic to A\: P is not an ordered forest. In the second subcase, Q
contains a, b, ¢, so is not an ordered forest.
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SPP. =>. Recall from proposition 23] that R is a plane poset if, and only if, it is heap-

ordered and does not contain a double subposet isomorphic to 17 .. Let us assume that R is
not a plane poset. If it is not heap-ordered, by the first point P or @ is not heap-ordered, so
is not a plane poset. Let us assume that there exists three different elements a, b, ¢ of R, such
that a <9 b <o ¢, a <1 ¢, a,b and b, ¢ are not comparable for <;. By definition of <5 on R, if
ce P, then a,be P,so P¢ SPP. If ce Q and a€ @, then be Q asa <2 b, so Q ¢ SPP. If
ce€ @ and a € P, then a <; gp in P. As a and b are not comparable for <; in R, b € P. As
b, c are not comparable for <; in R, b and gp are not comparable for <; in P. Let us consider

{a,b,gp} < P. By definition of gp, a <2 b <3 gp, so {a,b,gp} = 13.2, so P is not plane.
HOF. =>. Comes from HOF = OF n HOP.
SPF.=. Comes from SPF = OF n SPP.

SWNP. =>. Let us assume that P \_(Q is not a WN poset. If it is not plane, then by the
third point, P or @ is not plane, so is not WN. Let us assume that P \_ @ is plane (so P and
Q are plane). Then P \_Q contains a subposet {a,b, ¢, d} isomorphic to IN or 1. We assume
that a <9 b <ac<gdin P\ Q. If d € P, then by definition of P\ @, {a,b,c,d} < P, so P is
not WN. Similarly, if ¢ € @, @ is not WN. We now assume that a € P and d € Q.

o If {a,b,c,d} = N: as a and d are not comparable for <; in P \_Q, we do not have
a <1 gp in P. As P is plane, it is heap-ordered, so a and gp are not comparable for <;
in P. Asa <q cin P \_Q, necessarily ce P. As b <y cin P \_Q, b € P. Moreover,
as b <y d, b <1 gp. As ¢ and d are not comparable for <; in P \_Q, ¢ and gp are not
comparable for <; in P. So {a,b,c,gp} = N.

o If {a,b,c,d} = V1: asa <1 din P\ _Q, a <1 gp in P. As a and b are not comparable for
<1 in P N\_Q, necessarily be P. As b <y d, b <1 gp. As ¢ and b are not comparable for

<1 in PN\ Q, ce P. As c and d are not comparable for <i, ¢ and gp are not comparable
for <; in P. So {a,b,c,gp} = V1.

In both cases, P is not WN. ]

Remark 5.2. 1. As a consequence, the augmentation ideals 7-[;73, 7-[;_“[073, HEPP? 7-[25 s H;QO s
%‘JSFW wp and 7—[;7; 7 are duplicial algebras.

2. It is proved in [6] that 7—[;73 7 1s the free duplicial algebra generated by .: it is enough to
observe that for any plane forest F, g is the leaf of F' at most on the right, so \, when
restricted to plane forests, is precisely the product N\ defined in [6].

5.3 Dendriform coproducts on special posets

For any nonempty special poset P, we put:

A_(P) = > P\IQI, A, (P) = > P\IQI.
I non trivial ideal of P, I non trivial ideal of P,
gp¢l gpel

Note that A~ + A. = A. Moreover, 7-[;73, H;f[op, 7—[;5737;, 7—[25;, H?waf, H«JSFWNP and H;Pf are
stable under the coproducts A~ and A, .

Proposition 5.4. ’Hjsrp is a Dup-Dend bialgebra.

Proof. The proof is similar to the proof of proposition 20 in [6]. Nevertheless, in order to help
the reader, we give here a complete proof. Let us first prove that (7—[;73, A_,A.) is a dendriform
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coalgebra. It is enough to prove @ if # = P is a nonempty special poset. We put, as A is
coassociative, (A ®Id) o A(P) = (Id® A) o A(P) = 3. PM @ P® @ PG, where P, P2 p(3)
are subposets of P. Then:

(A<®Id)oA(P) = (Id@A)oA (P) = > PUePPeP®,
gpeP™)

) (A ®@Id)oA(P) = Id®A)eA.(P) = ) PYePPePW,
gpeP®

(A®Id)o AL (P) = (Id®@A.)oA.(P) = > PUePPepP®.
L gpeP®)

So 7-[;7; is a dendriform coalgebra.

Let us now prove axioms (). It is enough prove these formulas if z = P, y = ) are nonempty
plane forests. Let I be a non trivial ideal of PQ or P\ Q. Weput I' =InPand I" =1 n Q.
As I is non trivial, I’ and I” are not simultaneously empty and not simultaneously total.

