
HAL Id: hal-00619228
https://hal.science/hal-00619228

Submitted on 24 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the generating sequences of regular languages on
k-symbols

Marie-Pierre Béal, Dominique Perrin

To cite this version:
Marie-Pierre Béal, Dominique Perrin. On the generating sequences of regular languages on k-symbols.
Journal of the ACM (JACM), 2003, 50 (6), pp.955-980. �10.1145/950620.950625�. �hal-00619228�

https://hal.science/hal-00619228
https://hal.archives-ouvertes.fr


On the generating sequen
es of regular languages

on k symbols

MARIE-PIERRE B

�

EAL and DOMINIQUE PERRIN

University of Marne-la-Vall�ee, Fran
e

The main result is a 
hara
terization of the generating sequen
es of the length of words in a

regular language on k symbols. We say that a sequen
e s of integers is regular if there is a �nite

graph G with two verti
es i; t su
h that s

n

is the number of paths of length n from i to t in G.

Thus the generating sequen
e of a regular language is regular. We prove that a sequen
e s is the

generating sequen
e of a regular language on k symbols if and only if both sequen
es s = (s

n

)

n�0

and t = (k

n

� s

n

)

n�0

are regular.

Categories and Subje
t Des
riptors: F.4.3 [Theory of 
omputation℄: Mathemati
al logi
s and

formal languages|Formal languages; G.2.1 [Dis
rete mathemati
s℄: Combinatori
s|Counting

problems, generating fun
tions

General Terms: Theory

Additional Key Words and Phrases: Generating sequen
es, rational sequen
es, regular languages,

regular sequen
es

1. INTRODUCTION

The notion of a generating sequen
e for a formal language L is a simple one: it

is the sequen
e (s

n

)

n�0

where s

n

is the number of words of length n in L. Even

if the non-
ommutative nature of words is lost, this sequen
e 
arries important

information 
on
erning a formal language sin
e it measures in a sense the size

of the language. It is moreover of interest in 
oding. In fa
t, a length-preserving

en
oding de�nes a one-to-one 
orresponden
e between words. The two sets of words

in su
h a 
orresponden
e will have the same length distribution.

The 
hara
terization of the generating sequen
es of regular languages has long

been known. Indeed, a sequen
e (s

n

)

n�0

is the generating sequen
e of a regular

language on some alphabet if and only if it is regular, i.e., there exists a �nite graph

G with two verti
es i; t su
h that s

n

is the number of paths of length n from i to t

in G.

The idea of �xing the 
ardinality of the alphabet in this problem has surprisingly

never been 
onsidered. In other terms, for a given integer k, when is an integer

sequen
e the generating sequen
e of a regular language on k symbols?

Suppose for example that we 
onsider the regular language on three symbols

L = (a+b)

�




+

. Its number of words of length n is 2

n�1

. It has the same generating

sequen
es as the regular language on two symbols L

0

= (a + b)

�

ab

�

. We address

here the problem of 
hara
terizing the regular languages L for whi
h su
h a 
oding

on a smaller alphabet is possible and we des
ribe expli
itly how to realize it. Our

main result is a 
hara
terization of the generating sequen
es of regular languages

on k symbols.

Our 
hara
terization is the following. We prove that a sequen
e s is the gener-

ating sequen
e of a regular language on k symbols if and only if both sequen
es

s = (s

n

)

n�0

and the 
omplementary sequen
e t = (k

n

� s

n

)

n�0

are regular (Theo-

rem 3.2). Observe that the se
ond 
ondition implies the obviously ne
essary 
on-
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dition that s

n

� k

n

for all n.

The proof is based on the use of forward and ba
kward elementary equivalen
es,

whi
h we de�ne as follows. A representation over a semiring K of a sequen
e

s = (s

n

)

n�0

is a triple (i;M; t), where i is a row ve
tor over K, t is a 
olumn ve
tor

over K, and M a matrix over K, with s

n

= iM

n

t for any non-negative integer

n. The representation is said to spe
ify s. We say that a matrix U su
h that

NU = UM , jU = i, x = Ut de�nes a forward elementary equivalen
e from (i;M; t)

to (j; N;x). It de�nes a ba
kward elementary equivalen
e in the opposite dire
tion.

