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Categories and Subjet Desriptors: F.4.3 [Theory of omputation℄: Mathematial logis and

formal languages|Formal languages; G.2.1 [Disrete mathematis℄: Combinatoris|Counting

problems, generating funtions

General Terms: Theory

Additional Key Words and Phrases: Generating sequenes, rational sequenes, regular languages,

regular sequenes

1. INTRODUCTION

The notion of a generating sequene for a formal language L is a simple one: it

is the sequene (s

n

)

n�0

where s

n

is the number of words of length n in L. Even

if the non-ommutative nature of words is lost, this sequene arries important

information onerning a formal language sine it measures in a sense the size

of the language. It is moreover of interest in oding. In fat, a length-preserving

enoding de�nes a one-to-one orrespondene between words. The two sets of words

in suh a orrespondene will have the same length distribution.

The haraterization of the generating sequenes of regular languages has long

been known. Indeed, a sequene (s

n

)

n�0

is the generating sequene of a regular

language on some alphabet if and only if it is regular, i.e., there exists a �nite graph

G with two verties i; t suh that s

n

is the number of paths of length n from i to t

in G.

The idea of �xing the ardinality of the alphabet in this problem has surprisingly

never been onsidered. In other terms, for a given integer k, when is an integer

sequene the generating sequene of a regular language on k symbols?

Suppose for example that we onsider the regular language on three symbols

L = (a+b)

�



+

. Its number of words of length n is 2

n�1

. It has the same generating

sequenes as the regular language on two symbols L

0

= (a + b)

�

ab

�

. We address

here the problem of haraterizing the regular languages L for whih suh a oding

on a smaller alphabet is possible and we desribe expliitly how to realize it. Our

main result is a haraterization of the generating sequenes of regular languages

on k symbols.

Our haraterization is the following. We prove that a sequene s is the gener-

ating sequene of a regular language on k symbols if and only if both sequenes

s = (s

n

)

n�0

and the omplementary sequene t = (k

n

� s

n

)

n�0

are regular (Theo-

rem 3.2). Observe that the seond ondition implies the obviously neessary on-
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2 � M.-P. B�eal and D. Perrin

dition that s

n

� k

n

for all n.

The proof is based on the use of forward and bakward elementary equivalenes,

whih we de�ne as follows. A representation over a semiring K of a sequene

s = (s

n

)

n�0

is a triple (i;M; t), where i is a row vetor over K, t is a olumn vetor

over K, and M a matrix over K, with s

n

= iM

n

t for any non-negative integer

n. The representation is said to speify s. We say that a matrix U suh that

NU = UM , jU = i, x = Ut de�nes a forward elementary equivalene from (i;M; t)

to (j; N;x). It de�nes a bakward elementary equivalene in the opposite diretion.

It is easy to verify that both representations speify the same sequene. This

notion of forward elementary equivalene extends to representations of sequenes

the lassial notion of multiset onstrution used in automata theory, and the notion

of graph extension introdued in [Bassino et al. 2000℄. This notion is also linked to

the notion of intertwining between representations introdued in [Flouret 1999℄.

The lassial omputation of a redued representation of an integer sequene is

atually obtained by the omposition of a forward elementary equivalene followed

by a bakward one (or the onverse) with transfer matries with integer oeÆients

(see [Berstel and Reutenauer 1988℄ on this notion).

An important step in the proof of the main result is a forward elementary equiv-

alene obtained by extending to representations over Z a theorem from Lind [Lind

and Marus 1995℄ whih states that for any Perron number, there is a primitive

integer matrix whose spetral radius is this Perron number. By taking into aount

the row and olumn vetors, we prove that a representation over N an be obtained

by only one forward elementary equivalene from any redued representation over

Z of the sequene (Theorem 6.1).

Our main result is a partiular ase of the following more general one. Let k

be a positive integer and let s

(1)

; s

(2)

; : : : ; s

(l)

be l regular sequenes whose n-

terms add to k

n

for all n � 0. Then there is a deterministi automaton A =

(Q;A; Æ; i; Q) on a k-letter alphabet A with an initial state i, a transition funtion

Æ and a set of terminal states equal to set Q of all states suh that the following

holds: There is a partition of the set of states Q in l sets T

j

suh that for eah

1 � j � l, the automaton (Q;A; Æ; i; T

j

) reognizes a regular language on k symbols

whose generating sequene is exatly s

(j)

. We prove this more general formulation

(Theorem 7.5).

The paper is organized as follows. Setion 2 ontains the de�nitions of representa-

tions and the main result is stated in Setion 3. In Setion 4 we de�ne the notion of

a forward or bakward elementary equivalene. Setion 5 establishes some lemmas

based on Perron theory whih are used in Setion 6 to show that, for any redued

representation of a non-negative Perron sequene, there is a forward elementary

equivalene from this representation to an N-representation. Setion 7 presents the

proof of the haraterization of generating sequenes of regular languages over k

symbols. The proof is onstrutive in the sense that the regular language over k

symbols an be built in an e�etive way, although with a high omplexity. The

onstrution proess is omposed of two forward elementary equivalenes followed

by one bakward elementary equivalene. We give an example of this omputation.

A preliminary shorter version of this paper was presented at the STACS 2002

onferene [B�eal and Perrin 2002℄. We wish to thank the anonymous referees for
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helping us to improve the quality of our presentation.

2. RATIONAL AND REGULAR SEQUENCES

Let K be a semiring. In most ases, we have in mind K = Z or N. In the

most general ase, K is not even supposed to be ommutative. However, we shall

often make the hypothesis that K is a prinipal ideal domain (this is the same as a

ommutative prinipal ideal ring without zero divisors and holds in partiular when

K = Z).

We onsider sequenes of elements of K denoted by s = (s

n

)

n�0

. We shall not

distinguish between suh a sequene and the formal series in one variable s(z) =

P

n�0

s

n

z

n

. We usually denote a vetor with oeÆients in K and indexed by

elements of a set Q, also alled a Q-vetor, with boldfae symbols. A Q�Q matrix

on K is a family M

pq

of elements of K indexed by Q�Q.

A sequene s is said to be K-rational if there exist a set Q of ardinality d and

a triple (i;M; t), where i is a row Q-vetor, t is a olumn Q-vetor, and M is a

Q�Q matrix, all with oeÆients in K, suh that, for any non-negative integer n,

s

n

= iM

n

t.

Suh a triple is alled a representation over K, or a K-representation of the

sequene s, and d is its dimension. We say that the representation (i;M; t) spei�es

the sequene s.

A word about our terminology. A sequene of elements of K an be onsidered

as a K-subset of �

�

, where � has only one symbol. Our de�nition of a K-rational

sequene orresponds to what is alled a reognizable K-subset in Eilenberg's book

[Eilenberg 1974℄. A rational K-subset is de�ned using rational expressions with

multipliities, and a lassial result proves the equivalene of the notions of reog-

nizable or rational K-subsets when � is �nite (this is the Kleene-Sh�utzenberger

theorem, see [Eilenberg 1974, p. 175℄). We shall oasionally use rational expres-

sions to denote rational sequenes. For example, (kz)

�

is the same as

1

1�kz

.

A representation over K is redued if it has a minimal dimension among all

representations over K that speify the same sequene. If K is a prinipal ideal

domain, this minimal dimension is the same over K and over the quotient �eld of

K [Berstel and Reutenauer 1988, p. 77℄. This minimal dimension is alled the rank

of the rational sequene.

If K is a prinipal ideal domain, a representation over K is said to be left redued

(respetively right redued) if and only the module generated by the vetors iM

n

(respetively M

n

t), for all n � 0, is the full spae K

1�d

(respetively K

d�1

). The

representation is then redued if and only if it is both left and right redued (see

[Berstel and Reutenauer 1988, p. 26℄). We de�ne the left minimal representation

over K of a sequene s as the unique redued representation (i;M; t) of s over K,

where i =

�

1 0 � � � 0

�

and M is a ompanion matrix, i.e., of the form

M =

2

6

6

6

6

6

4

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1

a

0

a

1

a

2

: : : a

r�1

3

7

7

7

7

7

5

:
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We say that a sequene of integers is non-negative if all its terms are non-negative.

An N-rational sequene is also alled regular. In the ase of a regular sequene,

there is an equivalent form of a representation. Let us onsider a triple (I;G; T ),

where G is a direted multigraph and I; T two sets of verties. Suh a triple spei�es

the sequene s where s

n

is the number of paths of length n going from I to T . The

sequene s is regular sine it is also spei�ed by the representation (i;M; t), where

M is the adjaeny matrix of G and i, t are the harateristi vetors of the sets

I and T respetively. It an be shown onversely that any regular sequene an be

spei�ed by suh a triple.

A matrix or vetor with oeÆients equal to zero or one is alled a 0-1 matrix

or a 0-1 vetor. Let k be a positive integer. A k-ary matrix is a matrix with non-

negative integral oeÆients suh that the sum of eah row is k. In a similar way,

a graph G is alled k-ary if its adjaeny matrix is k-ary. This means that eah

vertex of G has out-degree k.

