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ABSTRACT 
We address the issue of the computation of natural 
convection in external or partially enclosed domains, 
such as natural convection flow in vertical open 
channels or along heated vertical plates which raises 
the question of the proper choice of artificial 
boundary conditions and of their numerical 
implementation. To this aim we perform a singular 
value decomposition of the discrete Stokes operator 
that arises from the discretization of the governing 
Navier-Stokes equations, using the classical staggered 
grid formulation. We show that some choices of 
boundary conditions lead to an increase of the kernel 
of this operator making the solution of the full 
nonlinear equations indefinite. This arises in 
particular when Neumann type boundary conditions 
are imposed on the velocity component normal to the 
main inlet and outlet boundaries. The existence of 
one or more velocity-pressure combinations solutions 
of the homogeneous Stokes operator can be used to 
derive a superposition algorithm in which a linear 
combination of these modes is added to a particular 
solution of the nonlinear equations in order to satisfy 
given constraints such as one or more pressure 
conditions for instance. Sample calculations are 
performed to demonstrate the effectiveness of this 
methodology, which has many applications in other 
configurations such as pipe flows with several outlets 
or free plane jets for instance.  

NOMENCLATURE 
A aspect ratio of heated zone 
g  gravity acceleration, m/s2 
G  flow rate, m2/s 
ΔT temperature difference, K 
Δt  time step 
H height of computational domain, m 
h heat transfer coefficient, W/m2C 
Pr Prandtl number (=ν/κ) 
Ra Rayleigh number (=gβΔTH3/ν) 

Nu Nusselt number  
W width of computational domain, m 
β    coefficient of thermal expansion 
ν    kinematic viscosity, m/s2  
    thermal diffusivity, m/s2 
x,z  horizontal and vertical coordinates 
u,w  horizontal and vertical velocity components 
Pm   motion pressure 
Subscripts 
H relative to height 
w relative to width 
 
INTRODUCTION 

 
Natural convection flows abound in nature or in 
industrial configurations (e.g [1]). Such flows can 
occur either in confined spaces or in unbounded 
domains, very often also in partially bounded 
domains, that is in domains connected to the ambient 
surroundings through one or several apertures. 
Surprisingly enough external or partially enclosed 
flows have received much less interest in the 
computational literature than fully enclosed flows. 
Since both types of flows are governed by the same 
partial derivative equations, the explanation has to 
be found in the difficulty of deriving and imposing 
appropriate boundary conditions. Whereas for forced 
convection the imposed flow can be imposed at the 
entrance boundaries provided those are set 
sufficiently far upstream, this procedure can no 
longer be applied for natural convection as the flow 
magnitude and direction at the inflow boundary are 
determined by what happens close to the heated 
source located downstream the entrance. This 
difficulty has generally led people to consider 
boundary conditions that exert as less constraints as 
possible on the flow, in the aim of letting the flow 
establish itself in magnitude and direction.  
In particular, the computation of flows such as 
developing external natural convection boundary 
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layers along a heated plate, of channel flows, or flows 
due to isolated heated bodies necessitates considering 
artificial boundaries of the computational domain 
located at some distance away from the heated parts. 
For such configurations most computations have 
considered homogeneous Neumann boundary 
conditions for the component of the velocity normal 
to the far field boundaries where the flow is drawn 
inside the computational domain, while considering 
that the tangential velocity can be assumed negligibly 
small, i.e. satisfies homogeneous Dirichlet conditions. 
At the outflow boundaries, homogeneous Neumann 
boundary or convective boundary conditions are 
generally used, in the aim of translating the 
assumption of no longer evolving flow structure, a 
vague concept. 
The apparently simplest of the external flows listed 
above is the vertical channel, open at both ends, 
subject to various heating boundary conditions. This 
configuration is very interesting because, for 
appropriate values of the governing parameters, it 
may give rise to the so called chimney effect, an 
acceleration of the through flow, leading to heat 
transfer augmentation. Quantifying the chimney 
effect has been the subject of many works in the past 
(e.g. [2]). Owing to the geometry, one would like to 
consider a computational domain restricted to the 
channel geometry which raises the question of the 
inlet and outlet boundary conditions. As said above it 
is impossible to specify the shape of the vertical 
velocity component w, nor its magnitude i.e. the 
global flow rate, at entrance, as those are part of the 
unknowns of the problem. One possibility thus seems 
to set its vertical derivative to zero, while it seems 
logical to impose that the flow enters vertically i.e. to 
specify the horizontal component u to zero. At outlet 
it seems also logical, at least if the channel is long 
enough, to impose the same boundary conditions, i.e. 
vertical derivative of w equal to zero and zero 
horizontal velocity flow, conditions corresponding to 
established flow. 
Now the question that one may ask is the following.: 
is this problem well posed, both from a continuous 
standpoint and after numerical discretization? After 
recalling the governing equations, we will answer to 
this question, making use of the singular value 
decomposition of the matrix resulting from the spatial 
discretization of the 2D operator. The recognition that 
there is one pair velocity-pressure solution of the 
homogeneous Stokes or Unsteady Stokes equations 
opens the way to a superposition or influence matrix 
technique. This technique is implemented and is used 

