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BAD BOUNDARY BEHAVIOR IN STAR INVARIANT SUBSPACES I

ANDREAS HARTMANN & WILLIAM T. ROSS

ABSTRACT. We discuss the boundary behavior of functions in backward shift invariant subspaces

(BH2)⊥, where B is a Blaschke product. Extending some results of Ahern and Clark, we are

particularly interested in the growth rates of functions at points of the spectrum of B where B

does not admit a derivative in the sense of Carathéodory.

1. INTRODUCTION

For a Blaschke product

B(z) = ∏
n≥1

bλn(z), bλ(z) = ∣λ∣
λ

λ − z
1 − λz ,

with zeros Λ = {λn}n≥1, repeated according to multiplicity, let us recall this following theorem of

Ahern and Clark [AC70] about the “good” non-tangential boundary behavior of functions in the

model spaces (BH2)⊥ [Nik86] of the Hardy space H2 of the open unit disk D [Dur70, Gar07].

Theorem 1.1 ([AC70]). For a Blaschke product B with zeros {λn}n≥1 and ζ ∈ T ∶= ∂D, the

following are equivalent:

(1) Every f ∈ (BH2)⊥ has a non-tangential limit at ζ , i.e.,

f(ζ) ∶= ∠ lim
λ→ζ

f(λ) exists.

(2) B has an angular derivative in the sense of Carathéodory at ζ , i.e.,

∠ lim
z→ζ

B(z) = η ∈ T and ∠ lim
z→ζ

B′(z) exists.

(3) The following condition holds

(1.2) ∑
n≥1

1 − ∣λn∣∣ζ − λn∣2 < ∞.
(4) The family of reproducing kernels for (BH2)⊥

kBλ (z) ∶= 1 −B(λ)B(z)
1 − λz

is uniformly norm bounded in each fixed Stolz domain

Γα,ζ = {z ∈ D ∶ ∣z − ζ ∣
1 − ∣z∣ < α} , α ∈ (1,∞).
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This is only a partial statement of the Ahern-Clark result. They went on further to characterize

the existence of non-tangential boundary limits of the derivatives (up to a given order) of func-

tions in (BH2)⊥. They also discuss the boundary behavior of functions in (IH2)⊥ where I is a

general inner function and not necessarily a Blaschke product. Of course there is the well-known

result (see e.g. [Nik86, p. 78]) which says that every f ∈ (BH2)⊥ has an analytic continuation

across T ∖ σ(B), where

σ(B) = {∣z∣ ≤ 1 ∶ lim
λ→z

∣B(λ)∣ = 0}
is the spectrum of B.

The aim of this paper is to consider the growth of functions in (BH2)⊥ at the points ζ ∈ T
where (1.2) fails. Thus, as in the title of this paper, we are looking at the “bad” boundary behavior

of functions from (BH2)⊥. First let us get a handle on the worst behavior we can expect. Indeed,

it is well known that every f ∈H2 satisfies the growth condition

(1.3) ∣f(λ)∣ = o⎛⎝ 1√
1 − ∣λ∣

⎞⎠ , λ ∈ Γα,ζ .
As seen in the Ahern-Clark theorem, functions in (BH2)⊥ can be significantly better behaved

depending on the distribution of the zeros of B. To fix our ideas, let ζ = 1. A trivial observation

is the following: For every f ∈ (BH2)⊥ and λ ∈ D we have

(1.4) ∣f(λ)∣ = ∣⟨f, kBλ ⟩∣ ≤ ∥f∥(1 − ∣B(λ)∣21 − ∣λ∣2 )
1/2

,

and by duality

sup
∥f∥≤1

∣⟨f, kBλ ⟩∣ = ∥kBλ ∥ = (1 − ∣B(λ)∣21 − ∣λ∣2 )
1/2

.

In the above, ∥ ⋅ ∥ denotes the usual norm in H2. So, in order to give an upper estimate of the

admissible growth in (BH2)⊥ in a Stolz angle, we have to control ∥kBλ ∥ in such an angle which

involves controlling how fast ∣B(z)∣ goes to 1 in Γα,1.

Let us first make the obvious observation that if there exists a sequence {zn}n≥1 ⊂ Γα,1 with

zn → ζ = 1 and with ∣B(zn)∣ ≤ δ < 1, then clearly ∥kBzn∥→∞ and so, by basic functional analysis,

there must be an f ∈ (BH2)⊥ without a finite non-tangential limit at 1. We actually have

∥kBzn∥ ≍ ∥kzn∥ = 1√
1 − ∣zn∣2 ,

where

kλ(z) ∶= 1

1 − λz
, z ∈ D,

is the reproducing kernel for H2. So, in this situation, the maximal possible growth of reproduc-

ing kernels in Hardy spaces is attained. Thus the subtlety occurs, for example, when

∠ lim
z→1

B(z) = η ∈ T
which is implied by the Frostman condition [CL66]

(1.5) ∑
n≥1

1 − ∣λn∣∣1 − λn∣ <∞.
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Observe the power in the denominator in (1.5) with respect to the Ahern-Clark result (1.2).

The main results of this paper will be non-tangential growth estimates of functions in (BH2)⊥
via non-tangential growth estimates of the norms of the kernel functions. Our main result (The-

orem 3.8) will be an estimate of the form

∥kBr ∥ ≍ h(r), r → 1−,

for some h ∶ [0,1) → R+ which depends on the position of the zeros of the Blaschke product B

near 1. This will, of course via (1.4), yield the estimate

∣f(r)∣ ≲ h(r), f ∈ (BH2)⊥, r → 1−.

To get a handle on the sharpness of this growth estimate, we will show (Theorem 4.13) that for

every ε > 0, there exists an f ∈ (BH2)⊥ satisfying

∣f(r)∣ ≳ h(r)
log1+ε h(r) , r → 1−.

In certain situations, it is possible to replace log1+ε h(r) by logh(r) log1+ε logh(r) without

ever getting rid of a logarithmic term. We do not know whether this logarithmic gap is optimal.

Still, it allows to show that a certain sequence of reproducing kernels cannot form an uncondi-

tional sequence (see Remark 2.13(1) and Section 5).

The two basic types of Blaschke sequences {λn}n≥1 we will be considering here, for which

we can get concise estimates of h, are

(1.6) λn = (1 − xn2−2n)ei2−n , xn ↓ 0,
which approaches 1 very tangentially, and

(1.7) λn = (1 − θ2n)eiθn , ∑
n≥1

θn < ∞,
which approaches 1 along an oricycle. As an example of the types of results we will obtain, we

will prove that when xn = 1/n in (1.6), we have the upper estimate (see Example (4.11)(1))

∣f(r)∣ ≲
√

log log
1

1 − r , r → 1−,

for all f ∈ (BH2)⊥ while when θn = 1/nα, α > 1, in (1.7), we have the estimate (see Example

(4.33)(1))

∣f(r)∣ ≲ 1

(1 − r) 1

2α

, r → 1−.

Compare these two results to the growth rate in (1.3) of a generic H2 function.

This is the first of two papers on “bad” boundary behavior of (IH2)⊥ (I inner) functions near

a fixed point on the circle. This paper considers the case when I is a Blaschke product. The next

paper will consider the case when I is a general inner function where different types of estimates

and very different methods are used yielding however less precise results in the Blaschke product

situation than in this paper.
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2. WHAT CAN BE EXPECTED

Before discussing the growth of functions in (BH2)⊥ or more generally in (IH2)⊥, we should

consider the following three generic situations:

● the Hardy space itself,● (IH2)⊥ at a point ζ ∈ T where I vanishes with some decrease conditions,● (BH2)⊥ when B is an interpolating Blaschke product with zeros on a radius.

