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The main result is a 
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h that s

n

is the number of paths of length n from i to t in G.

Thus the generating sequen
e of a regular language is regular. We prove that a sequen
e s is the

generating sequen
e of a regular language on k symbols if and only if both sequen
es s = (s

n
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� s
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1. INTRODUCTION

The notion of a generating sequen
e for a formal language L is a simple one: it

is the sequen
e (s

n

)

n�0

where s

n

is the number of words of length n in L. Even

if the non-
ommutative nature of words is lost, this sequen
e 
arries important

information 
on
erning a formal language sin
e it measures in a sense the size

of the language. It is moreover of interest in 
oding. In fa
t, a length-preserving

en
oding de�nes a one-to-one 
orresponden
e between words. The two sets of words

in su
h a 
orresponden
e will have the same length distribution.

The 
hara
terization of the generating sequen
es of regular languages has long

been known. Indeed, a sequen
e (s

n

)

n�0

is the generating sequen
e of a regular

language on some alphabet if and only if it is regular, i.e., there exists a �nite graph

G with two verti
es i; t su
h that s

n

is the number of paths of length n from i to t

in G.

The idea of �xing the 
ardinality of the alphabet in this problem has surprisingly

never been 
onsidered. In other terms, for a given integer k, when is an integer

sequen
e the generating sequen
e of a regular language on k symbols?

Suppose for example that we 
onsider the regular language on three symbols

L = (a+b)

�




+

. Its number of words of length n is 2

n�1

. It has the same generating

sequen
es as the regular language on two symbols L

0

= (a + b)

�

ab

�

. We address

here the problem of 
hara
terizing the regular languages L for whi
h su
h a 
oding

on a smaller alphabet is possible and we des
ribe expli
itly how to realize it. Our

main result is a 
hara
terization of the generating sequen
es of regular languages

on k symbols.

Our 
hara
terization is the following. We prove that a sequen
e s is the gener-

ating sequen
e of a regular language on k symbols if and only if both sequen
es

s = (s

n

)

n�0

and the 
omplementary sequen
e t = (k

n

� s

n

)

n�0

are regular (Theo-

rem 3.2). Observe that the se
ond 
ondition implies the obviously ne
essary 
on-
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dition that s

n

� k

n

for all n.

The proof is based on the use of forward and ba
kward elementary equivalen
es,

whi
h we de�ne as follows. A representation over a semiring K of a sequen
e

s = (s

n

)

n�0

is a triple (i;M; t), where i is a row ve
tor over K, t is a 
olumn ve
tor

over K, and M a matrix over K, with s

n

= iM

n

t for any non-negative integer

n. The representation is said to spe
ify s. We say that a matrix U su
h that

NU = UM , jU = i, x = Ut de�nes a forward elementary equivalen
e from (i;M; t)

to (j; N;x). It de�nes a ba
kward elementary equivalen
e in the opposite dire
tion.

It is easy to verify that both representations spe
ify the same sequen
e. This

notion of forward elementary equivalen
e extends to representations of sequen
es

the 
lassi
al notion of multiset 
onstru
tion used in automata theory, and the notion

of graph extension introdu
ed in [Bassino et al. 2000℄. This notion is also linked to

the notion of intertwining between representations introdu
ed in [Flouret 1999℄.

The 
lassi
al 
omputation of a redu
ed representation of an integer sequen
e is

a
tually obtained by the 
omposition of a forward elementary equivalen
e followed

by a ba
kward one (or the 
onverse) with transfer matri
es with integer 
oeÆ
ients

(see [Berstel and Reutenauer 1988℄ on this notion).

An important step in the proof of the main result is a forward elementary equiv-

alen
e obtained by extending to representations over Z a theorem from Lind [Lind

and Mar
us 1995℄ whi
h states that for any Perron number, there is a primitive

integer matrix whose spe
tral radius is this Perron number. By taking into a

ount

the row and 
olumn ve
tors, we prove that a representation over N 
an be obtained

by only one forward elementary equivalen
e from any redu
ed representation over

Z of the sequen
e (Theorem 6.1).

Our main result is a parti
ular 
ase of the following more general one. Let k

be a positive integer and let s

(1)

; s

(2)

; : : : ; s

(l)

be l regular sequen
es whose n-

terms add to k

n

for all n � 0. Then there is a deterministi
 automaton A =

(Q;A; Æ; i; Q) on a k-letter alphabet A with an initial state i, a transition fun
tion

Æ and a set of terminal states equal to set Q of all states su
h that the following

holds: There is a partition of the set of states Q in l sets T

j

su
h that for ea
h

1 � j � l, the automaton (Q;A; Æ; i; T

j

) re
ognizes a regular language on k symbols

whose generating sequen
e is exa
tly s

(j)

. We prove this more general formulation

(Theorem 7.5).

The paper is organized as follows. Se
tion 2 
ontains the de�nitions of representa-

tions and the main result is stated in Se
tion 3. In Se
tion 4 we de�ne the notion of

a forward or ba
kward elementary equivalen
e. Se
tion 5 establishes some lemmas

based on Perron theory whi
h are used in Se
tion 6 to show that, for any redu
ed

representation of a non-negative Perron sequen
e, there is a forward elementary

equivalen
e from this representation to an N-representation. Se
tion 7 presents the

proof of the 
hara
terization of generating sequen
es of regular languages over k

symbols. The proof is 
onstru
tive in the sense that the regular language over k

symbols 
an be built in an e�e
tive way, although with a high 
omplexity. The


onstru
tion pro
ess is 
omposed of two forward elementary equivalen
es followed

by one ba
kward elementary equivalen
e. We give an example of this 
omputation.

A preliminary shorter version of this paper was presented at the STACS 2002


onferen
e [B�eal and Perrin 2002℄. We wish to thank the anonymous referees for
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helping us to improve the quality of our presentation.

2. RATIONAL AND REGULAR SEQUENCES

Let K be a semiring. In most 
ases, we have in mind K = Z or N. In the

most general 
ase, K is not even supposed to be 
ommutative. However, we shall

often make the hypothesis that K is a prin
ipal ideal domain (this is the same as a


ommutative prin
ipal ideal ring without zero divisors and holds in parti
ular when

K = Z).

We 
onsider sequen
es of elements of K denoted by s = (s

n

)

n�0

. We shall not

distinguish between su
h a sequen
e and the formal series in one variable s(z) =

P

n�0

s

n

z

n

. We usually denote a ve
tor with 
oeÆ
ients in K and indexed by

elements of a set Q, also 
alled a Q-ve
tor, with boldfa
e symbols. A Q�Q matrix

on K is a family M

pq

of elements of K indexed by Q�Q.

A sequen
e s is said to be K-rational if there exist a set Q of 
ardinality d and

a triple (i;M; t), where i is a row Q-ve
tor, t is a 
olumn Q-ve
tor, and M is a

Q�Q matrix, all with 
oeÆ
ients in K, su
h that, for any non-negative integer n,

s

n

= iM

n

t.

Su
h a triple is 
alled a representation over K, or a K-representation of the

sequen
e s, and d is its dimension. We say that the representation (i;M; t) spe
i�es

the sequen
e s.

A word about our terminology. A sequen
e of elements of K 
an be 
onsidered

as a K-subset of �

�

, where � has only one symbol. Our de�nition of a K-rational

sequen
e 
orresponds to what is 
alled a re
ognizable K-subset in Eilenberg's book

[Eilenberg 1974℄. A rational K-subset is de�ned using rational expressions with

multipli
ities, and a 
lassi
al result proves the equivalen
e of the notions of re
og-

nizable or rational K-subsets when � is �nite (this is the Kleene-S
h�utzenberger

theorem, see [Eilenberg 1974, p. 175℄). We shall o

asionally use rational expres-

sions to denote rational sequen
es. For example, (kz)

�

is the same as

1

1�kz

.

A representation over K is redu
ed if it has a minimal dimension among all

representations over K that spe
ify the same sequen
e. If K is a prin
ipal ideal

domain, this minimal dimension is the same over K and over the quotient �eld of

K [Berstel and Reutenauer 1988, p. 77℄. This minimal dimension is 
alled the rank

of the rational sequen
e.

If K is a prin
ipal ideal domain, a representation over K is said to be left redu
ed

(respe
tively right redu
ed) if and only the module generated by the ve
tors iM

n

(respe
tively M

n

t), for all n � 0, is the full spa
e K

1�d

(respe
tively K

d�1

). The

representation is then redu
ed if and only if it is both left and right redu
ed (see

[Berstel and Reutenauer 1988, p. 26℄). We de�ne the left minimal representation

over K of a sequen
e s as the unique redu
ed representation (i;M; t) of s over K,

where i =

�

1 0 � � � 0

�

and M is a 
ompanion matrix, i.e., of the form

M =

2

6

6

6

6

6

4

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1

a

0

a

1

a

2

: : : a

r�1

3

7

7

7

7

7

5

:
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We say that a sequen
e of integers is non-negative if all its terms are non-negative.

An N-rational sequen
e is also 
alled regular. In the 
ase of a regular sequen
e,

there is an equivalent form of a representation. Let us 
onsider a triple (I;G; T ),

where G is a dire
ted multigraph and I; T two sets of verti
es. Su
h a triple spe
i�es

the sequen
e s where s

n

is the number of paths of length n going from I to T . The

sequen
e s is regular sin
e it is also spe
i�ed by the representation (i;M; t), where

M is the adja
en
y matrix of G and i, t are the 
hara
teristi
 ve
tors of the sets

I and T respe
tively. It 
an be shown 
onversely that any regular sequen
e 
an be

spe
i�ed by su
h a triple.

A matrix or ve
tor with 
oeÆ
ients equal to zero or one is 
alled a 0-1 matrix

or a 0-1 ve
tor. Let k be a positive integer. A k-ary matrix is a matrix with non-

negative integral 
oeÆ
ients su
h that the sum of ea
h row is k. In a similar way,

a graph G is 
alled k-ary if its adja
en
y matrix is k-ary. This means that ea
h

vertex of G has out-degree k.