An N-representation (i;M; t) with M a Q � Q matrix, is said to be trim if for

eah index p 2 Q there is a non-negative integer n suh that (iM

n

)

p

> 0 and there

is a non-negative integer m suh that (M

m

t)

p

> 0.

A sequene s = (s

n

)

n�0

is said to be the merge of the sequenes s

(0)

; : : : ; s

(p�1)

,

where p is a positive integer, if s

(i)

n

= s

i+np

for 0 � i � p � 1. Equivalently,

s(z) =

P

p�1

i=0

z

i

s

(i)

(z

p

). If (i;M; t) is an N-representation of s, then (iM

i

;M

p

; t) is

an N-representation of s

(i)

for eah integer 0 � i � p� 1.

A Z-rational sequene is said to have a dominating pole if it an be written as a

rational fration s(z) = p(z)=q(z), with p; q relatively prime, where q has a simple

root r suh that r

0

> r for any other root r

0

.

The following theorem is known as Soittola's theorem. We state it without proof

(see [Berstel and Reutenauer 1988, p. 90℄ or [Salomaa and Soittola 1978, p. 74℄).

Theorem 2.1. A Z-rational sequene with non-negative terms is regular if and

only it is the merge of Z-rational sequenes with a dominating pole.

As a onsequene of Soittola's theorem, given a triple (i;M; t), it is deidable

whether the spei�ed Z-rational sequene is regular. If s is a regular sequene, there

is a omputable positive integer p (the period) suh that s

j+np

� 

j

n

l

j

�

n

j

as n !

1 (j = 0; : : : ; p � 1), where 

j

> 0, l

j

2 N and �

j

is a non-negative real (see for

instane [Salomaa and Soittola 1978, p. 62℄). Furthermore, �

j

and l

j

are om-

putable.

3. GENERATING SEQUENCE OF A REGULAR LANGUAGE ON K SYMBOLS

In this setion, we state the main result of this paper, whih is a haraterization

of the generating sequenes of regular languages on k symbols.

Let A be a k-letter alphabet and L be a language over A, that is, a subset of

A

�

, where A

�

is the set of all �nite words whose letters are in A. The generating

sequene of L is de�ned as the sequene s = (s

n

)

n�0

, where s

n

is the number of

words of L of length n.

The generating sequene of a formal language L gives useful information on

L. For example, assuming that the letters are hosen at random uniformly and

independently, the probability that a word of length n is in L is equal to

s

n

2

n

. The
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sequene s

n

is also used to de�ne the notion of entropy of L as the superior limit

of the sequene

1

n

log s

n

(see [Lind and Marus 1995℄ or [Kuih 1970℄).

It is known that the generating sequene of a regular language is a regular se-

quene. It is also lear that the generating sequene of a regular language over

a k-letter alphabet satis�es the following two onditions of being the generating

sequene of

|a language over a k-letter alphabet,

|a regular language.

The �rst ondition is equivalent to the fat that the generating sequene s satis�es

s

n

� k

n

, for any n � 0. The seond ondition is equivalent to the fat that the

sequene is regular. A natural question is the suÆieny of the two onditions

to ensure that s is the generating sequene of a regular language over a k-letter

alphabet. This question is similar to one solved in [Bassino et al. 2000℄ (see also

[Bassino et al. 2001℄ and [Bassino et al. 1999℄), where it is shown that a sequene

is the generating sequene of a regular k-ary tree if and only if it is the generating

sequene of k-ary tree and if it is regular.

The situation is quite di�erent here sine we give below an example of a regular

sequene s that is not the generating sequene of a regular language over a k-letter

alphabet, although s

n

� k

n

for any n � 0. The ounterexample is based on an

example of a Z-rational sequene with non-negative terms that is not regular (see

[Eilenberg 1974, p. 216-218℄ or [Berstel and Reutenauer 1988, p. 95℄).

Example 3.1. Let r be the sequene suh that, for any n � 0, r

n

= b

2n

os

2

(n�),

with os � =

a

b

, where the integers a; b are suh that b 6= 2a and 0 < a < b. We

also assume that b

2

< k. The sequene r is Z-rational, has non-negative integer

terms and is not regular [Eilenberg 1974, p. 216-218℄. Note that, for any n � 0,

r

n

� k

n

. We now de�ne the sequene s by s

n

= k

n

�r

n

. By Soittola's theorem, the

sequene s is regular sine it is a merge of rational sequenes having a dominating

pole, and it satis�es s

n

� k

n

for any n � 0. If s were the generating sequene of a

regular language L over a k-letter alphabet A, its omplementary sequene r would

be the generating sequene of the omplement of L. Thus r would be regular, a

ontradition.

Example 3.1 leads us to state the following result whih ompletely haraterizes

the sequenes that are generating sequenes of languages over a k-letter alphabet.

It is proved in Setion 7.

Theorem 3.2. A sequene s is the generating sequene of a regular language

over a k-letter alphabet if and only if both sequenes s = (s

n

)

n�0

and t = (k

n

�

s

n

)

n�0

are regular.

Observe �rst that the seond ondition implies that s

n

� k

n

for all n sine by

de�nition a regular sequene has non-negative terms. If s is a given Z-rational

sequene and k a positive integer, the two onditions are deidable as seen above.

Moreover if s is regular, one an ompute the least integer k

0

suh that s

n

� k

n

0

,

for any integer n � 0. For k > k

0

, the seond ondition is automatially satis�ed

again by Soittola's theorem. It follows that, given some regular sequene, one an
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haraterize the minimal alphabet suh that s is the generating sequene of a regular

language on this alphabet.

4. EQUIVALENCE OF REPRESENTATIONS

In this setion, we de�ne a transformation on a representation of a sequene over a

semiring that extends the notion of multiset extension introdued in [Bassino et al.

2000℄ to representations.

Let (i;M; t) and (j; N;x) be two representations, and U be a matrix suh that

NU = UM;

jU = i;

x = Ut:

The transformation from (i;M; t) to (j; N;x) is alled a forward elementary equiv-

alene. The matrix U is alled the transfer matrix of the elementary equivalene,

denoted (i;M; t)

U

�! (j; N;x), or (i;M; t)

U

�!

K

(j; N;x) to speify that U has its

oeÆients in K. In this ase, we also talk of a K-forward elementary equivalene.

Note that M or N may have oeÆients outside K.

Notie that, if we identify an element of S to the row Q-vetor of U of the

orresponding index, the equality NU = UM is equivalent to the fat that, for any

element u of S,

uM =

X

v2S

N

u;v

v:

The inverse transformation is alled a bakward elementary equivalene, denoted

(i;M; t)

U

 � (j; N;x). A forward or bakward elementary equivalene is alled an

elementary equivalene. The symmetri and transitive losure of the relation of

forward elementary equivalene with transfer matries with oeÆients in K, is

alled the equivalene over K, denoted by �

K

.

Our de�nition of an elementary equivalene is onneted with lassial notions on

matries. Indeed, the de�nition of a forward elementary equivalene uses a relation

between the matries M , N whih generalizes the onjugay relation. The general

solution of the matrix equation NX = XM is given in [Gantmaher 1977, p. 219℄.

A nonzero solution exists if and only if M and N have a ommon harateristi

eigenvalue. It is also known [Lind and Marus 1995, p. 285℄ that, when M;N

are non-negative real matries with the same dominant eigenvalue, the equation

NX = XM has a non-negative and nonzero solution.

A simple example of forward (or bakward) elementary equivalene is similarity.

Two K-representations (i;M; t) and (i

0

;M

0

; t

0

) are said to be similar over K if and

only if there is a matrix P , invertible in K, suh that (i;M; t)

P

�! (i

0

;M

0

; t

0

).

Another example of a bakward elementary equivalene is the out-splitting that

omes from symboli dynamis [Lind and Marus 1995, p. 55℄. Let (j; N;x) be an

N-representation. The matrix N is the adjaeny matrix of a graph G on a set S

of verties. Let us onsider the graph H on a set Q = (S�fig)[fi

0

; i

00

g of verties

obtained from G by splitting the vertex i of G into two verties i

0

and i

00

aording

to a partition in two parts P

1

; P

2

of edges going out of i. The edges oming in i are
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dupliated in H into edges oming in i

0

and i

00

. Let M be the adjaeny matrix of

H . Let D be the S �Q matrix de�ned by D

pp

= 1 if p 6= i, D

ii

0

= D

ii

00

= 1, and

D

pq

= 0 otherwise. Let E be the Q� S matrix de�ned by E

pq

= M

pq

if p 6= i

0

; i

00

and E

i

0

q

(respetively E

i

00

q

) is the number of edges in P

1

(respetively P

2

) going

from i to q. It an be easily heked (see [Lind and Marus 1995, p. 55℄) that

ED =M and DE = N:

Then

DM = ND and EN =ME:

The matrixM is said to be obtained by an out-splitting of N . For any non-negative

integral vetor x, there is an a non-negative integral vetor t suh that x = Dt. By

setting i = jD, we get (i;M; t)

D

�! (j; N;x). This an be stated as follows.

Proposition 4.1. For any N-representation (j; N;x) and any matrix M that

is obtained by out-splitting of N , there are non-negative integral vetors i; t and a

transfer matrix D suh that (i;M; t)

D

�!