Let us first compute A-(PQ). We have to consider non trivial ideals I of PQ, such that
gpq ¢ 1. As gpg = g, I” # Q. So five case are possible.

o [' =P, I" = @: this gives the term Q ® P.
o I'=P 1" # &, Q: this gives the term Q.. ® PQ".
o I'=0 I" # &, Q: this gives the term PQ". ® PQ"..

o I' # @, P, I" = @: this gives the term P'Q ® P”".

I'# @, P, I" # &, Q: this gives the term P'Q. ® P"Q".

Let us compute A, (PQ). We have to consider non trivial ideals I of P(), such that gpg € I.
As gpg = gg, I" # &. So five cases are possible:

o I' =, I" = Q: this gives the term P ® Q.

o I'= I" + &, Q: this gives the term PQ. ® Q~.

o I' =P I"# &, Q; this gives the term Q. ® PQ~.

o I' # @, P, I" =(Q: this gives the term P’ ® P"Q.

o I'# & P, I"# &, Q: this gives the term P'Q. ® P"Q".

We now compute A~ (P N\ Q). We have to consider non trivial ideals I of P \_ @), such that
gp~Q ¢ I. As gp~ g = gg, I" # Q. Moreover, if gp € I, then, as I is an ideal, Q < I so I" = Q:
impossible. So gp ¢ I’. So three cases are possible.

o I' = I" # ,Q; this gives the term P\ Q. ® PQ".
o I'# , P, I" = : this gives the term PL "\ Q ® PX_.
o I'# & P, I"# ¢, Q: this gives the term P. \ Q. ® PLQ".

Finally, let us compute A, (P \_ Q). We have to consider non trivial ideals I of P \_ @,
such that gpx g € I. As gpr @ = 9@, I" # &. Moreover, if gp € I, as I is an ideal, I” = Q. As
I’ and I” are not simultaneously total, this implies that I’ # P. So five cases are possible:

o I' =4, I" = Q: this gives the term P® Q.
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o I'= I" # &, Q: this gives the term P\ Q. ® Q.
o I'# & P, gp el this gives the term P, ® P! \ Q.
o I'# & P, gp¢I', I" =Q: this gives the term P. ® P”Q.
o I'# @ P,ogpe¢I', I" # &, Q: this gives the term P. \ QL ® PLQ".
So 7-[;73 is a Dup-Dend bialgebra. O

Remark 5.3. 1. As a consequence, the augmentation ideals 7-[;7;, H;Qopv HEPP, 7-[;5 s H;fw Fs
’H;FW Ap and ’H;rp 7 are Dup-Dend bialgebras.

2. The rigidity theorem of [6] implies that Hsp, Huop, Hspp, Hor, Huor, Hswnp and
Hspr are isomorphic to non commutative Connes-Kreimer Hopf algebras of decorated
plane trees, with particular graded sets of decorations. The cardinal of the components of
these graded sets can be computed by manipulations of formal series. For example:

n 1[2]3] 4 5 6 7 8
[Dsp(n)] 1] 1[10 (14873336 | 112376 | 5591 196 | 406 621 996
Dor(n)| 11766 786 | 11278 | 189391 | 3648711
Dnor(n) = [Dsprm)[ | 10| 1| 6 | 390 | 284 2305 20 682
Dsywap ()] 1jo[1] 4 [ 17 76 353 1633
Dspr(n)] 1[o[0] 0] 0 0 0 0

We obtain sequences A122705 for Dpr and A122827 for Dypr in [19].

5.4 Application to FQSym

Let 0 € &,, be a permutation (n > 1). We put:

n—1 o t(n)-1
A_(o) = Z O'%k) ® O'ék), A (o) = 05’6) ® O'ék).
k=oc—1(n) k=1

Remark that AL + A, = A.

Example 5.1.
A_((12543)) = (123) ® (21) + (1243) ® (1), A ((12543)) = (1) ® (1432) + (12) ® (321).
Let o, 7 be two permutations of respective degrees k and [, with k,l > 1. We put:

oNT = Z (c®T)o¢ L.
CeSh(k,l)
Ck+1)=¢ (o~ (k)

In other terms, o \_ 7 is the sum of the shufflings of the word representing ¢ and the word
representing 7 shifted by k, such that the letters of 7 are all after the greatest letter of o. In
particular, if c~'(k) = k, then 0 \. T = 0 @ 7.

Example 5.2.

123 =12 = 12345,
132 N\ 12 = 13245 + 13425 + 13452,
312 \_12 = 31245 + 31425 + 34125 + 34152 + 34512.
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Proposition 5.5. These products and coproducts make FQSym™ a Dup-Dend bialgebra. More-
over, © : 7—[;7) — FQSym™ is a morphism of Dup-Dend bialgebras.