Let us start with the Hardy space situation. It is well known that for every f ∈ H2 and λ ∈ D,

we have

∣f(λ)∣ = ∣⟨f, kλ⟩∣ ≤ ∥f∥∣∥kλ∥ = ∥f∥√
1 − ∣λ∣ .(2.1)

Also well-known is the slightly better estimate:

(2.2) ∣f(λ)∣ = o⎛⎝ 1√
1 − ∣λ∣

⎞⎠ , λ ∈ Γα,ζ .
The proof of this is short: Indeed we suppose that ζ = 1. Since H∞, the bounded analytic

functions on D, is dense inH2, given ε > 0 and f ∈H2, we can choose a g ∈H∞ with ∥g−f∥ ≤ ε.
Then √

1 − r∣f(r)∣ = √1 − r∣f(r) − g(r)∣ +√1 − r∣g(r)∣
≤ √1 − r∥f − g∥ 1√

1 − r +Cg
√
1 − r

≤ ε + o(1).
The little-oh condition in (2.2) is, in a sense, sharp. Though the following result is most likely

known, we include a proof here for completeness.

Proposition 2.3. For every function ϕ ∶ R+ Ð→ R+ strictly increasing to infinity and such that

ϕ2 is concave1, there exists an F ∈H2 such that

lim
r→1−

√
1 − rϕ( 1

1 − r) ∣F (r)∣ > 0.
Proof. In order to construct the desired function F we will begin by constructing its real part f

which is the Poisson extension of a certain boundary function ω ∶ (0,1]→ R+ defined by

ω = ∑
n≥1

1

ϕ(1/tn)√tnχ[tn,tn−1).
In the above, {tn}n≥1 is a suitable sequence of positive numbers (to be determined in a moment)

which decrease to zero and t1 = 1. Let us show how to find this sequence for the given function

ϕ.

We have two requirements. The first one is that ω ∈ L2. This translates to

0 ≤ ∫ 1

0
ω2(t)dt =∑

n≥1

tn−1 − tn
ϕ2(1/tn)tn =∑n≥1

1

ϕ2(1/tn) (tn−1tn − 1) <∞.
1The concavity assumption is not very restrictive since we are interested in very slow growth of ϕ.
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With

βn ∶= tn−1
tn
− 1,(2.4)

the requirement ω ∈ L2 becomes

∑
n≥1

βn

ϕ2(1/tn) < ∞.(2.5)

In order to simplify the following computations we set τn ∶= 1/tn which we need increasing to

infinity if we want our function ω to be well defined. This will be our second requirement.

It is immediate, provided that τn →∞ when n→∞, that the sequence {βn}n≥1 defined by

βn ∶= ϕ2(τn)( 1

ϕ2(τn) − 1

ϕ2(τn+1)) = 1 − ϕ2(τn)
ϕ2(τn+1)(2.6)

satisfies (2.5) (since (2.5) reduces to a telescoping series). Comparing (2.4) and (2.6) we obtain

a recurrence formula

1 − ϕ2(τn)
ϕ2(τn+1) = τn

τn−1
− 1,(2.7)

which we write as
ϕ2(τn+1) −ϕ2(τn)

τn+1 − τn τn+1 − τn
τn − τn−1 = ϕ

2(τn+1)
τn+1

τn+1

τn−1
,

or equivalently

ϕ2(τn+1) −ϕ2(τn)
τn+1 − τn τn+1

ϕ2(τn+1) = τn+1τn−1

τn − τn−1
τn+1 − τn .(2.8)

The concavity of ϕ2 implies that

ϕ2(τn+1) −ϕ2(τn)
τn+1 − τn ≤ ϕ(τn+1)

τn+1
,

so that the left hand side of (2.8) is less than or equal to one. Hence

τn+1

τn−1

τn − τn−1
τn+1 − τn ≤ 1

and so

τn+1 − τn ≥ τn+1
τn−1
(τn − τn−1).(2.9)

Let us now argue that {τn}n≥1 is an increasing sequence. First we set τ1 > τ0 = 1. Then, we

assume, for the sake of induction, that τn ≥ τn−1. The identity in (2.7) implies that ϕ2(τn+1) ≥
ϕ2(τn) and, since ϕ2 is strictly increasing, we get τn+1 ≥ τn. Thus {τn}n≥1 is an increasing

sequence. Using (2.9) yields

τn+1 − τn ≥ τn − τn−1.
and so τn ↑∞ which implies that tn ↓ 0. Thus our second requirement is met.

Before constructing the function F realizing the required growth at tn, we have to check one

more additional property: ω is decreasing on (0,1]. This is equivalent to√
τn

ϕ(τn) ≤
√
τn+1

ϕ(τn+1) ,
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or
ϕ2(τn+1)
τn+1

≤ ϕ2(τn)
τn

,

and again this is a consequence of the concavity of ϕ2.

Now, setting

f(eit) ∶= { ω(t) t ∈ [0,1],
0 otherwise,

we obtain a (positive) L2-function f on T (which we extend to D using the Poisson kernel). Its

harmonic conjugate f̃ is also (real-valued) in L2. Hence F = f + if̃ ∈H2. Setting rn = 1− tn and

letting Ir = {eit ∶ ∣t∣ ≤ 1 − r} be the Privalov shadow of r on T, we get

∣F (rn)∣ ≥ ∣f(rn)∣ = 1

2π
∫
T

1 − r2n∣eit − rn∣2f(eit)dm(eit) ≥ 1

2π
∫
Irn

1 − r2n∣eit − rn∣2f(eit)dm(eit).
Finally, since ω is decreasing on (0,1] we get

∣F (rn)∣ ≥ ω(1 − rn) 1
2π
∫ 1−rn

0

1 − r2n∣eit − rn∣2dt ≃ ω(1 − rn) = ω(tn) = 1√(1 − rn)ϕ(1/(1 − rn)) . ∎
The next observation is that in certain model spaces (IH2)⊥ we have the same boundary

behavior as in H2.

Theorem 2.10. Let I be an inner function such that ∣I(r)∣ = o(√1 − r). For every function

ϕ ∶ R+ Ð→ R+ strictly increasing to infinity and such that ϕ2 is concave, there is an F1 ∈ (IH2)⊥
such that

lim
r→1−

√
1 − rϕ( 1

1 − r) ∣F1(r)∣ > 0.
Proof. With ϕ fixed, let F as well as {rn}n≥1 be as in Proposition 2.3. Then we set F1 = PIF ∈(IH2)⊥ so that F = F1 + Ih for a suitable h ∈H2. Hence

∣F1(rn)∣ = ∣PIF (rn)∣ ≥ ∣F (rn)∣ − ∣I(rn)h(rn)∣
≳ 1√

1 − rnϕ(1/(1 − rn)) −
∣I(rn)∣√
1 − rn

≃ 1√
1 − rnϕ(1/(1 − rn)) . ∎

Remark 2.11. (1) An inner function whose singular part has an associated singular measure

with a point mass at 1 will easily satisfy the hypothesis of Theorem 2.10.

(2) The condition ∣I(r)∣ = o(√1 − r) can be weakened but one would need to place some

restriction on the types of growth functions ϕ allowed. To avoid being too wordy and

technical we did not state the theorem in its greatest generality.

From Theorem 2.10 we see that in certain model spaces (IH2)⊥, we can attain the same

maximal growth as in H2. Contrast this with the following result.

Proposition 2.12. Let B be the Blaschke product with zeros ρn = 1 − 2−n. Then

∣f(ρn)∣ = εn 1√
1 − ρn , ∀n ∈ N,
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for f ∈ (BH2)⊥ if and only if {εn}n≥1 ∈ ℓ2.
Remark 2.13. (1) In this situation we cannot reach arbitrarily slow growth for ϕ in Theorem

2.10 since we would have to require

ϕ( 1

1 − ρn) = 1

εn

with {εn}n≥1 ∈ ℓ2.