N

(j; N;x).

Similar results an be obtained for input state splitting. The notion of forward

or bakward elementary equivalene is nevertheless muh weaker than the symboli

dynamis notion of onjugay or even the notion of shift equivalene (see [Lind and

Marus 1995℄, [Kithens 1997℄ for these notions).

The following two propositions are diret onsequenes of the de�nitions.

Proposition 4.2. Equivalent representations speify the same sequene.

Proof. If (i;M; t)

U

�! (j; N;x), then iM

n

t = jUM

n

t = jN

n

Ut = jN

n

x, for

any non-negative integer n.

Proposition 4.3. The omposition of two forward (respetively bakward) ele-

mentary equivalenes is a forward (respetively bakward) elementary equivalene.

If (i;M; t)

U

�! (j; N;x) and (j; N;x)

V

�! (j

0

; N

0

;x

0

), then (i;M; t)

V U

��! (j

0

; N

0

;x

0

).

Proof. The proof is straightforward.

Cheking whether two representations over a �eld K are elementary equivalent

is deidable, as shown in the following proposition.

Proposition 4.4. Let K be a �eld. Given two K-representations, (i;M; t) and

(j; N;x), it is deidable whether there is a K-forward elementary equivalene from

(i;M; t) to (j; N;x).

Proof. If (i;M; t) has dimension d and (j; N;x) dimension d

0

, the existene of

a matrix U suh that NU = UM , jU = i and x = Ut, is obtained by solving a

Cramer system of dd

0

+d+d

0

equations with dd

0

unknowns. This an be performed

in ubi time.

The onverse of Proposition 4.2 is due to Sh�utzenberger. His result states that

if K is a prinipal ideal domain, any K-rational sequene has a redued represen-

tation that an be omputed in two steps (see for instane [Berstel and Reutenauer

1988℄, [Salomaa and Soittola 1978℄ or [Sakarovith 2003℄). These two steps are
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respetively a forward elementary equivalene and a bakward elementary equiva-

lene (or onversely). This leads to the following statement in whih K is supposed

to be a prinipal ideal domain.

Proposition 4.5. Let (i;M; t) be a representation over K of a sequene, and

(j; N;x) its left minimal representation over K. There is a forward elementary

equivalene followed by a bakward elementary equivalene from (i;M; t) to (j; N;x).

As a onsequene, two K-representations speify the same sequene if and only if

they are equivalent over K.

We briey reall the onstrution of Sh�utzenberger. Notie that K is not ne-

essarily a �eld.

Proof. We already know that two K-representations that are equivalent over

K speify the same sequene.

Conversely, let (i;M; t) be a K-representation of dimension d. Let F be the

quotient �eld of K. We �rst show that (i;M; t) is equivalent over K to a K-

representation whih is redued over K and over F . For any non-negative integer

n, iM

n

2 K

1�d

. Thus the K-module E generated by the vetors iM

n

for n � 0, is

a submodule of the free K-module K

1�d

. It is thus a free K-module. Let d

0

be its

dimension as K-module and let e

1

; : : : ; e

d

0

be one of its basis. Eah e

i

is a linear

ombination over K of the vetors iM

n

for n � 0. Let U be the d

0

� d matrix

over K whose rows are the vetors e

i

, 1 � i � d

0

. The K-module E is stable by

multipliation on the right by the matrix M . Let N be d

0

� d matrix over K that

represents the ation ofM in the basis e

1

; : : : ; e

d

0

, that is, if e

i

M = a

1

e

1

+ : : : a

d

0

e

d

0

for some elements a

1

; : : : ; a

d

0

2 K, one de�nes the row of index i of N to be

[a

1

; : : : ; a

d

0

℄. It is a onsequene of the de�nition that UM = NU . Sine i belongs

to the K-module E, the vetor i is a K-linear ombination of the e

i

. Thus there

exists a vetor j, with oeÆients in K, suh that i = jU . We also set x = Ut. Note

that the K-module generated by the vetors jN

n

for n � 0 has the same dimension

d

0

as the K-module E.

Symmetrially, let r � d

0

be the dimension of the K-module generated by the

vetors N

n

x for n � 0. By onsidering the transpose (
~
x;

~

N;

~

t) of the triple (j; N;x),

where

~

N denotes the transpose of the matrix N , there is a K-representation of

dimension r, (k; P;y), and a transfer matrix V over K suh that (k; P;y)

V

�!

K

(j; N;x). Sine (i;M; t)

U

�!

K

(j; N;x), we obtain that the representations (i;M; t)

and (k; P;y) are equivalent over K.

Let us denote by V (j; N) the vetor spae over F generated by the vetors jN

n

for n � 0. Sine V (k; P ) = V (j; N), and sine V (j; N) = K

1�d

0

, the dimension

of V (j; N) = V (k; P ) is the rank r of V . Thus (k; P;y) is redued over F and

thus also over K. It has been obtained from (i;M; t) with one forward elementary

equivalene followed by one bakward elementary equivalene.

A similar proof shows that there is a bakward elementary equivalene followed

by a forward elementary equivalene from (i;M; t) to a representation redued over

F .

We now show that if (i;M; t) is a K-representation of dimension r of s, there is

a forward elementary equivalene from (i;M; t) to the minimal left representation
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On the generating sequenes of regular languages on k symbols � 9

of s whih ompletes the proof sine the omposition of two forward elementary

equivalenes is a forward elementary equivalene.

Thus V (i;M) is a vetor spae of dimension r over F . Then (i; iM; : : : ; iM

r�1

)

is a basis of this spae over F and there are a

0

; a

1

; : : : a

r�1

2 F suh that iM

r

=

a

0

i+ a

1

iM + � � �+ a

r�1

iM

r�1

. Let U be the r � r matrix over K, invertible in F ,

de�ned by

U =

2

6

6

6

4

i

iM

.

.

.

iM

r�1

3

7

7

7

5

:

Let N be the matrix of dimension r with oeÆients in F whih represents the

right multipliation by M in the basis (i; : : : ; iM

r�1

). We get (i;M; t)

U

�!

K

(j; N;x)

with

j =

�

1 0 � � � 0

�

; N =

2

6

6

6

6

6

4

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1

a

0

a

1

a

2

: : : a

r�1

3

7

7

7

7

7

5

;x = tU:

Sine (j; N;x) spei�es s, we have

x =

2

6

4

s

0

.

.

.

s

r�1

3

7

5

:

Sine U is invertible in F , the harateristi polynomials ofM and N are equal and

the harateristi polynomial of M has its oeÆients in K. Sine this polynomial

is X

r

� a

r�1

X

r�1

� � � � � a

1

X � a

0

, the matrix N has its oeÆients in K.

It is also known (Sh�utzenberger 1961, Fliess 1974) [Berstel and Reutenauer 1988,

p. 27℄ that, if K is a �eld, all redued representations are similar over K. Note

that the result is not true if K is not a �eld. Consider for instane the two Z-

representations of dimension one: (i = [2℄;M = [1℄; t = [3℄) and (j = [3℄; N =

[1℄;x = [2℄). They are similar over Q but not over Z. It is known that heking

whether twoK-representations speify the same sequene is deidable in polynomial

time (see for instane [Berstel and Reutenauer 1988℄).

5. PERRON GEOMETRY

In this setion, we onsider Z-rational sequenes and regular sequenes. We prove a

series of lemmas used in the next setion. The proofs rely on the Perron-Frobenius

theory of non-negative matries (see [Lind and Marus 1995℄ for an introdution or

[MaCluer 2000℄ for a reent survey).

If v = (v

q

)

q2Q

is a vetor with oeÆients in R, we say that v is non-negative,

denoted v � 0, (respetively positive, denoted v > 0) if v

q

� 0 (respetively v

q

> 0)

for all q 2 Q. The same onventions are used for matries.
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10 � M.-P. B�eal and D. Perrin

An integer matrix has a dominating eigenvalue, i.e., has an eigenvalue � > 0 suh

that � > j�j for all other eigenvalues � of M . An integer matrix M is said to be

spetrally Perron if it has a dominating eigenvalue whih is simple

1

.

A sequene of integers s is said to be spetrally Perron if it has a redued repre-

sentation over Z with a spetrally Perron matrix. A representation over Z with a

spetrally Perron matrix is alled a spetrally Perron representation. The left min-

imal representation, and more generally all redued representations, of a spetrally

Perron sequene are spetrally Perron representations. The spetral radius of the

matrix of a redued spetrally Perron representation is alled the Perron value of

the sequene spei�ed.

Let (i;M; t) be a spetrally Perron representation. The matrix M is a spetrally

Perron Q�Q matrix whose spetral radius is �, where Q is the �nite set of states

of the representation. We denote by d the dimension of M . The matrix M has a

nonzero left eigenvetor w assoiated to the eigenvalue �. All other eigenvetors

assoiated to � are olinear to it.

Let W be the span of w over R. Aording to the Jordan anonial form of

M , there is a omplementaryM -invariant subspae V orresponding to eigenvalues

j�j < �. The spae R

1�d

is a diret sum ofW and V . We denote by �

1

: R

1�d

!W

the projetion to W along V and by �

2

: R

1�d

! V the projetion to V along W .