Proof. We first prove the compatibility of © with \. Let P and @ be two nonempty special
posets, of respective degrees k and [. We first show:

Semo= || | ] {c®7)0(¢'}.

oeSp,eSq  CeSh(k,l)
C(k+1)=¢ (o™ (k)

c. Let x € Spr. There exists a unique (o,7,() € X5 x ¥; x Sh(k,l), such that x =
(0 ®@7) o (L. Let us prove that o € Sp. If i >1 j in P, then i > j in P \_Q, so:

XHE) = x ),
Cole™t @ (@) = o @),
Cool(i) = Coa1(y),
o7 (i) = 071 (4),
as ( is increasing on {1,...,k}. So o € Sp. Similarly, 7 € Sg. Moreover, the element 7(1) + k

belongs to @ in P\ @, so 7(1) + k >1 kin P \_Q. As a consequence:
() + k) =X (R),
oo™ @T*)(T( ) +k)=Co(e7 @ )(k),
C(k+1)= oo (k).
2. Let 0 € Sp, 7 € Sg and ¢ € Sh(k,l), such that ((k + 1) > ((c71(k)). We put x =
(0 ®7)o( L. Let 4,5 be two elements of P \_Q, such that i > j. Three cases can occur:
e i,j are elements of P. Then o71(i) = o7 1(j), so (c™' @ 771)(i) = (c7' ® 771)(4), and
finally 0='(i) = Co (07! @7 (i) = (o (e @7 )(j) = 071 (j).
e i, j are elements of (). The same proof holds.

e ¢ is an element of () and j is an element of P. Then ¢ > k in P \_(@Q. By definition of
PX_Q, k >1 jin P, so by the first point o=(k) = o~1(j).

Moreover, i +1 > k+1,s0 07 1(i) = ((k + 1) as ( is increasing on {k + 1,...,k +1}. Then:
o7 (i) = C(k+1) = (o7 (k) = o7 (k) = 07 (j).
Finally, for any nonempty special posets P and @) of respective degrees k and I:
OPNQ = ), >, (@®noct= 3 oN\T=0(P)\6(Q)

oeSp, TeSQ CeSh(k,l) oeSp, TeSQ
C(k+1)=¢(0 " (K))

We now prove the compatibility of © and the two coproducts A~ and A.. Let P € SP(n).
As © is a morphism of Hopf algebras, there exists a bijection:

pr{l,...,n—l} [ — |_| SP\IXSI
I non trivial ideal of P

(o, k) — ng)ank )

where this pair belongs to the term of the union indexed by I = {o(k + 1),...,0(n)}. So, if

(0,k) e Sp x {1,...,n—1}, k = o~ (n) if, and only if, n = gp is not an element of I. So:
n—1
(O®O)oA_( Z P\I®I Z oRT = Z Z Jgk)®aék) = Z A_(0) = AcO(F).
gp¢[ UESP\I oeSp k::o'_l(n) oeSp
TGS[
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Similarly, (@ ®©) oA, = A, 00O.

As O34, — FQSym is an isomorphism and H;O r is a Dup-Dend bialgebra, FQSym™
is also a Dup-Dend bialgebra. O

Remark 5.4. 1. It is of course possible to prove directly that FQSym™ a Dup-Dend bialgebra.

2. A similar structure of Dup-Dend bialgebra structure exists on the Hopf algebra of parking
functions PQSym [18], replacing, for a parking function o, 0~*(n) by the maximal integer
i such that o(7) is maximal.

6 Dendriform structures on special plane forests
The aim of this section is to prove that the restriction of the pairing to Hspr is nondegenerate
(corollary [6.6]). We first recall the classical result:

Lemma 6.1. The restriction of (—, —) to K[| is nondegenerate if, and only if, the characteristic
of K is zero.

Proof. As the homogeneous components of K[.] are one-dimensional, this restriction is nonde-
generate if, and only if, (", ") is a non-zero element of K for all n € N. Moreover, it is not
difficult to show that (", ") = nl. O

6.1 Dendriform coproducts

Notations 6.1. Let P be a plane poset, seen as a special poset. The smallest element for the
total order of P will be denoted by sp.

Proposition 6.2. For any nonempty plane poset P, we put:

A'_(P) = > P\I®I, Al (P) = > P\I®]I.
I non trivial ideal of P I non trivial ideal of P
sp¢l spel

Then (Hpp, AL, AL) is a dendriform coalgebra. Moreover, for all x,y € Hipp:
Al (zy) =2 @y+2y@y. + 2. @y + 2y @y + 2y @2y, (4)
Al(zy) =y@z +aly®@al +al @aly +y @y’ +aly @aly". (5)
Proof. Let us first prove the (@) for all z € ’H;PP. It is enough to prove this if z = P is a

P
nonempty special poset. We put, as A is coassociative, (A®Id) o A(P) = (Id® A) o A(P) =
>, PM) @ P? g P®) where PM), P2 PG are subposets of P. Then:

(AL®Id) oA (P) = (Id®A)oA_(P) = > PYUeP?eP®,
SpEP(l)

J (AL®IdoA(P) = (Id®AL)oAL(P) = > PUePP P,
SpEP(Q)

(A®Id)o AL(P) = (Id®AL)oAL(P) = > PYUeP?gp®.
N SPEP(?’)