to provide solutions to classical configurations such 
as the channel flow for instance. 
 
GOVERNING EQUATIONS  

 
We assume that the governing equations are those of 
an incompressible flow of a newtonian fluid under 
the Boussinesq approximation. These equations are 
made dimensionless using H as unit length, Vref= 
(/Η) Ra1/2 as reference velocity where  is the 
thermal diffusivity, (Η2/) Ra-1/2 as reference time 
and ΔT as unit temperature difference. In 
dimensionless form, these equations read: 
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where u and w stand for, respectively, the 
dimensionless horizontal and vertical component 
velocities, P the pressure and T the dimensionless 
temperature. Ra is the Rayleigh number 
(=gβΔTH3/ν), and Pr is the Prandtl number (=ν/κ) 
Let us assume that these equations are discretized in 
time with a time step Δt using an implicit 
discretization of the linear diffusive terms and an 
explicit treatment of the nonlinear terms. Thus at 
each time step, the velocity and pressure satisfy the 
following linear system of equations known as the 
unsteady Stokes problem: 
 

Sw
z

P
wH

Su
x

P
uH

z

w

x

u

w

u

















0

 

where Hu and Hw are the elliptic operators (Δ – λ I) 
with λ a constant that depends on Δt and Ra. 
Typically λ is equal to C Ra1/2 / Δt with C a constant 
that depends on the specific time stepping scheme. 
At steady state, the velocity and pressure satisfy the 
same system with λ = 0. This elliptic system has to 
be supplemented with boundary conditions. Let us 
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consider for instance the channel flow configuration 
shown in fig. 1 with 

0w
z


  and at entrance and outlet. 0u

 

Figure1 
 Sketch of the channel geometry  

 
ANALYSIS 
 
Continuous equations: It is well known than the 
corresponding Stokes problem is singular. This is due 
to the fact that the 3-uplet (u,w,P)=(0,0,1) satisfies the 
homogeneous equations whatever the imposed 
boundary conditions. This corresponds to the fact that 
in an incompressible flow, the pressure is defined up 
an arbitrary constant. Now the basic question is the 
following: do the imposed boundary conditions allow 
for other linearly independent modes solution of the 
homogeneous equations? Or, in other words, do the 
imposed boundary conditions increase the size of the 
kernel of the Stokes operator? For the channel flow 
with the above specified boundary conditions, the 
answer is obvious as is known from any 
undergraduate textbook : a Poiseuille flow, with 
parabolic w-velocity component in x and linear 
pressure in z, satisfies the homogeneous steady 
Stokes problem, making the kernel of the steady 
Stokes problem of dimension at least 2. This means 
that if a steady state solution of the inhomogeneous 
equations is obtained in some way, it is not unique 
since another solution equal to the previous one plus 
any Poiseuille is solution of the inhomogeneous 
equations. This indeterminacy probably explains 
some of the discrepancies that have been observed in 
the literature. Now the following questions arise. Are 
there other “boundary modes” in the kernel? What 
happens for the type of geometry considered by 
Kettleborough [3] for instance? What happens for 
flows around heated bodies? As soon as the geometry 
becomes less trivial, the answer has to be obtained 
directly from the discretized equations. Looking at 