It is easy to verify that both representations spe
ify the same sequen
e. This

notion of forward elementary equivalen
e extends to representations of sequen
es

the 
lassi
al notion of multiset 
onstru
tion used in automata theory, and the notion

of graph extension introdu
ed in [Bassino et al. 2000℄. This notion is also linked to

the notion of intertwining between representations introdu
ed in [Flouret 1999℄.

The 
lassi
al 
omputation of a redu
ed representation of an integer sequen
e is

a
tually obtained by the 
omposition of a forward elementary equivalen
e followed

by a ba
kward one (or the 
onverse) with transfer matri
es with integer 
oeÆ
ients

(see [Berstel and Reutenauer 1988℄ on this notion).

An important step in the proof of the main result is a forward elementary equiv-

alen
e obtained by extending to representations over Z a theorem from Lind [Lind

and Mar
us 1995℄ whi
h states that for any Perron number, there is a primitive

integer matrix whose spe
tral radius is this Perron number. By taking into a

ount

the row and 
olumn ve
tors, we prove that a representation over N 
an be obtained

by only one forward elementary equivalen
e from any redu
ed representation over

Z of the sequen
e (Theorem 6.1).

Our main result is a parti
ular 
ase of the following more general one. Let k

be a positive integer and let s

(1)

; s

(2)

; : : : ; s

(l)

be l regular sequen
es whose n-

terms add to k

n

for all n � 0. Then there is a deterministi
 automaton A =

(Q;A; Æ; i; Q) on a k-letter alphabet A with an initial state i, a transition fun
tion

Æ and a set of terminal states equal to set Q of all states su
h that the following

holds: There is a partition of the set of states Q in l sets T

j

su
h that for ea
h

1 � j � l, the automaton (Q;A; Æ; i; T

j

) re
ognizes a regular language on k symbols

whose generating sequen
e is exa
tly s

(j)

. We prove this more general formulation

(Theorem 7.5).

The paper is organized as follows. Se
tion 2 
ontains the de�nitions of representa-

tions and the main result is stated in Se
tion 3. In Se
tion 4 we de�ne the notion of

a forward or ba
kward elementary equivalen
e. Se
tion 5 establishes some lemmas

based on Perron theory whi
h are used in Se
tion 6 to show that, for any redu
ed

representation of a non-negative Perron sequen
e, there is a forward elementary

equivalen
e from this representation to an N-representation. Se
tion 7 presents the

proof of the 
hara
terization of generating sequen
es of regular languages over k

symbols. The proof is 
onstru
tive in the sense that the regular language over k

symbols 
an be built in an e�e
tive way, although with a high 
omplexity. The


onstru
tion pro
ess is 
omposed of two forward elementary equivalen
es followed

by one ba
kward elementary equivalen
e. We give an example of this 
omputation.

A preliminary shorter version of this paper was presented at the STACS 2002


onferen
e [B�eal and Perrin 2002℄. We wish to thank the anonymous referees for
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helping us to improve the quality of our presentation.

2. RATIONAL AND REGULAR SEQUENCES

Let K be a semiring. In most 
ases, we have in mind K = Z or N. In the

most general 
ase, K is not even supposed to be 
ommutative. However, we shall

often make the hypothesis that K is a prin
ipal ideal domain (this is the same as a


ommutative prin
ipal ideal ring without zero divisors and holds in parti
ular when

K = Z).

We 
onsider sequen
es of elements of K denoted by s = (s

n

)

n�0

. We shall not

distinguish between su
h a sequen
e and the formal series in one variable s(z) =

P

n�0

s

n

z

n

. We usually denote a ve
tor with 
oeÆ
ients in K and indexed by

elements of a set Q, also 
alled a Q-ve
tor, with boldfa
e symbols. A Q�Q matrix

on K is a family M

pq

of elements of K indexed by Q�Q.

A sequen
e s is said to be K-rational if there exist a set Q of 
ardinality d and

a triple (i;M; t), where i is a row Q-ve
tor, t is a 
olumn Q-ve
tor, and M is a

Q�Q matrix, all with 
oeÆ
ients in K, su
h that, for any non-negative integer n,

s

n

= iM

n

t.

Su
h a triple is 
alled a representation over K, or a K-representation of the

sequen
e s, and d is its dimension. We say that the representation (i;M; t) spe
i�es

the sequen
e s.