So 7-[;7; is a dendriform coalgebra.
It is enough prove formulas (@) and (@) if x = P, y = @ are nonempty plane forests. Let I
be a non trivial ideal of PQ. We put I’ =1 n P and I” = I n Q. As I is non trivial, I’ and I”

are not simultaneously empty and not simultaneously total.

Let us first compute A’ (PQ). We have to consider non trivial ideals I of PQ, such that
spg ¢ I. As spg = sp, I' # P. So five case are possible.
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I' = ¢, I” = Q: this gives the term P ® Q.
o I' = I" # &, Q: this gives the term PQ' ® Q".

I' # @, P, I" = &: this gives the term P.LQ ® P”.

I' # @, P, I" = Q: this gives the term P, ® P2Q.

o I'# P, 1" # &, Q: this gives the term P.Q' ® PLQ".
The proof of formula (Bl is similar. O

Remark 6.1. 1. In other words, (Hipp,.%,(AL)%, (AL)%) is a codendriform bialgebra in
the sense of [3].

2. Hlpx is clearly stable under both coproducts A’ et AL, so (Hipz, .2, (AL)%, (AL)%)
is a codendriform subcoalgebra of H;"S‘_PP'

6.2 Dendriform products on special plane forests

From [4], 7-[;73 7 is the free dendriform algebra generated by .. Moreover, for all nonempty plane
forest F', « < F = BT (F), the rooted tree obtained by grafting the roots of ' on a common root.
It is also proved that (7—[;7; <5 >, AOp) is a dendriform Hopf algebra [15], so, for all =,y € 7-[;7; F

r<y)=2@y+z<yY Ry +r®2s"y+2 <y2" +2' <y ®2"y", (6)
(z>y)=yRz+z>y QY +y @y +2' >y2" +2' >y ®2"y". (7)

B D

Proposition 6.3. For all x,y € 7—[;7;]_-:

ALz <y)=2Qy+r<y @y +ri@2ly+al <y®2L +2L <y’ ®@22y",  (8)
Al(z<y) =2 @aly+al <yl +2L <y ®2Ly", 9)
ALz >y) =22 >y®2L +z >y ®@y" +21 >y @2y, (10)
A(z>y)=yRr+y @y’ +2_ >y2L +2 >y @2Ly". (11)

Proof. For fixed x,y, note that (8)+ ([I0) = @), @)+ (1) = @), @)+ @) = (@), and ([@0) + II) =
([@). As a consequence, for fixed z,y, (§), (@), (I0) and () are equivalent.
We now prove (8)-(II]) for z,y two non empty plane forest, by induction on the degree n of

z. If n=1, then x = .. Then:
Al(z<y)=-Qy+B7(Y)®Y =2@y+z<y®Y"

So &) (hence, [@)-()) holds for x = ., as A”_(x) = 0. Let us assume the result at all rank < n.
Two subcases occur.

e The plane forest z is a tree. Then there exists x1 of degree n — 1, such that z = Bt (z1) =
r<zx1. 50 <y=(s<x1)<y=0<(x19). So:

Al(z <y) = AL(. < (z1y))
=« ® (r1y) + B" ((z19)") ® (21y)"

cR(@Y) e <TIQY+ <Yz + o < (@Y @] + . < 2] @2y
+e< (@)Y + .+ <y @1y + . < (21y) @2y
=(+ <21®y) + (« < (1Y) ®Y") + (+ ® (11y) + « <) ®27y)
+(e<y®a1+ . <@y @2)) + (« <y @1y + . < () ®2]y")

" n

:x®y+x<y’®y”+x'<®x'{y+x'< <y®mi+x’< <y'®x<y .
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e The plane forest x is not a tree. Then it can be written as x = x1x9, such that the induction
hypothesis holds for 1 and x. Hence:
x<y=(r; <wz) <y+ (21 >22) <y =11 < (22Yy) + 21 > (T2 <Y).
Applying (8) and (I0) for z; (induction hypothesis), then (@) for x2, then arranging the
terms, gives () for z.
So the induction hypothesis holds for = in both cases. O
Remark 6.2. In other words, (H&p £, >, <P, (AL )%, (A”)°P) is a bidendriform bialgebra in the

sense of [5]. By the bidendriform rigidity theorem, it is a free dendriform algebra, and a cofree
dendriform coalgebra. As a direct consequence:

Lemma 6.4. As a dendriform algebra, ngf s freely gemerated by .. Moreover, the space
Primyo(Hpr) = Ker(AL) n Ker(AL) is one-dimensional, generated by ..