We also denote by �

1

: R

1�d

! R the funtion assoiating to eah vetor u the

real number �

1

(u) suh that �

1

(u) = �

1

(u)w. The real number �

1

(u) is alled the

dominant oordinate of u.

Thus eah vetor u of R

1�d

an be written

u = �

1

(u)w + �

2

(u):

Note that

uM = ��

1

(u)w + �

2

(u)M:

Hene, sine V is invariant by M , �

1

(uM) = ��

1

(u) and �

2

(u)M = �

2

(uM).

When i has a nonzero dominant oordinate, it will be onvenient to hoose a left

Perron eigenvetor w suh that �

1

(i) > 0. This is done by hanging w to �w if

�

1

(i) < 0. Note that w depends only on M and i. When the representation is

left-redued, the vetor i has a positive dominant oordinate.

For any real number r, we denote by B(v; r) the ball of radius r entered on

the point v, whih is the set of vetors u suh that kv � uk � r where k k is any

equivalent norm of R

1�d

. It will be onvenient (in order to prove Lemma 5.4 below

for instane) to use a norm that satis�es, for any vetor u,

kuk = k�

1

(u)k+ k�

2

(u)k:

Let w be a left Perron eigenvetor of (i;M; t). We denote by K

r

(w) the set

K

r

(w) = f�v j v 2 B(w; r); � � 0g:

We also denote by K

+

r

(w) the nonzero vetors of K

r

(w).

The following lemma is from [Lind and Marus 1995, p. 373℄.

1

The de�nition taken from [Lind and Marus 1995, p. 371℄ (see also [Lind and Marus 1995,

p. 369℄) uses � � 1 instead of � > 0.
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On the generating sequenes of regular languages on k symbols � 11

Lemma 5.1. Let (i;M; t) be a spetrally Perron representation. Let " be a posi-

tive real number and let u be an integer vetor with a positive dominant oordinate.

Then there is a positive integer m suh that uM

n

belongs to K

"

(w) for n � m.

Proof. We follow the lines of [Lind and Marus 1995, p. 373℄ for the proof. We

have

u = �

1

(u)w + �

2

(u):

Thus

uM

n

= �

n

�

1

(u)w + �

2

(u)M

n

:

It follows from the Jordan anonial form that the growth rate ofM on V is stritly

less than �, i. e. , for v 2 V , kvM

n

k=�

n

! 0 as n!1. Then, for a large enough

n,

k�

2

(u)M

n

k < �

n

�

1

(u)":

Hene, for a large enough n, uM

n

=�

n

�

1

(u) belongs to K

"

(w) and thus uM

n

also.

Let s be a Z-ratio nal sequene of non-negative integers. The omplexity of the

sequene s is de�ned as the inverse of its onvergene radius, i.e., lim sup

n!1

s

1=n

n

.

Lemma 5.2. Let (i;M; t) be a spetrally Perron representation with a spetral

radius � suh that the sequene spei�ed is non-negative and has omplexity �.

Then �

1

(i) > 0 and w � t > 0.

Proof. Sine

i = �

1

(i)w + �

2

(i);

we have

iM

n

t = �

n

�

1

(i)w � t+ �

2

(i)M

n

t;

with a growth rate of M on V stritly less than �. If s has omplexity �, �

1

(i) 6= 0

and w �t 6= 0. Moreover, sine the sequene spei�ed is non-negative, �

1

(i):(w �t) �

0. Under the hypothesis on the hoie of w, we get �

1

(i) > 0. Thus w � t > 0.

Lemma 5.3. Let (i;M; t) be a spetrally Perron representation with a spetral

radius � suh that the sequene spei�ed is non-negative and has omplexity �.

Then there exists a positive real number � suh that for any vetor u 2 K

+

�

(w), we

have u � t > 0.

Proof. This follows diretly from Lemma 5.2.

Lemma 5.4. Let (i;M; t) be a spetrally Perron representation. For any positive

real number �, there exists a positive real number " suh that, for any positive

integer n, u 2 K

"

(w), then uM

n

2 K

�

(w).

Proof. Let u 2 K

"

(w). Thus u = �(w + z), where z 2 B(0; ") and � is a

positive real number. One has z = �

1

(z)w + v, where v 2 V .

Then for any non-negative integer n

uM

n

�

n

= �(w + �

1

(z)w +

vM

n

�

n

):
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12 � M.-P. B�eal and D. Perrin

Sine kzk = k�

1

(z)wk+ kvk, k�

1

(z)wk � " and kvk � ".

It follows from the Jordan anonial form that the growth rate of M on V is

stritly less than �. Thus there is an integerm suh that for any n > m, kM

n

k=�

n

�

1 on the spae V . Let N be the maximum of kM

n

k=�

n

for all 0 � n � m.

We now hoose " = min(

�

2

;

�

2N

). Then k�

1

(z)w+

vM

n

�

n

k < � for any non-negative

integer n. It follows that, for any non-negative integer n,

uM

n

�

n

2 K

�

(w) and thus

uM

n

also.

Remark 5.5. We note for future use that, if moreover � < 1 and u 6= 0, then,

for any non-negative integer n, uM

n

6= 0.

We now state and prove a geometrial lemma whih is used in the onstrution

of Setion 6. The lemma is essentially due to Lind (see [Lind and Marus 1995,

p. 374℄), who proved that there is a positive real number " suh that all integer

vetors in K

"

(w) are non-negative integral ombinations of a �nite number of in-

teger vetors. With a slight modi�ation, we show below that there is a positive

real number " suh that all integer vetors in K

"

(w) are non-negative integral

ombinations of a �nite number of integer vetors in K

2"

(w).

Lemma 5.6. For a small enough positive real ", there is a �nite set P of integer

points in K

2"

(w) suh that eah integer point of K

"

(w) is a non-negative integral

ombination of points of P .

Proof. For tehnial reasons that will appear below, we hoose " < 1=2.

We hoose a left eigenvetor w with norm 1. If q is a point of B(w; "), B(q; ") �

B(w; 2") � K

2"

(w). As a onsequene, for any positive real number R, any ball

B(Rq; R") is ontained in K

2"

(w). Let D be the minimal value suh that any ball

of size D ontains at least one integer point. This value depends on the norm kk

hosen. We �x a large enough R suh that r = R" > 2D. Note that R > r.

We de�ne the �nite set of integer points P = K

2"

(w) \B(0; 3R)\ N

d

. We show

that all integer points of K

"

(w) are non-negative integral ombinations of points of

P .

Let us assume that this property is false, and denote by x an integer point of

minimal norm whih is in K

"

(w) and whih is not a non-negative integral ombi-

nation of points of P . Then x does not belong to P , and its norm is greater than

2R.

Let p

0

be a point of B(w; ") whih belongs to the semi-line de�ned by the point

x and the null origin (see Figure 1). Suh a point exists sine x belongs to K

"

(w).

Note that x = l

0

p

0

, where l

0

is a positive real number. Sine w has norm 1, we have

1� " � kp

0

k � 1 + ".

Let p = Rp

0

, and l = l

0

=R. We have

(1� ")R � kpk � (1 + ")R < kxk=2: (1)

Let m

1

=

Rw+p

2

and m

2

= 2p �m

1

. Thus the ball B(m

1

; r=2) is inluded in

B(p; r) and in B(Rw; r). Thus B(m

1

; r=2) � K

"

(w). It follows that

B(m

2

; r=2) � B(p; r) � B(Rw; 2r) � K

2"

(w): (2)

A point u is in B(m

2

; r=2) if and only if 2p� u is in B(m

1

; r=2).
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Sine r=2 � D, there is an integer point u in B(m

2

; r=2). Thus 2p� u belongs

to B(m

1

; r=2) � K

"

(w). We get 2p� u 2 K

"

(w) and u 2 K

2"

(w).

We have a suession of inequalities. First, kx� uk � kx� pk+ kp� uk. Sine

x and p are olinear, we have kx � pk = kxk � kpk. Also kp � uk � r sine

u 2 B(m

2

; r=2) and B(m

2

; r=2) � B(p; r) by Equation (2). Thus

kx� uk � kxk � kpk+ r:

This implies by Inequality (1)

kx� uk � kxk+ ("� (1� "))R:

Sine " < 1=2, we obtain kx� uk < kxk.

Sine x = lp with l > 2, x� u = (l� 2)p+ (2p� u). Sine (l� 2)p and 2p� u

belong to K

"

(w), the point x� u is also in K

"

(w).

Thus x�u is an integer point of K

"

(w) whih is stritly loser to the origin than

x. By hypothesis, x�u is then a non-negative integral ombination of points of P .

From kuk � kpk+ kp � uk, we get kuk � (1 + ")R + "R � 2R. This shows that

u 2 P . Then x = (x � u) + u is a non-negative integral ombination of points of

P . This ontradits the hypothesis, onluding the proof of this lemma.

w

p’

p

u

x

x - u

Rw

Fig. 1. The geometrial lemma (Lemma 5.6).
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6. FROM A Z-REPRESENTATION TO AN N-REPRESENTATION

In this setion, we prove a result whih gives a suÆient ondition for a sequene

to be regular (Theorem 6.1).

