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ON THE COMPUTATION OF SOME EXTERNAL OR PARTIALLY ENCLOSED NATURAL CONVECTION FLOWS

We address the issue of the computation of natural convection in external or partially enclosed domains, such as natural convection flow in vertical open channels or along heated vertical plates which raises the question of the proper choice of artificial boundary conditions and of their numerical implementation. To this aim we perform a singular value decomposition of the discrete Stokes operator that arises from the discretization of the governing Navier-Stokes equations, using the classical staggered grid formulation. We show that some choices of boundary conditions lead to an increase of the kernel of this operator making the solution of the full nonlinear equations indefinite. This arises in particular when Neumann type boundary conditions are imposed on the velocity component normal to the main inlet and outlet boundaries. The existence of one or more velocity-pressure combinations solutions of the homogeneous Stokes operator can be used to derive a superposition algorithm in which a linear combination of these modes is added to a particular solution of the nonlinear equations in order to satisfy given constraints such as one or more pressure conditions for instance. Sample calculations are performed to demonstrate the effectiveness of this methodology, which has many applications in other configurations such as pipe flows with several outlets or free plane jets for instance.

INTRODUCTION

Natural convection flows abound in nature or in industrial configurations (e.g [START_REF] Gebhart | Buoyancy-induced flows Hemisphere Publishing Corporation 2[END_REF]). Such flows can occur either in confined spaces or in unbounded domains, very often also in partially bounded domains, that is in domains connected to the ambient surroundings through one or several apertures. Surprisingly enough external or partially enclosed flows have received much less interest in the computational literature than fully enclosed flows. Since both types of flows are governed by the same partial derivative equations, the explanation has to be found in the difficulty of deriving and imposing appropriate boundary conditions. Whereas for forced convection the imposed flow can be imposed at the entrance boundaries provided those are set sufficiently far upstream, this procedure can no longer be applied for natural convection as the flow magnitude and direction at the inflow boundary are determined by what happens close to the heated source located downstream the entrance. This difficulty has generally led people to consider boundary conditions that exert as less constraints as possible on the flow, in the aim of letting the flow establish itself in magnitude and direction.

In particular, the computation of flows such as developing external natural convection boundary layers along a heated plate, of channel flows, or flows due to isolated heated bodies necessitates considering artificial boundaries of the computational domain located at some distance away from the heated parts. 

GOVERNING EQUATIONS

We assume that the governing equations are those of an incompressible flow of a newtonian fluid under the Boussinesq approximation. These equations are made dimensionless using H as unit length, Vref= (/Η) Ra 1/2 as reference velocity where  is the thermal diffusivity, (Η 2 /) Ra -1/2 as reference time and ΔT as unit temperature difference. In dimensionless form, these equations read:
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where u and w stand for, respectively, the dimensionless horizontal and vertical component velocities, P the pressure and T the dimensionless temperature. Ra is the Rayleigh number (=gβΔTH 3 /ν), and Pr is the Prandtl number (=ν/κ) Let us assume that these equations are discretized in time with a time step Δt using an implicit discretization of the linear diffusive terms and an explicit treatment of the nonlinear terms. Thus at each time step, the velocity and pressure satisfy the following linear system of equations known as the unsteady Stokes problem:
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where H u and H w are the elliptic operators (Δ -λ I) with λ a constant that depends on Δt and Ra. Typically λ is equal to C Ra 1/2 / Δt with C a constant that depends on the specific time stepping scheme. At steady state, the velocity and pressure satisfy the same system with λ = 0. This elliptic system has to be supplemented with boundary conditions. Let us 