(2) The estimate in Proposition 2.12 extends to a whole Stolz angle Γ1,α:

∣f(z)∣ ≲ εn 1√
1 − ∣z∣

for ∣bρn(z)∣ < δ where δ is some fixed constant depending on the opening α of the Stolz

angle.

Proof of Proposition 2.12. In order to prove this result we first need to recall that an uncondi-

tional basis (or sequence) {xk}k≥1 in a Hilbert space is an isomorphic image of an orthogonal

basis (or sequence). We allow non-normalized sequences. We can associate its so-called Gram

matrix:

G ∶= (⟨ xn∥xn∥ , xm∥xm∥⟩)n,m≥1 .
It is well known [Nik02, Exercice C3.3.1(d)] that if {xn}n≥1 is an unconditional basis (sequence)

then G represents an isomorphism from ℓ2 onto ℓ2.

Let us transfer this to our situation. Consider xn = kρn , and let G be the associated Gram

matrix. It is well known that {ρn}n≥1 is an interpolating sequence and so {kρn}n≥1 is an uncon-

ditional basis for (BH2)⊥. Hence every f ∈ (BH2)⊥ can be written as

f = fα ∶= ∑
n≥1

αn
kρn∥kρn∥ , α = {αn}n≥1 ∈ ℓ2,

with ∥fα∥2 ≍ ∑n≥1 ∣αn∣2 < ∞. Notice that

fα(ρN) = ∑
n≥1

αn
kρn(ρN)∥kρn∥ = ∥kρN ∥∑n≥1αn

⟨kρn , kρN ⟩∥kρn∥∥kρN ∥ = ∥kρN ∥(Gα)N .
Hence for every α ∈ ℓ2, we have

fα(ρN) = ∥kρN ∥(Gα)N(2.14)

and Gα ∈ ℓ2. Conversely, for every β ∈ ℓ2, we can set α = G−1β and find a fα ∈ (BH2)⊥
satisfying (2.14). ∎

3. A GENERAL GROWTH RESULT FOR (BH2)⊥
We will start by introducing a growth parameter associated with a Blaschke sequence Λ ={λn}n≥1 ⊂ D and a boundary point ζ ∈ T. Let us again set

ρN ∶= 1 − 1

2N
, N ∈ N.
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FIGURE 1. An example of a domain Γ
N,1
n .

For every N ∈ N and n ∈ Z, set

(3.1) ΓN,ζn ∶= {z ∈ D ∶ 1 − ∣z∣2∣ζ − ρNz∣2 ∈ [ 1

2n+1
,
1

2n
)} .

This is a kind of pseudohyperbolic annulus (see Figure 1). A simple computation shows that
1 − ∣z∣2∣ζ − ρz∣2 = c if and only if

∣z − cρ

1 + cρ2 ζ∣
2 = 1 − c(1 − ρ2)(1 + cρ2)2 .

From here it can be observed that necessarily c ≤ 1
1 − ρ2 which means that Γ

N,ζ
n is empty when

1

2n+1
≥ 1

1 − ρ2N ≥
1

2(1 − ρN) = 2N−1.
So we assume that n ≥ −N .

For simplicity, we will assume from now on that ζ = 1 and set

ΓNn ∶= ΓN,1n .

Define

αN,n ∶=#(Λ ∩ ΓNn )
to be the number of points in Λ ∩ ΓNn . We now define the following growth parameter σN as

σN ∶= ∑
n∈Z

αN,n

2n
= ∑
n≥−N

αN,n

2n
.

For each λ ∈ Λ ∩ ΓNn we have, by definition (see (3.1)),

1

2n
≍ 1 − ∣λ∣2∣1 − ρNλ∣2

and so, since there are αN,n points in Λ ∩ ΓNn , we have

∑
n≥−N

1

2n
#(Λ ∩ ΓNn ) ≍ ∑

n≥−N

∑
λ∈Λ∩ΓNn

1 − ∣λ∣2∣1 − ρNλ∣2 .
But since {ΓNn }n≥−N is a partition of D (see Figure 2) we get
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FIGURE 2. The domains ΓNn ,−N ≤ n cover D.

∑
n≥−N

∑
λ∈Λ∩ΓNn

1 − ∣λ∣2∣1 − ρNλ∣2 = ∑n≥1
1 − ∣λn∣2∣1 − ρNλn∣2 .

Putting this all together we arrive at

(3.2) σN ≍ ∑
n≥1

1 − ∣λn∣2∣1 − ρNλn∣2 .
In order to relate σN to the norms of the reproducing kernels for (BH2)⊥ we need the following

result.

Lemma 3.3. If B is a Blaschke product with zeros λn = rneiθn and ∠ limz→1B(z) = η ∈ T, then

∥kBr ∥2 ≍ ∑
n≥1

1 − r2n∣eiθn − rrn∣2 , r ∈ (0,1).
(The estimate extends naturally to a Stolz angle.)

Recall that (1.5) implies ∠ limz→1B(z) = η ∈ T.

Proof. Since ∠ limz→1B(z) = η ∈ T, the zeros of B (after some point) can not lie in Γα,1. Thus

if

bλ(z) = z − λ
1 − λz ,

then infn≥1 ∣bλn(r)∣ ≥ δ > 0 and so

log
1∣bλ(r)∣2 ≍ 1 − ∣bλn(r)∣2.

It is a well known fact that

1 − ∣bλn(r)∣2 = (1 − r2)(1 − ∣λn∣2)∣1 − rλn∣2 = (1 − r2)(1 − ∣λn∣2)∣eiθn − rrn∣2 .
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Thus

log ∣B(r)∣−2 = ∑
n≥1

log
1∣bλn(z)∣2 ≍ ∑n≥1

(1 − ∣λn∣2)(1 − ∣r∣2)∣1 − λnr∣2
≍ (1 − r2)∑

n≥1

(1 − r2n)∣eiθn − rrn∣2 .
Since ∣B(r)∣→ 1 when r → 1− the latter quantity goes to 0 and so

∥kBr ∥2 = 1 − ∣B(r)∣2
1 − ∣r∣2 = 1 − elog ∣B(r)∣2

1 − r2 = 1 − (1 + log ∣B(r)∣2 + o(log ∣B(r)∣2))
1 − r2

≍ − log ∣B(r)∣2
1 − r2

≍ ∑
n

1 − r2n∣eiθn − rrn∣2 . ∎
Combine (3.2) with the above lemma to get the two-sided estimate

(3.4) σN ≍ ∥kBρN ∥2.
Now if the zeros {λn}n≥1 of B satisfy the Ahern-Clark condition (1.2) then, by Theorem 1.1,

the sequence {∥kBρN ∥}N≥1 is uniformly bounded and, by (3.4), so is {σN}N≥1.

In this paper we would like to discuss the situation when {σN}N≥1 is unbounded. Let us

assume that {σN}N≥1 also satisfies the regularity condition

0 <m ∶= inf
N

σN+1

σN
≤M ∶= sup

N

σN+1

σN
< ∞.(3.5)

Suppose ϕ0
σ ∶ R+ → R+ is the continuous piecewise affine function defined by

ϕ0
σ(N) ∶= σN , N ∈ N.

