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Introduction and results

We consider three point masses m 1 , m 2 and m 3 in a plane. We assume that they interact mutually according to a generalized low of the gravitation. Namely, the force of the attraction between two points is proportional to the product of their masses and inversely proportional to a certain power of the distance between them.

Let r 1 := (x 1 , x 2 ), r 2 := (x 3 , x 4 ) and r 3 := (x 5 , x 6 ) denote the inertial Cartesian coordinates of the masses and (y 1 , y 2 ), (y 3 , y 4 ), (y 5 , y 6 ) their respective linear momenta in this frame. Then the Hamiltonian of the problem has the form and

K = 1 2m 1 (y
r 12 := (x 1 -x 3 ) 2 + (x 2 -x 4 ) 2 ,
r 23 := (x 3x 5 ) 2 + (x 4x 6 ) 2 , r 31 := (x 5x 1 ) 2 + (x 6x 2 ) 2 .

We assume that 2n ∈ N. The system admits three additional classical first integrals: two components of the total momentum, and the total angular momentum Y 1 :=y 1 + y 3 + y 5 , Y 2 := y 2 + y 4 + y 6 , C :=x 1 y 2x 2 y 1 + x 3 y 4x 4 y 3 + x 5 y 6x 6 y 5 .

(1.3) However, those first integrals do not pairwise commute, as we have

{C, Y 1 } = Y 2 , and {Y 2 , C} = Y 1 . (1.4) 
We perform a canonical reduction and we eliminate two degrees of freedom. To this end we make a linear canonical transformation x = S q, y = S -T p, S -T := S -1 T , (

where q := [q 1 , . . . , q 6 ] T , p := [p 1 , . . . , p 6 ] T ,

S :=         1 0 0 0 -1 0 0 1 0 0 0 -1 0 0 1 0 -1 0 0 0 0 1 0 -1 σ 1 0 σ 2 0 σ 3 0 0 σ 1 0 σ 2 0 σ 3         , ( 1.6) 
and

σ i = m i m for i = 1, 2, 3; m = m 1 + m 2 + m 3 .
In other words (q 1 , q 2 ) is the vector between m 3 and m 1 , i.e., (q 1 , q 2 ) := r 1r 3 ; similarly, (q 3 , q 4 ) := r 2r 3 is the vector between m 3 and m 2 , but (q 5 , q 6 ) are coordinates of the mass centre

(q 5 , q 6 ) := 1 m 3 ∑ i=1 m i r i .
The transformed Hamiltonian (1.1) reads

H( q, p) := K(S q, S T p) = H r (q, p) + 1 2m (p 2 5 + p 2 6 ), (1.7) 2 
where

q := [q 1 , . . . , q 4 ] T , p := [p 1 , . . . , p 4 ] T , H r = H r (q, p) = T r (p) + U r (q), (1.8) T r (p) := 1 2µ 1 p 2 1 + p 2 2 + 1 2µ 2 p 2 3 + p 2 4 + 1 m 3 (p 1 p 3 + p 2 p 4 ) , (1.9) U r (q) := - m 1 m 2 [(q 1 -q 3 ) 2 + (q 2 -q 4 ) 2 ] n - m 2 m 3 [q 2 3 + q 2 4 ] n - m 3 m 1 [q 2 1 + q 2 2 ] n , (1.10) 
and

µ 1 := m 1 m 3 m 1 + m 3 , µ 2 := m 2 m 3 m 2 + m 3 .
(1.11)

Clearly q 5 and q 6 are cyclic coordinates. Moreover, Hamilton's equations with Hamiltonian (1.7) split into a direct product of Hamilton's equations with Hamiltonian H r and Hamiltonian H c := (p 2 5 + p 2 6 )/(2m). The reduced system with four degrees of freedom governed by Hamiltonian H r has one additional first integral

F := q 1 p 2 -q 2 p 1 + q 3 p 4 -q 4 p 3 , (1.12) 
which is the total angular momentum of the system. The system given by (1.8) we call the partially reduced three body problem. One can eliminate one more degree of freedom using first integral (1.12). This reduction is described, e.g., in § 161 of [START_REF] Whittaker | A Treatise on the Analytical Dynamics of Particle and Rigid Bodies with an Introduction to the Problem of Three Bodies[END_REF]. The obtained system has three degrees of freedom and we call it the fully reduced three body problem.