A word about our terminology. A sequen
e of elements of K 
an be 
onsidered

as a K-subset of �

�

, where � has only one symbol. Our de�nition of a K-rational

sequen
e 
orresponds to what is 
alled a re
ognizable K-subset in Eilenberg's book

[Eilenberg 1974℄. A rational K-subset is de�ned using rational expressions with

multipli
ities, and a 
lassi
al result proves the equivalen
e of the notions of re
og-

nizable or rational K-subsets when � is �nite (this is the Kleene-S
h�utzenberger

theorem, see [Eilenberg 1974, p. 175℄). We shall o

asionally use rational expres-

sions to denote rational sequen
es. For example, (kz)

�

is the same as

1

1�kz

.

A representation over K is redu
ed if it has a minimal dimension among all

representations over K that spe
ify the same sequen
e. If K is a prin
ipal ideal

domain, this minimal dimension is the same over K and over the quotient �eld of

K [Berstel and Reutenauer 1988, p. 77℄. This minimal dimension is 
alled the rank

of the rational sequen
e.

If K is a prin
ipal ideal domain, a representation over K is said to be left redu
ed

(respe
tively right redu
ed) if and only the module generated by the ve
tors iM

n

(respe
tively M

n

t), for all n � 0, is the full spa
e K

1�d

(respe
tively K

d�1

). The

representation is then redu
ed if and only if it is both left and right redu
ed (see

[Berstel and Reutenauer 1988, p. 26℄). We de�ne the left minimal representation

over K of a sequen
e s as the unique redu
ed representation (i;M; t) of s over K,

where i =

�

1 0 � � � 0

�

and M is a 
ompanion matrix, i.e., of the form

M =

2

6

6

6

6

6

4

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1

a

0

a

1

a

2

: : : a

r�1

3

7

7

7

7

7

5

:
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We say that a sequen
e of integers is non-negative if all its terms are non-negative.

An N-rational sequen
e is also 
alled regular. In the 
ase of a regular sequen
e,

there is an equivalent form of a representation. Let us 
onsider a triple (I;G; T ),

where G is a dire
ted multigraph and I; T two sets of verti
es. Su
h a triple spe
i�es

the sequen
e s where s

n

is the number of paths of length n going from I to T . The

sequen
e s is regular sin
e it is also spe
i�ed by the representation (i;M; t), where

M is the adja
en
y matrix of G and i, t are the 
hara
teristi
 ve
tors of the sets

I and T respe
tively. It 
an be shown 
onversely that any regular sequen
e 
an be

spe
i�ed by su
h a triple.

A matrix or ve
tor with 
oeÆ
ients equal to zero or one is 
alled a 0-1 matrix

or a 0-1 ve
tor. Let k be a positive integer. A k-ary matrix is a matrix with non-

negative integral 
oeÆ
ients su
h that the sum of ea
h row is k. In a similar way,

a graph G is 
alled k-ary if its adja
en
y matrix is k-ary. This means that ea
h

vertex of G has out-degree k.

An N-representation (i;M; t) with M a Q � Q matrix, is said to be trim if for

ea
h index p 2 Q there is a non-negative integer n su
h that (iM

n

)

p

> 0 and there

is a non-negative integer m su
h that (M

m

t)

p

> 0.

A sequen
e s = (s

n

)

n�0

is said to be the merge of the sequen
es s

(0)

; : : : ; s

(p�1)

,

where p is a positive integer, if s

(i)

n

= s

i+np

for 0 � i � p � 1. Equivalently,

s(z) =

P

p�1

i=0

z

i

s

(i)

(z

p

). If (i;M; t) is an N-representation of s, then (iM

i

;M

p

; t) is

an N-representation of s

(i)

for ea
h integer 0 � i � p� 1.

A Z-rational sequen
e is said to have a dominating pole if it 
an be written as a

rational fra
tion s(z) = p(z)=q(z), with p; q relatively prime, where q has a simple

root r su
h that r

0

> r for any other root r

0

.

The following theorem is known as Soittola's theorem. We state it without proof

(see [Berstel and Reutenauer 1988, p. 90℄ or [Salomaa and Soittola 1978, p. 74℄).

Theorem 2.1. A Z-rational sequen
e with non-negative terms is regular if and

only it is the merge of Z-rational sequen
es with a dominating pole.

As a 
onsequen
e of Soittola's theorem, given a triple (i;M; t), it is de
idable

whether the spe
i�ed Z-rational sequen
e is regular. If s is a regular sequen
e, there

is a 
omputable positive integer p (the period) su
h that s

j+np

� 


j

n

l

j

�

n

j

as n !