Looking at (3.5) we deduce that for x ∈ [N,N + 1),
σN ≍min(ϕ0

σ(N), ϕ0
σ(N + 1)) ≤ ϕ0

σ(x) ≤max(ϕ0
σ(N), ϕ0

σ(N + 1)) ≍ σN .
Now set

ϕσ(y) ∶= ϕ0
σ (log2 1

1 − y) , y ∈ [0,1),(3.6)

(meaning that we identify the natural numbers N with the sequence {1 − 2−N}N≥1 in D). Then

we also get, for y ∈ [1 − 2−N ,1 − 2−(N+1)),
ϕσ(y) ≍ ϕσ(1 − 2−N).(3.7)

Theorem 3.8. Let Λ = {λn}n≥1 ⊂ D be a Blaschke sequence with associated growth sequence

σ = {σN}N≥1 at ζ = 1 satisfying the regularity condition (3.5), and B the Blaschke product with

zeros Λ. Then ∥kBz ∥ ≍√ϕσ(∣z∣), z ∈ Γα,1.
Consequently, every f ∈ (BH2)⊥ satisfies

∣f(z)∣ = ∣⟨f, kz⟩∣ ≲√ϕσ(∣z∣), z ∈ Γα,1.
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Proof. The main ingredient of this proof is (3.4), which immediately gives us the required esti-

mate for ρN = 1 − 1/2N : ∥kBρN ∥2 ≍ σN = ϕ0(N) = ϕσ(ρN).
In order to get the same estimate for z ∈ Γα,1 we need the following well known estimate

(3.9) ∣bλ(µ)∣ ≤ ε < 1⇒ 1 − ε
1 + ε ≤ ∣1 − λz∣∣1 − µz∣ ≤ 1 + ε

1 − ε, z ∈ D.
Now let z ∈ Γα,1 and suppose that ∣z∣ > 1/2. Then there exists an N such that

∣bz(ρN)∣ = ∣bz(1 − 2−N)∣ ≤ δ < 1
(where δ only depends on the opening of the Stolz angle). Hence

∥kBz ∥2 ≍ ∑
n≥1

1 − r2n∣eiθn − zrn∣2 ≍ ∑n≥1
1 − r2n∣eiθn − rrn∣2 ≍ ∥kρN ∥2,

and so ∥kBz ∥2 ≍ ∥kBρN ∥2 ≍ σN = ϕσ(ρN) ≍ ϕσ(∣z∣). ∎
We will discuss several examples later on where we estimate the norm of the reproducing

kernel for certain sequences Λ. In particular, we will see that for every increasing concave

function ϕ, there is a sequence Λ with associated growth sequence σ such that ϕ = ϕσ. As in the

Hardy spaces it does not seem possible to show that the upper bound is sharp. For a certain class

of sequences we will give a general way of finding functions that reach the maximal growth up

to some logarithmic gap (see Corollary 4.17).

We will now assume that the zeros {λn}n≥1 of B satisfy

∞∑
n=1

1 − ∣λn∣∣1 − λn∣ < ∞
and so ∠ lim

z→1
B(z) = η ∈ T

(Recall Frostman’s theorem from (1.5)). In particular, this means that there can only be a finite

number of zeros of B in any Stolz angle with vertex at 1. This brings up another observation.

We have limN→∞ ∣B(ρN)∣ = 1. In such a situation it is notoriously difficult to decide whether or

not {kBρN}N≥1 is an unconditional basis (or sequence) for (BH2)⊥. We will discuss this issue in

Section 5.

4. EXAMPLES

The two basic types of Blaschke sequences we will consider here are

λn = (1 − xn2−2n)ei2−n , xn ↓ 0,
which approaches 1 very tangentially, and

λn = (1 − θ2n)eiθn , ∑
n≥1

θn < ∞,
which (essentially) approaches 1 along an oricycle. Needed in our analysis is this trivial Pythagorean

type theorem.
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FIGURE 3. A Pythagorean type theorem.

Lemma 4.1 (Pythagorean type theorem). If λ = reiθ, r ∈ (0,1), ρ ∈ (0,1], then

∣1 − ρλ∣2 ≍ (1 − ρr)2 + θ2, ρ ≈ 1, r ≈ 1, θ ≈ 0.
Proof. If a⃗ is the vector from eiθ to ρλ, b⃗ is the vector from eiθ to 1, and ψ is the angle between

a⃗ and b⃗, elementary vector calculus will show that cosψ ≍ θ as θ → 0. Thus we are justified

viewing the angle between a⃗ and b⃗ as a right angle and the vector from ρλ to 1 as the hypotenuse

(see Figure 4). From the Pythagorean theorem, along with the obvious estimate ∣eiθ − 1∣ ≍ θ, we

have the desired estimate. ∎
Also needed in our analysis is the following trivial fact from functional analysis – which

follows from the fact that any two norms on a finite dimensional Banach space are equivalent:

(∣z∣2 + ∣w∣2)1/2 ≍ ∣z∣ + ∣w∣, z,w ∈ C(4.2)

(constants independant on z and w).

First class of examples: We will start with the first class of examples: Λ = {λk}k≥1 with λk =
rkeiθk and

1 − rk = xkθ2k, θk = 1

2k
, k ∈ N.(4.3)

We will assume that xk ↓ 0 so that in particular the sequence Λ goes tangentially to 1. The

quicker xk goes to zero, the more tangential the sequence Λ. This also implies that

∑
n≥1

(1 − ∣λn∣) = ∑
n≥1

(1 − rn) = ∑
n≥1

xn

22n
< ∞,

and so Λ is indeed a Blaschke sequence. Observe

∣1 − λk∣ ≍ √(1 − rk)2 + θ2k (Lemma 4.1)

≍ (1 − rk) + θk (by (4.2))

≍ xkθ2k + θk≍ θk.
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Hence

∑
n≥1

1 − ∣λn∣∣1 − λn∣ ≍ ∑n≥1
1 − rn
θk
= ∑
n≥1

θnxn < ∞
and so condition (1.5) is satisfied implying ∠ limz→1B(z) = η ∈ T. Similarly,

∑
n≥1

1 − ∣λn∣∣1 − λn∣2 ≍ ∑n≥1xn.
So, in view of the Ahern-Clark result (1.2), we will be interested in the “bad behavior” situation

when ∑n≥1 xn = +∞.

It turns out that for these sequences we can give an explicit estimate for σN .

Proposition 4.4. Let Λ be a sequence as in (4.3). Then

σN ≍ N∑
k=1

xk.

Proof. Since xn ↓ 0 we can assume without loss of generality that xn < 1 for all n ≥ 1. Fix

N ∈ N. For each n ∈ N, define

γn ∶= {k ∈ N ∶ k ≤ N and
1

2n+1
≤ xk < 1

2n
}

and

βN,n ∶=#γn.
For the above fixed N ∈ N let nN be the smallest integer such that

(4.5) n > nN ⇒ γn = ∅.
This implies that

xN ∈ [ 1

2nN+1
,

1

2nN
) .

Clearly for k ∈ γn, xk ≃ 1/2n, and so

N∑
k=1

xk = nN∑
n=1

∑
k∈γn

xk ≃ nN∑
n=−N

βN,n

2n
.(4.6)

For each n ∈ Z, we now count the number of points of Λ in

ΓNn = {z ∈ D ∶ 1 − ∣z∣2∣1 − ρNz∣2 ∈ [ 1

2n+1
,
1

2n
)} .

We have the two-sided estimate

1 − ∣λk∣2∣1 − ρNλk∣2 ≍
xkθ

2
k∣1 − ρNλk∣2 .

Now from Lemma 4.1 and the estimate in (4.2) we have

∣1 − ρNλk∣2 = ∣eiθk − ρNrk∣2 ≍ (θk + (1 − ρNrk))2 = (θk + (1 − ρN(1 − xkθ2k)))2= (θk + (1 − ρN) + ρNxkθ2k)))2,
and since xkθ

2
k ≪ θk when k →∞, we get

∣1 − ρNλk∣2 ≍ (θk + (1 − ρN))2,(4.7)
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Hence

1 − ∣λk∣2∣1 − ρNλk∣2 ≍
xkθ

2
k(θk + (1 − ρN))2 =

xkθ
2
k(θk + θN)2 ≍

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xkθ

2
k

θ2k
if k ≤ N

xkθ
2
k

θ2N
if k > N

≍ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk if k ≤ N,
xkθ

2
k

θ2N
if k > N.(4.8)

Since we are assuming xn < 1, these expressions are bounded by 1 so that we do not need to

consider ΓNn for negative n (we could even suppose xn sufficiently small so that we do not need

to bother with constants that might appear in the above estimates).