We consider the Hamiltonian system generated by (1.8) in the complex phase space which is an open subset of C 8 with canonical coordinates q = (q 1 , . . . , q 4 ) and momenta p = (p 1 , . . . , p 4 ). Our main result is formulated in the following theorem. Theorem 1.1. Assume that 2n ∈ N \ {2} and masses m 1 , m 2 and m 3 are positive. Then the Hamiltonian system given by (1.8) is not integrable in the Liouville sense.

The non-integrability of the non-reduced classical gravitational 3 body problem corresponding to 2n = 1 was proved in the framework of the Ziglin theory in [START_REF] Ziglin | On involutive integrals of groups of linear symplectic transformations and natural mechanical systems with homogeneous potential[END_REF] and later by means of the so-called Morales-Ramis theory in [START_REF] Morales-Ruiz | On the meromorphic non-integrability of some N-body problems[END_REF][START_REF] Simon | On the meromorphic non-integrability of some problems in celestial mechanics[END_REF]. The first proof of the non-integrability of the fully reduced classical planar three body problem was done by Alexei Tsygvintsev in [START_REF] Tsygvintsev | La non-intégrabilité méromorphe du problème plan des trois corps[END_REF][START_REF] Tsygvintsev | The meromorphic non-integrability of the three-body problem[END_REF], and by an application of the differential Galois approach by Delphine Boucher and Jacques-Arthur Weil [START_REF] Boucher | theorem to test the non-complete integrability of the planar three-body problem[END_REF].

In [START_REF] Maciejewski | Partial integrability of Hamiltonian with homogeneous potentials[END_REF], basing on ideas of [START_REF] Morales-Ruiz | On the meromorphic non-integrability of some N-body problems[END_REF], we have found a surprisingly simple proof of the nonintegrability of the classical three body problem. In this paper we generalised this result to a class of potentials of the form (1.2) with an arbitrary positive integer 2n.

Our proof of Theorem 1.1 is based on an application of a general theorem concerning the integrability of homogeneous potentials. In the next section we reformulate this theorem according to our needs. Here it is worth to mention that this general result takes its origin from a brilliant work of H. Yoshida [START_REF] Yoshida | A criterion for the nonexistence of an additional integral in Hamiltonian systems with a homogeneous potential[END_REF]. The main statement of this theorem can derived from an analysis of the monodromy group of the variational equations, see [START_REF] Yoshida | Justification of Painlevé analysis for Hamiltonian systems by differential Galois theory[END_REF][START_REF] Ziglin | On involutive integrals of groups of linear symplectic transformations and natural mechanical systems with homogeneous potential[END_REF], as well as from an analysis of their differential Galois group [START_REF] Morales-Ruiz | A note on the non-integrability of some Hamiltonian systems with a homogeneous potential[END_REF]. Remark 1.2 In Theorem 1.1 we excluded the case of the Jacobi problem when the potential of interactions between bodies is homogeneous of degree -2. In this case, the above mentioned Morales-Ramis theorem does not give any obstruction to the integrability. The non-integrability of the Jacobi three body problem was investigated by Emmanuelle Julliard Tosel in [START_REF] Tosel | Meromorphic parametric non-integrability; the inverse square potential[END_REF]. She proved the non-integrability of the Jacobi problem when masses of two points are equal. It was also proved that the Jacobi problem (with arbitrary masses) is not integrable with rational first integrals which are meromorphic functions of the masses.

Theory

Let us consider a complex Hamiltonian system with n degrees of freedom given by a natural Hamiltonian function of the following form

H = 1 2 p T M p + V(q), (2.1) 
where q = (q 1 , . . . , q n ) ∈ C n and p = (p 1 , . . . , p n ) ∈ C n are canonical coordinates and momenta, V(q) is a homogeneous function of degree k ∈ Z ⋆ , and M is a symmetric non-singular n × n matrix. The phase space of this system is C 2n which is considered as C-linear symplectic space with the canonical symplectic form

ω = n ∑ i=1 dq i ∧ dp i .
Hence, Hamilton's equations have the standard canonical form

d dt q = M p, d dt p = -V ′ (q), (2.2) 
where V ′ (q) := grad V(q). Moreover, we assume also that the time t is a complex variable.