An N-representation (i;M; t) with M a Q � Q matrix, is said to be trim if for

ea
h index p 2 Q there is a non-negative integer n su
h that (iM

n

)

p

> 0 and there

is a non-negative integer m su
h that (M

m

t)

p

> 0.

A sequen
e s = (s

n

)

n�0

is said to be the merge of the sequen
es s

(0)

; : : : ; s

(p�1)

,

where p is a positive integer, if s

(i)

n

= s

i+np

for 0 � i � p � 1. Equivalently,

s(z) =

P

p�1

i=0

z

i

s

(i)

(z

p

). If (i;M; t) is an N-representation of s, then (iM

i

;M

p

; t) is

an N-representation of s

(i)

for ea
h integer 0 � i � p� 1.

A Z-rational sequen
e is said to have a dominating pole if it 
an be written as a

rational fra
tion s(z) = p(z)=q(z), with p; q relatively prime, where q has a simple

root r su
h that r

0

> r for any other root r

0

.

The following theorem is known as Soittola's theorem. We state it without proof

(see [Berstel and Reutenauer 1988, p. 90℄ or [Salomaa and Soittola 1978, p. 74℄).

Theorem 2.1. A Z-rational sequen
e with non-negative terms is regular if and

only it is the merge of Z-rational sequen
es with a dominating pole.

As a 
onsequen
e of Soittola's theorem, given a triple (i;M; t), it is de
idable

whether the spe
i�ed Z-rational sequen
e is regular. If s is a regular sequen
e, there

is a 
omputable positive integer p (the period) su
h that s

j+np

� 


j

n

l

j

�

n

j

as n !

1 (j = 0; : : : ; p � 1), where 


j

> 0, l

j

2 N and �

j

is a non-negative real (see for

instan
e [Salomaa and Soittola 1978, p. 62℄). Furthermore, �

j

and l

j

are 
om-

putable.

3. GENERATING SEQUENCE OF A REGULAR LANGUAGE ON K SYMBOLS

In this se
tion, we state the main result of this paper, whi
h is a 
hara
terization

of the generating sequen
es of regular languages on k symbols.

Let A be a k-letter alphabet and L be a language over A, that is, a subset of

A

�

, where A

�

is the set of all �nite words whose letters are in A. The generating

sequen
e of L is de�ned as the sequen
e s = (s

n

)

n�0

, where s

n

is the number of

words of L of length n.

The generating sequen
e of a formal language L gives useful information on

L. For example, assuming that the letters are 
hosen at random uniformly and

independently, the probability that a word of length n is in L is equal to

s

n

2

n

. The
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sequen
e s

n

is also used to de�ne the notion of entropy of L as the superior limit

of the sequen
e

1

n

log s

n

(see [Lind and Mar
us 1995℄ or [Kui
h 1970℄).

It is known that the generating sequen
e of a regular language is a regular se-

quen
e. It is also 
lear that the generating sequen
e of a regular language over

a k-letter alphabet satis�es the following two 
onditions of being the generating

sequen
e of

|a language over a k-letter alphabet,

|a regular language.

The �rst 
ondition is equivalent to the fa
t that the generating sequen
e s satis�es

s

n

� k

n

, for any n � 0. The se
ond 
ondition is equivalent to the fa
t that the

sequen
e is regular. A natural question is the suÆ
ien
y of the two 
onditions

to ensure that s is the generating sequen
e of a regular language over a k-letter

alphabet. This question is similar to one solved in [Bassino et al. 2000℄ (see also

[Bassino et al. 2001℄ and [Bassino et al. 1999℄), where it is shown that a sequen
e

is the generating sequen
e of a regular k-ary tree if and only if it is the generating

sequen
e of k-ary tree and if it is regular.

The situation is quite di�erent here sin
e we give below an example of a regular

sequen
e s that is not the generating sequen
e of a regular language over a k-letter

alphabet, although s

n

� k

n

for any n � 0. The 
ounterexample is based on an

example of a Z-rational sequen
e with non-negative terms that is not regular (see

[Eilenberg 1974, p. 216-218℄ or [Berstel and Reutenauer 1988, p. 95℄).

Example 3.1. Let r be the sequen
e su
h that, for any n � 0, r

n

= b

2n


os

2

(n�),

with 
os � =

a

b

, where the integers a; b are su
h that b 6= 2a and 0 < a < b. We

also assume that b

2

< k. The sequen
e r is Z-rational, has non-negative integer

terms and is not regular [Eilenberg 1974, p. 216-218℄. Note that, for any n � 0,

r

n

� k

n

. We now de�ne the sequen
e s by s

n

= k

n

�r

n

. By Soittola's theorem, the

sequen
e s is regular sin
e it is a merge of rational sequen
es having a dominating

pole, and it satis�es s

n

� k

n

for any n � 0. If s were the generating sequen
e of a

regular language L over a k-letter alphabet A, its 
omplementary sequen
e r would

be the generating sequen
e of the 
omplement of L. Thus r would be regular, a


ontradi
tion.

Example 3.1 leads us to state the following result whi
h 
ompletely 
hara
terizes

the sequen
es that are generating sequen
es of languages over a k-letter alphabet.

It is proved in Se
tion 7.

Theorem 3.2. A sequen
e s is the generating sequen
e of a regular language

over a k-letter alphabet if and only if both sequen
es s = (s

n

)

n�0

and t = (k

n

�

s

n

)

n�0

are regular.

Observe �rst that the se
ond 
ondition implies that s

n

� k

n

for all n sin
e by

de�nition a regular sequen
e has non-negative terms. If s is a given Z-rational

sequen
e and k a positive integer, the two 
onditions are de
idable as seen above.

Moreover if s is regular, one 
an 
ompute the least integer k

0

su
h that s

n

� k

n

0

,

for any integer n � 0. For k > k

0

, the se
ond 
ondition is automati
ally satis�ed

again by Soittola's theorem. It follows that, given some regular sequen
e, one 
an
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hara
terize the minimal alphabet su
h that s is the generating sequen
e of a regular

language on this alphabet.

4. EQUIVALENCE OF REPRESENTATIONS

In this se
tion, we de�ne a transformation on a representation of a sequen
e over a

semiring that extends the notion of multiset extension introdu
ed in [Bassino et al.

2000℄ to representations.

Let (i;M; t) and (j; N;x) be two representations, and U be a matrix su
h that

NU = UM;

jU = i;

x = Ut:

The transformation from (i;M; t) to (j; N;x) is 
alled a forward elementary equiv-

alen
e. The matrix U is 
alled the transfer matrix of the elementary equivalen
e,

denoted (i;M; t)

U

�! (j; N;x), or (i;M; t)

U

�!

K

(j; N;x) to spe
ify that U has its


oeÆ
ients in K. In this 
ase, we also talk of a K-forward elementary equivalen
e.

Note that M or N may have 
oeÆ
ients outside K.

Noti
e that, if we identify an element of S to the row Q-ve
tor of U of the


orresponding index, the equality NU = UM is equivalent to the fa
t that, for any

element u of S,

uM =

X

v2S

N

u;v

v:

The inverse transformation is 
alled a ba
kward elementary equivalen
e, denoted

(i;M; t)

U

 � (j; N;x). A forward or ba
kward elementary equivalen
e is 
alled an

elementary equivalen
e. The symmetri
 and transitive 
losure of the relation of

forward elementary equivalen
e with transfer matri
es with 
oeÆ
ients in K, is


alled the equivalen
e over K, denoted by �

K

.

Our de�nition of an elementary equivalen
e is 
onne
ted with 
lassi
al notions on

matri
es. Indeed, the de�nition of a forward elementary equivalen
e uses a relation

between the matri
es M , N whi
h generalizes the 
onjuga
y relation. The general

solution of the matrix equation NX = XM is given in [Gantma
her 1977, p. 219℄.

A nonzero solution exists if and only if M and N have a 
ommon 
hara
teristi


eigenvalue. It is also known [Lind and Mar
us 1995, p. 285℄ that, when M;N

are non-negative real matri
es with the same dominant eigenvalue, the equation

NX = XM has a non-negative and nonzero solution.

A simple example of forward (or ba
kward) elementary equivalen
e is similarity.

Two K-representations (i;M; t) and (i

0

;M

0

; t

0

) are said to be similar over K if and

only if there is a matrix P , invertible in K, su
h that (i;M; t)

P

�! (i

0

;M

0

; t

0

).

Another example of a ba
kward elementary equivalen
e is the out-splitting that


omes from symboli
 dynami
s [Lind and Mar
us 1995, p. 55℄. Let (j; N;x) be an

N-representation. The matrix N is the adja
en
y matrix of a graph G on a set S

of verti
es. Let us 
onsider the graph H on a set Q = (S�fig)[fi

0

; i

00

g of verti
es

obtained from G by splitting the vertex i of G into two verti
es i

0

and i

00

a

ording

to a partition in two parts P

1

; P

2

of edges going out of i. The edges 
oming in i are
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dupli
ated in H into edges 
oming in i

0

and i

00

. Let M be the adja
en
y matrix of

H . Let D be the S �Q matrix de�ned by D

pp

= 1 if p 6= i, D

ii

0

= D

ii

00

= 1, and

D

pq

= 0 otherwise. Let E be the Q� S matrix de�ned by E

pq

= M

pq

if p 6= i

0

; i

00

and E

i

0

q

(respe
tively E

i

00

q

) is the number of edges in P

1

(respe
tively P

2

) going

from i to q. It 
an be easily 
he
ked (see [Lind and Mar
us 1995, p. 55℄) that

ED =M and DE = N:

Then

DM = ND and EN =ME:

The matrixM is said to be obtained by an out-splitting of N . For any non-negative

integral ve
tor x, there is an a non-negative integral ve
tor t su
h that x = Dt. By

setting i = jD, we get (i;M; t)

D

�! (j; N;x). This 
an be stated as follows.