this question numerically may raise new difficulties 
owing to the classical question of the compatibility 
of the velocity and pressure spaces, which may add 
additional spurious modes in addition to those of the 
continuous problem. 
Discretized equations: We will restrict ourselves 
here to the classical staggered grid discretization, 
which is known to provide compatible velocity-
pressure approximation spaces, giving rise to the 
only constant pressure mode in the case of Dirichlet 
boundary conditions. The restriction to the staggered 
grid discretization may seem arbitrary, but it is not 
our goal to study this question in general but rather 
to provide a general framework which can be used in 
other types of spatial discretization, arising from 
finite element or spectral type approximations. 
Consider the unit square Ω = [0,1]x[0,1]. Let Ω be 
covered with NxM cells. With the staggered grid 
arrangement, the component u is defined by Nu = 
(N+1)xM degrees of freedom, the component w is 
defined by Nw = Nx(M+1) degrees of freedom, and 
the pressure by Np = NxM. The Stokes operator is 
thus of order (Nu+Nw+Np). The boundary 
conditions are imposed in the appropriate way. In 
order to explicitly build the operator, all fields are 
considered as 1D vectors resulting from the natural 
ordering. The explicit construction of the Stokes 
operator allows one to perform its Singular Value 
Decomposition. The SVD allows one to fully 
characterize the matrix, as it provides the dimension 
of the kernel of the operator, and orthonormal basis 
of its kernel and of its image as well as those of its 
transpose. More precisely any matrix S, here square, 
can be written as S = U Λ Vt where Λ is the diagonal 
matrix of the singular values. The number of null 
singular values gives the dimension of the kernel of 
S, and the columns of V corresponding to the null 
singular values form an orthonormal basis of Ker(S) 
while the columns of U corresponding to the non 
zero singular values form an orthonormal basis of 
Im(S). Since St = V Λ Ut, Ker(St) and Im(St) are 
characterized as well, allowing a complete 
determination of the domain of S and of its range. 
 
The SVD of the steady Stokes operator of the 
channel with its specified boundary condition was 
performed with Scilab for values of N and M small 
enough for the problem to remain tractable but large 
enough to get a generic answer. For the channel flow 
is suffices that N and M be larger than 3. The 
number of null singular values and hence the 
number of modes of the kernel is 2. Although the 
two modes that come out of the SVD are mixed, the 
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boundary condition mode can be obtained if one 
assumes (and checks) that the intrinsic mode is the 
mode (0, 0, 1) and performing the 
orthonormalisation. It is verified that this mode is the 
discrete counterpart of the continuous Poiseuille flow, 
although even in this simple case, it has to be 
determined numerically due to the location of the 
velocity component at half grid cells.  
 

 
 

Figure 2 
Sketch of a heated vertical plate. The artificial 

boundaries are the dotted lines. 
 
In the case of a heated vertical plate (Fig. 2), the 
dimension of the kernel is also equal to 2. The mode 
of the kernel is a 1D flow with slip at the outer 
boundary, corresponding to a linear pressure gradient. 
 
Additional computations were performed for other 
types of geometries. Let us consider the geometry 
sketched in fig.3 which corresponds to the case 
studied by Kettleborough [3] in order to set the 
entrance conditions at artificial boundaries away from 
the channel entrance. We impose the following 
boundary conditions  
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where n and τ are the unit vectors normal and 
tangential to the open boundaries. The use of a cell 
phase function allowed us to systematize the 
investigation of the various geometrical shapes 
shown below. 
 

 
Figure 3 

Sketch of the channel geometry considered in [3]. 
The artificial boundaries are the dotted lines. 

 
Performing the SVD of the Stokes operator in this 
case reveals that its kernel is of dimension 3, which 
leaves 2 undetermined Stokes modes in addition to 
the constant pressure mode. Let us further consider 
the case for the flow around a heated body such as 
sketched in Fig.4. If we impose Neuman conditions 
on the normal component on all four external 
boundaries, the number of null singular values is 
equal to 4 yielding 3 undetermined Stokes modes in 
addition to the constant pressure mode.  
 

 
Figure 4 

 Configuration of a heated body 
 
A SUPERPOSITION METHOD 
General: Recognizing that with the specified 
boundary conditions the steady state solution of the 
Stokes problem is undefined up to a linear 
combination of the non-trivial Stokes modes 
solution of the homogeneous Stokes problem opens 
the way to the determination of a correct solution 
with the help of a superposition method. Assuming a 
particular solution has been obtained, one can 
superpose to this solution a linear combination of the 
non-trivial Stokes modes so as to satisfy additional 
constraints on the solution. The number of these 
constraints has to be equal to the dimension of the 
kernel. The additional constraints themselves depend 
on the modeling assumptions, as will be shown 
below. The present superposition method will thus 
allow one to compute the unique solution that 
satisfies the additional constraints which depend on 
the modeling assumption. 
 