ANALYSIS

Continuous equations: It is well known than the corresponding Stokes problem is singular. This is due to the fact that the 3-uplet (u,w,P)=(0,0,1) satisfies the homogeneous equations whatever the imposed boundary conditions. This corresponds to the fact that in an incompressible flow, the pressure is defined up an arbitrary constant. Now the basic question is the following: do the imposed boundary conditions allow for other linearly independent modes solution of the homogeneous equations? Or, in other words, do the imposed boundary conditions increase the size of the kernel of the Stokes operator? For the channel flow with the above specified boundary conditions, the answer is obvious as is known from any undergraduate textbook : a Poiseuille flow, with parabolic w-velocity component in x and linear pressure in z, satisfies the homogeneous steady Stokes problem, making the kernel of the steady Stokes problem of dimension at least 2. This means that if a steady state solution of the inhomogeneous equations is obtained in some way, it is not unique since another solution equal to the previous one plus any Poiseuille is solution of the inhomogeneous equations. This indeterminacy probably explains some of the discrepancies that have been observed in the literature. Now the following questions arise. Are there other "boundary modes" in the kernel? What happens for the type of geometry considered by Kettleborough [START_REF] Kettleborough | Transient laminar convection between heated vertical plates including entrance effects[END_REF] for instance? What happens for flows around heated bodies? As soon as the geometry becomes less trivial, the answer has to be obtained directly from the discretized equations. Looking at this question numerically may raise new difficulties owing to the classical question of the compatibility of the velocity and pressure spaces, which may add additional spurious modes in addition to those of the continuous problem. Discretized equations: We will restrict ourselves here to the classical staggered grid discretization, which is known to provide compatible velocitypressure approximation spaces, giving rise to the only constant pressure mode in the case of Dirichlet boundary conditions. The restriction to the staggered grid discretization may seem arbitrary, but it is not our goal to study this question in general but rather to provide a general framework which can be used in other types of spatial discretization, arising from finite element or spectral type approximations. Consider the unit square Ω = [0,1]x[0,1]. Let Ω be covered with NxM cells. With the staggered grid arrangement, the component u is defined by Nu = (N+1)xM degrees of freedom, the component w is defined by Nw = Nx(M+1) degrees of freedom, and the pressure by Np = NxM. The Stokes operator is thus of order (Nu+Nw+Np). The boundary conditions are imposed in the appropriate way. In order to explicitly build the operator, all fields are considered as 1D vectors resulting from the natural ordering. The explicit construction of the Stokes operator allows one to perform its Singular Value Decomposition. The SVD allows one to fully characterize the matrix, as it provides the dimension of the kernel of the operator, and orthonormal basis of its kernel and of its image as well as those of its transpose. More precisely any matrix S, here square, can be written as S = U Λ V t where Λ is the diagonal matrix of the singular values. The number of null singular values gives the dimension of the kernel of S, and the columns of V corresponding to the null singular values form an orthonormal basis of Ker(S) while the columns of U corresponding to the non zero singular values form an orthonormal basis of Im(S). Since S t = V Λ U t , Ker(S t ) and Im(S t ) are characterized as well, allowing a complete determination of the domain of S and of its range.

The SVD of the steady Stokes operator of the channel with its specified boundary condition was performed with Scilab for values of N and M small enough for the problem to remain tractable but large enough to get a generic answer. For the channel flow is suffices that N and M be larger than 3. The number of null singular values and hence the number of modes of the kernel is 2. Although the two modes that come out of the SVD are mixed, the boundary condition mode can be obtained if one assumes (and checks) that the intrinsic mode is the mode (0, 0, 1) and performing the orthonormalisation. It is verified that this mode is the discrete counterpart of the continuous Poiseuille flow, although even in this simple case, it has to be determined numerically due to the location of the velocity component at half grid cells. In the case of a heated vertical plate (Fig. 2), the dimension of the kernel is also equal to 2. The mode of the kernel is a 1D flow with slip at the outer boundary, corresponding to a linear pressure gradient.

Additional computations were performed for other types of geometries. Let us consider the geometry sketched in fig. 3 which corresponds to the case studied by Kettleborough [START_REF] Kettleborough | Transient laminar convection between heated vertical plates including entrance effects[END_REF] in order to set the entrance conditions at artificial boundaries away from the channel entrance. We impose the following boundary conditions 0 .

0 .        V n n V n
where n and τ are the unit vectors normal and tangential to the open boundaries. The use of a cell phase function allowed us to systematize the investigation of the various geometrical shapes shown below.

Figure 3 Sketch of the channel geometry considered in [START_REF] Kettleborough | Transient laminar convection between heated vertical plates including entrance effects[END_REF].

The artificial boundaries are the dotted lines.

Performing the SVD of the Stokes operator in this case reveals that its kernel is of dimension 3, which leaves 2 undetermined Stokes modes in addition to the constant pressure mode. Let us further consider the case for the flow around a heated body such as sketched in Fig. 4. If we impose Neuman conditions on the normal component on all four external boundaries, the number of null singular values is equal to 4 yielding 3 undetermined Stokes modes in addition to the constant pressure mode.

Figure 4 Configuration of a heated body

A SUPERPOSITION METHOD

General: Recognizing that with the specified boundary conditions the steady state solution of the Stokes problem is undefined up to a linear combination of the non-trivial Stokes modes solution of the homogeneous Stokes problem opens the way to the determination of a correct solution with the help of a superposition method. Assuming a particular solution has been obtained, one can superpose to this solution a linear combination of the non-trivial Stokes modes so as to satisfy additional constraints on the solution. The number of these constraints has to be equal to the dimension of the kernel. The additional constraints themselves depend on the modeling assumptions, as will be shown below. The present superposition method will thus allow one to compute the unique solution that satisfies the additional constraints which depend on the modeling assumption.

Channel flow: Assume a particular solution has been obtained. On can superpose to this solution a linear combination of the Poiseuille flow requiring that the pressure drop between inlet and outlet is equal to a specified value, which is the global condition that the channel flow has to satisfy. This value can be either zero, which says that the motion pressure outside the channel remains constant or to -½ G 2 if one takes into account the pressure drop needed to accelerate the fluid from infinity to the channel entrance [START_REF] Dalbert | Influence des conditions d'entrée sur l'écoulement de convection naturelle dans un thermosiphon vertical[END_REF]. One could then proceed as follows. A particular solution is obtained through some procedure, either through time integration or solving iteratively for the steady state equations. When steady state is obtained the mean pressure drop between inlet and outlet is computed and the multiplicative constant of the Poiseuille flow is determined so as to produce the required pressure drop. The Poiseuille flow times this constant is then added to the particular solution, yielding the "true" solution.