Proposition 4.1. For any N-representation (j; N;x) and any matrix M that

is obtained by out-splitting of N , there are non-negative integral ve
tors i; t and a

transfer matrix D su
h that (i;M; t)

D

�!

N

(j; N;x).

Similar results 
an be obtained for input state splitting. The notion of forward

or ba
kward elementary equivalen
e is nevertheless mu
h weaker than the symboli


dynami
s notion of 
onjuga
y or even the notion of shift equivalen
e (see [Lind and

Mar
us 1995℄, [Kit
hens 1997℄ for these notions).

The following two propositions are dire
t 
onsequen
es of the de�nitions.

Proposition 4.2. Equivalent representations spe
ify the same sequen
e.

Proof. If (i;M; t)

U

�! (j; N;x), then iM

n

t = jUM

n

t = jN

n

Ut = jN

n

x, for

any non-negative integer n.

Proposition 4.3. The 
omposition of two forward (respe
tively ba
kward) ele-

mentary equivalen
es is a forward (respe
tively ba
kward) elementary equivalen
e.

If (i;M; t)

U

�! (j; N;x) and (j; N;x)

V

�! (j

0

; N

0

;x

0

), then (i;M; t)

V U

��! (j

0

; N

0

;x

0

).

Proof. The proof is straightforward.

Che
king whether two representations over a �eld K are elementary equivalent

is de
idable, as shown in the following proposition.

Proposition 4.4. Let K be a �eld. Given two K-representations, (i;M; t) and

(j; N;x), it is de
idable whether there is a K-forward elementary equivalen
e from

(i;M; t) to (j; N;x).

Proof. If (i;M; t) has dimension d and (j; N;x) dimension d

0

, the existen
e of

a matrix U su
h that NU = UM , jU = i and x = Ut, is obtained by solving a

Cramer system of dd

0

+d+d

0

equations with dd

0

unknowns. This 
an be performed

in 
ubi
 time.

The 
onverse of Proposition 4.2 is due to S
h�utzenberger. His result states that

if K is a prin
ipal ideal domain, any K-rational sequen
e has a redu
ed represen-

tation that 
an be 
omputed in two steps (see for instan
e [Berstel and Reutenauer

1988℄, [Salomaa and Soittola 1978℄ or [Sakarovit
h 2003℄). These two steps are
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8 � M.-P. B�eal and D. Perrin

respe
tively a forward elementary equivalen
e and a ba
kward elementary equiva-

len
e (or 
onversely). This leads to the following statement in whi
h K is supposed

to be a prin
ipal ideal domain.

Proposition 4.5. Let (i;M; t) be a representation over K of a sequen
e, and

(j; N;x) its left minimal representation over K. There is a forward elementary

equivalen
e followed by a ba
kward elementary equivalen
e from (i;M; t) to (j; N;x).

As a 
onsequen
e, two K-representations spe
ify the same sequen
e if and only if

they are equivalent over K.

We brie
y re
all the 
onstru
tion of S
h�utzenberger. Noti
e that K is not ne
-

essarily a �eld.

Proof. We already know that two K-representations that are equivalent over

K spe
ify the same sequen
e.

Conversely, let (i;M; t) be a K-representation of dimension d. Let F be the

quotient �eld of K. We �rst show that (i;M; t) is equivalent over K to a K-

representation whi
h is redu
ed over K and over F . For any non-negative integer

n, iM

n

2 K

1�d

. Thus the K-module E generated by the ve
tors iM

n

for n � 0, is

a submodule of the free K-module K

1�d

. It is thus a free K-module. Let d

0

be its

dimension as K-module and let e

1

; : : : ; e

d

0

be one of its basis. Ea
h e

i

is a linear


ombination over K of the ve
tors iM

n

for n � 0. Let U be the d

0

� d matrix

over K whose rows are the ve
tors e

i

, 1 � i � d

0

. The K-module E is stable by

multipli
ation on the right by the matrix M . Let N be d

0

� d matrix over K that

represents the a
tion ofM in the basis e

1

; : : : ; e

d

0

, that is, if e

i

M = a

1

e

1

+ : : : a

d

0

e

d

0

for some elements a

1

; : : : ; a

d

0

2 K, one de�nes the row of index i of N to be

[a

1

; : : : ; a

d

0

℄. It is a 
onsequen
e of the de�nition that UM = NU . Sin
e i belongs

to the K-module E, the ve
tor i is a K-linear 
ombination of the e

i

. Thus there

exists a ve
tor j, with 
oeÆ
ients in K, su
h that i = jU . We also set x = Ut. Note

that the K-module generated by the ve
tors jN

n

for n � 0 has the same dimension

d

0

as the K-module E.

Symmetri
ally, let r � d

0

be the dimension of the K-module generated by the

ve
tors N

n

x for n � 0. By 
onsidering the transpose (
~
x;

~

N;

~

t) of the triple (j; N;x),

where

~

N denotes the transpose of the matrix N , there is a K-representation of

dimension r, (k; P;y), and a transfer matrix V over K su
h that (k; P;y)

V

�!

K

(j; N;x). Sin
e (i;M; t)

U

�!

K

(j; N;x), we obtain that the representations (i;M; t)

and (k; P;y) are equivalent over K.

Let us denote by V (j; N) the ve
tor spa
e over F generated by the ve
tors jN

n

for n � 0. Sin
e V (k; P ) = V (j; N), and sin
e V (j; N) = K

1�d

0

, the dimension

of V (j; N) = V (k; P ) is the rank r of V . Thus (k; P;y) is redu
ed over F and

thus also over K. It has been obtained from (i;M; t) with one forward elementary

equivalen
e followed by one ba
kward elementary equivalen
e.

A similar proof shows that there is a ba
kward elementary equivalen
e followed

by a forward elementary equivalen
e from (i;M; t) to a representation redu
ed over

F .

We now show that if (i;M; t) is a K-representation of dimension r of s, there is

a forward elementary equivalen
e from (i;M; t) to the minimal left representation
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of s whi
h 
ompletes the proof sin
e the 
omposition of two forward elementary

equivalen
es is a forward elementary equivalen
e.

Thus V (i;M) is a ve
tor spa
e of dimension r over F . Then (i; iM; : : : ; iM

r�1

)

is a basis of this spa
e over F and there are a

0

; a

1

; : : : a

r�1

2 F su
h that iM

r

=

a

0

i+ a

1

iM + � � �+ a

r�1

iM

r�1

. Let U be the r � r matrix over K, invertible in F ,

de�ned by

U =

2

6

6

6

4

i

iM

.

.

.

iM

r�1

3

7

7

7

5

:

Let N be the matrix of dimension r with 
oeÆ
ients in F whi
h represents the

right multipli
ation by M in the basis (i; : : : ; iM

r�1

). We get (i;M; t)

U

�!

K

(j; N;x)

with

j =

�

1 0 � � � 0

�

; N =

2

6

6

6

6

6

4

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1

a

0

a

1

a

2

: : : a

r�1

3

7

7

7

7

7

5

;x = tU:

Sin
e (j; N;x) spe
i�es s, we have

x =

2

6

4

s

0

.

.

.

s

r�1

3

7

5

:

Sin
e U is invertible in F , the 
hara
teristi
 polynomials ofM and N are equal and

the 
hara
teristi
 polynomial of M has its 
oeÆ
ients in K. Sin
e this polynomial

is X

r

� a

r�1

X

r�1

� � � � � a

1

X � a

0

, the matrix N has its 
oeÆ
ients in K.

It is also known (S
h�utzenberger 1961, Fliess 1974) [Berstel and Reutenauer 1988,

p. 27℄ that, if K is a �eld, all redu
ed representations are similar over K. Note

that the result is not true if K is not a �eld. Consider for instan
e the two Z-

representations of dimension one: (i = [2℄;M = [1℄; t = [3℄) and (j = [3℄; N =

[1℄;x = [2℄). They are similar over Q but not over Z. It is known that 
he
king

whether twoK-representations spe
ify the same sequen
e is de
idable in polynomial

time (see for instan
e [Berstel and Reutenauer 1988℄).

5. PERRON GEOMETRY

In this se
tion, we 
onsider Z-rational sequen
es and regular sequen
es. We prove a

series of lemmas used in the next se
tion. The proofs rely on the Perron-Frobenius

theory of non-negative matri
es (see [Lind and Mar
us 1995℄ for an introdu
tion or

[Ma
Cluer 2000℄ for a re
ent survey).

If v = (v

q

)

q2Q

is a ve
tor with 
oeÆ
ients in R, we say that v is non-negative,

denoted v � 0, (respe
tively positive, denoted v > 0) if v

q

� 0 (respe
tively v

q

> 0)

for all q 2 Q. The same 
onventions are used for matri
es.
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10 � M.-P. B�eal and D. Perrin

An integer matrix has a dominating eigenvalue, i.e., has an eigenvalue � > 0 su
h

that � > j�j for all other eigenvalues � of M . An integer matrix M is said to be

spe
trally Perron if it has a dominating eigenvalue whi
h is simple

1

.

A sequen
e of integers s is said to be spe
trally Perron if it has a redu
ed repre-

sentation over Z with a spe
trally Perron matrix. A representation over Z with a

spe
trally Perron matrix is 
alled a spe
trally Perron representation. The left min-

imal representation, and more generally all redu
ed representations, of a spe
trally

Perron sequen
e are spe
trally Perron representations. The spe
tral radius of the

matrix of a redu
ed spe
trally Perron representation is 
alled the Perron value of

the sequen
e spe
i�ed.