1 (j = 0; : : : ; p � 1), where 


j

> 0, l

j

2 N and �

j

is a non-negative real (see for

instan
e [Salomaa and Soittola 1978, p. 62℄). Furthermore, �

j

and l

j

are 
om-

putable.

3. GENERATING SEQUENCE OF A REGULAR LANGUAGE ON K SYMBOLS

In this se
tion, we state the main result of this paper, whi
h is a 
hara
terization

of the generating sequen
es of regular languages on k symbols.

Let A be a k-letter alphabet and L be a language over A, that is, a subset of

A

�

, where A

�

is the set of all �nite words whose letters are in A. The generating

sequen
e of L is de�ned as the sequen
e s = (s

n

)

n�0

, where s

n

is the number of

words of L of length n.

The generating sequen
e of a formal language L gives useful information on

L. For example, assuming that the letters are 
hosen at random uniformly and

independently, the probability that a word of length n is in L is equal to

s

n

2

n

. The

Journal of the ACM, Vol. V, No. N, Month 20YY.
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sequen
e s

n

is also used to de�ne the notion of entropy of L as the superior limit

of the sequen
e

1

n

log s

n

(see [Lind and Mar
us 1995℄ or [Kui
h 1970℄).

It is known that the generating sequen
e of a regular language is a regular se-

quen
e. It is also 
lear that the generating sequen
e of a regular language over

a k-letter alphabet satis�es the following two 
onditions of being the generating

sequen
e of

|a language over a k-letter alphabet,

|a regular language.

The �rst 
ondition is equivalent to the fa
t that the generating sequen
e s satis�es

s

n

� k

n

, for any n � 0. The se
ond 
ondition is equivalent to the fa
t that the

sequen
e is regular. A natural question is the suÆ
ien
y of the two 
onditions

to ensure that s is the generating sequen
e of a regular language over a k-letter

alphabet. This question is similar to one solved in [Bassino et al. 2000℄ (see also

[Bassino et al. 2001℄ and [Bassino et al. 1999℄), where it is shown that a sequen
e

is the generating sequen
e of a regular k-ary tree if and only if it is the generating

sequen
e of k-ary tree and if it is regular.

The situation is quite di�erent here sin
e we give below an example of a regular

sequen
e s that is not the generating sequen
e of a regular language over a k-letter

alphabet, although s

n

� k

n

for any n � 0. The 
ounterexample is based on an

example of a Z-rational sequen
e with non-negative terms that is not regular (see

[Eilenberg 1974, p. 216-218℄ or [Berstel and Reutenauer 1988, p. 95℄).

Example 3.1. Let r be the sequen
e su
h that, for any n � 0, r

n

= b

2n


os

2

(n�),

with 
os � =

a

b

, where the integers a; b are su
h that b 6= 2a and 0 < a < b. We

also assume that b

2

< k. The sequen
e r is Z-rational, has non-negative integer

terms and is not regular [Eilenberg 1974, p. 216-218℄. Note that, for any n � 0,

r

n

� k

n

. We now de�ne the sequen
e s by s

n

= k

n

�r

n

. By Soittola's theorem, the

sequen
e s is regular sin
e it is a merge of rational sequen
es having a dominating

pole, and it satis�es s

n

� k

n

for any n � 0. If s were the generating sequen
e of a

regular language L over a k-letter alphabet A, its 
omplementary sequen
e r would

be the generating sequen
e of the 
omplement of L. Thus r would be regular, a


ontradi
tion.

Example 3.1 leads us to state the following result whi
h 
ompletely 
hara
terizes

the sequen
es that are generating sequen
es of languages over a k-letter alphabet.

It is proved in Se
tion 7.

Theorem 3.2. A sequen
e s is the generating sequen
e of a regular language

over a k-letter alphabet if and only if both sequen
es s = (s

n

)

n�0

and t = (k

n

�

s

n

)

n�0

are regular.

Observe �rst that the se
ond 
ondition implies that s

n

� k

n

for all n sin
e by

de�nition a regular sequen
e has non-negative terms. If s is a given Z-rational

sequen
e and k a positive integer, the two 
onditions are de
idable as seen above.