The basic assumption of our considerations is that there exists a non-zero vector

d ∈ C n such that MV ′ (d) = d. (2.3)
It is called a proper Darboux point of potential V. It defines a two dimensional plane in the phase spaces C 2n , given by

Π(d) := (q, p) ∈ C 2n | q = ϕd, p = ψM -1 d, (ϕ, ψ) ∈ C 2 . (2.4)
This plane is invariant with respect to the system (2.2). Equations (2.2) restricted to Π(d) have the form of one degree of freedom Hamilton's equations

d dt ϕ = ψ, d dt ψ = -ϕ k-1 , (2.5) 
with the following phase curves

Γ k,ε := (ϕ, ψ) ∈ C 2 | 1 2 ψ 2 + 1 k ϕ k = ε ⊂ C 2 , ε ∈ C. (2.6)
In this way, a solution (ϕ, ψ) = (ϕ(t), ψ(t)) of (2.5) gives a solution (q(t), p(t)) := (ϕd, ψM -1 d) of equations (2.2) with the corresponding phase curve

Γ k,ε := (q, p) ∈ C 2n | (q, p) = (ϕd, ψM -1 d), (ϕ, ψ) ∈ Γ k,ε ⊂ Π(d).
(2.7)

In order to find necessary conditions for the Liouville integrability we consider the variational equations along an arbitrary phase curve Γ k,ε with ε = 0. These variational equations have the form

ẍ = -ϕ(t) k-2 MV ′′ (d)x, (2.8) 
where V ′′ (d) is the Hessian of V calculated at d. A linear change of variables x = Aξ transforms the above system into the following one ξ = -ϕ(t) k-2 Jξ, (

where 

J = A -1 MV ′′ (d)A = diag(J i 1 (λ 1 ), . . . , (J i p (λ p )),
C n ∋ q -→ F(q) := MV ′ (q) -q ∈ C n . (2.11) If det F ′ (d) = det(MV ′′ (d) -E n ) = 0, then d is an isolated zero of F. Thus, if d is not isolated, then the Jacobi matrix F ′ (d) is singular. Equivalently, λ = 1 is an eigenvalue of matrix MV ′′ (d) as we claimed.
Necessary conditions for the Liouville integrability of Hamiltonian systems of the form (2.2) which come from an analysis of the differential Galois group of the variational equations (2.9) can be formulated in the following form. Theorem 2.2. Assume that the Hamiltonian system defined by Hamiltonian (2.1) with a homogeneous potential V ∈ C(q) of degree k ∈ Z ⋆ satisfies the following conditions:

1. there exists a non-zero d ∈ C n such that MV ′ (d) = d, and 2. the system is integrable in the Liouville sense with first integrals which are meromorphic in a connected neighbourhood U of phase curve Γ k,ε with ε = 0, and independent on U \ Γ k,ε .

Then for each eigenvalue λ ∈ spectr(MV ′′ (d)), pair (k, λ) belongs to an item of the following table case k λ

1. ±2 arbitrary 
2. k p + k 2 p(p -1) 3. k 1 2 k -1 k + p(p + 1)k 4. 3 - 1 24 + 1 6 (1 + 3p) 2 , - 1 24 + 3 32 (1 + 4p) 2 - 1 24 + 3 50 (1 + 5p) 2 , - 1 24 + 3 50 (2 + 5p) 2 5. 4 - 1 8 + 2 9
(1 + 3p) 2 

(b) if k = -1, then λ = 1; (c) if k = 1, then λ = 0.
We denote by M k a subset of rational numbers λ specified by the table in the above theorem for a given k, e.g., for |k| > 5 we have

M k = p + k 2 p(p -1) | p ∈ Z ∪ 1 2 k -1 k + p(p + 1)k | p ∈ Z . (2.13)
Let us remark that the above theorem does not give any obstruction for the integrability if k = 2 or k = -2.

Under assumption M = E n , where E n is n-dimensional identity matrix, the first part of Theorem 2.2 coincides with Morales-Ramis theorem [START_REF] Morales-Ruiz | A note on the non-integrability of some Hamiltonian systems with a homogeneous potential[END_REF], and the second part coincides with Theorem 1.3 in [START_REF] Duval | Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials[END_REF].