Let (i;M; t) be a spe
trally Perron representation. The matrix M is a spe
trally

Perron Q�Q matrix whose spe
tral radius is �, where Q is the �nite set of states

of the representation. We denote by d the dimension of M . The matrix M has a

nonzero left eigenve
tor w asso
iated to the eigenvalue �. All other eigenve
tors

asso
iated to � are 
olinear to it.

Let W be the span of w over R. A

ording to the Jordan 
anoni
al form of

M , there is a 
omplementaryM -invariant subspa
e V 
orresponding to eigenvalues

j�j < �. The spa
e R

1�d

is a dire
t sum ofW and V . We denote by �

1

: R

1�d

!W

the proje
tion to W along V and by �

2

: R

1�d

! V the proje
tion to V along W .

We also denote by �

1

: R

1�d

! R the fun
tion asso
iating to ea
h ve
tor u the

real number �

1

(u) su
h that �

1

(u) = �

1

(u)w. The real number �

1

(u) is 
alled the

dominant 
oordinate of u.

Thus ea
h ve
tor u of R

1�d


an be written

u = �

1

(u)w + �

2

(u):

Note that

uM = ��

1

(u)w + �

2

(u)M:

Hen
e, sin
e V is invariant by M , �

1

(uM) = ��

1

(u) and �

2

(u)M = �

2

(uM).

When i has a nonzero dominant 
oordinate, it will be 
onvenient to 
hoose a left

Perron eigenve
tor w su
h that �

1

(i) > 0. This is done by 
hanging w to �w if

�

1

(i) < 0. Note that w depends only on M and i. When the representation is

left-redu
ed, the ve
tor i has a positive dominant 
oordinate.

For any real number r, we denote by B(v; r) the ball of radius r 
entered on

the point v, whi
h is the set of ve
tors u su
h that kv � uk � r where k k is any

equivalent norm of R

1�d

. It will be 
onvenient (in order to prove Lemma 5.4 below

for instan
e) to use a norm that satis�es, for any ve
tor u,

kuk = k�

1

(u)k+ k�

2

(u)k:

Let w be a left Perron eigenve
tor of (i;M; t). We denote by K

r

(w) the set

K

r

(w) = f�v j v 2 B(w; r); � � 0g:

We also denote by K

+

r

(w) the nonzero ve
tors of K

r

(w).

The following lemma is from [Lind and Mar
us 1995, p. 373℄.

1

The de�nition taken from [Lind and Mar
us 1995, p. 371℄ (see also [Lind and Mar
us 1995,

p. 369℄) uses � � 1 instead of � > 0.
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Lemma 5.1. Let (i;M; t) be a spe
trally Perron representation. Let " be a posi-

tive real number and let u be an integer ve
tor with a positive dominant 
oordinate.

Then there is a positive integer m su
h that uM

n

belongs to K

"

(w) for n � m.

Proof. We follow the lines of [Lind and Mar
us 1995, p. 373℄ for the proof. We

have

u = �

1

(u)w + �

2

(u):

Thus

uM

n

= �

n

�

1

(u)w + �

2

(u)M

n

:

It follows from the Jordan 
anoni
al form that the growth rate ofM on V is stri
tly

less than �, i. e. , for v 2 V , kvM

n

k=�

n

! 0 as n!1. Then, for a large enough

n,

k�

2

(u)M

n

k < �

n

�

1

(u)":

Hen
e, for a large enough n, uM

n

=�

n

�

1

(u) belongs to K

"

(w) and thus uM

n

also.

Let s be a Z-ratio nal sequen
e of non-negative integers. The 
omplexity of the

sequen
e s is de�ned as the inverse of its 
onvergen
e radius, i.e., lim sup

n!1

s

1=n

n

.

Lemma 5.2. Let (i;M; t) be a spe
trally Perron representation with a spe
tral

radius � su
h that the sequen
e spe
i�ed is non-negative and has 
omplexity �.

Then �

1

(i) > 0 and w � t > 0.

Proof. Sin
e

i = �

1

(i)w + �

2

(i);

we have

iM

n

t = �

n

�

1

(i)w � t+ �

2

(i)M

n

t;

with a growth rate of M on V stri
tly less than �. If s has 
omplexity �, �

1

(i) 6= 0

and w �t 6= 0. Moreover, sin
e the sequen
e spe
i�ed is non-negative, �

1

(i):(w �t) �

0. Under the hypothesis on the 
hoi
e of w, we get �

1

(i) > 0. Thus w � t > 0.

Lemma 5.3. Let (i;M; t) be a spe
trally Perron representation with a spe
tral

radius � su
h that the sequen
e spe
i�ed is non-negative and has 
omplexity �.

Then there exists a positive real number � su
h that for any ve
tor u 2 K

+

�

(w), we

have u � t > 0.

Proof. This follows dire
tly from Lemma 5.2.

Lemma 5.4. Let (i;M; t) be a spe
trally Perron representation. For any positive

real number �, there exists a positive real number " su
h that, for any positive

integer n, u 2 K

"

(w), then uM

n

2 K

�

(w).

Proof. Let u 2 K

"

(w). Thus u = �(w + z), where z 2 B(0; ") and � is a

positive real number. One has z = �

1

(z)w + v, where v 2 V .

Then for any non-negative integer n

uM

n

�

n

= �(w + �

1

(z)w +

vM

n

�

n

):
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Sin
e kzk = k�

1

(z)wk+ kvk, k�

1

(z)wk � " and kvk � ".

It follows from the Jordan 
anoni
al form that the growth rate of M on V is

stri
tly less than �. Thus there is an integerm su
h that for any n > m, kM

n

k=�

n

�

1 on the spa
e V . Let N be the maximum of kM

n

k=�

n

for all 0 � n � m.

We now 
hoose " = min(

�

2

;

�

2N

). Then k�

1

(z)w+

vM

n

�

n

k < � for any non-negative

integer n. It follows that, for any non-negative integer n,

uM

n

�

n

2 K

�

(w) and thus

uM

n

also.

Remark 5.5. We note for future use that, if moreover � < 1 and u 6= 0, then,

for any non-negative integer n, uM

n

6= 0.

We now state and prove a geometri
al lemma whi
h is used in the 
onstru
tion

of Se
tion 6. The lemma is essentially due to Lind (see [Lind and Mar
us 1995,

p. 374℄), who proved that there is a positive real number " su
h that all integer

ve
tors in K

"

(w) are non-negative integral 
ombinations of a �nite number of in-

teger ve
tors. With a slight modi�
ation, we show below that there is a positive

real number " su
h that all integer ve
tors in K

"

(w) are non-negative integral


ombinations of a �nite number of integer ve
tors in K

2"

(w).

Lemma 5.6. For a small enough positive real ", there is a �nite set P of integer

points in K

2"

(w) su
h that ea
h integer point of K

"

(w) is a non-negative integral


ombination of points of P .

Proof. For te
hni
al reasons that will appear below, we 
hoose " < 1=2.

We 
hoose a left eigenve
tor w with norm 1. If q is a point of B(w; "), B(q; ") �

B(w; 2") � K

2"

(w). As a 
onsequen
e, for any positive real number R, any ball

B(Rq; R") is 
ontained in K

2"

(w). Let D be the minimal value su
h that any ball

of size D 
ontains at least one integer point. This value depends on the norm kk


hosen. We �x a large enough R su
h that r = R" > 2D. Note that R > r.

We de�ne the �nite set of integer points P = K

2"

(w) \B(0; 3R)\ N

d

. We show

that all integer points of K

"

(w) are non-negative integral 
ombinations of points of

P .

Let us assume that this property is false, and denote by x an integer point of

minimal norm whi
h is in K

"

(w) and whi
h is not a non-negative integral 
ombi-

nation of points of P . Then x does not belong to P , and its norm is greater than

2R.

Let p

0

be a point of B(w; ") whi
h belongs to the semi-line de�ned by the point

x and the null origin (see Figure 1). Su
h a point exists sin
e x belongs to K

"

(w).

Note that x = l

0

p

0

, where l

0

is a positive real number. Sin
e w has norm 1, we have

1� " � kp

0

k � 1 + ".

Let p = Rp

0

, and l = l

0

=R. We have

(1� ")R � kpk � (1 + ")R < kxk=2: (1)

Let m

1

=

Rw+p

2

and m

2

= 2p �m

1

. Thus the ball B(m

1

; r=2) is in
luded in

B(p; r) and in B(Rw; r). Thus B(m

1

; r=2) � K

"

(w). It follows that

B(m

2

; r=2) � B(p; r) � B(Rw; 2r) � K

2"

(w): (2)

A point u is in B(m

2

; r=2) if and only if 2p� u is in B(m

1

; r=2).
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Sin
e r=2 � D, there is an integer point u in B(m

2

; r=2). Thus 2p� u belongs

to B(m

1

; r=2) � K

"

(w). We get 2p� u 2 K

"

(w) and u 2 K

2"

(w).

We have a su

ession of inequalities. First, kx� uk � kx� pk+ kp� uk. Sin
e

x and p are 
olinear, we have kx � pk = kxk � kpk. Also kp � uk � r sin
e

u 2 B(m

2

; r=2) and B(m

2

; r=2) � B(p; r) by Equation (2). Thus

kx� uk � kxk � kpk+ r:

This implies by Inequality (1)

kx� uk � kxk+ ("� (1� "))R:

Sin
e " < 1=2, we obtain kx� uk < kxk.

Sin
e x = lp with l > 2, x� u = (l� 2)p+ (2p� u). Sin
e (l� 2)p and 2p� u

belong to K

"

(w), the point x� u is also in K

"

(w).

Thus x�u is an integer point of K

"

(w) whi
h is stri
tly 
loser to the origin than

x. By hypothesis, x�u is then a non-negative integral 
ombination of points of P .