Moreover if s is regular, one 
an 
ompute the least integer k

0

su
h that s

n

� k

n

0

,

for any integer n � 0. For k > k

0

, the se
ond 
ondition is automati
ally satis�ed

again by Soittola's theorem. It follows that, given some regular sequen
e, one 
an

Journal of the ACM, Vol. V, No. N, Month 20YY.
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hara
terize the minimal alphabet su
h that s is the generating sequen
e of a regular

language on this alphabet.

4. EQUIVALENCE OF REPRESENTATIONS

In this se
tion, we de�ne a transformation on a representation of a sequen
e over a

semiring that extends the notion of multiset extension introdu
ed in [Bassino et al.

2000℄ to representations.

Let (i;M; t) and (j; N;x) be two representations, and U be a matrix su
h that

NU = UM;

jU = i;

x = Ut:

The transformation from (i;M; t) to (j; N;x) is 
alled a forward elementary equiv-

alen
e. The matrix U is 
alled the transfer matrix of the elementary equivalen
e,

denoted (i;M; t)

U

�! (j; N;x), or (i;M; t)

U

�!

K

(j; N;x) to spe
ify that U has its


oeÆ
ients in K. In this 
ase, we also talk of a K-forward elementary equivalen
e.

Note that M or N may have 
oeÆ
ients outside K.

Noti
e that, if we identify an element of S to the row Q-ve
tor of U of the


orresponding index, the equality NU = UM is equivalent to the fa
t that, for any

element u of S,

uM =

X

v2S

N

u;v

v:

The inverse transformation is 
alled a ba
kward elementary equivalen
e, denoted

(i;M; t)

U

 � (j; N;x). A forward or ba
kward elementary equivalen
e is 
alled an

elementary equivalen
e. The symmetri
 and transitive 
losure of the relation of

forward elementary equivalen
e with transfer matri
es with 
oeÆ
ients in K, is


alled the equivalen
e over K, denoted by �

K

.

Our de�nition of an elementary equivalen
e is 
onne
ted with 
lassi
al notions on

matri
es. Indeed, the de�nition of a forward elementary equivalen
e uses a relation

between the matri
es M , N whi
h generalizes the 
onjuga
y relation. The general

solution of the matrix equation NX = XM is given in [Gantma
her 1977, p. 219℄.

A nonzero solution exists if and only if M and N have a 
ommon 
hara
teristi


eigenvalue. It is also known [Lind and Mar
us 1995, p. 285℄ that, when M;N

are non-negative real matri
es with the same dominant eigenvalue, the equation

NX = XM has a non-negative and nonzero solution.

A simple example of forward (or ba
kward) elementary equivalen
e is similarity.

Two K-representations (i;M; t) and (i

0

;M

0

; t

0

) are said to be similar over K if and

only if there is a matrix P , invertible in K, su
h that (i;M; t)

P

�! (i

0

;M

0

; t

0

).

Another example of a ba
kward elementary equivalen
e is the out-splitting that


omes from symboli
 dynami
s [Lind and Mar
us 1995, p. 55℄. Let (j; N;x) be an

N-representation. The matrix N is the adja
en
y matrix of a graph G on a set S

of verti
es. Let us 
onsider the graph H on a set Q = (S�fig)[fi

0

; i

00

g of verti
es

obtained from G by splitting the vertex i of G into two verti
es i

0

and i

00

a

ording

to a partition in two parts P

1

; P

2

of edges going out of i. The edges 
oming in i are

Journal of the ACM, Vol. V, No. N, Month 20YY.
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dupli
ated in H into edges 
oming in i

0

and i

00

. Let M be the adja
en
y matrix of

H . Let D be the S �Q matrix de�ned by D

pp

= 1 if p 6= i, D

ii

0

= D

ii

00

= 1, and

D

pq

= 0 otherwise. Let E be the Q� S matrix de�ned by E

pq

= M

pq

if p 6= i

0

; i

00

and E

i

0

q

(respe
tively E

i

00

q

) is the number of edges in P

1

(respe
tively P

2

) going

from i to q. It 
an be easily 
he
ked (see [Lind and Mar
us 1995, p. 55℄) that

ED =M and DE = N:

Then

DM = ND and EN =ME:

The matrixM is said to be obtained by an out-splitting of N . For any non-negative

integral ve
tor x, there is an a non-negative integral ve
tor t su
h that x = Dt. By

setting i = jD, we get (i;M; t)

D

�! (j; N;x). This 
an be stated as follows.