The generalisations of the above cited theorems to the case M = E n are straightforward. Since we assumed that matrix M is non-singular and symmetric, there exists a non-singular matrix B such that (2.15)

B T MB = E n . ( 2 
The above shows that if det M = 0, then, in the context considered here, we can assume that M = E n . However, in practise, it is more convenient to avoid the described transformation, as even simple examples show that it introduces quite complicated expressions. It is also instructive to notice the following fact. If d is a proper Darboux point of the potential V, then c := B T d is a proper Darboux point of the transformed potential U(Q). Thus, applying Theorem 2.2 or Theorem 1.1 in the original variables, we use the eigenvalues of matrix MV ′′ (d) which is, in general non-symmetric. On the other hand, while working with the transformed system, we use symmetric matrix U ′′ (c). However, in general matrix U ′′ (c) is a complex matrix, so it is not necessarily diagonalisable. Of those two matrices are similar, as we have

′′ (c) = C T V ′′ (d)C = C -1 (CC T V ′′ (d))C = C -1 MV ′′ (d))C, (2.16) 
because matrix M can be written as M = CC T , see (2.14).

In the formulation of Theorem 2.2 we assumed for the simplicity that the considered potential is a rational homogeneous function. However, this theorem remains valid for a class of homogeneous potentials which are meromorphic in a neighbourhood of the considered particular solution.

Proof of Theorem 1.1

The Hamiltonian (1.8) has the form (2.1) with matrix M = M r given by

M r :=            1 µ 1 0 1 m 3 0 0 1 µ 1 0 1 m 3 1 m 3 0 1 µ 2 0 0 1 m 3 0 1 µ 2            . (3.1)
In order to apply Theorem 2.2 we need the existence of a proper Darboux point. In fact such a point exists and it is related to the Euler configuration. 

+ ρ), 0), a > 0, ρ > 0, (3.2) 
where ρ a unique positive root of the following polynomial (3.3) and a = α

P(ρ) := m 1 (1 + ρ) 2n+1 1 -ρ 2n+2 + m 2 (1 + ρ) 2n+2 -ρ 2n+2 + m 3 ρ 2n+1 1 -(1 + ρ) 2n+2 ,
-1 2(n+1) is given by = ρ 2n+1 (ρ + 1) 2n+1 [m 3 + (m 1 + m 3 )ρ] 2nm [m 3 ρ 2m+1 + m 1 (1 + ρ) 2n+1 ] . (3.4) 
Proof. For vector e of the form (3.2) equation ′ r (e) = M -1 r e reduces to the following equations

-m 3 + m 2 ρ + 2αnm m 3 - m 2 ρ 2n+1 = 0, -m 3 (ρ + 1) -m 1 ρ + 2αnm m 1 ρ 2n+1 + m 3 (ρ + 1) 2n+1 = 0. (3.5)
Eliminating α from the above equations we find that ρ is a root of polynomial (3.3), and that α is given by (3.4).

Clearly deg P(ρ) = 4n + 3. Moreover, P(0) > 0, and P(ρ) → -∞ as ρ → ∞. We write P(ρ) the following form

P(ρ) = 4n+3 ∑ i=0 P i ρ i .
From (3.3) it is easy to deduce that P i < 0 for i > 2n + 1, and P i > 0 for i ≤ 2n + 1. Hence we have exactly one change of sign of the coefficients, and this proves that P(ρ) has one positive root. Remark 3.2 It can be easily shown that if a and ρ are such that e given (3.2) is a proper Darboux point, then also e s := (a cos s, a sin s, a(1 + ρ) cos s, a(1 + ρ) sin s), (

is a proper Darboux point for an arbitrary s ∈ R. Hence, e = e 0 is not isolated. Now, our proof of Theorem 1.1 follows the following steps:

1. We show the matrix M r U ′′ r (e) has eigenvalues (1, -(2n + 1), λ, -(2n + 1)λ), where λ > 0.

2. If system is integrable, then λ 1 λ, and λ 2 = -(2n + 1)λ satisfy conditions of Theorem We show that this implies that λ = 1.