In fact it turns out that it is not so easy to compute directly the particular steady solution precisely because this solution is not completely defined. In particular it may continuously keep shifting in time and very often diverge, in particular when the chimney effect is triggered. It is better then to control the solution in a time dependent way by using the superposition principle at each time step. In that case the boundary condition mode is no longer the steady Poiseuille flow but its unsteady counterpart that has to be determined numerically. That mode corresponds to (0, w(x), z) where w is solution of 1)=0. In this version, the superposition method is done at each time step. This results in a stable algorithm. It should be noted that the unsteady Stokes mode has to be computed only once (assuming Δt is constant), and the additional cost of the superposition principle is completely negligible. Sample computations were performed to test the effectiveness of this unsteady superposition principle.
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We consider the specific case of an asymmetric channel (fig. 5) investigated experimentally in [START_REF] Webb | High Rayleigh number laminar natural convection in an asymmetrically heated ver Transfer[END_REF] and was considered as a benchmark exercise in the french convection community [START_REF] Desrayaud | Etude numérique comparative des écoulements thermoconvectifs dans un canal vertical chauffé asymétriquement[END_REF]. The numerical algorithm integrates the equations in unsteady form using a prediction-projection splitting procedure. The prediction step uses an implicit treatment of the viscous terms coupled with an explicit treatment of the convective terms. The projection step requires solving a Poisson type equation for the pressure correction which is done using a multigrid algorithm.

Figure 5

Asymmetric channel hated at uniform heat flux on half its vertical left wall.

We have computed the solution of the governing equations with the specified boundary conditions for one set of values of parameters corresponding to the benchmark exercise: A=5, Ra w =5 10 5 . Fig. 6 presents the w-velocity profile at various heights, showing that the flow enters with a parabolic profile and exits with a boundary layer profile. The plot also shows that above a certain height downward velocities are found which correspond to the existence of a recirculation zone with fluid entering from the top. The existence of such recirculation zones with fluid entering from top has been the subject of long debate in the heat transfer literature (see [START_REF] Kihm | Onset of flow reversal and penetration length of natural convective flow between isothermal v[END_REF]). Needless to say that the confident and accurate numerical simulation of these subtle configurations requires an appropriate treatment of the inlet and outlet conditions. Fig. 7 shows the vertical pressure distribution at mid-width. It starts at -0.5 G 2 , first shows a linear drop corresponding to fully developed flow, followed by a monotonous increase up to the end value.
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Vertical velocity profiles at various heights We have shown that the imposition of Neumann type boundary conditions may lead to one or several nontrivial combinations of velocity-pressure fields which satisfy the homogeneous Stokes operator, in addition to the unavoidable constant pressure mode. This recognition leads to proposing an algorithm in which the solution is sought as a combination of particular solution of the inhomogeneous Stokes or unsteady Stokes problem plus a linear combination of the modes of the kernel so as to satisfy global conditions such as a mean pressure difference between outlet and inlet. The algorithm was tested on two classical configurations, a channel flow and a heated vertical plate, demonstrating its effectiveness and its efficiency. The algorithm can also more generally apply for pipe networks with one or several outlets, which is the unique way not to specify a priori the

  Figure1Sketch of the channel geometry

Figure 2

 2 Figure 2 Sketch of a heated vertical plate. The artificial boundaries are the dotted lines.

Figure 7

 7 Figure 7 Pressure distribution at mid-width. Convergence with mesh refinement is shown Let us mention that for a Ra w number of 10 7 , a global unsteadiness of the solution was observed as shown in Fig. 8 that presents the time variation of the Nusselt number. The figure shows that the asymptotic evolution of the Nusselt number displays repetitive large amplitude fluctuations of period approximately equal to 400 convective time units. The dynamics is made of a long decrease followed by a sudden jump to the maximum value. We have been able to relate this behavior to a slow increase in time of the

Figure 9

 9 Figure 9 Computational domain for heated plate calculation Fig. 10 presents the vertical velocity profiles at various heights along the plate, showing the development of the boundary layer and that all the flow comes from the lateral boundary since the vertical velocity at z=1/4 is zero. Figure 10 shows that the computed solution verifies the similarity conditions.

Figure 10

 10 Figure 10Vertical velocity profiles at various heights scaled with similarity variables

Figure 11

 11 Figure 11 Sketch of vented cavity

Figure 13

 13 Figure 13 Fully non linear solution for Ra=10 5 Pipe flow with multiple outlets: A classical flow configuration is that of pipe flow with multiple outlets which raises the issue of the way the inlet flow rate splits between the various branches. If one does not want to specify a priori the flow rates in the various branches, one is led to impose Neuman type conditions on the normal component at the various outlets. Consider for instance the flow geometry sketched in figure 14, consisting of one inlet and two successive branches with 4 outlets.

Figure 14

 14 Figure 14 Sketch of pipe flow with 4 outlets

Figure 16

 16 Figure 16Nonlinear solution for a Rey
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