From kuk � kpk+ kp � uk, we get kuk � (1 + ")R + "R � 2R. This shows that

u 2 P . Then x = (x � u) + u is a non-negative integral 
ombination of points of

P . This 
ontradi
ts the hypothesis, 
on
luding the proof of this lemma.

w

p’

p

u

x

x - u

Rw

Fig. 1. The geometri
al lemma (Lemma 5.6).
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6. FROM A Z-REPRESENTATION TO AN N-REPRESENTATION

In this se
tion, we prove a result whi
h gives a suÆ
ient 
ondition for a sequen
e

to be regular (Theorem 6.1).

It is known that a non-negative Z-rational sequen
e that has a dominating pole

is regular (Soittola 1976, Katayama et al. 1978, see [Berstel and Reutenauer 1988,

p. 83℄ or also [Salomaa and Soittola 1978℄). From this result and the results of

Se
tion 4 follows that any Z-representation of a non-negative sequen
e that has a

dominating pole is equivalent over Z to a regular representation. In the parti
ular


ase of a spe
trally Perron non-negative sequen
e, we show that an N-representation


an be obtained by only one forward elementary equivalen
e from any redu
ed Z-

representation of the sequen
e. This result is an adaptation to representations of a

result from Lind ([Lind 1983℄, [Lind 1984℄, see also [Lind and Mar
us 1995, Theorem

11.1.4 p. 369℄) whi
h says that for any Perron number, there is a primitive integral

matrix whose spe
tral radius is this Perron number.

Theorem 6.1. Let (i;M; t) be a Z-representation of a sequen
e s of non-negative

integers. If the two following 
onditions are satis�ed,

(i) M is spe
trally Perron,

(ii) the 
omplexity of s is the spe
tral radius of M ,

then there exists a forward elementary equivalen
e from (i;M; t) to an N-representation.

Proof. Let (i;M; t) be a spe
trally Perron Z-representation of a non-negative

sequen
e s. The matrix M is thus spe
trally Perron with a spe
tral radius �. Let

w be a left Perron eigenve
tor su
h that i has a non-negative dominant 
oordinate.

By Lemma 5.2, i has a positive dominant 
oordinate.

By Lemma 5.3, there is a positive real number � su
h that for any ve
tor u 2

K

+

�

(w), we have u �t > 0. We moreover 
hoose � small enough su
h that any ve
tor

in K

+

�

(w) has a positive dominant 
oordinate.

By Lemma 5.4 there exists a positive real number " su
h that, for any positive

integer n, if u 2 K

2"

(w) then uM

n

2 K

�

(w). Let us �x su
h a positive real number

" with moreover " < 1=2 and 2" < �. Thus K

"

(w) � K

2"

(w) � K

�

(w).

By Lemma 5.6, there is �nite set P of integer points in K

2"

(w) su
h that ea
h

integer point of K

"

(w) is a non-negative integral 
ombination of points of P .

By Lemma 5.1 and sin
e P is a �nite set of points of K

2"

(w), there is an integer

n

0

su
h that for any ve
tor v 2 P [ fig, the ve
tor vM

n

0

2 K

"

(w).

We de�ne a forward elementary equivalen
e from (i;M; t) to a representation

(j; N;x) as follows. The rows of the transfer matrix U are the nonzero row ve
tors

vM

j

, with v 2 P [ fig and 0 � j � n

0

� 1. We de�ne the matrix N as a matrix

of the multipli
ation by M on the right on the set S formed by these row ve
tors.

If u is in S, either uM is in S or uM belongs to K

"

(w). In the latter 
ase,

it is a 
onsequen
e of the geometri
al lemma that uM is a non-negative integral


ombination of points of P . If u is in S and uM =

P

v2S

�

u;v

v, with �

u;v

2 N,

we de�ne the 
oeÆ
ient of index u;v of N as �

u;v

. Thus the matrix N has non-

negative integral 
oeÆ
ients. Note that sin
e S is not ne
essarily a basis, N is

not ne
essarily unique. By de�nition, UM = NU . We only keep in S the verti
es

a

essible from i in the graph de�ned by the matrix N . Moreover, we order the

rows of U in su
h a way that the �rst row of U is the ve
tor i.
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We de�ne the row ve
tor j of length jSj by j =

�

1 0 : : : 0

�

and the 
olumn ve
tor

x by x = Ut. If u = iM

j

for 0 � j � n

0

� 1, then x

u

= u � t = iM

j

t = s

j

� 0.

By Remark 5.5, if u is a nonzero ve
tor in K

2"

(w), then uM

j

2 K

+

�

(w) for any

j � 0. Then uM

j

t > 0 for any j � 0. Thus x has non-negative integral 
oeÆ
ients.

Note that the transfer matrix U has its 
oeÆ
ients in Z. Thus we have proved that

(i;M; t)

U

�! (j; N;x) is a ba
kward elementary equivalen
e over Z and (j; N;x) is

an N-representation of s. This 
on
ludes the proof of the theorem.

We add two remarks on further 
onsequen
es of the above proof for future refer-

en
e. Both follow from the last paragraph of the proof.

Remark 6.2. If the sequen
e s satis�es the additional hypothesis s

n

> 0 for any

non-negative integer n, then the ve
tor x is a positive integral ve
tor.

Remark 6.3. If t

0

is another non-negative ve
tor su
h that u � t

0

> 0 for any

ve
tor u 2 K

+

�

(w), and su
h that (i;M; t

0

) spe
i�es a sequen
e of non-negative

integers, x

0

= Ut

0

is a non-negative ve
tor.

Corollary 6.4. From any redu
ed spe
trally Perron representation of a non-

negative sequen
e, there exits a forward elementary equivalen
e to a regular repre-

sentation.

Proof. If (i;M; t) is a redu
ed Z-representation of a sequen
e of non-negative

integers s, the 
omplexity of s is equal to the spe
tral radius of M .

Example 6.5. Let us 
onsider the regular sequen
e s de�ned by, for n � 2,

s

0

= 1;

s

1

= 2;

s

n

= 4s

n�1

� 3s

n�2

:

A Z-representation of this sequen
e is

i =

�

1 0

�

;M =

�

0 1

�3 4

�

; t =

�

1

2

�

:

The matrix M is spe
trally Perron with a spe
tral radius 3 sin
e its 
hara
teristi


polynomial is (X � 3)(X � 1). The 
omputation of the �rst powers iM

n

gives

iM

0

=

�

1 0

�

;

iM

1

=

�

0 1

�

= u+ i;

where u =

�

�1 1

�

. We have uM = 3u and thus the set of non-negative integral


ombinations of the ve
tors i, u is stable by M . As in the proof of Theorem 6.1,

we 
hoose as transfer matrix

U =

�

1 0

�1 1

�

:

Thus s has the following N-representation whi
h is elementary equivalent to (i;M; t):

j =

�

1 0

�

; N =

�

1 1

0 3

�

;x =

�

1

1

�

:

The sequen
e s is thus spe
i�ed by the triple (f1g; H; f1; 2g), where H is the graph

of Figure 2.
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1 2

1 1

Fig. 2. An N-representation of the sequen
e s de�ned by s

0

= 1, s

1

= 2, and s

n

= 4s

n�1

� 3s

n�2

for n � 2. The vertex 1 (marked with an in
oming arrow) is the initial vertex and 1; 2 (marked

with an outgoing arrow) are the terminal verti
es.

7. THE MAIN RESULT

We now prove the main result in a slightly more general form (Theorem 7.5 below).

The 
hara
terization of the generating sequen
es of regular languages on k symbols

given in Theorem 3.2 of Se
tion 3 is a 
onsequen
e of Theorem 7.5. We �rst state

several lemmas. Lemma 7.4 
onstitutes one of the main parts of the proof of

Theorem 7.5.

We re
all the notion of approximate eigenve
tor. Let k be a positive integer. A

right k-approximate eigenve
tor of a non-negative matrix M is an integer 
olumn

ve
tor v � 0 su
h that Mv � kv. When M is the adja
en
y matrix of a graph G,

we also say that v is a k-approximate eigenve
tor of G.

Lemma 7.1. Let (j; N;x) be an N-representation su
h that x is a positive right

k-approximate eigenve
tor (respe
tively a positive right k-eigenve
tor) of N . Then

there is an N-representation (j; N;x) and a ba
kward elementary equivalen
e (i;M; t)

U

 �

(j; N;x), su
h that t is a positive right k-approximate eigenve
tor (respe
tively a

positive k-eigenve
tor) of M whi
h has all its 
oeÆ
ients equal to 1.

Moreover if x =

P

l

i=1

x

i

, where ea
h x

i

is a non-negative integral ve
tor, then

there are non-negative integral ve
tors t

i

su
h that x

i

= Ut

i

.

Proof. We give the proof in the 
ase of approximate eigenve
tors. The other

alternative is similar. Let us denote by Q the set of indi
es of j. Let Q

0

be the set

of pairs (q; j) with q 2 Q and 1 � j � x

q

. For ea
h p 2 Q, let us 
onsider the set

of triples f(q; j; l) j q 2 Q; 1 � j � x

q

; 1 � l � N

pq

g. Its 
ardinality is

P

q2Q

N

pq

x

q

.

Sin
e for ea
h p 2 Q, we have

X

q2Q

N

pq

x

q

� kx

p

;

it is possible to partition this set in x

p

sets X

(p;1)

; X

(p;2)

; : : : ; X

(p;x

p

)

of at most k

elements. We now de�ne the square Q

0

� Q

0

matrix M by de�ning M

(p;i)(q;j)

, for

p; q 2 Q, 1 � i � x

p

and 1 � j � x

q

, as the number of triples in X

(p;i)

whose �rst

two 
omponents are (q; j). Let U be the Q�Q

0

matrix de�ned by U

q(q;j)

= 1, for

any 1 � j � x

q

, the other 
oeÆ
ients being zero. By 
onstru
tion, we get

NU = UM:

Indeed, the 
oeÆ
ient of index p; (q; j), where 1 � j � x

q

, of NU is

X

r2Q

N

pr

U

r(q;j)

= N

pq

:
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And the 
oeÆ
ient of index p; (q; j) of UM is

X

(r;i)2Q

0

U

p(r;i)

M

(r;i)(q;j)

=

X

1�i�x

p

M

(p;i)(q;j)

= N

pq

:

We de�ne the row Q

0

-ve
tor i by i = jU . Let t be the 
olumn Q

0

-ve
tor with all

its 
oeÆ
ients equal to 1. It is straightforward that x = Ut. Thus

(i;M; t)

U

�! (j; N;x):

Sin
e the sum of ea
h row ofM is less than or equal to k, t is a right k-approximate

eigenve
tor of M .