Let us now estimate the number of λk ∈ ΓNn . This is equivalent to evaluate the number of k for

which

1

2n
≃ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

xk, if k ≤ N
xkθ

2
k

θ2N
, if k > N.(4.9)

Observe that this is not an identity so that it cannot be directly used to compute explicitely αN,n
or βN,n.

Set

α̃N,n ∶= #{k ≤ N ∶ 1

2n+1
≤ xk < 1

2n
} +#{k ≥ N + 1 ∶ 1

2n+1
≤ xkθ2k/θ2N < 1

2n
}

= { βN,n +#{k ≥ N + 1 ∶ 1
2n+1 ≤ xkθ2k/θ2N < 1

2n
} if n ≤ nN ,

#{k ≥ N + 1 ∶ 1
2n+1 ≤ xkθ2k/θ2N < 1

2n
} if n > nN .

Since in (4.9) we have estimates with constants that do neither depend on n nor on N , there

exists a fixed constant M ∈ N such that
n+M∑
k=n−M

αN,k ≍ n+M∑
k=n−M

α̃N,k.

In particular,

σN = ∑
n≥1

1

2n
αN,n ≍ ∑

n≥1

1

2n
α̃N,n.

While we do not really need the following observation, we note that for k ≥ N + 1 and since

xn ↓ 0, we have
xkθ

2
k

θ2N
≤ xk

4
< 1

2
xk ≤ 1

2
xN < 1

2nN+1

by the construction of nN from (4.5). When n ≤ nN then 1
2n+1 ≥ 1

2nN+1
. Hence, in this case

xkθ
2
k

θ2N
< 1

2n+1
,

implying that {k ≥ N + 1 ∶ 1
2n+1 ≤ xkθ2k/θ2N < 1

2n
} = ∅. So

α̃N,n = { βn,N if n ≤ nN
#{k ≥ N + 1 ∶ 1

2n+1 ≤ xkθ2k/θ2N < 1
2n
} if n > nN .
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On the other hand

∑
n>nN

1

2n
#{k ≥ N + 1 ∶ 1

2n+1
≤ xkθ2k/θ2N < 1

2n
} ≲ ∑

k≥N+1

xkθ
2
k

θ2N
≤ xN+1.

which remains bounded as N →∞.

Hence

σN = ∑
n≥1

1

2n
αN,n ≍ ∑

n≥1

1

2n
α̃N,n ≍ nN∑

n=1

1

2n
βN,n + ∑

n>nN

1

2n
#{k ≥ N + 1 ∶ 1

2n+1
≤ xkθ2k/θ2N}

≍ nN∑
n

1

2n
βN,n ≍ N∑

n=1

xn. ∎
Let us combine Theorem 3.8 and Proposition 4.4 into the following corollary.

Corollary 4.10. Consider the Blaschke product whose zeros are

λn = (1 − xn2−2n)ei2−n , xn ↓ 0.
If

σN = N∑
n=1

xn

and

0 < inf
N

σN+1

σN
≤ sup

N

σN+1

σN
< +∞

and ϕ0 is a concave function with ϕ0(N) = σN and

ϕ(y) = ϕ0 (log2 1

1 − y) ,
then ∥kBz ∥ ≍ √ϕ(∣z∣), z ∈ Γα,1,
and so every f in (BH2)⊥ satisfies

∣f(z)∣ ≲ √φ(∣z∣), z ∈ Γα,1.
Example 4.11. (1) If B is a Blaschke product whose zeros are

λn = (1 − xn2−2n)ei2−n , xn = 1

n
,

then

σN = N∑
n=1

1

n
≍ logN

and so every f ∈ (BH2)⊥ satisfies the growth condition

∣f(r)∣ ≲
√

log log
1

1 − r , r → 1−.
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(2) If the zeros of B are

λn = (1 − xn2−2n)ei2−n , xn = 1

n logn
,

then σN ≍ log logN and so every f in (BH2)⊥ satisfies the growth condition

∣f(r)∣ ≲
√

log log log
1

1 − r , r → 1−.

Remark 4.12. It is possible to prove the estimates in Example 4.11, and others like it, without

using Theorem 3.8 and the regions ΓNn , by splitting the sum

∥kr∥2 ≍ ∑
n≥1

1 − r2n∣eiθn − rrn∣2
and using the equivalence in (4.8). In this case we can also weaken the original hypothesis xn ↓ 0
to

xn is bounded

which will be useful later. Here is how it works: In order to estimate ∥kρN ∥2, we are interested

in the sum

∑
k≥1

1 − ∣λk∣2∣1 − ρNλk∣2 .
By (4.8),

1 − ∣λk∣2∣1 − ρNλk∣2 ≍
⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk k ≤ N
xkθ

2
k

θ2N
k ≥ N.

Hence, we can split the sum into two parts

∑
k≥0

1 − ∣λk∣2∣1 − ρNλk∣2 ≍ ∑k≤N xk + 22N ∑
k≥N+1

xkθ
2
k.

The first term is exactly σN while the second is bounded by a uniform constant (recall that we are

assuming xn is bounded and θk = 2−k) and hence negligible with respect to σN which is supposed

to tend to infinity. This short and elegant argument unfortunately does not apply to the general

case where we it is not clear in what order we have to sum an arbitrary sequence.

We would now like to consider the sharpness of the growth in Corollary 4.10.

Theorem 4.13. Suppose we are in the situation of Corollary 4.10 or Remark 4.12. Then for

every ε > 0, there exists an f ∈ (BH2)⊥ such that

∣f(z)∣ ≳
¿ÁÁÀ ϕ(∣z∣)

log1+εϕ(∣z∣) , z ∈ Γα,1.
Proof. Functions f ∈ (BH2)⊥ behave rather nicely if the sequence Λ is interpolating. To see this,

recall first that xn is decreasing so that

lim
k→∞

xk+1

xk
≤ 1.
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−θn
1

γn

rrne
−iθn

FIGURE 4. angles

Hence

∣brk(rk+1)∣ = xk2−2k − xk+12−2(k+1)xk2−2k + xk+12−2(k+1) =
1 − 1

4

xk+1
xk

1 + 1
4

xk+1
xk

≥ 1 − 1

4
= 3

4
(asymptotically).

Thus the sequence of modulii is pseudohyperbolically separated which implies that the sequence

of modulii is interpolating as will be the one spread out by the arguments i.e., Λ.

Since we know that Λ is an interpolating sequence, we also know that the normalized repro-

ducing kernels

Kn ∶= kλn∥kλn∥ =
√
1 − ∣λn∣2
1 − λnz , n ∈ N,

form an unconditional basis for (BH2)⊥. This is essentially the result by Shapiro and Shields

[SS61], see also [Nik02, Section 3] and in particular [Nik02, Exercice C3.3.3(c)]. Hence for

every f ∈ (BH2)⊥, there is a sequence α ∶= {αn}n≥1 ∈ ℓ2 such that

(4.14) fα(z) ∶= ∑
n≥1

αn
kλn(z)∥kλn∥ = ∑n≥1αn

√
1 − r2n

1 − rne−iθnz .
We will examine this series for z = r ∈ [0,1) (it could be necessary at some point to require

r ≥ r0 > 0). In what follows we will assume that αn > 0. Note first that the argument 1− e−iθnrrn
is positive (this is γn in Figure 5).