Lemma 6.5. For all z,y,z € 7—[;7;]_-:

(x <y,2) =@y, AL(y)) and (x > y,2) = (x @y, AL (y))-

Proof. As (—,—) is a Hopf pairing, it is enough to prove one of these two formulas. Moreover,
it is enough to prove it for z,y, z three non empty plane forests. We prove the first one, by
induction on the degree n of z. If n =1, then x = . and x < y = B*(y). Let o € S(B*(y), 2).
As 1 is the root of Bt (y), for all j, 1 <, j in BT (y). As o € S(B™(y), 2), o(1) < o(i) for all 4,
so (1) = 1. Let us denote by z; the plane forest obtained by deleting the vertex 1 of z; then
S(B*(y), 2) is in bijection by S(y,21). Moreover, by definition of A’_:

A (2) = « ® 21 + terms 2’ ® 2", 2’ homogeneous of degree > 2.
So, by homogeneity of the pairing:
@@y, AL(2)) = (o, e )y, 21) + 0= [S(y,21)| = |S(BT(y),2)| = (& <y, 2).
Let us assume the result at all rank < n. Two subcases occur.
e The plane forest z is a tree. Let us put z = B*(z1) = « < x1. Using the result at rank 1:
(& <y,z)={ < (n19),2)

= (- @1y, AL(2))
—(e®@z1®y,Id®A) o A(2)
=@y, (AL ®Id)o AL(2))
= (v <21, A (2)).

e The plane forest x is not a tree. Then it can be written as x = x1x2, such that the induction
hypothesis holds for 1 and 5. Hence:

{xr122) < y,2) = (1 < (22Y),2) + (X1 > (T2 < Y), 2)
= (21 ®@22@y,(Id® D) 0 AL (2)) + (11 @22 ®y, [d® AL) 0 AL (2))
= (11 @12 ®yY, (AL ®Id) 0o AL(2)) + {(z1 @22 ®y, (AL ®Id) 0 AL(2))
= (11 <22 ®y,AL(2)) + (21 > 22 @y, AL (2))
= (172 @y, AL (2)).

So the induction hypothesis holds for z in both cases. O

Corollary 6.6. The restriction of the pairing (—,—) to Hspr is nondegenerate.

Proof. Let us assume it is degenerate. By lemma G5 its kernel I is a non trivial dendriform
biideal of 7—[;73 7+ Any non-zero element of I of minimal degree is then in Primmt(’ng z), as I
is a dendriform coideal. By lemma [6.4] we obtain that « € I: absurd, as (., ) =1 # 0. O
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7 Isometries between plane and special plane posets

All the pairs of isomorphic Hopf algebras Hpp and Hspp, Hwap and Hswap, Hpr and
Hspr have Hopf pairings. The isomorphism between these Hopf algebras are not isometries: for

2 2
example, (1,1 = 0 whereas (I1,11) = 1. Our aim in this section is to answer the question if
there is an isometric Hopf isomorphism between them. The answer is immediately negative for
Hwnp and Hsywap, as the first one is nondegenerate whereas the second is degenerate.

7.1 Isometric Hopf isomorphisms between free Hopf algebras

Proposition 7.1. Let us assume that the characteristic of the base field is not 2. Let H and
H' be two graded, connected Hopf algebras, both with a homogeneous, symmetric, nondegenerate
Hopf pairing, and both free. The following assertions are equivalent:

1. There exists a homogeneous, isometric Hopf algebra isomorphism between H and H'.

2. For allm = 0, the spaces H,, and H] are isometric.

Proof. 1 = 2. Obvious.

2 = 1. Let us fix for all n € N* a complement V,, of (H+2)n in H,, where H* is the aug-
mentation ideal of H. As H is free, the direct sum V of the V,,’s freely generates H. Moreover,
any subspace of V' generates a free subalgebra of H. In particular, the subalgebra H,, of H
generated by V1 ®...®DV, is free. Moreover, it contains Hy®...@ H,, so forallv e Vi @®...®V,,
A(v) € Hepy ® Hepy. So Hyyy is a Hopf subalgebra of H. Finally, it is the algebra generated by
Hy®...® H,, so does not depend of the choice of V. We similarly define H/ nd for all n.

We are going to construct for all n > 0 a Hopf algebra isomorphism ¢, : He,y — H én> such
that:

1. ¢, is homogeneous of degree 0.

2. For all z,y € Hepy, {dn(T), Pn(y)) = (2, ).
3. ¢y restricted to Hy, 1y is ¢p—1 if n > 1.
4. For all i <n, H = (H™2); ® ¢, (V).
As Hy, = Hé0> = K, we define ¢y by ¢g(1) = 1. Let us assume that ¢, 1 is defined. Then

H, = (H?), ®V,, = (H(y—1y)n ® Vi By the induction hypothesis, ¢, induces an isometry
between (H,_1y), and (Hén71>)n = (H'*?),. As H, and H], are nondegenerate and isometric,
by Witt extension theorem, it can be extended into an isometry ¢, : H, —> H). As Hy
is freely generated by Vo @ ...® V,, we can define an algebra morphism ¢, : H¢,,, — H én> by

Gn(v) = ¢pp_1(v) if v € Vi, i < n—1 and ¢,(v) = ¢p_1(v) if v € Vj,. This algebra morphism
immediately satisfies the points 3 and 4 of the induction, by construction of (5”_1, and also
extends ¢,_1. Moreover, by the fourth point, dn(V1 ®...80V,) freely generated Hén>, SO ¢y, is
an algebra isomorphism from H,, to H ’n>.