Channel flow: Assume a particular solution has 
been obtained. On can superpose to this solution a 
linear combination of the Poiseuille flow requiring 
that the pressure drop between inlet and outlet is 
equal to a specified value, which is the global 
condition that the channel flow has to satisfy. This 
value can be either zero, which says that the motion 
pressure outside the channel remains constant or to -
½ G2 if one takes into account the pressure drop 
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needed to accelerate the fluid from infinity to the 
channel entrance [4]. One could then proceed as 
follows. A particular solution is obtained through 
some procedure, either through time integration or 
solving iteratively for the steady state equations. 
When steady state is obtained the mean pressure drop 
between inlet and outlet is computed and the 
multiplicative constant of the Poiseuille flow is 
determined so as to produce the required pressure 
drop. The Poiseuille flow times this constant is then 
added to the particular solution, yielding the "true" 
solution.  

 

In fact it turns out that it is not so easy to compute 
directly the particular steady solution precisely 
because this solution is not completely defined. In 
particular it may continuously keep shifting in time 
and very often diverge, in particular when the 
chimney effect is triggered. It is better then to control 
the solution in a time dependent way by using the 
superposition principle at each time step. In that case 
the boundary condition mode is no longer the steady 
Poiseuille flow but its unsteady counterpart that has 
to be determined numerically. That mode corresponds 
to (0, w(x), z) where w is solution of  
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with w(0)=w(1)=0. In this version, the superposition 
method is done at each time step. This results in a 
stable algorithm. It should be noted that the unsteady 
Stokes mode has to be computed only once (assuming 
Δt is constant), and the additional cost of the 
superposition principle is completely negligible. 
Sample computations were performed to test the 
effectiveness of this unsteady superposition principle.  
 
We consider the specific case of an asymmetric 
channel (fig. 5) investigated experimentally in [5] and 
was considered as a benchmark exercise in the french 
convection community [6]. The numerical algorithm 
integrates the equations in unsteady form using a 
prediction-projection splitting procedure. The 
prediction step uses an implicit treatment of the 
viscous terms coupled with an explicit treatment of 
the convective terms. The projection step requires 
solving a Poisson type equation for the pressure 
correction which is done using a multigrid algorithm.  

 
 

Figure 5 
Asymmetric channel hated at uniform heat flux on 

half its vertical left wall.  
 
We have computed the solution of the governing 
equations with the specified boundary conditions for 
one set of values of parameters corresponding to the 
benchmark exercise: A=5, Raw=5 105. Fig. 6 
presents the w-velocity profile at various heights, 
showing that the flow enters with a parabolic profile 
and exits with a boundary layer profile. The plot also 
shows that above a certain height downward 
velocities are found which correspond to the 
existence of a recirculation zone with fluid entering 
from the top. The existence of such recirculation 
zones with fluid entering from top has been the 
subject of long debate in the heat transfer literature 
(see [7]). Needless to say that the confident and 
accurate numerical simulation of these subtle 
configurations requires an appropriate treatment of 
the inlet and outlet conditions. Fig. 7 shows the 
vertical pressure distribution at mid-width. It starts 
at -0.5 G2, first shows a linear drop corresponding to 
fully developed flow, followed by a monotonous 
increase up to the end value.  
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Figure 6 
Vertical velocity profiles at various heights 

 

 
Figure 7 

Pressure distribution at mid-width. Convergence with 
mesh refinement is shown 

 
Let us mention that for a Raw number of 107, a global 
unsteadiness of the solution was observed as shown 
in Fig. 8 that presents the time variation of the 
Nusselt number. The figure shows that the asymptotic 
evolution of the Nusselt number displays repetitive 
large amplitude fluctuations of period approximately 
equal to 400 convective time units. The dynamics is 
made of a long decrease followed by a sudden jump 
to the maximum value. We have been able to relate 
this behavior to a slow increase in time of the 

 
Figure 8 

Time evolution of Nusselt number (time in the figure 
is in units of (W2/)Raw

-1/2 ) 

recirculation zone with corresponding slow decrease 
of the through flow rate until the heat does no longer 
evacuate through the upper boundary. Since the 
channel is heated at uniform heat flux the heat then 
continues to accumulate in the upper part of the 
channel until the buoyancy forces suddenly take 
over, evacuate all the accumulated heat and restore 
the initial situation. This dynamics was found with 
several resolutions up to 130x512. 
 