Fix ρN = 1 − 2−N . Then

fα(ρN) = N∑
n=1

αn

√
1 − r2n

1 − ρNrne−iθn + ∑n>N αn
√
1 − r2n

1 − ρNrne−iθn .(4.15)

Let us first show that the second term is bounded by a constant. By definition 1 − rn = xnθ2n =
xn2−2n, and from (4.7) ∣eiθn − ρNrn∣ ≍ θn + (1 − ρN) ≍ 1 − ρN for n ≥ N . In particular,

RRRRRRRRRRR∑n>N αn
√
1 − r2n

1 − ρNrne−iθn
RRRRRRRRRRR ≤ ∑n>N αn

√
1 − r2n∣eiθn − ρNrn∣ ≍ ∑n>N αn

√
xnθn

1 − ρN = 2N ∑n>N αn
√
xn

1

2n
.

Now since the terms αn
√
xn are bounded, the last expression is uniformly bounded in N by a

positive constant M .
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Consider the first sum in (4.15). To begin with we will show that for 1 ≤ n ≤ N the argument

of 1 − e−iθnρNrn is uniformly close to π/2 (or at least from a certain n0 on), meaning that 1 −
e−iθnρNrn points in a direction uniformly close to the positive imaginary axis. Set γn = arg(1 −
ρNrne−iθn), then

tanγn = rnρN sin θn

1 − rnρN cos θn
≃ θn

1 − (1 − xnθ2n)(1 − θN)(1 − θ2n/2 + o(θ2n))
= θn

xnθ2n + θN + θ2n/2 + o(θ2n) ≍
θn

θ2n + θN ≍
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
θn

if n ≤ N/2
θn
θN

if N/2 < n ≤ N.
= { 2n if n ≤ N/2

2N−n if N/2 < n ≤ N.≥ 1.

Hence the argument of 1 − ρNrne−iθn is uniformly bounded away from zero and less than π/2 so

that

1 ≥ sin arg(1 − ρNrne−iθn) ≥ η > 0.
In particular, for 1 ≤ n ≤ N ,

∣Im 1

1 − ρNrne−iθn ∣ ≍ 1∣1 − ρNrne−iθn ∣ ≍ 1

θn + (1 − ρN) ≍ 1

θn
.

This implies that

∣fα(ρN)∣ = RRRRRRRRRRR∑n≥1αn
√
1 − r2n

1 − ρNrne−iθn
RRRRRRRRRRR ≥
RRRRRRRRRRR
N∑
n=1

αn

√
1 − r2n

1 − ρNrne−iθn
RRRRRRRRRRR −
RRRRRRRRRRR∑n>N αn

√
1 − r2n

1 − ρNrne−iθn
RRRRRRRRRRR

≥ RRRRRRRRRRR
N∑
n=1

αn

√
1 − r2n

1 − ρNrne−iθn
RRRRRRRRRRR −M ≍

N∑
n=1

αn
√
1 − r2n × ∣Im 1

1 − ρNrne−iθn ∣ −M
≍ N∑

n=1

αn

√
xnθn

θn
−M

= N∑
n=1

αn
√
xn −M.

As we will see, for a specific choice of sequence {αn}n≥1, the sum ∑Nn=1 αn√xn tends to

infinity implying that in such a situation the constant M is negligible and

∣fα(ρN)∣ ≳ N∑
n=1

αn
√
xn.

Let us discuss the following choice for αn:

αn ∶= √ xn

σn log
1+ε σn

.
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We need to show two things (i) we get the desired lower estimate in the statement of the theorem;

and (ii) {αn}n≥1 ∈ ℓ2. Let us begin with the lower estimate. Observe that σN is increasing and so

N∑
n=1

αn
√
xn = N∑

n=1

√
xn√

σn log
1+ε σn

√
xn = N∑

n=1

xn√
σn log

1+ε σn
≥ 1√

σN log1+ε σN

N∑
n=1

xn

= σN√
σN log1+ε σN

= √ σN

log1+ε σN
.

To show that {αn}n≥1 ∈ ℓ2, observe that

N∑
n=1

∣αn∣2 = N∑
n=1

xn

σn log
1+ε σn

= N∑
n=1

σn − σn−1
σn log

1+ε σn
,

where we have set σ0 = 0.

Claim: we have the estimate

σn − σn−1
σn log

1+ε σn
≤ 1

ε
( 1

logε σn−1
− 1

logε σn
) .(4.16)

Indeed, since σn is increasing, we can suppose 1 ≤ x ∶= σn−1 ≤ y ∶= σn for n sufficiently big. We

also introduce the auxiliary function

g(t) = 1

logε(t) , t ∈ [1,∞).
Then

1

logε σn−1
− 1

logε σn
= g(x) − g(y) = g′(η)(x − y)

for some η ∈ [x, y]. Since

g′(t) = − ε

t log1+ε t
,

we know that −g′ is a decreasing function and so

g(x) − g(y) = g′(η)(x − y) = − ε

η log1+ε η
(x − y) = ε y − x

η log1+ε η
≥ ε y − x

y log1+ε y
,

which, after a little rearranging, is exactly (4.16).

To finish our proof that {αn}n≥1 ∈ ℓ2 we note that

N∑
n=2

α2
n = N∑

n=2

σn − σn−1
σn log

1+ε σn
≤ 1

ε

N∑
n=2

( 1

logε σn−1
− 1

logε σn
) = 1

ε
( 1

logε σ1
− 1

logε σN
)

≤ 1

ε logε σ1
. ∎

If one looks closely at the proof of Theorem 4.13 one sees the proof of the following.

Corollary 4.17. For every concave function ϕ0 ∶ R+ → R+ tending to infinity there exists a

sequence Λ ⊂ D tending to 1 such that if B is the Blaschke product associated with Λ, then
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(i) for every z ∈ Γα,1 we have ∥kIz∥ ≃ √ϕ(∣z∣)
where we define ϕ as in (3.6) by

ϕ(y) ∶= ϕ0(log2 1

1 − y ), y ∈ (0,1).
In particular for each Stolz domain Γα,1 we have

∣f(z)∣ ≲ √ϕ(∣z∣), f ∈ (BH2)⊥.
(ii) For every ε > 0, there exists an f ∈ (BH2)⊥ such that for z ∈ Γα,1

∣f(z)∣ ≳
¿ÁÁÀ ϕ(∣z∣)

log1+εϕ(∣z∣) ,
the constants being independant of z.

Remark 4.18. Pushing the computations a little bit further, it is possible to narrow down this

gap to an estimate such as √
σN

logσN(log logσN)1+ε .
In order to discuss the optimality of Theorem 4.13 we will be interested in the following

question: for which sequences εn ↓ 0 does there exist a sequence {αn}n≥1 ∈ ℓ2 such that

N∑
n=1

αn
√
xn = εNσN ?(4.19)

We will do this here in the special case xn = 1 for every n ∈ N so that in particular σN = N (this

situation is allowed by Remark 4.12). Hence the question becomes: for which sequences εn ↓ 0
does there exist a sequence {αn}n≥ ∈ ℓ2 such that

N∑
n=1

αn = εN√N ?(4.20)

The following result shows that we cannot do much better than Corollary 4.17.

Proposition 4.21. Suppose 1 − rn = θ2n = 1/22n and let B be the Blaschke product associated

with Λ = {λn}n≥1 = {rneiθn}n≥1. Let {εn}n≥1 be a convex sequence decreasing to zero. If there

exists an

fα ∶= ∑
n≥1

αn
kλn∥kλn∥ ∈ (BH2)⊥

with

N∑
n=1

αn = εN√N, N = 1,2, . . . ,(4.22)

then

∑
n≥1

ε2n
n
< ∞.
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Remark 4.23. (1) This means that under the conditions of the proposition we cannot choose{εn}n≥1 to be a sequence decreasing arbitrarily slowly to zero. For instance, if we were

to choose εn = 1/ logα n, then we would need α > 1/2 which is, in a sense, optimal in

view of the preceding corollary.