It is known that a non-negative Z-rational sequene that has a dominating pole

is regular (Soittola 1976, Katayama et al. 1978, see [Berstel and Reutenauer 1988,

p. 83℄ or also [Salomaa and Soittola 1978℄). From this result and the results of

Setion 4 follows that any Z-representation of a non-negative sequene that has a

dominating pole is equivalent over Z to a regular representation. In the partiular

ase of a spetrally Perron non-negative sequene, we show that an N-representation

an be obtained by only one forward elementary equivalene from any redued Z-

representation of the sequene. This result is an adaptation to representations of a

result from Lind ([Lind 1983℄, [Lind 1984℄, see also [Lind and Marus 1995, Theorem

11.1.4 p. 369℄) whih says that for any Perron number, there is a primitive integral

matrix whose spetral radius is this Perron number.

Theorem 6.1. Let (i;M; t) be a Z-representation of a sequene s of non-negative

integers. If the two following onditions are satis�ed,

(i) M is spetrally Perron,

(ii) the omplexity of s is the spetral radius of M ,

then there exists a forward elementary equivalene from (i;M; t) to an N-representation.

Proof. Let (i;M; t) be a spetrally Perron Z-representation of a non-negative

sequene s. The matrix M is thus spetrally Perron with a spetral radius �. Let

w be a left Perron eigenvetor suh that i has a non-negative dominant oordinate.

By Lemma 5.2, i has a positive dominant oordinate.

By Lemma 5.3, there is a positive real number � suh that for any vetor u 2

K

+

�

(w), we have u �t > 0. We moreover hoose � small enough suh that any vetor

in K

+

�

(w) has a positive dominant oordinate.

By Lemma 5.4 there exists a positive real number " suh that, for any positive

integer n, if u 2 K

2"

(w) then uM

n

2 K

�

(w). Let us �x suh a positive real number

" with moreover " < 1=2 and 2" < �. Thus K

"

(w) � K

2"

(w) � K

�

(w).

By Lemma 5.6, there is �nite set P of integer points in K

2"

(w) suh that eah

integer point of K

"

(w) is a non-negative integral ombination of points of P .

By Lemma 5.1 and sine P is a �nite set of points of K

2"

(w), there is an integer

n

0

suh that for any vetor v 2 P [ fig, the vetor vM

n

0

2 K

"

(w).

We de�ne a forward elementary equivalene from (i;M; t) to a representation

(j; N;x) as follows. The rows of the transfer matrix U are the nonzero row vetors

vM

j

, with v 2 P [ fig and 0 � j � n

0

� 1. We de�ne the matrix N as a matrix

of the multipliation by M on the right on the set S formed by these row vetors.

If u is in S, either uM is in S or uM belongs to K

"

(w). In the latter ase,

it is a onsequene of the geometrial lemma that uM is a non-negative integral

ombination of points of P . If u is in S and uM =

P

v2S

�

u;v

v, with �

u;v

2 N,

we de�ne the oeÆient of index u;v of N as �

u;v

. Thus the matrix N has non-

negative integral oeÆients. Note that sine S is not neessarily a basis, N is

not neessarily unique. By de�nition, UM = NU . We only keep in S the verties

aessible from i in the graph de�ned by the matrix N . Moreover, we order the

rows of U in suh a way that the �rst row of U is the vetor i.
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We de�ne the row vetor j of length jSj by j =

�

1 0 : : : 0

�

and the olumn vetor

x by x = Ut. If u = iM

j

for 0 � j � n

0

� 1, then x

u

= u � t = iM

j

t = s

j

� 0.

By Remark 5.5, if u is a nonzero vetor in K

2"

(w), then uM

j

2 K

+

�

(w) for any

j � 0. Then uM

j

t > 0 for any j � 0. Thus x has non-negative integral oeÆients.

Note that the transfer matrix U has its oeÆients in Z. Thus we have proved that

(i;M; t)

U

�! (j; N;x) is a bakward elementary equivalene over Z and (j; N;x) is

an N-representation of s. This onludes the proof of the theorem.

We add two remarks on further onsequenes of the above proof for future refer-

ene. Both follow from the last paragraph of the proof.

Remark 6.2. If the sequene s satis�es the additional hypothesis s

n

> 0 for any

non-negative integer n, then the vetor x is a positive integral vetor.

Remark 6.3. If t

0

is another non-negative vetor suh that u � t

0

> 0 for any

vetor u 2 K

+

�

(w), and suh that (i;M; t

0

) spei�es a sequene of non-negative

integers, x

0

= Ut

0

is a non-negative vetor.

Corollary 6.4. From any redued spetrally Perron representation of a non-

negative sequene, there exits a forward elementary equivalene to a regular repre-

sentation.

Proof. If (i;M; t) is a redued Z-representation of a sequene of non-negative

integers s, the omplexity of s is equal to the spetral radius of M .

Example 6.5. Let us onsider the regular sequene s de�ned by, for n � 2,

s

0

= 1;

s

1

= 2;

s

n

= 4s

n�1

� 3s

n�2

:

A Z-representation of this sequene is

i =

�

1 0

�

;M =

�

0 1

�3 4

�

; t =

�

1

2

�

:

The matrix M is spetrally Perron with a spetral radius 3 sine its harateristi

polynomial is (X � 3)(X � 1). The omputation of the �rst powers iM

n

gives

iM

0

=

�

1 0

�

;

iM

1

=

�

0 1

�

= u+ i;

where u =

�

�1 1

�

. We have uM = 3u and thus the set of non-negative integral

ombinations of the vetors i, u is stable by M . As in the proof of Theorem 6.1,

we hoose as transfer matrix

U =

�

1 0

�1 1

�

:

Thus s has the following N-representation whih is elementary equivalent to (i;M; t):

j =

�

1 0

�

; N =

�

1 1

0 3

�

;x =

�

1

1

�

:

The sequene s is thus spei�ed by the triple (f1g; H; f1; 2g), where H is the graph

of Figure 2.
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1 2

1 1

Fig. 2. An N-representation of the sequene s de�ned by s

0

= 1, s

1

= 2, and s

n

= 4s

n�1

� 3s

n�2

for n � 2. The vertex 1 (marked with an inoming arrow) is the initial vertex and 1; 2 (marked

with an outgoing arrow) are the terminal verties.

7. THE MAIN RESULT

We now prove the main result in a slightly more general form (Theorem 7.5 below).

The haraterization of the generating sequenes of regular languages on k symbols

given in Theorem 3.2 of Setion 3 is a onsequene of Theorem 7.5. We �rst state

several lemmas. Lemma 7.4 onstitutes one of the main parts of the proof of

Theorem 7.5.

We reall the notion of approximate eigenvetor. Let k be a positive integer. A

right k-approximate eigenvetor of a non-negative matrix M is an integer olumn

vetor v � 0 suh that Mv � kv. When M is the adjaeny matrix of a graph G,

we also say that v is a k-approximate eigenvetor of G.

Lemma 7.1. Let (j; N;x) be an N-representation suh that x is a positive right

k-approximate eigenvetor (respetively a positive right k-eigenvetor) of N . Then

there is an N-representation (j; N;x) and a bakward elementary equivalene (i;M; t)

U

 �

(j; N;x), suh that t is a positive right k-approximate eigenvetor (respetively a

positive k-eigenvetor) of M whih has all its oeÆients equal to 1.

Moreover if x =

P

l

i=1

x

i

, where eah x

i

is a non-negative integral vetor, then

there are non-negative integral vetors t

i

suh that x

i

= Ut

i

.

Proof. We give the proof in the ase of approximate eigenvetors. The other

alternative is similar. Let us denote by Q the set of indies of j. Let Q

0

be the set

of pairs (q; j) with q 2 Q and 1 � j � x

q

. For eah p 2 Q, let us onsider the set

of triples f(q; j; l) j q 2 Q; 1 � j � x

q

; 1 � l � N

pq

g. Its ardinality is

P

q2Q

N

pq

x

q

.

Sine for eah p 2 Q, we have

X

q2Q

N

pq

x

q

� kx

p

;

it is possible to partition this set in x

p

sets X

(p;1)

; X

(p;2)

; : : : ; X

(p;x

p

)

of at most k

elements. We now de�ne the square Q

0

� Q

0

matrix M by de�ning M

(p;i)(q;j)

, for

p; q 2 Q, 1 � i � x

p

and 1 � j � x

q

, as the number of triples in X

(p;i)

whose �rst

two omponents are (q; j). Let U be the Q�Q

0

matrix de�ned by U

q(q;j)

= 1, for

any 1 � j � x

q

, the other oeÆients being zero. By onstrution, we get

NU = UM:

Indeed, the oeÆient of index p; (q; j), where 1 � j � x

q

, of NU is

X

r2Q

N

pr

U

r(q;j)

= N

pq

:
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And the oeÆient of index p; (q; j) of UM is

X

(r;i)2Q

0

U

p(r;i)

M

(r;i)(q;j)

=

X

1�i�x

p

M

(p;i)(q;j)

= N

pq

:

We de�ne the row Q

0

-vetor i by i = jU . Let t be the olumn Q

0

-vetor with all

its oeÆients equal to 1. It is straightforward that x = Ut. Thus

(i;M; t)

U

�! (j; N;x):

Sine the sum of eah row ofM is less than or equal to k, t is a right k-approximate

eigenvetor of M .