Proposition 4.1. For any N-representation (j; N;x) and any matrix M that

is obtained by out-splitting of N , there are non-negative integral ve
tors i; t and a

transfer matrix D su
h that (i;M; t)

D

�!

N

(j; N;x).

Similar results 
an be obtained for input state splitting. The notion of forward

or ba
kward elementary equivalen
e is nevertheless mu
h weaker than the symboli


dynami
s notion of 
onjuga
y or even the notion of shift equivalen
e (see [Lind and

Mar
us 1995℄, [Kit
hens 1997℄ for these notions).

The following two propositions are dire
t 
onsequen
es of the de�nitions.

Proposition 4.2. Equivalent representations spe
ify the same sequen
e.

Proof. If (i;M; t)

U

�! (j; N;x), then iM

n

t = jUM

n

t = jN

n

Ut = jN

n

x, for

any non-negative integer n.

Proposition 4.3. The 
omposition of two forward (respe
tively ba
kward) ele-

mentary equivalen
es is a forward (respe
tively ba
kward) elementary equivalen
e.

If (i;M; t)

U

�! (j; N;x) and (j; N;x)

V

�! (j

0

; N

0

;x

0

), then (i;M; t)

V U

��! (j

0

; N

0

;x

0

).

Proof. The proof is straightforward.

Che
king whether two representations over a �eld K are elementary equivalent

is de
idable, as shown in the following proposition.

Proposition 4.4. Let K be a �eld. Given two K-representations, (i;M; t) and

(j; N;x), it is de
idable whether there is a K-forward elementary equivalen
e from

(i;M; t) to (j; N;x).

Proof. If (i;M; t) has dimension d and (j; N;x) dimension d

0

, the existen
e of

a matrix U su
h that NU = UM , jU = i and x = Ut, is obtained by solving a

Cramer system of dd

0

+d+d

0

equations with dd

0

unknowns. This 
an be performed

in 
ubi
 time.

The 
onverse of Proposition 4.2 is due to S
h�utzenberger. His result states that

if K is a prin
ipal ideal domain, any K-rational sequen
e has a redu
ed represen-

tation that 
an be 
omputed in two steps (see for instan
e [Berstel and Reutenauer

1988℄, [Salomaa and Soittola 1978℄ or [Sakarovit
h 2003℄). These two steps are
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8 � M.-P. B�eal and D. Perrin

respe
tively a forward elementary equivalen
e and a ba
kward elementary equiva-

len
e (or 
onversely). This leads to the following statement in whi
h K is supposed

to be a prin
ipal ideal domain.

Proposition 4.5. Let (i;M; t) be a representation over K of a sequen
e, and

(j; N;x) its left minimal representation over K. There is a forward elementary

equivalen
e followed by a ba
kward elementary equivalen
e from (i;M; t) to (j; N;x).

As a 
onsequen
e, two K-representations spe
ify the same sequen
e if and only if

they are equivalent over K.

We brie
y re
all the 
onstru
tion of S
h�utzenberger. Noti
e that K is not ne
-

essarily a �eld.

Proof. We already know that two K-representations that are equivalent over

K spe
ify the same sequen
e.

Conversely, let (i;M; t) be a K-representation of dimension d. Let F be the

quotient �eld of K. We �rst show that (i;M; t) is equivalent over K to a K-

representation whi
h is redu
ed over K and over F . For any non-negative integer

n, iM

n

2 K

1�d

. Thus the K-module E generated by the ve
tors iM

n

for n � 0, is

a submodule of the free K-module K

1�d

. It is thus a free K-module. Let d

0

be its

dimension as K-module and let e

1

; : : : ; e

d

0

be one of its basis. Ea
h e

i

is a linear


ombination over K of the ve
tors iM

n

for n � 0. Let U be the d

0

� d matrix

over K whose rows are the ve
tors e

i

, 1 � i � d

0

. The K-module E is stable by

multipli
ation on the right by the matrix M . Let N be d

0

� d matrix over K that

represents the a
tion ofM in the basis e

1

; : : : ; e

d

0

, that is, if e

i

M = a

1

e

1

+ : : : a

d

0

e

d

0

for some elements a

1

; : : : ; a

d

0

2 K, one de�nes the row of index i of N to be

[a

1

; : : : ; a

d

0

℄. It is a 
onsequen
e of the de�nition that UM = NU . Sin
e i belongs

to the K-module E, the ve
tor i is a K-linear 
ombination of the e

i

. Thus there

exists a ve
tor j, with 
oeÆ
ients in K, su
h that i = jU . We also set x = Ut. Note

that the K-module generated by the ve
tors jN

n

for n � 0 has the same dimension

d

0

as the K-module E.