Let us prove that ¢, is a Hopf algebra isomorphism. Let x € Hy, k < n. For all y € H;,
z€ Hj, i+ j =k, as ¢, extends both ¢,_; and bn_1, its restriction in all degree < n is an
isometry, so:

(A0 gn(z), pn(y) ® dn(2)) = {Dn(x), Pn(Y)Pn(2))
= {(Pn(T), Pn(y2))
= {(z,yz)
= (A(z),y®2)
= <(¢n ® ¢n) © A(x), ®n (y) ® ¢n(z)>
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As ¢, is surjective in degree < n, and by homogeneity of the pairing of H’, we deduce that
(b ® bp) 0 A(z) — Ao ¢,(x) € (H ® H')* = (0), as the pairing of H' is nondegenerate. As
Hi®...® Hy generates Hy), ¢n, is a Hopf algebra morphism.

Finally, let us prove the second point of the induction. By homogeneity of the pairings of
H and H’, it is enough to prove it for x,y homogeneous of the same degree k. We proceed by
induction on k. If £ < n, we already noticed that ¢,, is an isometry in degree k. Let us assume
that the result is true at all rank < k, with & > n. As (Hy,y)k = ((H<n>)+2)k, we can assume
that © = x129, with x1, 29 homogeneous of degree < k. Then, using the induction hypothesis on
z1 and zo:

_<¢n($1)®¢n(x2) Aogbn( D
= {Pn(21) ® Pn(T2), (Pn @ Pn) © A(y))
= (z1 @ 72, A(y))
= (z,y).
Conclusion. We define ¢ : H — H' by ¢(x) = ¢,(x) for all x € Hy,y. By the third

point of the induction, this does not depend of the choice of n. Then ¢ is clearly an isometric,
homogeneous Hopf algebra isomorphism. O

We can improve this result, in the following sense:

Proposition 7.2. Let us assume that the characteristic of the base field is not 2. Let H and
H' be two graded, connected Hopf algebras, both with a homogeneous, symmetric, nondegenerate
Hopf pairing, and both free. Let V and V' be subspaces of respectively H and H', W and W'
graded subspaces of respectively V and V' generating Hopf subalgebras h and h' of H and H'.
We assume that h is a non isotropic subspace of H. The following assertions are equivalent:

1. There exists a homogeneous, isometric Hopf algebra isomorphism ¢ between H and H',
such that ¢(h) = h'.
2. For alln >0, the spaces H,, and H), are isometric and the spaces h,, and h}, are isometric.

Proof. 1 = 2. Obvious.

2 = 1. For all n > 1, let us choose a complement U,, of W,, in V,,.

By proposition [ there exists an isometric, homogeneous Hopf algebra isomorphism 1 :
h — h'. Let us construct inductively a Hopf algebra isomorphism ¢, : Hyy — H én>, isometric,
such that:

1. ¢, is homogeneous of degree 0.

. For all z,y € Hepy, {Pn (), on(y)) = {2, 9).

2

3. ¢n restricted to Hyp,_1y is ¢p—1 ifn > 1
4. ¢n(x) = Y(z) for all z € hyyy.
5

. Foralli <n, H = (H™"?);, @y (W;) ® ¢n(Uy).

As Hyy, = H, £0> = K, we define ¢g by ¢og(1) = 1. Let us assume that ¢,_; is defined. Then
H,=H™),oW,®U, = (Hip—1y)n ® Wy, @ Up,. By the induction hypothesis, ¢,_1 and
induces an isometry between (H,—1y), @ Wy and (H <n 1y)n @ W), = (H*),®W). As H,
and H), are nondegenerate and isometric, by the extension theorem of Witt, it can be extended
into an isometry ¢,_1 : H, — H|. As Hny, 1s freely generated by Vo @ ... @V, we can
define an algebra morphism ¢, : H,, — H£n> by &n(v) = ¢p_1(v) if v eV, i <n—1 and
én(v) = dp_1(v) if v € V,,. This morphisms clearly satisfy the fourth point of the definition. The
end of the proof is similar to the proof of proposition [Z.1l O

29



We shall apply these propositions with H = Hpp, H = Hspp, V being the subspace
generated by plane posets and V' being the subspace generated by special plane posets, W the
subspace generated by plane trees and W’ the subspace generated by special plane trees. We
obtain the following results:

Lemma 7.3. 1. The following assertions are equivalent:

(a) There exists a homogeneous, isometric Hopf algebra isomorphism between Hpp and
Hspp.
(b) For alln =1, (Hpp)n and (Hspp)n are isometric.

2. The following assertions are equivalent:

(a) There exists a homogeneous, isometric Hopf algebra isomorphism ¢ between Hpr and
Hspr.
(b) For alln =1, (Hpr)n and (Hspr)n are isometric.