Let us now assume that x =

P

l

i=1

x

(i)

, where x

(i)

is a non-negative integral

ve
tor. Let us de�ne the 
olumnQ

0

-ve
tor t

(i)

by t

(i)

(q;j)

= 1 if and only if 1 � j � x

(i)

q

and t

(i)

(q;j)

= 0 otherwise for 1 � i � l. Then

(Ut

(i)

)

p

=

X

(q;j)2Q

0

U

p(q;j)

t

(i)

(q;j)

=

X

1�j�x

p

t

(i)

(p;j)

= x

(i)

p

:

We get x

(i)

= Ut

(i)

for 1 � i � l.

We mention that a stronger form of this lemma 
an be proved by the use of the

ACH algorithm of [Adler et al. 1983℄ whi
h is based on state splitting.

Lemma 7.2. Let (i;M; t)

U

 � (j; N;x) be a forward elementary equivalen
e be-

tween Z-representations. If t is a right k-eigenve
tor of M , then x is a right

k-eigenve
tor of N .

Proof. The proof is straightforward. IfMt = kt and (i;M; t)

U

�! (j; N;x), then

Nx = NUt = UMt = Ukt = kx.

Lemma 7.3. Any left redu
ed Z-representation (j; N;x) of m(kz)

�

, where m and

k are positive integers, is su
h that x is a right k-eigenve
tor of N .

Proof. We 
onsider a left redu
ed representation (j; N;x) ofm(kz)

�

. By Propo-

sition 4.5, there is a ba
kward elementary equivalen
e from (j; N;x) to ([m℄; [k℄; [1℄),

whi
h is the right minimal representation of m(kz)

�

. Thus

([m℄; [k℄; [1℄)

V

�! (j; N;x);

where V is the transfer matrix of this elementary equivalen
e. Sin
e

V [k℄ = NV; [m℄ = jV; x = V [1℄;

we get V = x and x is a right k-eigenve
tor of N .

The following lemma 
onstitutes the main part of the proof of Theorem 7.5. We

use here a variant of the terminology of �nite automata. Let A = (Q;A; Æ; I; T ) be

a �nite automaton with set of states Q, alphabet A, transition fun
tion Æ, set of

initial states I , and set of terminal states T . Let L be the language re
ognized by

A. We 
an de�ne a labelled graph G with Q as set of verti
es and the pairs (p; a; q)

where q 2 Æ(p; a) as edges. Conversely any su
h graph 
orresponds uniquely to an

automaton A. When A is deterministi
 we say that G is deterministi
ally labelled.

We also say that (I;G; T ) is a deterministi
 automaton that re
ognizes L.
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Lemma 7.4. Let l be a positive integer and s

1

; : : : s

l

be l regular sequen
es spe
-

i�ed by N-representations (i;M; t

i

) respe
tively, su
h that s

1

(z) + � � � + s

l

(z) =

m(kz)

�

, where m and k are positive integers. Let us assume that M has a domi-

nating eigenvalue k, that all s

i

have 
omplexity k, and that (i;M;

P

l

i=1

t

i

) is trim.

Then there is a �nite deterministi
ally labelled graph G on a k-letter alphabet, with

m initial states and a partition of the set of states of G in l sets T

i

, with 1 � i � l,

su
h that the automaton (I;G; T

i

) re
ognizes a regular language on k symbols whose

generating sequen
e is exa
tly s

i

.

Proof. We denote by t the 
olumn ve
tor

P

l

i=1

t

i

and thus (i;M; t) spe
i�es

s(z) =

P

l

i=1

s

i

(z) = m(kz)

�

. We denote by J

r

(k) the Jordan blo
k of size r:

J

r

(k) =

2

6

6

6

6

6

6

6

4

k 1 0 : : : 0 0

0 k 1 : : : 0 0

0 0 k : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : k 1

0 0 0 : : : 0 k

3

7

7

7

7

7

7

7

5

:

Sin
e (i;M; t) is a trim N-representation whi
h spe
i�es m(kz)

�

, the Jordan 
anon-

i
al form of M has no blo
k J

r

(k) where r > 1. Indeed, let us assume that the

Jordan form of M 
ontains su
h a blo
k. Then there is a positive real number 


su
h that for any large enough integer n, s

n

� 
n

r�1

k

n

. Thus the sequen
e s(z)


annot be equal to m(kz)

�

.

We 
ompute from (i;M; t) a left redu
ed Z-representation (j; N;x) of m(kz)

�

.

We know from Proposition 4.5 that there exists a transfer matrix U su
h that

(i;M; t)

U

�!

Z

(j; N;x):

Sin
e (j; N;x) is left redu
ed, the dimension of the Z-module generated by the

ve
tors jN

n

, for n � 0, is the size d of the square matrix N . This dimension is

also equal to the dimension of the ve
tor spa
e E generated by the ve
tors jN

n

, for

n � 0, over the �eld R. Let E

0

be the eigenspa
e of N asso
iated to the eigenvalue

k in E and let E

00

be a 
omplementary N -invariant subspa
e. Thus d is the sum

of the dimensions of E

0

and of E

00

. We 
laim that E

0

has dimension one. Indeed,

the ve
tor j 
an be written

j = u+ v;

where u 2 E

0

and v 2 E

00

. Sin
e for any integer n � 0,

jN

n

= k

n

u+ vN

n

;

the ve
tor spa
e over R generated by the ve
tors jN

n

, for n � 0, is in
luded in

hui + E

00

, where hui denotes the ve
tor spa
e over R generated by u. Thus the

dimension of E

0

is one.

The Jordan 
anoni
al form of N has thus a dominating eigenvalue, has no

blo
k J

r

(k), where r > 1 , and has a one dimensional eigenspa
e asso
iated to

the spe
tral radius k. The matrix N is thus a spe
trally Perron matrix. Moreover,

by Lemma 7.3, x is an integer right k-eigenve
tor of N . For ea
h integer 1 � i � l,

we de�ne x

i

= Ut

i

.
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By Theorem 6.1, there exists a forward elementary equivalen
e to a regular rep-

resentation from (j; N;x) to an N-representation (k; L;y). Let V be its transfer

matrix. Sin
e the sequen
e spe
i�ed is m(kz)

�

, it has positive terms. Thus the ve
-

tor y is a positive ve
tor (see Remark 6.2 at the end of the proof of Theorem 6.1).

By Lemma 7.2, the ve
tor y is a right k-eigenve
tor of L. It is thus a positive

integral eigenve
tor of L.

Sin
e (j; N;x

i

) is a left redu
ed representation whi
h spe
i�es s

i

, and sin
e s

i

has


omplexity k, one 
hooses by Lemma 5.3 a positive real number � su
h, that for

ea
h integer 1 � i � l, for any ve
tor u 2 K

+

�

(w), we have u � x > 0 and u � x

i

> 0.

It follows from Remark 6.3 at the end of the proof of Theorem 6.1 that the l ve
tors

y

i

= V x

i

are non-negative integral ve
tors.

The �nal step is given by Lemma 7.1. There is a regular ba
kward elementary

equivalen
e from (k; L;y) to anN -representation (i

0

;M

0

; t

0

) su
h that t

0

is a positive

right k-approximate eigenve
tor of M

0

whi
h has all its 
oeÆ
ients equal to 1. Let

us denote byW the transfer matrix of this ba
kward elementary equivalen
e. Sin
e

y =

P

l

i=1

y

i

where the ve
tors y

i

are non-negative integral ve
tors, there are two

non-negative integral ve
tors t

0

i

su
h that y

i

=W t

0

i

.

The two previous forward elementary equivalen
es and the ba
kward elementary

equivalen
e 
an be summarized in

(i;M; t)

U

�!

Z

(j; N;x)

V

�!

Z

(k; L;y)

W

 �

N

(i

0

;M

0

; t

0

):

We also have for ea
h integer 1 � i � l,

(i;M; t

i

)

U

�!

Z

(j; N;x

i

)

V

�!

Z

(k; L;y

i

)

W

 �

N

(i

0

;M

0

; t

0

i

):

Thus, for ea
h integer 1 � i � l, we get an N-representation (i

0

;M

0

; t

0

i

) of the

sequen
e s

i

. The 
oeÆ
ients of all t

0

i

are 0 or 1 and the sum of the ve
tors t

0

i

is the

ve
tor t

0

whose 
oeÆ
ients are all equal to 1. Let us denote by T

i

the set of indi
es

of t

0

i


orresponding to a 
oeÆ
ient 1. Sin
e t

0

is a right k-eigenve
tor of M

0

, the

sum of ea
h row ofM

0

is equal to k. The matrixM

0

is thus the transition matrix of

a k-ary dire
ted multigraph G. Let Q be the set of states of G. Sin
e i

0

�t

0

= m, the

sum of the 
oeÆ
ients of the ve
tor i

0

is m. We de�ne a new graph G

0

by adding

to G a new set I of m states (p; j), for p 2 Q and 1 � j � i

p

, and n edges from

(p; j) to q if there are n edges from p to q in G. This last transformation is again a

ba
kward elementary equivalen
e. Sin
e the graph G

0

is still k-ary, one 
an label it

with k symbols in a deterministi
 way. Then the automaton (I;G

0

; T

i

) re
ognizes

a regular language on k symbols whose generating sequen
e is exa
tly s

i

.