Let us now assume that x =

P

l

i=1

x

(i)

, where x

(i)

is a non-negative integral

vetor. Let us de�ne the olumnQ

0

-vetor t

(i)

by t

(i)

(q;j)

= 1 if and only if 1 � j � x

(i)

q

and t

(i)

(q;j)

= 0 otherwise for 1 � i � l. Then

(Ut

(i)

)

p

=

X

(q;j)2Q

0

U

p(q;j)

t

(i)

(q;j)

=

X

1�j�x

p

t

(i)

(p;j)

= x

(i)

p

:

We get x

(i)

= Ut

(i)

for 1 � i � l.

We mention that a stronger form of this lemma an be proved by the use of the

ACH algorithm of [Adler et al. 1983℄ whih is based on state splitting.

Lemma 7.2. Let (i;M; t)

U

 � (j; N;x) be a forward elementary equivalene be-

tween Z-representations. If t is a right k-eigenvetor of M , then x is a right

k-eigenvetor of N .

Proof. The proof is straightforward. IfMt = kt and (i;M; t)

U

�! (j; N;x), then

Nx = NUt = UMt = Ukt = kx.

Lemma 7.3. Any left redued Z-representation (j; N;x) of m(kz)

�

, where m and

k are positive integers, is suh that x is a right k-eigenvetor of N .

Proof. We onsider a left redued representation (j; N;x) ofm(kz)

�

. By Propo-

sition 4.5, there is a bakward elementary equivalene from (j; N;x) to ([m℄; [k℄; [1℄),

whih is the right minimal representation of m(kz)

�

. Thus

([m℄; [k℄; [1℄)

V

�! (j; N;x);

where V is the transfer matrix of this elementary equivalene. Sine

V [k℄ = NV; [m℄ = jV; x = V [1℄;

we get V = x and x is a right k-eigenvetor of N .

The following lemma onstitutes the main part of the proof of Theorem 7.5. We

use here a variant of the terminology of �nite automata. Let A = (Q;A; Æ; I; T ) be

a �nite automaton with set of states Q, alphabet A, transition funtion Æ, set of

initial states I , and set of terminal states T . Let L be the language reognized by

A. We an de�ne a labelled graph G with Q as set of verties and the pairs (p; a; q)

where q 2 Æ(p; a) as edges. Conversely any suh graph orresponds uniquely to an

automaton A. When A is deterministi we say that G is deterministially labelled.

We also say that (I;G; T ) is a deterministi automaton that reognizes L.
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Lemma 7.4. Let l be a positive integer and s

1

; : : : s

l

be l regular sequenes spe-

i�ed by N-representations (i;M; t

i

) respetively, suh that s

1

(z) + � � � + s

l

(z) =

m(kz)

�

, where m and k are positive integers. Let us assume that M has a domi-

nating eigenvalue k, that all s

i

have omplexity k, and that (i;M;

P

l

i=1

t

i

) is trim.

Then there is a �nite deterministially labelled graph G on a k-letter alphabet, with

m initial states and a partition of the set of states of G in l sets T

i

, with 1 � i � l,

suh that the automaton (I;G; T

i

) reognizes a regular language on k symbols whose

generating sequene is exatly s

i

.

Proof. We denote by t the olumn vetor

P

l

i=1

t

i

and thus (i;M; t) spei�es

s(z) =

P

l

i=1

s

i

(z) = m(kz)

�

. We denote by J

r

(k) the Jordan blok of size r:

J

r

(k) =

2

6

6

6

6

6

6

6

4

k 1 0 : : : 0 0

0 k 1 : : : 0 0

0 0 k : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : k 1

0 0 0 : : : 0 k

3

7

7

7

7

7

7

7

5

:

Sine (i;M; t) is a trim N-representation whih spei�es m(kz)

�

, the Jordan anon-

ial form of M has no blok J

r

(k) where r > 1. Indeed, let us assume that the

Jordan form of M ontains suh a blok. Then there is a positive real number 

suh that for any large enough integer n, s

n

� n

r�1

k

n

. Thus the sequene s(z)

annot be equal to m(kz)

�

.

We ompute from (i;M; t) a left redued Z-representation (j; N;x) of m(kz)

�

.

We know from Proposition 4.5 that there exists a transfer matrix U suh that

(i;M; t)

U

�!

Z

(j; N;x):

Sine (j; N;x) is left redued, the dimension of the Z-module generated by the

vetors jN

n

, for n � 0, is the size d of the square matrix N . This dimension is

also equal to the dimension of the vetor spae E generated by the vetors jN

n

, for

n � 0, over the �eld R. Let E

0

be the eigenspae of N assoiated to the eigenvalue

k in E and let E

00

be a omplementary N -invariant subspae. Thus d is the sum

of the dimensions of E

0

and of E

00

. We laim that E

0

has dimension one. Indeed,

the vetor j an be written

j = u+ v;

where u 2 E

0

and v 2 E

00

. Sine for any integer n � 0,

jN

n

= k

n

u+ vN

n

;

the vetor spae over R generated by the vetors jN

n

, for n � 0, is inluded in

hui + E

00

, where hui denotes the vetor spae over R generated by u. Thus the

dimension of E

0

is one.

The Jordan anonial form of N has thus a dominating eigenvalue, has no

blok J

r

(k), where r > 1 , and has a one dimensional eigenspae assoiated to

the spetral radius k. The matrix N is thus a spetrally Perron matrix. Moreover,

by Lemma 7.3, x is an integer right k-eigenvetor of N . For eah integer 1 � i � l,

we de�ne x

i

= Ut

i

.
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By Theorem 6.1, there exists a forward elementary equivalene to a regular rep-

resentation from (j; N;x) to an N-representation (k; L;y). Let V be its transfer

matrix. Sine the sequene spei�ed is m(kz)

�

, it has positive terms. Thus the ve-

tor y is a positive vetor (see Remark 6.2 at the end of the proof of Theorem 6.1).

By Lemma 7.2, the vetor y is a right k-eigenvetor of L. It is thus a positive

integral eigenvetor of L.

Sine (j; N;x

i

) is a left redued representation whih spei�es s

i

, and sine s

i

has

omplexity k, one hooses by Lemma 5.3 a positive real number � suh, that for

eah integer 1 � i � l, for any vetor u 2 K

+

�

(w), we have u � x > 0 and u � x

i

> 0.

It follows from Remark 6.3 at the end of the proof of Theorem 6.1 that the l vetors

y

i

= V x

i

are non-negative integral vetors.

The �nal step is given by Lemma 7.1. There is a regular bakward elementary

equivalene from (k; L;y) to anN -representation (i

0

;M

0

; t

0

) suh that t

0

is a positive

right k-approximate eigenvetor of M

0

whih has all its oeÆients equal to 1. Let

us denote byW the transfer matrix of this bakward elementary equivalene. Sine

y =

P

l

i=1

y

i

where the vetors y

i

are non-negative integral vetors, there are two

non-negative integral vetors t

0

i

suh that y

i

=W t

0

i

.

The two previous forward elementary equivalenes and the bakward elementary

equivalene an be summarized in

(i;M; t)

U

�!

Z

(j; N;x)

V

�!

Z

(k; L;y)

W

 �

N

(i

0

;M

0

; t

0

):

We also have for eah integer 1 � i � l,

(i;M; t

i

)

U

�!

Z

(j; N;x

i

)

V

�!

Z

(k; L;y

i

)

W

 �

N

(i

0

;M

0

; t

0

i

):

Thus, for eah integer 1 � i � l, we get an N-representation (i

0

;M

0

; t

0

i

) of the

sequene s

i

. The oeÆients of all t

0

i

are 0 or 1 and the sum of the vetors t

0

i

is the

vetor t

0

whose oeÆients are all equal to 1. Let us denote by T

i

the set of indies

of t

0

i

orresponding to a oeÆient 1. Sine t

0

is a right k-eigenvetor of M

0

, the

sum of eah row ofM

0

is equal to k. The matrixM

0

is thus the transition matrix of

a k-ary direted multigraph G. Let Q be the set of states of G. Sine i

0

�t

0

= m, the

sum of the oeÆients of the vetor i

0

is m. We de�ne a new graph G

0

by adding

to G a new set I of m states (p; j), for p 2 Q and 1 � j � i

p

, and n edges from

(p; j) to q if there are n edges from p to q in G. This last transformation is again a

bakward elementary equivalene. Sine the graph G

0

is still k-ary, one an label it

with k symbols in a deterministi way. Then the automaton (I;G

0

; T

i

) reognizes

a regular language on k symbols whose generating sequene is exatly s

i

.

We now state and prove the main result. Theorem 3.2 is a formulation of Theo-

rem 7.5 in the ase of two sequenes.