3. The following assertions are equivalent:

(a) There exists a homogeneous, isometric Hopf algebra isomorphism ¢ between Hpp and
Hspp, such that p(Hspr) = Hspr.
(b) For alln =1, (Hpp)n and (Hspp)n, (Hpr)n and (Hspr)n are isometric.

In particular, if K is an algebraically closed field of characteristic # 2, two nondegenerate
spaces are isometric, if, and only if, they have the same dimension. Hence, conditions (b) of
Lemma [3] are all satisfied.

Proposition 7.4. If K is an algebraically closed field of characteristic # 2, there exists a homo-
geneous, isometric Hopf algebra isomorphism ¢ between Hpp and Hspp, such that (Hspr) =
Hspr.

7.2 Existence of an isometry between plane and special plane posets

Let us precise the condition on the field for Hpp and Hspp to be isometric:

Theorem 7.5. The following assertions are equivalent:
1. There exists a homogeneous, isometric Hopf algebra isomorphism between Hpp and Hspp.
2. The characteristic of the base field K is not 2 and there exists i € K such that i> = —1.

Proof. By lemma [[.3] the question is essentially to know if (Hpp), and (Hspp)n are isometric.
More precisely, we are going to prove that the following assertions are equivalent:

1. For all n > 1, (Hpp), and (Hspp)n are isometric.
2. For alln > 1, (Hpp), and (Hspp), have orthonormal bases.
3. The characteristic of the base field K is not 2 and there exists i € K such that i = —1.

This will immediately imply theorem Obviously, 2 = 1, as (Hpp), and (Hspp)n, have the
same dimension.

1 = 3. We choose n = 2. In the basis (I, +.) of (Hpp)2 = (Hywap)2, the matrix of the

pairing is < (1) ; ) In the basis (Ii, e1e2) of (Hspp)2 = (Hswap)2, the matrix of the pairing

1 1
is ( 1 9 ) Considering the determinants of both matrices, we obtain that 1 and —1 differ
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multiplicatively from a square of K, so —1 is a square of K. For all z = al + bes € (Hpp)a2,
(w,2) = 2(ab+ b%). As (Hpp)s is isometric with (Hspp)2, there exists x € (Hpp)a, such that
{x,xz) = 1. As a consequence, char(K) # 2.

3 = 2. As Hgpp is isometric to FQSym, it is equivalent to prove that both Hpp and
FQSym have an orthonormal basis. Let us fix V = (Hspp), or (FQSym), for a given n. Then
V has a basis (e;)ier, with the following properties: there exists a partial order < on I and an
involution ¢ : I — I, such that for any i,j € I,

(& ) # 0 =1 < 1(j).
Moreover, <ei,eL(i)> = 1. For FQSym, any partial order < on permutations is suitable, with
(o) = 071, For Hspp, this is Lemma 35 of [§]. Let us put I’ = {i € I, (i) = i} and I" = I\I'.
o Let 4,5 €I'. If {ej,ejy # 0, then ¢ < ¢(j) = j; by symmetry, {e;,e;) # 0, so j < (i) = .
As < is an order, i = j.
e Let i € I’ and j € I". If {e;,ej) # 0, then ¢ < «(j). By symmetry, j < (i) = i, so
Jj<i<u(y).
Hence, considering a convenient total extension of <, in the basis (e;);e; the matrix of the pairing
has the form

* * A
M=|=« 1, 0],
AT 0 o0

where A is antidiagonal, that is to say has the form:

* 1
A 0
1 0 0

First step. Let us assume that [ = 0, that is to say M is antidiagonal. Let us prove that
there exists a basis B of V' such that the matrix of the pairing in this basis is

0O ... 0 1
Jp = 0
o .- .
1 0 ... 0

We proceed on the dimension p of V. If p = 0 or 1, there is nothing to prove. Otherwise,
applying the result to V' = Vect(es, ..., e,—1) (which is orthogonal to e,), we can assume that

Ma<ij<p—1 = Jp—2.
For any 1 < i < p, let us put ¢, = ¢; — \;ep, with:
1 iy
Flenenpifi=1,
Ai =4 {e;e)if2<i<p—1,
0if i = p.
Then (€, ...,e,) is a basis of V. As {ep,e,) = 0, for any 4, j:
<€;, 6;> = <6i’ 6j> - >‘i<6i’ 6p> - )‘j<ej’ 6p>'

Consequently:
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o If2<i,j <p—1,{e,ej) = epe)).
o Ifi=1and1<j<p-—1, by choice of \;, (e}, e}) = 0.
e If 1 <i<p—1andj=np, then (e}, e),) = {ei,ep) = d1,.

So the matrix of the pairing is in this basis is Jp.