Boundary layer flow: To further assess the validity 
of the superposition principle we have addressed the 
configuration of a vertical natural convection 
boundary layer along a heated vertical plate. This 
configuration turns out to be much more demanding 
since the flow has to be allowed to flow across the 
artificial boundary facing the heated plate in order to 
provide the flow rate needed for the boundary layer 
to grow as it should do. Let us recall that the 
boundary layer thickness should grow as z1/4 and the 
vertical velocity like z1/2. The global flow rate thus 
grows like z3/4 and the horizontal velocity at infinity 
should thus decrease like z-1/4 like the Nusselt 
number (see [2] for instance). It is also known that 
the boundary layer equations admit a similarity 
solution first produced in [9].   
This computation has considered a rectangular 
domain of vertical aspect ratio A with artificial 
boundaries such a sketched in fig. 9, on which 
normal derivatives of both velocity components and 
temperature were set to zero except on the bottom 
boundary OA where the temperature was set to zero. 
The left boundary was considered as a wall, 
adiabatic for 0<z<1/4, heated at uniform temperature 
for z>1/4.  
The superposition principle consisted of using the 
quasi-Poiseuille flow corresponding to 
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 w
x

w 
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

 with w(0) and w’(1/A)=0 to 
control the w-velocity component in one point of the 
boundary AB. Other attempts to control the pressure 
difference did not result in stable computations. We 
have considered a domain of vertical aspect ratio 10 
and a nominal Rayleigh number of 1010 based on the 
total height of the domain, corresponding to a local 
Rayleigh number at the top of the plate equal to 
4.2x109. The spatial resolution is 64x256 with a 
stretched half-cosine grid in x and a uniform grid in 
z.  
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Figure 9  

Computational domain for heated plate calculation 
 
Fig. 10 presents the vertical velocity profiles at 
various heights along the plate, showing the 
development of the boundary layer and that all the 
flow comes from the lateral boundary since the 
vertical velocity at z=1/4 is zero. Figure 10 shows 
that the computed solution verifies the similarity 
conditions. 

 
Figure 10  

Vertical velocity profiles at various heights scaled 
with similarity variables 

 
OTHER CONFIGURATIONS 
 
Vented cavity: Consider a vented cavity like that 
sketched on figure 11, where the flow will be due to 
the fact that the inner body is heated. In this case the 
dimension of the kernel is equal to 2 and the non 
homogeneous Stokes mode corresponding to Neuman 
conditions on the velocity at both apertures is shown 
in figure 12. In consists of a flow entering and exiting 
through the apertures driven by the corresponding 
pressure field. 
 

 
 

Figure 11 
Sketch of vented cavity 

 
Figure 12 

Non homogeneous Stokes mode 
 

A full nonlinear solution obtained with the internal 
heated body corresponding to equal mean pressures 
at inlet and oulet is shown in figure 13.  

 
Figure 13 

Fully non linear solution for Ra=105 
 
Pipe flow with multiple outlets: A classical flow 
configuration is that of pipe flow with multiple 
outlets which raises the issue of the way the inlet 
flow rate splits between the various branches. If one 
does not want to specify a priori the flow rates in the 
various branches, one is led to impose Neuman type 
conditions on the normal component at the various 
outlets. Consider for instance the flow geometry 
sketched in figure 14, consisting of one inlet and two 
successive branches with 4 outlets. 

 

 
Figure 14 

Sketch of pipe flow with 4 outlets  
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With neuman type conditions imposed on the normal 
components of the velocity in the outlet planes, the 
dimension of the kernel is 4, as many as free outlets, 
yielding 3 non homogeneous Stokes modes. Such one 
mode is shown in Figure 15 
  

 
Figure 15 

One typical non homogeneous Stokes mode 
 
A superposition algorithm was implemented 
consisting of controlling three scalars, the differences 
in mean pressure between the 4 outlets (3 scalars). A 
full nonlinear solution for a Reynolds number of 200 
is shown in figure 16.  

 
Figure 16 

Nonlinear solution for a Rey

CONCLUSIONS  
We have revisited the issue of the computation of 
incompressible flows in open domains or partially 
enclosed domains when the forces responsible of the 
motion are located within the computation domain. 
We have shown that the imposition of Neumann type 
boundary conditions may lead to one or several non-
trivial combinations of velocity-pressure fields which 
satisfy the homogeneous Stokes operator, in addition 
to the unavoidable constant pressure mode. This 
recognition leads to proposing an algorithm in which 
the solution is sought as a combination of particular 
solution of the inhomogeneous Stokes or unsteady 
Stokes problem plus a linear combination of the 
modes of the kernel so as to satisfy global conditions 
such as a mean pressure difference between outlet 

and inlet. The algorithm was tested on two classical 
configurations, a channel flow and a heated vertical 
plate, demonstrating its effectiveness and its 
efficiency. The algorithm can also more generally 
apply for pipe networks with one or several outlets, 
which is the unique way not to specify a priori the
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