Symmetri
ally, let r � d

0

be the dimension of the K-module generated by the

ve
tors N

n

x for n � 0. By 
onsidering the transpose (
~
x;

~

N;

~

t) of the triple (j; N;x),

where

~

N denotes the transpose of the matrix N , there is a K-representation of

dimension r, (k; P;y), and a transfer matrix V over K su
h that (k; P;y)

V

�!

K

(j; N;x). Sin
e (i;M; t)

U

�!

K

(j; N;x), we obtain that the representations (i;M; t)

and (k; P;y) are equivalent over K.

Let us denote by V (j; N) the ve
tor spa
e over F generated by the ve
tors jN

n

for n � 0. Sin
e V (k; P ) = V (j; N), and sin
e V (j; N) = K

1�d

0

, the dimension

of V (j; N) = V (k; P ) is the rank r of V . Thus (k; P;y) is redu
ed over F and

thus also over K. It has been obtained from (i;M; t) with one forward elementary

equivalen
e followed by one ba
kward elementary equivalen
e.

A similar proof shows that there is a ba
kward elementary equivalen
e followed

by a forward elementary equivalen
e from (i;M; t) to a representation redu
ed over

F .

We now show that if (i;M; t) is a K-representation of dimension r of s, there is

a forward elementary equivalen
e from (i;M; t) to the minimal left representation
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of s whi
h 
ompletes the proof sin
e the 
omposition of two forward elementary

equivalen
es is a forward elementary equivalen
e.

Thus V (i;M) is a ve
tor spa
e of dimension r over F . Then (i; iM; : : : ; iM

r�1

)

is a basis of this spa
e over F and there are a

0

; a

1

; : : : a

r�1

2 F su
h that iM

r

=

a

0

i+ a

1

iM + � � �+ a

r�1

iM

r�1

. Let U be the r � r matrix over K, invertible in F ,

de�ned by

U =

2

6

6

6

4

i

iM

.

.

.

iM

r�1

3

7

7

7

5

:

Let N be the matrix of dimension r with 
oeÆ
ients in F whi
h represents the

right multipli
ation by M in the basis (i; : : : ; iM

r�1

). We get (i;M; t)

U

�!

K

(j; N;x)

with

j =

�

1 0 � � � 0

�

; N =

2

6

6

6

6

6

4

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1

a

0

a

1

a

2

: : : a

r�1

3

7

7

7

7

7

5

;x = tU:

Sin
e (j; N;x) spe
i�es s, we have

x =

2

6

4

s

0

.

.

.

s

r�1

3

7

5

:

Sin
e U is invertible in F , the 
hara
teristi
 polynomials ofM and N are equal and

the 
hara
teristi
 polynomial of M has its 
oeÆ
ients in K. Sin
e this polynomial

is X

r

� a

r�1

X

r�1

� � � � � a

1

X � a

0

, the matrix N has its 
oeÆ
ients in K.

It is also known (S
h�utzenberger 1961, Fliess 1974) [Berstel and Reutenauer 1988,

p. 27℄ that, if K is a �eld, all redu
ed representations are similar over K. Note

that the result is not true if K is not a �eld. Consider for instan
e the two Z-

representations of dimension one: (i = [2℄;M = [1℄; t = [3℄) and (j = [3℄; N =

[1℄;x = [2℄). They are similar over Q but not over Z. It is known that 
he
king

whether twoK-representations spe
ify the same sequen
e is de
idable in polynomial

time (see for instan
e [Berstel and Reutenauer 1988℄).

5. PERRON GEOMETRY

In this se
tion, we 
onsider Z-rational sequen
es and regular sequen
es. We prove a

series of lemmas used in the next se
tion. The proofs rely on the Perron-Frobenius

theory of non-negative matri
es (see [Lind and Mar
us 1995℄ for an introdu
tion or

[Ma
Cluer 2000℄ for a re
ent survey).