We now state and prove the main result. Theorem 3.2 is a formulation of Theo-

rem 7.5 in the 
ase of two sequen
es.

Theorem 7.5. Let m and k be two positive integers. Let s

(1)

; s

(2)

; : : : ; s

(l)

be

l regular sequen
es su
h that s

(1)

+ s

(2)

+ : : : + s

(l)

(z) = m(kz)

�

. Then there is a

�nite deterministi
ally labelled graph G on a k-letter alphabet, with m initial states

and a partition of the set of states of G in l sets T

i

, with 1 � i � l, su
h that the

automaton (I;G; T

i

) re
ognizes a regular language on k symbols whose generating

sequen
e is exa
tly s

(i)

.
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The proof 
ontains two main parts. The �rst part 
orresponds to sequen
es that

all have 
omplexity k and relies mainly on Lemma 7.4. The se
ond part treats the

other 
ase.

Proof. We �rst order the sequen
es in su
h a way that there is an integer

0 � l

0

� l�1 su
h that s

(1)

; s

(2)

; : : : ; s

(l

0

)

have a 
omplexity stri
tly less than k and

that s

(l

0

+1)

; : : : ; s

(l)

have 
omplexity k. Note that at least one of the sequen
es has


omplexity k sin
e the sum of the sequen
es is m(kz)

�

.

Let us 
onsider �rst the 
ase where l

0

= 0, that is, where all sequen
es s

(i)

have 
omplexity k. Let (i

(i)

;M

(i)

; t

(i)

) be a trim regular representation of s

(i)

for

1 � i � l. Thus the regular representation (i;M;x

(i)

) de�ned by

(i;M;x

(i)

) = (

�

i

(1)

: : : i

(l)

�

;

2

6

6

6

6

4

M

(1)

0 � � � 0

0 M

(2)

.

.

.

.

.

.

.

.

.

0

0 : : : 0 M

(l)

3

7

7

7

7

5

;

2

6

6

6

6

6

6

4

0

.

.

.

t

(i)

.

.

.

0

3

7

7

7

7

7

7

5

):

spe
i�es the sequen
e s

(i)

for 1 � i � l. We denote by t the 
olumn ve
tor

P

l

i=1

x

(i)

and thus (i;M; t) spe
i�es s(z) =

P

l

i=1

s

(i)

(z) = m(kz)

�

. Sin
e (i

(i)

;M

(i)

; t

(i)

) are

trim representations, (i;M; t) is also trim.

By the Perron-Frobenius theorem [Ma
Cluer 2000℄, the eigenvalues of maximal

modulus of M are equal to ��, where � is a positive real number and where � is a

root of unity. Thus there is an integer p su
h that M

p

has a dominating eigenvalue.

Ea
h sequen
e s

(i)

is a merge of p sequen
es s

(i;j)

spe
i�ed by (iM

j

;M

p

;x

(i)

), for

0 � j � p � 1. These representations may not be trim but M

p


annot have a

Jordan 
anoni
al form that 
ontains a blo
k J

r

(k

p

) with r > 1. Indeed, let us

assume that it is not true. Then there is at least one 
oeÆ
ient (M

p

)

n

qr

of (M

p

)

n

whose growth rate is at least 
n

r�1

k

pn

, where 
 is a positive real number. Sin
e

(i;M; t) is trim, there is a non-negative integer n

1

su
h that (iM

n

1

)

q

> 0, and

there is a non-negative integer n

2

su
h that (M

n

2

t)

r

> 0. Thus (s

n

1

+n

2

+pn

)

n�0

would have a growth rate whi
h is, up to a positive 
onstant, at least n

r�1

k

pn

whi
h is too mu
h. Note that the sequen
e

P

l

i=1

s

(i;j)

(z) is equal to mk

j

(k

p

z)

�

,

for 0 � j � p� 1.

Let j be an integer su
h that 0 � j � p � 1. Either all sequen
es s

(i;j)

have


omplexity k

p

or at least one of them has a 
omplexity stri
tly less than k

p

. In

the former 
ase, Lemma 7.4 
onstru
ts automata (I

(j)

; G

(j)

; T

(j)

i

) that re
ognize

s

(i;j)

on the alphabet A

p

, where A is a �nite alphabet with k symbols, and where

I

(j)

has 
ardinal mk

j

. For a given j, these representations de�ne l disjoint regular

languages L

(i)

j

on a k-letter alphabet with generating sequen
es s

(i;j)

. The latter


ase 
orresponds to an instan
e of the statement of the theorem when at least one

sequen
e has a 
omplexity stri
tly less than k

0

= k

p

with m

0

= mk

j

. This 
ase is

proved below. Then the sets [

p�1

j=0

L

(i)

j

, with 1 � i � l, are disjoint regular languages

on a k-letter alphabet having s

(i)

as generating sequen
es.

We now 
onsider the 
ase where there is at least one sequen
e with a 
omplexity

stri
tly less than k. We denote by t

(l

0

+1)

the sequen
e s

(1)

+ : : : + s

(l

0

)

+ s

(l

0

+1)

.
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Thus t

(l

0

+1)

is a regular sequen
e whi
h has 
omplexity k. Thus, by applying the


onstru
tion used in the 
ase where all sequen
es have 
omplexity k, we get regular

representations with 0-1 
oeÆ
ients (j; N;y

(i)

) of s

(i)

for l

0

+ 2 � i � l, and t

(l

0

+1)

for i = l

0

+ 1, su
h that j has exa
tly m 
oeÆ
ients equal to 1, and su
h that N is

a k-ary matrix. Note that the �rst 
ase where all sequen
es have 
omplexity k is

applied to at most l � 1 sequen
es and thus that we 
an reason by indu
tion.

We denote byQ the set of indi
es ofN , also 
alled states, and by d

0

the 
ardinality

of Q. If q is a state, we denote by q the 
hara
teristi
 row ve
tor of q of size d

0

.

A state q is said to be a �nal for (j; N;y

(l

0

+1)

) if y

(l

0

+1)

q

= 1. Moreover the ve
tor

z =

P

l

i=l

0

+1

y

(i)

has all its 
oeÆ
ients equal to 1. A prin
ipal 
omponent of N is an

irredu
ible 
omponent of N whose spe
tral radius is k. Sin
e N is a k-ary matrix,

ea
h prin
ipal 
omponent of N is a sink, that is, n has no nonzero 
oeÆ
ient N

pq

with p inside the 
omponent and q outside (i.e., a 
omponent from whi
h there is

\no es
ape"). A prin
ipal 
omponent that 
ontains a �nal state for (j; N;y

(l

0

+1)

)

is 
alled a �nal 
omponent. Sin
e t

(l

0

+1)

has 
omplexity k, there is at least a �nal


omponent C of N that 
ontains a �nal state q for (j; N;y

(l

0

+1)

). Moreover, there

is a positive integer s su
h that (jN

s

)

q

> 0.

We denote by p the period ofN , whi
h is the least 
ommon multiple of the periods

of the irredu
ible 
omponents of N . Re
all that the period of an irredu
ible matrix

N

0

is the g
d of positive integers n su
h that the tra
e of N

0

n

is positive. By

applying the 
onstru
tion, with other values of m and k, to the sequen
es s

(i;j)

de�ned, for 1 � i � l and 0 � j � p� 1, by s

(i;j)

n

= s

(i)

j+pn

, we 
an assume that N

has period 1 and thus that C is a primitive matrix.

As a 
onsequen
e of the Perron-Frobenius theorem, there is a positive real number

� and a positive integer n

0

su
h that for any integer n � n

0

and any two states p; q

of the �nal 
omponent C, C

n

pq

� �k

n

.

We get that for any integer n � n

0

+ s, any state q of the 
omponent C, and

any index l

0

+ 1 � i � l, jN

n

y

(i)

� �k

n�s

and qN

n

y

(i)

� �k

n�s

. Without loss

of generality, by in
reasing the value of s, we 
an assume that � is the positive

integer 1. Thus for any n � n

0

+ s, any q 2 C, and any l

0

+ 1 � i � l,

qN

n

z = k

n

(sin
e N is k-ary) (3)

jN

n

z = mk

n

(4)

qN

n

y

(i)

� k

n�s

(5)

jN

n

y

(i)

� k

n�s

(6)

Let us now 
onsider the sequen
es having a 
omplexity stri
tly less than k. Let

(i

(i)

;M

(i)

; t

(i)

) be a trim N-representation of s

(i)

for 1 � i � l

0

. We 
an moreover

assume that i

(i)

and t

(i)

have 0-1 
oeÆ
ients. Thus the N-representation (i;M;x

(i)

)

de�ned by

(i;M;x

(i)

) = (

�

i

(1)

: : : i

(l

0

)

�

;

2

6

6

6

6

4

M

(1)

0 � � � 0

0 M

(2)

.

.

.

.

.

.

.

.

.

0

0 : : : 0 M

(l

0

)

3

7

7

7

7

5

;

2

6

6

6

6

6

6

4

0

.

.

.

t

(i)

.

.

.

0

3

7

7

7

7

7

7

5

):

Journal of the ACM, Vol. V, No. N, Month 20YY.



22 � M.-P. B�eal and D. Perrin

spe
i�es the sequen
e s

(i)

for 1 � i � l

0

. The ve
tors i and x

(i)

have 0-1 
oeÆ
ients.

Let � be the spe
tral radius of M . For an in�nite number of indi
es n, the terms of

s

(i)

are, up to 
onstant, at most P

(i)

(n)�

n

, where P

(i)

(n) is a nonzero polynomial

in n. Sin
e ea
h s

(i)

, for 1 � i � l

0

, has a 
omplexity stri
tly less than k, � < k.