Second step. We apply the first step to Vect(e;,i € I"). Up to a change of basis of this
subspace, we can assume that

0 B J,
M=|BT I, 0
J; 0 0

with k,1 > 0 and B € M}, ;(K). Let us consider the matrix

1, 0 0
P=10 I 0
0 -J.'B I
This is invertible, and:
0 0 Jg
PTMP=10 I, 0
Jy 0 0

Hence, up to a permutation of the vectors of the basis formed by the column of P, there exists
a basis (e, ... ,el’o) of V', such that the matrix of the pairing in this basis is diagonal by blocks,
0 1
10

0 ) (4

with diagonal blocks equal to (1) or (

(

So V has an orthogonal basis.

>. Now, observe that, denoting by ¢ one of the

)= 1)

square root of —1 in K:

IS SIS
— Nl

As a conclusion, (Hpp), and (Hspp)n have an orthogonal basis. O

Remark 7.1. The same proof can be applied to Hpr and Hyyap: if Condition 2 of Theorem
is satisfied, then for any n > 1, (Hpr), and (Hyynp)n have orthonormal bases. We conjecture

that if Condition 2 of Theorem is satisfied, then Hgspr has also an orthonormal basis, giving
Condition 3.(b) of Lemma [7.3]

Example 7.1. Let i be one of the two square roots of —1 in K. We define an isometry from

(Hpp)ey to (Hspp)eay by:
Qb(') = el

o) = o ¢ L7

ol o2,

Using direct computations, it is possible to extend ¢ from (7—[7;73)<3> to (7-[37:73)<3> sending
(HWNP)<3> to (HSWNP)<3> in four families of isometries parametrized by an element x € K
by:
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3

14
qﬁl({) = {?4’(2.5[7*@')1?-3+(*1*’L'.’E)0113+ +2.1.2.3,
{3 23 3ia? — 2ix e
o (V) = (—1—i+3x)1—i\/1+f11-3
) —3iz? + (=3 4+)T +2+170 43
+ 5 .1I2+x.1.2.3,

3 3 2 _ o
d1(N) = (—3m+2+22‘)k—i1/\2+uﬁ.3
+32‘x2—|—(6—42‘)x—4—22‘

. 2

a2 (—2 4+ 1+ d)eta208.

3

o) = Bl (1o imyals 4 L

.1.2.3,
3 9 3 S 2 o
(V) = (c1—itanl Ay 3 2y

) —3ix? + (=3 +i)x+2+i
* 2

3
.112 —+ Lele2e3,

3 3 3 3 %22 & diz — 6i
a(N) = (—3x—|—2)k+22‘\/1+i1/\2+ Sia” + diw GZIT.S

3ix? + (6 — 4i)r — 4 — 2i
* 2

3. If the characteristic of the base field is not 2, nor 3:

.113 +(—z+1+17)e1e203.

( 3 . . . . .
ssh) = Iu%ﬁ.ww.lxzﬁ%1.1.2.3,

3 23 SN
b(V) = (c1—i+anl oAy B e
) +—3z‘x2+(—3+z‘)x+2+z‘

I:s n
ol e2 Lol e2e3
2 7

3 3 Y 2_2'
d3(N) = (=3z+ 22'){? — et %I?.g
+9ix2 + 182 — 104 —3r+3i+1

3
alo g 2 T T ,s,

6 3

4. If the characteristic of the base field is neither 2, nor 3:

}3 30z — 42 3izx—24+3 .5 3i—1
—1+7Il.3+7.112+

¢4({) =

ol o2 .3,

E 9 3 .272.
bi(V) = (c1—itanll oA B e
) —3ix? + (=3 +i)x+2+1i
* 2

3
.112 T Tele2e3,

3 .9 .
3 —91x° — 147 ,2

2 3
¢4(A) = —3x{?+2i\/1+2'1/\2+ 5 1.3
9ix? + 182 —10i . —3x+3i+1
L —+ 6 .112+f.1.2.3.
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8 Conclusion

We finally obtain the following commuting diagram:

7N
[Hpp)
AN

4\-/\)

On the first column, algebras stable under 4 and ¢ (see definitions in [§]). On the third and
fourth columns, algebras stable under \, A~ and A.. The algebras such that the restriction of
the pairing (—, —) is nondegenerate are circled. If the circle is dotted, the result is true if, and
only if, the characteristic of the base field is zero. The three horizontal dotted lines correspond
to the isomorphisms sending (P, <j, <,) to (P, <, <). Moreover, it is not difficult to show that
the intersection of two Hopf algebras of this diagram is given by the smallest common ancestor
in the oriented graph formed by the black edges of this diagram. This lies on the fact the only
plane posets (P, <j, <,) which are special (recall that this means that <, is total) are the double
posets ", for all n = 0.

All the arrows of the diagram are isometries, at the exception of the three horizontal dotted
lines. There exists isometric Hopf algebra isomorphisms between Hpp and Hspp, if, and only
if, the characteristic of the base field K is not 2 and —1 is a square of K.

If the characteristic of K is zero, all these Hopf algebras are free, cofree, and self-dual.
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