(2) Note that in the preceding proposition the growth condition is required for ∑Nn=1 αn and

not for fα(ρN) itself which can differ from the sum by uniformly bounded constants.

There is a priori no reason that we can get the required growth on fα(ρN). If {kBρN}N≥1
were an unconditional sequence, then this would be possible. We include a discussion on

unconditional bases in Section 5 showing that {kBρN}N≥1 is in general not an unconditional

basis for (BH2)⊥.
Proof of Proposition 4.21. From (4.22) we define αn to be

αn = εn√n − εn−1√n − 1,
and since fα ∈KB, we need {αn}n≥1 ∈ ℓ2. We have
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Since {εn}n≥1 is bounded, the last term above is always in ℓ2. Let us discuss the first term:
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Observe that since {εn}n≥1 is a positive decreasing sequence, the sequence {γn}n≥1 defined by

γn = εn − εn−1 is summable. We also note that {γn}n≥1 is decreasing since {εn}n≥1 is assumed

to be convex. From general results it follows thus that 0 ≤ γn ≲ 1/n, or equivalently M ∶=
supn(nγn) < ∞. Hence

∑
n

(√n(εn − εn−1))2 = ∑
n

nγ2n ≤M∑
n

γn < ∞.
So we necessarily have

∑
n≥1

ε2n
n
≍ ∑
n≥2

ε2n−1
4n
< ∞. ∎

Second class of examples: In the preceding class of examples from (4.3), we slowed down the

growth of functions in (BH2)⊥ by controlling the “tangentiallity” of the sequence (given by the

speed of convergence to zero of xn). Our second class of examples are of the following type:

(4.24) λn = rneiθn , 1 − rn = θ2n, ∑
n≥1

θn < ∞,
where θn will now be adjusted to trigger the growth speed of (BH2)⊥-functions. Asymptotically

this sequence is in the oricycle {z ∈ D ∶ ∣z − 1/2∣ = 1/2}. We also note that

∑
n≥1

(1 − ∣λn∣) = ∑
n≥1

θ2n < ∞
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so indeed {λn}n≥1 is a Blaschke sequence. Moreover,

∑
n≥1

1 − ∣λn∣∣1 − λn∣ ≍ ∑n≥1
θ2n
θn
= ∑
n≥1

θn < ∞
and so, by (1.5), limr→1− B(r) = η ∈ T. Still further, we have

∑
n≥1

1 − ∣λn∣∣1 − λn∣2 ≍ θ
2
n

θ2n
= ∞

so {λn}n≥1 does not satisfy the hypothesis (1.2) of the Ahern-Clark theorem. Thus we can expect

bad behavior of functions from (BH2)⊥.
As in (4.8), we have

1 − ∣λk∣2∣1 − rλk∣2 ≍ 1 − rk(1 − r)2 + θ2k =
θ2k(1 − r)2 + θ2k ≍

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (1 − r) ≤ θk
θ2k(1 − r)2 if (1 − r) > θk.

Instead of computing the number of points in each ΓNn , we will again use the simpler argument

given in Remark 4.12 which is better suited to our sequences defined by (4.24). Now, using

Lemma 3.3, the splitting gives:

∥kBr ∥2 ≍ ∑
k≥1

1 − ∣λk∣2∣1 − rλk∣2 ≍ ∑
{k∶(1−r)≤θk}

1 + 1(1 − r)2 ∑
{k∶(1−r)>θk}

θ2k.(4.25)

Theorem 4.26. Let {σN}N≥1 be a sequence of positive numbers strictly increasing to infinity

either concave or convex for N ≥ N0, where N0 is a suitable integer, and

σN+1 ≤ 2βσN , N ∈ N,(4.27)

for some β ∈ (0,1). Then there exists a sequence {θk}k≥1 ∈ ℓ1 such that

∥kBρN ∥ ≍ √σN ,
where B is the Blaschke product associated with Λ = {λk}k≥1 and λk = rkeiθk , 1 − rk = θ2k.

Proof. Let {σN}N≥1 be as in the theorem, and let

ψ ∶ [0,+∞)Ð→ [0,+∞)
be a continuous increasing function such that

ψ(N) = σN , N ∈ N.(4.28)

We could, for example, choose ψ to be the continuous piecewise affine function defined in the

nodes by (4.28). Since ψ is continuous, strictly increasing to infinity on [0,+∞), it admits an

inverse function ψ−1. By assumption the sequence {ψ−1(k)}k≥k0 is concave or convex (k0 has to

satisfy ψ(N0) ≤ k0). Set

θk = 2−ψ−1(k), k ∈ N.
We do need to show that {θn}n≥1 ∈ ℓ1 but this will come out of our analysis below. Let us consider

the first sum in (4.25) (with r = ρN ):

∑
{k∶(1−ρN )≤θk}

1 = ∑
{k∶1/2N≤1/2ψ

−1(k)}

1 = ∑
{k∶ψ−1(k)≤N}

1 = ∑
{k∶k≤ψ(N)}

1 = ψ(N) = σN .
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We have to consider the second sum in (4.25):

1(1 − ρN)2 ∑
{k∶(1−ρN )>θk}

θ2k = 22N ∑
{k∶ψ−1(k)≥N+1}

2−2ψ
−1(k) = 22N ∑

{k≥ψ(N+1)}

2−2ψ
−1(k).

This separates into two cases:

Case 1: {σN}N≥N0
is concave.

Letting K be a fixed integer such that ψ(N0) ≤ K, the sequence {ψ−1(k)}k≥K is convex and

so, for every k ≥K,

ψ−1(k + 1) −ψ−1(k) ≥ ψ−1(K) −ψ−1(K) =∶ c > 0.
Now, for every N ≥ N0 there is kN ≥ K such that kN − 1 < ψ(N + 1) ≤ kN . Clearly for k ≥ kN ,

ψ−1(k) ≥ c(k − kN) +ψ−1(kN), and hence

∑
{k≥ψ(N+1)}

2−2ψ
−1(k) ≤ 1

22ψ
−1(kN )

∑
{k≥kN}

2−2c(k−kN ) ≍ 1

22ψ
−1(kN )

≤ 1

22ψ
−1(ψ(N+1))

= 4

22N

which yields

22N ∑
{k≥ψ(N+1)}

2−2ψ
−1(k) ≤ 4.

So in this case, the second sum in (4.25) is at most a constant (which is independent of N ). Since

a constant is negligable with respect to σN when N →∞, the theorem is proved in this case. A

slight modification of the above estimates will also show that {θn}n≥1 ∈ ℓ1 which, as mentioned

earlier, is needed for {λn}n≥1 to be a Blaschke sequence with limr→1− B(r) = η ∈ T.

Case 2: {σN}N≥N0
is convex

In this case ψ−1 is a concave (increasing) function. So when k is big enough we have

ψ−1(k + 1) −ψ−1(k) ≤M,

for a suitable constant M . In particular

2−2ψ
−1(k) ≥ ∫ k+1

k
2−2ψ

−1(t)dt ≥ 2−2ψ−1(k+1) ≥ 2−2M2−2ψ
−1(k),

so that we can switch to integrals. We have

∑
k≥ψ(N+1)

2−2ψ
−1(k) ≍ ∫ ∞

ψ(N+1)
2−2ψ

−1(t)dt.(4.29)

Let us do the change of variables u = ψ−1(t) so that for almost all u > 0,

1(ψ−1)′(t) = ψ′(u),
so that when y ≥ 0,

∫ +∞

ψ(y)

1

22ψ
−1(t)

dt = ∫ +∞

y

1

22u
du(ψ−1)′(t) = ∫

∞

y
ψ′(u)2−2udu.
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Integration by parts gives

∫ A

y
ψ′(u)2−2udu = [ψ(u)2−2u]A

y
+ 2 ln 2∫ A

y
ψ(u)2−2udu

= ψ(A)
22A

− ψ(y)
22y
+ 2 ln 2∫ A

y
ψ(u)2−2udu.