Let d be the size of M and P the set of indi
es of M . If p is in P , we denote

by p the 
hara
teristi
 row ve
tor of p of size d. We denote by t the 0-1 
olumn

ve
tor

P

l

0

i=1

x

(i)

. We denote by w the 
olumn ve
tor of size d with all 
oeÆ
ients

equal to 1.

Sin
e � < k, there is a positive integer r su
h that for any n � r and any p 2 P ,

the following inequalities hold

pM

n

w � k

n�s

; (7)

iM

n

w � k

n�s

: (8)

As a 
onsequen
e, for any n � r and any p 2 P ,

pM

n

t � k

n�s

; (9)

iM

n

t � k

n�s

: (10)

We moreover 
hoose r � n

0

+ s.

We de�ne a produ
t of size d+d

0

of the representations (i;M;x

(i)

) and (j; N;y

(j)

)

as follows. For 1 � i � l

0

, and l

0

+ 1 � j � l, let

k =

�

i j

�

; L =

�

M 0

0 N

�

; X

(i)

=

�

x

(i)

0

�

; Y

(j)

=

�

0

y

(j)

�

; Z =

�

0

z

�

:

Then the N-representation (k; L;X

(i)

) spe
i�es s

(i)

for 1 � i � l

0

. The N-representation

(k; L;Y

(l

0

+1)

) spe
i�es t

(l

0

+1)

. The regular representation (k; L;Y

(j)

) spe
i�es s

(j)

for l

0

+ 2 � j � l. Finally (k; L;Z) spe
i�es m(kz)

�

.

We now de�ne forward elementary equivalen
es from these N-representations

with a transfer matrix denoted by U of size d

00

� (d + d

0

). Let U be the matrix

whose set of rows is formed by row ve
tors of size (d + d

0

), the ve
tors kL

n

, with

0 � n � (2r � 1), the ve
tors (pM

n

;qN

n

), with r � n � (2r � 1), p 2 P , q 2 C,

and the ve
tors (0;qN

r

) for q 2 Q.

Let us 
onsider a linear transformation of the rows of U de�ned as follows.

|Ea
h ve
tor kL

n

for 0 � n < (2r � 1) is transformed to kL

n+1

.

|Ea
h ve
tor (pM

n

;qN

n

), for 0 � n < (2r � 1), p 2 P , q 2 C, is transformed in

(pM

n+1

;qN

n+1

).

|Ea
h ve
tor (0;qN

r

) for q 2 Q is transformed in a sum of k ve
tors (0;q

i

N

r

),

where qN =

P

k

i=1

q

i

.

|Let p be either i or a 
hara
teristi
 ve
tor p of a state p 2 P , and q be either

j or a 
hara
teristi
 ve
tor q of a state q 2 C. Sin
e pM

r

w � k

r�s

, the ve
tor

pM

r

is the sum of K � k

r�s


hara
teristi
 ve
tors p

i

. If q 2 C, qN

r

is the

sum of k

r


hara
teristi
 ve
tors of states in C. If q = j, qN

r

is the sum of mk

r


hara
teristi
 ve
tors of states in Q su
h that at least k

r�s

among them belong

to C. Then in both 
ases, qN

r

is then the sum of K

0

� k

r�s

ve
tors q

i

su
h

that q

i

2 C for 1 � i � k

r�s

. We transform (pM

2r�1

;qN

2r�1

) in the sum of

the K ve
tors (p

i

M

r

;q

i

N

r

), for 1 � i � K and the K

0

�K ve
tors (0;q

i

N

r

),
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for K + 1 � i � K

0

. Note that all these ve
tors are rows of the matrix U and

that their sum is equal to (pM

2r

;qN

2r

).

We denote by R the transition matrix of this linear transformation. The matrix R

has non-negative integral 
oeÆ
ients and RU = UL. We denote by l the row ve
tor

�

1 0 � � � 0

�

of size d

00

. We have the following forward elementary equivalen
es over

N between N-representations for 1 � i � l

0

and l

0

+ 1 � j � l.

(k; L;X

(i)

)

U

�!

N

(l; R; UX

(i)

);

(k; L;Y

(j)

)

U

�!

N

(l; R; UY

(j)

);

(k; L;Z)

U

�!

N

(l; R; UZ):

Then, U , UZ and RUZ have the following forms.

U =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

k

kL

.

.

.

kL

2r�1

(pM

r

;qN

r

)

.

.

.

(pM

2r�1

;qN

2r�1

)

.

.

.

(0;qN

r

)

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; UZ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

mk

.

.

.

mk

2r�1

k

r

.

.

.

k

2r�1

.

.

.

k

r

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; RUZ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

mk

mk

2

.

.

.

mk

2r

k

r+1

.

.

.

k

2r

.

.

.

k

r+1

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Thus UZ is a positive right k-eigenve
tor of R. Moreover, it follows from Equa-

tions (3) to (10), and sin
e

P

l

0

i=1

s

(i)

� t

(l

0

+1)

, that UX

(i)

and UY

(j)

, for 1 � i � l

0

and l

0

+ 1 � j � l, are non-negative ve
tors su
h that

l

0

X

i=1

UX

(i)

� UY

(l

0

+1)

� UZ;

and

UY

(j)

� UZ:

We now do ba
kward elementary equivalen
es with a transfer matrix denoted

by V . By Lemma 7.1, there is a ba
kward elementary equivalen
e from (l; R; UZ)

to an N-representation (i

0

;M

0

; t

0

) su
h that t

0

is a positive right k-eigenve
tor of

M

0

whi
h has all its 
oeÆ
ients equal to 1. Thus M

0

is a k-ary matrix. The

ve
tor i

0

has m entries 1, the other ones being 0. Moreover, for 1 � i � l, there

are non-negative integral ve
tors t

0

(i)

, su
h that t

0

(i)

= V UX

(i)

, for 1 � i � l

0

,

t

0

(l

0

+1)

= V (UY

(l

0

+1)

�

P

l

0

i=1

UX

(i)

) and t

0

(i)

= V UY

(i)

, for l

0

+ 2 � i � l. Then

(i

0

;M

0

; t

0

(i)

), for 1 � i � l, spe
i�es s

(i)

and

P

l

i=1

t

0

(i)

= t

0

.
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Example 7.6. Let us 
onsider the sequen
es s

1

and s

2

spe
i�ed by the N-representations

(i;M; t

1

) and (i;M; t

2

) respe
tively, where

i =

�

1 0 0

�

; M =

2

4

1 1 1

0 1 1

0 2 2

3

5

; t

1

=

2

4

1

1

0

3

5

; t

2

=

2

4

0

0

1

3

5

:

These N-representations of s

1

and s

2

are pi
tured in Figure 3. The sequen
e s(z) =

s

1

(z) + s

2

(z) is equal to (3z)

�

, and the sequen
e s

1

and s

2

have both a 
omplexity

equal to 3. The spe
tral radius of M is 3. We su

essively get

1

2 3

Fig. 3. The N-representations (i;M; t

1

) and (i;M; t

2

).

i =

�

1 0 0

�

;

iM =

�

1 1 1

�

;

iM

2

=

�

1 4 4

�

= 4iM � 3i;

Thus one 
an 
hoose for U the 2� 3 matrix whose rows are i and iM with

j =

�

1 0

�

; N =

�

0 1

�3 4

�

; x =

�

1

3

�

;x

1

=

�

1

2

�

;x

2

=

�

0

1

�

:

The matrixN is spe
trally Perron with spe
tral radius 3, and x is a right eigenve
tor

of N for the eigenvalue 3. The next 
omputation is detailed in the example of

Se
tion 5. We 
an 
hoose for V the 2 � 2 matrix whose rows are j and u, where

u =

�

�1 1

�

(see Se
tion 5), with

k =

�

1 0

�

; L =

�

1 1

0 3

�

; y =

�

1

2

�

;y

1

=

�

1

1

�

;y

2

=

�

0

1

�

:

The N-representation (k; L;y

1

) of s

1

is pi
tured in Figure 2.

The �nal representation is indexed by the set f(1; 1); (2; 1); (2; 2)g and one 
an


hoose

i

0

=

�

1 0 0

�

; M

0

=

2

4

0 1 1

0 2 1

0 1 2

3

5

; t

0

=

2

4

1

1

1

3

5

; t

0

1

=

2

4

1

0

1

3

5

; t

0

2

=

2

4

0

1

0

3

5

:

Thus the sequen
e s

1

is spe
i�ed by the graph of Figure 4 where the �nal states are

(1; 1) and (2; 2), and where the initial state is (1; 1). The sequen
e s

2

is spe
i�ed

by the same graph where the �nal state is (2; 1).
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1; 1

2; 1 2; 2

Fig. 4. An N-representation of s

1

whose graph is 3-ary.

From the previous result, we get the following 
orollary.

Corollary 7.7. Let k be a positive integer and s be a regular sequen
e of non-

negative integers that has a 
omplexity stri
tly less than k. Then s is the sum of

generating sequen
es of regular languages on k symbols.

Proof. Sin
e s is regular and has a 
omplexity stri
tly less than k, there is

a positive integer m su
h that its terms s

n

are bounded by mk

n

. Moreover the


omplementary sequen
e of s is regular by Soittola's theorem. The result is then a


onsequen
e of Theorem 7.5 for the 
ase l = 2.

Finally, we mention an open problem and a general question. Suppose that we

are given a regular language X and two regular sequen
es s; t su
h that s+ t is the

generating sequen
e of X . Is it true that there exists a partition X = Y + Z su
h

that s is the generating sequen
e of Y and t is the generating sequen
e of Z? By

Theorem 3.2, the answer is yes when X is the set of all words on k symbols. We

wonder whether the result holds in general.

A more general question is the following. Soittola's theorem 
hara
terizes regular

sequen
es among Z-rational ones. Su
h a 
hara
terization is not known in several

variables. In parti
ular it is not known when the di�eren
e of two N-rational sets

is N-rational. An answer to this question would 
ertainly enlighten the �eld of

automata with multipli
ities.
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