Theorem 7.5. Let m and k be two positive integers. Let s

(1)

; s

(2)

; : : : ; s

(l)

be

l regular sequenes suh that s

(1)

+ s

(2)

+ : : : + s

(l)

(z) = m(kz)

�

. Then there is a

�nite deterministially labelled graph G on a k-letter alphabet, with m initial states

and a partition of the set of states of G in l sets T

i

, with 1 � i � l, suh that the

automaton (I;G; T

i

) reognizes a regular language on k symbols whose generating

sequene is exatly s

(i)

.
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The proof ontains two main parts. The �rst part orresponds to sequenes that

all have omplexity k and relies mainly on Lemma 7.4. The seond part treats the

other ase.

Proof. We �rst order the sequenes in suh a way that there is an integer

0 � l

0

� l�1 suh that s

(1)

; s

(2)

; : : : ; s

(l

0

)

have a omplexity stritly less than k and

that s

(l

0

+1)

; : : : ; s

(l)

have omplexity k. Note that at least one of the sequenes has

omplexity k sine the sum of the sequenes is m(kz)

�

.

Let us onsider �rst the ase where l

0

= 0, that is, where all sequenes s

(i)

have omplexity k. Let (i

(i)

;M

(i)

; t

(i)

) be a trim regular representation of s

(i)

for

1 � i � l. Thus the regular representation (i;M;x

(i)

) de�ned by

(i;M;x

(i)

) = (

�

i

(1)

: : : i

(l)

�

;

2

6

6

6

6

4

M

(1)

0 � � � 0

0 M

(2)

.

.

.

.

.

.

.

.

.

0

0 : : : 0 M

(l)

3

7

7

7

7

5

;

2

6

6

6

6

6

6

4

0

.

.

.

t

(i)

.

.

.

0

3

7

7

7

7

7

7

5

):

spei�es the sequene s

(i)

for 1 � i � l. We denote by t the olumn vetor

P

l

i=1

x

(i)

and thus (i;M; t) spei�es s(z) =

P

l

i=1

s

(i)

(z) = m(kz)

�

. Sine (i

(i)

;M

(i)

; t

(i)

) are

trim representations, (i;M; t) is also trim.

By the Perron-Frobenius theorem [MaCluer 2000℄, the eigenvalues of maximal

modulus of M are equal to ��, where � is a positive real number and where � is a

root of unity. Thus there is an integer p suh that M

p

has a dominating eigenvalue.

Eah sequene s

(i)

is a merge of p sequenes s

(i;j)

spei�ed by (iM

j

;M

p

;x

(i)

), for

0 � j � p � 1. These representations may not be trim but M

p

annot have a

Jordan anonial form that ontains a blok J

r

(k

p

) with r > 1. Indeed, let us

assume that it is not true. Then there is at least one oeÆient (M

p

)

n

qr

of (M

p

)

n

whose growth rate is at least n

r�1

k

pn

, where  is a positive real number. Sine

(i;M; t) is trim, there is a non-negative integer n

1

suh that (iM

n

1

)

q

> 0, and

there is a non-negative integer n

2

suh that (M

n

2

t)

r

> 0. Thus (s

n

1

+n

2

+pn

)

n�0

would have a growth rate whih is, up to a positive onstant, at least n

r�1

k

pn

whih is too muh. Note that the sequene

P

l

i=1

s

(i;j)

(z) is equal to mk

j

(k

p

z)

�

,

for 0 � j � p� 1.

Let j be an integer suh that 0 � j � p � 1. Either all sequenes s

(i;j)

have

omplexity k

p

or at least one of them has a omplexity stritly less than k

p

. In

the former ase, Lemma 7.4 onstruts automata (I

(j)

; G

(j)

; T

(j)

i

) that reognize

s

(i;j)

on the alphabet A

p

, where A is a �nite alphabet with k symbols, and where

I

(j)

has ardinal mk

j

. For a given j, these representations de�ne l disjoint regular

languages L

(i)

j

on a k-letter alphabet with generating sequenes s

(i;j)

. The latter

ase orresponds to an instane of the statement of the theorem when at least one

sequene has a omplexity stritly less than k

0

= k

p

with m

0

= mk

j

. This ase is

proved below. Then the sets [

p�1

j=0

L

(i)

j

, with 1 � i � l, are disjoint regular languages

on a k-letter alphabet having s

(i)

as generating sequenes.

We now onsider the ase where there is at least one sequene with a omplexity

stritly less than k. We denote by t

(l

0

+1)

the sequene s

(1)

+ : : : + s

(l

0

)

+ s

(l

0

+1)

.
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Thus t

(l

0

+1)

is a regular sequene whih has omplexity k. Thus, by applying the

onstrution used in the ase where all sequenes have omplexity k, we get regular

representations with 0-1 oeÆients (j; N;y

(i)

) of s

(i)

for l

0

+ 2 � i � l, and t

(l

0

+1)

for i = l

0

+ 1, suh that j has exatly m oeÆients equal to 1, and suh that N is

a k-ary matrix. Note that the �rst ase where all sequenes have omplexity k is

applied to at most l � 1 sequenes and thus that we an reason by indution.

We denote byQ the set of indies ofN , also alled states, and by d

0

the ardinality

of Q. If q is a state, we denote by q the harateristi row vetor of q of size d

0

.

A state q is said to be a �nal for (j; N;y

(l

0

+1)

) if y

(l

0

+1)

q

= 1. Moreover the vetor

z =

P

l

i=l

0

+1

y

(i)

has all its oeÆients equal to 1. A prinipal omponent of N is an

irreduible omponent of N whose spetral radius is k. Sine N is a k-ary matrix,

eah prinipal omponent of N is a sink, that is, n has no nonzero oeÆient N

pq

with p inside the omponent and q outside (i.e., a omponent from whih there is

\no esape"). A prinipal omponent that ontains a �nal state for (j; N;y

(l

0

+1)

)

is alled a �nal omponent. Sine t

(l

0

+1)

has omplexity k, there is at least a �nal

omponent C of N that ontains a �nal state q for (j; N;y

(l

0

+1)

). Moreover, there

is a positive integer s suh that (jN

s

)

q

> 0.

We denote by p the period ofN , whih is the least ommon multiple of the periods

of the irreduible omponents of N . Reall that the period of an irreduible matrix

N

0

is the gd of positive integers n suh that the trae of N

0

n

is positive. By

applying the onstrution, with other values of m and k, to the sequenes s

(i;j)

de�ned, for 1 � i � l and 0 � j � p� 1, by s

(i;j)

n

= s

(i)

j+pn

, we an assume that N

has period 1 and thus that C is a primitive matrix.

As a onsequene of the Perron-Frobenius theorem, there is a positive real number

� and a positive integer n

0

suh that for any integer n � n

0

and any two states p; q

of the �nal omponent C, C

n

pq

� �k

n

.

We get that for any integer n � n

0

+ s, any state q of the omponent C, and

any index l

0

+ 1 � i � l, jN

n

y

(i)

� �k

n�s

and qN

n

y

(i)

� �k

n�s

. Without loss

of generality, by inreasing the value of s, we an assume that � is the positive

integer 1. Thus for any n � n

0

+ s, any q 2 C, and any l

0

+ 1 � i � l,

qN

n

z = k

n

(sine N is k-ary) (3)

jN

n

z = mk

n

(4)

qN

n

y

(i)

� k

n�s

(5)

jN

n

y

(i)

� k

n�s

(6)

Let us now onsider the sequenes having a omplexity stritly less than k. Let

(i

(i)

;M

(i)

; t

(i)

) be a trim N-representation of s

(i)

for 1 � i � l

0

. We an moreover

assume that i

(i)

and t

(i)

have 0-1 oeÆients. Thus the N-representation (i;M;x

(i)

)

de�ned by

(i;M;x

(i)

) = (

�

i

(1)

: : : i

(l

0

)

�

;

2

6

6

6

6

4

M

(1)

0 � � � 0

0 M

(2)

.

.

.

.

.

.

.

.

.

0

0 : : : 0 M

(l

0

)

3

7

7

7

7

5

;

2

6

6

6

6

6

6

4

0

.

.

.

t

(i)

.

.

.

0

3

7

7

7

7

7

7

5

):
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spei�es the sequene s

(i)

for 1 � i � l

0

. The vetors i and x

(i)

have 0-1 oeÆients.

Let � be the spetral radius of M . For an in�nite number of indies n, the terms of

s

(i)

are, up to onstant, at most P

(i)

(n)�

n

, where P

(i)

(n) is a nonzero polynomial

in n. Sine eah s

(i)

, for 1 � i � l

0

, has a omplexity stritly less than k, � < k.

Let d be the size of M and P the set of indies of M . If p is in P , we denote

by p the harateristi row vetor of p of size d. We denote by t the 0-1 olumn

vetor

P

l

0

i=1

x

(i)

. We denote by w the olumn vetor of size d with all oeÆients

equal to 1.