Note that from condition (4.27) it follows that σN ≲ 2N and thus ψ(A) ≲ 2A. Hence, letting A

go to infinity we get

∫ A

y
ψ′(u)2−2udu = −ψ(y)

22y
+ 2 log 2∫ ∞

y
ψ(u)2−2udu.

Claim: For every t ≥ 0,
ψ(t + 1)
ψ(t) ≤ 22β.

This is immediate from the growth of ψ and Condition (4.27): Suppose that t ∈ [N − 1,N), then

ψ(t + 1)
ψ(t) ≤ ψ(N + 1)

ψ(N − 1) = σN+1σN−1
≤ 22β.

As a consequence of this observation we have for every 0 < y ≤ u
ψ(u)
ψ(y) ≲ 22β(u−y).

Indeed, if u = y + n + δ with δ ∈ [0,1) and n ∈ N, then

ψ(u)
ψ(y) = ψ(y + n + δ)ψ(y) ≤ ψ(y + n + 1)

ψ(y) ≤ 22β(n+1) = 22β(n+δ)22β(1−δ) ≃ 22β(u−y).
Hence

∫ ∞

y
ψ(u)2−2udu = ψ(y)

22y
∫ ∞

y

ψ(u)/ψ(y)
22(u − y) du,

where the last integral is uniformly bounded in y by a constant:

∫ ∞

y

ψ(u)/ψ(y)
22(u−y)

du ≲ ∫ ∞

y

22β(u−y)

22(u−y)
du = ∫ ∞

y

1

22(1−β)(u−y)
du = ∫ ∞

0

1

22(1−β)y
du = 1

2(1 − β) log 2 .
Hence

∫ ∞

y
ψ′(u)2−2udu ≤ −ψ(y)

22y
+ 2 log 2∫ ∞

y
ψ(u)2−2udu ≤ −ψ(y)

22y
+ 1

1 − β ψ(y)22y

= β

1 − β ψ(y)22y
(4.30)

Now using (4.29), we get

1

(1 − ρN)2 ∑
{k∶1−ρN<θk}

θ2k = 22N ∑
{k∶ψ−1(k)≥N+1}

2−2ψ
−1(k) = 22N ∑

k≥ψ(N+1)

2−2ψ
−1(k)

≤ 22N ∫ ∞

ψ(N+1)
2−2ψ

−1(t)dt = 22N ∫ ∞

N+1
ψ′(u)2−2udu

≲ 22N
ψ(N + 1)
22(N+1)

= σN+1
4
≤ 2β

4
σN .(4.31)
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Since the first sum in (4.25) is equal to σN and the second one is controlled by σN , the theorem

is proved. ∎
Remark 4.32. Note that the Blaschke condition for Λ is given by

∑
k

(1 − ∣λk∣2) ≃ ∑
k

(1 − rk) = ∑
k

θ2k = ∑
k

2−2ψ
−1(k) < ∞.

It can be seen for instance from (4.30) and (4.31) that the condition 0 < β < 1 (condition (4.27))

guarantees that Λ is a Blaschke sequence.

Example 4.33. Here is a list of examples. The sequences {σN}N≥1 are all either concave or

convex.

(1) Let σN = 2N/α,N = 1,2, . . ., where α > 1 (this is needed for (4.27)). Then, we can choose

ψ(t) = 2t/α. Hence

θk = 2−ψ−1(k) = 2−α log k = 1

kα

(logarithms are taken in the basis 2). Hence, with this choice of arguments, we get

∥kBρN ∥ ≍ 2N/2α = 1(1 − ρN)1/2α ,
which by similar arguments as given earlier can be extended to every r ∈ (0,1), i.e.,

∣f(r)∣ ≲ 1(1 − r)1/2α , f ∈ (BH2)⊥.
We thus obtain all power growths beyond the limiting case 1/2.

(2) Let σN = Nα, N = 1,2, . . ., where α > 0. Then, we can choose ψ(t) = tα. Hence

θk = 2−ψ−1(k) = 2−k1/α .
Hence, with this choice of arguments, we get

∥kBρN ∥ ≍ Nα/2 = (log 1

1 − ρN )
α/2

,

which by similar arguments as given earlier can be extended to every r ∈ (0,1), i.e.,

∣f(r)∣ ≲ (log 1

1 − r)
α/2

, f ∈ (BH2)⊥.
In the special case α = 1 we obtain logarithmic growth.

(3) Let σN = log2N , N ≥ 2. Then, we can choose ψ(t) = log2 t. Hence

θk = 2−ψ−1(k) = 2−2√k .
Hence, with this choice of arguments, we get for N big enough

∥kBρN ∥ ≍ logN = log log 1

1 − ρN ,
which, by similar arguments as given earlier, can be extended to every r ∈ (0,1). Hence

we get double logarithmic growth.
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5. A FINAL REMARK ON UNCONDITIONAL BASES

Since a central piece of our discussions was the behavior of the reproducing kernel at ρN , one

could ask whether or not {kBρN}N≥1 was an unconditional bases (or sequence) of reproducing

kernels for (BH2)⊥. Most of the material needed here has already been introduced in Section 2

and in particular in Proposition 2.12.

We consider now the following situation which is different from that in Section 2: let xn = kBρn
and G be the associated Gram matrix. Suppose that {kBρn}n≥1 were an unconditional basis (or

sequence) for (BH2)⊥. Then every f ∈ (BH2)⊥ could be written as

f = fα ∶= ∑
n≥1

αn
kBρn∥kBρn∥ , α = {αn}n≥1 ∈ ℓ2,

with ∥fα∥2 ≍ ∑n≥1 ∣αn∣2 < ∞. As before we want to estimate f = fα at ρN :

fα(ρN) = ∑
n≥1

αn
kBρn(ρN)∥kBρn∥ = ∥kBρN ∥∑n≥1αn

⟨kBρn , kBρN ⟩∥kBρn∥∥kBρN ∥ = ∥kBρN ∥(Gα)N .
Again we observe that for every α ∈ ℓ2, we have

fα(ρN) = ∥kBρN ∥(Gα)N
where Gα ∈ ℓ2, and for every ℓ2-sequence β we could find an f ∈ (BH2)⊥ such that

f(ρN)∥kBρN ∥ = βN .
However, recall from Corollary 4.17 that that for ε > 0 there is a function fα with

∣fα(ρN)∣ ≳√ σN

log1+ε σN

(we refer to that corollary for notation). Hence we would have

βN ∶= ∣fα(ρN)∣∥kBρN ∥ ≍
∣fα(ρN)∣√

σN
≳ 1

log(1+ε)/2 σN
.

Now choosing, for instance, xn = 1 yields σN = N , or xn = 1/n yields σN ≃ logN etc. In all

these cases {1/ log(1+ε)/2 σN}N≥1 is obviously not in ℓ2. As a result, we can conclude that in the

above examples {kBρN}N≥1 cannot be an unconditional basis for (BH2)⊥ (nor an unconditional

sequence since the functions in Corollary 4.17 were constructed using the reproducing kernels).

It should be noted that the problem of deciding whether or not a sequence of reproducing

kernels is an unconditional basis (or sequence) in a model space is a difficult problem related to

the Carleson condition and invertibility of Toeplitz operators. We do not want to go into details

here, but the situation is even more difficult in our context where limN ∣B(ρN)∣ = 1. See [Nik02,

Chapter D4] for more about this.
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