3. Finally, we prove that for positive masses m 1 , m 2 and m 3 the equality λ = 1 is impossible.

The next three propositions prove the statements formulated in the above steps. Proof. Potential U r is homogeneous of degree k = -2n. This is why k -1 = -(2n + 1) is an eigenvalue of M r U ′′ r (e). Moreover, by Remark 3.2, e is not isolated proper Darboux point. So, by Remark 2.1, λ = 1 is an eigenvalue of M r U ′′ r (e). Let p(z) := det(M r U ′′ r (e) -zE 4 ) with e given by (3.2) be the characteristic polynomial of matrix M r U ′′ r (e). The coefficients of this polynomial depend rationally on α and ρ. Using (3.4) we eliminate from them α. Next we notice that the coefficients of polynomial P(ρ) given by (3.3) are linear with respect to the masses. Thus, assuming that ρ is the positive root of P(ρ), from P(ρ) = 0, we obtain

m 2 = m 1 r 1 (ρ) + m 3 r 3 (ρ), where r 1 (ρ) := (1 + ρ) 2n+1 (ρ 2n+2 -1) (1 + ρ) 2n+2 -ρ 2n+2 , r 3 (ρ) := ρ 2n+1 (1 + ρ) 2n+2 -1 (1 + ρ) 2n+2 -ρ 2n+2 .
Using the above relation we eliminate m 2 from the coefficients of polynomial p(z). After this operation it factors

p(z) = (z -1)(z + 2n + 1)p 2 (z), where p 2 (z) = z 2 + bz + c. (3.7)
By a direct calculation we found that b = 2nλ, and

c b 2 = - 2n + 1 4n 2 , ( 3.8) 
where

λ := m 3 + (m 1 + m 3 )ρ m 1 (1 + ρ) 2n+1 + m 3 ρ 2n+1 R(ρ), ( 3.9) 
and Proof. We know that for an arbitrary k ∈ Z \ {-2, 0, 2} we have

R(ρ) := (ρ(1 + ρ)) 2n (1 + ρ) 2n+3 -1 -ρ 2n+3 (1 + ρ) 2n+1 (1 + ρ 2n+1 ) -ρ 2n+1 . ( 3 
M (1) k ∪ M (2) k ⊂ M k , where M (1) k := p + k 2 p(p -1) | p ∈ Z , (3.11) and M 
(2)

k := 1 2 k -1 k + p(p + 1)k | p ∈ Z . (3.12) 
Moreover, for an arbitrary k ∈ Z \ {-2, 0, 2} numbers λ 1 = 1 and λ 2 = k -1 are elements of M

k . Now we assume that k = -2n is an negative integer, and that k = -2. We have to show that if λ 1 = λ > 0, and λ 2 = -(2n + 1)λ < 0, then λ = 1.

For k = -1 we have

M -1 := - 1 2 p(p -3) | p > 1, p ∈ N . (3.13) 
This set contains just one positive element that is equal to one. Thus,

λ 1 , λ 2 ∈ M -1 , iff (λ 1 , λ 2 ) = (1, - 2 
). This ends the proof for k = -1.

For k = -2n = -3, we have

M -3 = 6 i=1 M (i) -3 ,
where M

-3 := 25 24 - 1 6 (1 + 3p) 2 | p ∈ Z , M (3) 
-3 := 25 24 - 3 32 (1 + 4p) 2 | p ∈ Z , M (4) 
-3 := 25 24 - 3 50 (1 + 5p) 2 | p ∈ Z , M (5) 
-3 := 25 24 - 3 50 (2 + 5p) 2 | p ∈ Z . (3.14) Now, assumption that n > 2 implies that 1 + 8p(1 + p) < 4, (6) 
and this in turn forces that p = 0. However it is impossible because it gives a negative n. A contradiction proves our claim.

Proposition 3.5. For positive masses m 1 , m 2 and m 3 , the eigenvalue λ given by (3.9) cannot be equal to one.

Proof. Let us assume that λ = 1, and that masses m 1 , m 2 and m 3 are positive. Then from (3.9) we can determine m 3 and calculate the ratio m 2 /m 3 . After some simple algebra we obtain

m 2 m 3 = (ρ(1 + ρ)) 2n+1 -R(ρ) ((1 + ρ) 2n+1 -ρR(ρ) .
Taking into account the explicit form of R(ρ) given by (3.10) we obtain

m 2 m 3 = - r 3 (ρ) ρ = -ρ 2n (1 + ρ) 2n+2 -1 (1 + ρ) 2n+2 -ρ 2n+2 .
The above ratio is negative for a positive ρ. We have a contradiction with assumption that all masses are positive and this ends our proof.