Sine � < k, there is a positive integer r suh that for any n � r and any p 2 P ,

the following inequalities hold

pM

n

w � k

n�s

; (7)

iM

n

w � k

n�s

: (8)

As a onsequene, for any n � r and any p 2 P ,

pM

n

t � k

n�s

; (9)

iM

n

t � k

n�s

: (10)

We moreover hoose r � n

0

+ s.

We de�ne a produt of size d+d

0

of the representations (i;M;x

(i)

) and (j; N;y

(j)

)

as follows. For 1 � i � l

0

, and l

0

+ 1 � j � l, let

k =

�

i j

�

; L =

�

M 0

0 N

�

; X

(i)

=

�

x

(i)

0

�

; Y

(j)

=

�

0

y

(j)

�

; Z =

�

0

z

�

:

Then the N-representation (k; L;X

(i)

) spei�es s

(i)

for 1 � i � l

0

. The N-representation

(k; L;Y

(l

0

+1)

) spei�es t

(l

0

+1)

. The regular representation (k; L;Y

(j)

) spei�es s

(j)

for l

0

+ 2 � j � l. Finally (k; L;Z) spei�es m(kz)

�

.

We now de�ne forward elementary equivalenes from these N-representations

with a transfer matrix denoted by U of size d

00

� (d + d

0

). Let U be the matrix

whose set of rows is formed by row vetors of size (d + d

0

), the vetors kL

n

, with

0 � n � (2r � 1), the vetors (pM

n

;qN

n

), with r � n � (2r � 1), p 2 P , q 2 C,

and the vetors (0;qN

r

) for q 2 Q.

Let us onsider a linear transformation of the rows of U de�ned as follows.

|Eah vetor kL

n

for 0 � n < (2r � 1) is transformed to kL

n+1

.

|Eah vetor (pM

n

;qN

n

), for 0 � n < (2r � 1), p 2 P , q 2 C, is transformed in

(pM

n+1

;qN

n+1

).

|Eah vetor (0;qN

r

) for q 2 Q is transformed in a sum of k vetors (0;q

i

N

r

),

where qN =

P

k

i=1

q

i

.

|Let p be either i or a harateristi vetor p of a state p 2 P , and q be either

j or a harateristi vetor q of a state q 2 C. Sine pM

r

w � k

r�s

, the vetor

pM

r

is the sum of K � k

r�s

harateristi vetors p

i

. If q 2 C, qN

r

is the

sum of k

r

harateristi vetors of states in C. If q = j, qN

r

is the sum of mk

r

harateristi vetors of states in Q suh that at least k

r�s

among them belong

to C. Then in both ases, qN

r

is then the sum of K

0

� k

r�s

vetors q

i

suh

that q

i

2 C for 1 � i � k

r�s

. We transform (pM

2r�1

;qN

2r�1

) in the sum of

the K vetors (p

i

M

r

;q

i

N

r

), for 1 � i � K and the K

0

�K vetors (0;q

i

N

r

),
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for K + 1 � i � K

0

. Note that all these vetors are rows of the matrix U and

that their sum is equal to (pM

2r

;qN

2r

).

We denote by R the transition matrix of this linear transformation. The matrix R

has non-negative integral oeÆients and RU = UL. We denote by l the row vetor

�

1 0 � � � 0

�

of size d

00

. We have the following forward elementary equivalenes over

N between N-representations for 1 � i � l

0

and l

0

+ 1 � j � l.

(k; L;X

(i)

)

U

�!

N

(l; R; UX

(i)

);

(k; L;Y

(j)

)

U

�!

N

(l; R; UY

(j)

);

(k; L;Z)

U

�!

N

(l; R; UZ):

Then, U , UZ and RUZ have the following forms.

U =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

k

kL

.

.

.

kL

2r�1

(pM

r

;qN

r

)

.

.

.

(pM

2r�1

;qN

2r�1

)

.

.

.

(0;qN

r

)

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; UZ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

mk

.

.

.

mk

2r�1

k

r

.

.

.

k

2r�1

.

.

.

k

r

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; RUZ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

mk

mk

2

.

.

.

mk

2r

k

r+1

.

.

.

k

2r

.

.

.

k

r+1

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Thus UZ is a positive right k-eigenvetor of R. Moreover, it follows from Equa-

tions (3) to (10), and sine

P

l

0

i=1

s

(i)

� t

(l

0

+1)

, that UX

(i)

and UY

(j)

, for 1 � i � l

0

and l

0

+ 1 � j � l, are non-negative vetors suh that

l

0

X

i=1

UX

(i)

� UY

(l

0

+1)

� UZ;

and

UY

(j)

� UZ:

We now do bakward elementary equivalenes with a transfer matrix denoted

by V . By Lemma 7.1, there is a bakward elementary equivalene from (l; R; UZ)

to an N-representation (i

0

;M

0

; t

0

) suh that t

0

is a positive right k-eigenvetor of

M

0

whih has all its oeÆients equal to 1. Thus M

0

is a k-ary matrix. The

vetor i

0

has m entries 1, the other ones being 0. Moreover, for 1 � i � l, there

are non-negative integral vetors t

0

(i)

, suh that t

0

(i)

= V UX

(i)

, for 1 � i � l

0

,

t

0

(l

0

+1)

= V (UY

(l

0

+1)

�

P

l

0

i=1

UX

(i)

) and t

0

(i)

= V UY

(i)

, for l

0

+ 2 � i � l. Then

(i

0

;M

0

; t

0

(i)

), for 1 � i � l, spei�es s

(i)

and

P

l

i=1

t

0

(i)

= t

0

.
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Example 7.6. Let us onsider the sequenes s

1

and s

2

spei�ed by the N-representations

(i;M; t

1

) and (i;M; t

2

) respetively, where

i =

�

1 0 0

�

; M =

2

4

1 1 1

0 1 1

0 2 2

3

5

; t

1

=

2

4

1

1

0

3

5

; t

2

=

2

4

0

0

1

3

5

:

These N-representations of s

1

and s

2

are pitured in Figure 3. The sequene s(z) =

s

1

(z) + s

2

(z) is equal to (3z)

�

, and the sequene s

1

and s

2

have both a omplexity

equal to 3. The spetral radius of M is 3. We suessively get

1

2 3

Fig. 3. The N-representations (i;M; t

1

) and (i;M; t

2

).

i =

�

1 0 0

�

;

iM =

�

1 1 1

�

;

iM

2

=

�

1 4 4

�

= 4iM � 3i;

Thus one an hoose for U the 2� 3 matrix whose rows are i and iM with

j =

�

1 0

�

; N =

�

0 1

�3 4

�

; x =

�

1

3

�

;x

1

=

�

1

2

�

;x

2

=

�

0

1

�

:

The matrixN is spetrally Perron with spetral radius 3, and x is a right eigenvetor

of N for the eigenvalue 3. The next omputation is detailed in the example of

Setion 5. We an hoose for V the 2 � 2 matrix whose rows are j and u, where

u =

�

�1 1

�

(see Setion 5), with

k =

�

1 0

�

; L =

�

1 1

0 3

�

; y =

�

1

2

�

;y

1

=

�

1

1

�

;y

2

=

�

0

1

�

:

The N-representation (k; L;y

1

) of s

1

is pitured in Figure 2.

The �nal representation is indexed by the set f(1; 1); (2; 1); (2; 2)g and one an

hoose

i

0

=

�

1 0 0

�

; M

0

=

2

4

0 1 1

0 2 1

0 1 2

3

5

; t

0

=

2

4

1

1

1

3

5

; t

0

1

=

2

4

1

0

1

3

5

; t

0

2

=

2

4

0

1

0

3

5

:

Thus the sequene s

1

is spei�ed by the graph of Figure 4 where the �nal states are

(1; 1) and (2; 2), and where the initial state is (1; 1). The sequene s

2

is spei�ed

by the same graph where the �nal state is (2; 1).

Journal of the ACM, Vol. V, No. N, Month 20YY.



On the generating sequenes of regular languages on k symbols � 25

1; 1

2; 1 2; 2

Fig. 4. An N-representation of s

1

whose graph is 3-ary.

From the previous result, we get the following orollary.

Corollary 7.7. Let k be a positive integer and s be a regular sequene of non-

negative integers that has a omplexity stritly less than k. Then s is the sum of

generating sequenes of regular languages on k symbols.

Proof. Sine s is regular and has a omplexity stritly less than k, there is

a positive integer m suh that its terms s

n

are bounded by mk

n

. Moreover the

omplementary sequene of s is regular by Soittola's theorem. The result is then a

onsequene of Theorem 7.5 for the ase l = 2.

Finally, we mention an open problem and a general question. Suppose that we

are given a regular language X and two regular sequenes s; t suh that s+ t is the

generating sequene of X . Is it true that there exists a partition X = Y + Z suh

that s is the generating sequene of Y and t is the generating sequene of Z? By

Theorem 3.2, the answer is yes when X is the set of all words on k symbols. We

wonder whether the result holds in general.

A more general question is the following. Soittola's theorem haraterizes regular

sequenes among Z-rational ones. Suh a haraterization is not known in several

variables. In partiular it is not known when the di�erene of two N-rational sets

is N-rational. An answer to this question would ertainly enlighten the �eld of

automata with multipliities.
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