Remark 3.6 Instead of the last Proposition we can use the following reasoning to conclude the proof of Theorem 1.1. If λ = 1, then matrix M r U ′′ r (e) has double eigenvalue l, and double eigenvalue -(2n + 1). Moreover, it is not diagonalisable, and it has two Jordan blocks of dimension two. It means that those eigenvalues correspond to a non-real Darboux point e. In this case, by the second part of Theorem 2.2, the system is not integrable.

Discussion and comments

For the partially reduced problem we can find other particular solutions. Namely, one can easily prove the following Darboux point c gives a particular solution of the three body problem corresponding to the triangular Lagrange solution. There are two good properties of this solution: we know it explicitly, and moreover we know explicitly the corresponding eigenvalues. Probably this is why it was used in [START_REF] Simon | On the meromorphic non-integrability of some problems in celestial mechanics[END_REF][START_REF] Morales-Ruiz | On the meromorphic non-integrability of some N-body problems[END_REF].

However, we cannot prove the non-integrability using only this solution. Let us consider as example the classical case 2n = 1. Conditions λ ± ∈ M -1 can be written in the following form -27Q = (p + 1)(p -1)(p -2)(p -4), (

for a certain integer p greater than one. As Q > 0, we have only one choice for p, namely p = 3, and this gives Q = 8/27. We can assume that the sum of masses is one. Then, m 1 and m 2 are independent parameters of the problem and condition Q = 8/27 defines a curve on the plane (m 1 , m 2 ). For all points lying on this curve the necessary conditions for the integrability are satisfied.

2 P

 2 .14) Thus, we can make the following canonical transformation q = CQ, p = BP, where C := (B -1 ) T , which transforms the Hamiltonian (2.1) into K(Q, P) := H(CQ, BP) = 1 T P + U(Q), where U(Q) := V(CQ).

Proposition 3 . 1 .

 31 Assume that 2n is a positive integer and masses m 1 , m 2 and m 3 are positive. Then equation M r U ′ r (e) = e has a solution e of the form e := 0, a(1

Proposition 3 . 3 .

 33 Assume that 2n is a positive integer, and e be the solution of M r U ′ r (e) = e given by Proposition 3.1. Then matrix M r U ′′ r (e) has eigenvalues (1, -(2n + 1), λ, -(2n + 1)λ), where λ > 0.

. 10 )Proposition 3 . 4 .

 1034 Evidently, we have λ > 0, and this finishes our proof. Assume that k = -2n is a negative integer and k = -2. Then λ ∈ M k and (k -1)λ ∈ M k if and only if λ = 1.

Proposition 4 . 1 .b 2 2 =

 412 Vectorc := α(a 1 , b 1 , a 2 , b 2 ) T , α 2(n+1) (a 1a 2 ) 2 + (b 1b 2 ) 2 = 1. (4.3)Moreover, matrix M r U ′′ r (c) has eigenvalues (-2n -1, 1, λ -, λ + ), whereλ ± := -n ± (n + 1) 1 -3Q, Q := 1 m 2 (m 1 m 2 + m 2 m 3 + m 3 m 1 ). (4.4)
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Elements of sets M (i)

-3 have the following properties

, (s, 600) = 1.

( show that if

is not an element of M -3 . In fact using properties (3.15) we easily show that there is only one possibility λ 1 = 2/3. However, this gives λ 2 = -8/3. Thus, by properties (3.15)

-3 but it is not true, as one can check directly. This end the proof for k = -3.

For k = -2n = -4 we have

where

We can sort all elements of the sets

-4 := Thus we have

Just a direct inspection of (3.17) shows that λ 2 = -5λ ∈ M -4 and this ends the proof for k = -4

For k = -2n = -5 we have

where

(3.18) Proceeding in the way similar to the previous case we prove the statement for k = -5.

For k = -2n < -5, we have

k is a positive number, then

Hence, either p > 0 and p < 1 + 1 n , or p < 0 and p > 1 + 1 n .

As n > 2, the only possibility is p = 1, and this gives λ = 1.

k is a positive number, then 4nλ = 2n + 1 -4n 2 p(p + 1) > 0, for a non-negative integer p. The only possibility is p = 0, and this gives

We show that

k because λ 2 is not an integer. We show that λ 2 ∈ M

(2)

k , then there exists a non-negative integer p such that -(2n + 1) 2 = 2n + 1 -4n 2 p(p + 1).

From the above equation we find that n = 2 1 + 8p(1 + p) -3 .