If v = (v

q

)

q2Q

is a ve
tor with 
oeÆ
ients in R, we say that v is non-negative,

denoted v � 0, (respe
tively positive, denoted v > 0) if v

q

� 0 (respe
tively v

q

> 0)

for all q 2 Q. The same 
onventions are used for matri
es.
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10 � M.-P. B�eal and D. Perrin

An integer matrix has a dominating eigenvalue, i.e., has an eigenvalue � > 0 su
h

that � > j�j for all other eigenvalues � of M . An integer matrix M is said to be

spe
trally Perron if it has a dominating eigenvalue whi
h is simple

1

.

A sequen
e of integers s is said to be spe
trally Perron if it has a redu
ed repre-

sentation over Z with a spe
trally Perron matrix. A representation over Z with a

spe
trally Perron matrix is 
alled a spe
trally Perron representation. The left min-

imal representation, and more generally all redu
ed representations, of a spe
trally

Perron sequen
e are spe
trally Perron representations. The spe
tral radius of the

matrix of a redu
ed spe
trally Perron representation is 
alled the Perron value of

the sequen
e spe
i�ed.

Let (i;M; t) be a spe
trally Perron representation. The matrix M is a spe
trally

Perron Q�Q matrix whose spe
tral radius is �, where Q is the �nite set of states

of the representation. We denote by d the dimension of M . The matrix M has a

nonzero left eigenve
tor w asso
iated to the eigenvalue �. All other eigenve
tors

asso
iated to � are 
olinear to it.

Let W be the span of w over R. A

ording to the Jordan 
anoni
al form of

M , there is a 
omplementaryM -invariant subspa
e V 
orresponding to eigenvalues

j�j < �. The spa
e R

1�d

is a dire
t sum ofW and V . We denote by �

1

: R

1�d

!W

the proje
tion to W along V and by �

2

: R

1�d

! V the proje
tion to V along W .

We also denote by �

1

: R

1�d

! R the fun
tion asso
iating to ea
h ve
tor u the

real number �

1

(u) su
h that �

1

(u) = �

1

(u)w. The real number �

1

(u) is 
alled the

dominant 
oordinate of u.

Thus ea
h ve
tor u of R

1�d


an be written

u = �

1

(u)w + �

2

(u):

Note that

uM = ��

1

(u)w + �

2

(u)M:

Hen
e, sin
e V is invariant by M , �

1

(uM) = ��

1

(u) and �

2

(u)M = �

2

(uM).

When i has a nonzero dominant 
oordinate, it will be 
onvenient to 
hoose a left

Perron eigenve
tor w su
h that �

1

(i) > 0. This is done by 
hanging w to �w if

�

1

(i) < 0. Note that w depends only on M and i. When the representation is

left-redu
ed, the ve
tor i has a positive dominant 
oordinate.

For any real number r, we denote by B(v; r) the ball of radius r 
entered on

the point v, whi
h is the set of ve
tors u su
h that kv � uk � r where k k is any

equivalent norm of R

1�d

. It will be 
onvenient (in order to prove Lemma 5.4 below

for instan
e) to use a norm that satis�es, for any ve
tor u,

kuk = k�

1

(u)k+ k�

2

(u)k:

Let w be a left Perron eigenve
tor of (i;M; t). We denote by K

r

(w) the set

K

r

(w) = f�v j v 2 B(w; r); � � 0g:

We also denote by K

+

r

(w) the nonzero ve
tors of K

r

(w).

The following lemma is from [Lind and Mar
us 1995, p. 373℄.

1

The de�nition taken from [Lind and Mar
us 1995, p. 371℄ (see also [Lind and Mar
us 1995,

p. 369℄) uses � � 1 instead of � > 0.
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Lemma 5.1. Let (i;M; t) be a spe
trally Perron representation. Let " be a posi-

tive real number and let u be an integer ve
tor with a positive dominant 
oordinate.

Then there is a positive integer m su
h that uM

n

belongs to K

"

(w) for n � m.

Proof. We follow the lines of [Lind and Mar
us 1995, p. 373℄ for the proof. We

have

u = �

1

(u)w + �

2

(u):

Thus

uM

n

= �

n

�

1

(u)w + �

2

(u)M

n

:

It follows from the Jordan 
anoni
al form that the growth rate ofM on V is stri
tly

less than �, i. e. , for v 2 V , kvM

n

k=�

n

! 0 as n!1. Then, for a large enough

n,

k�

2

(u)M

n

k < �

n

�

1

(u)":

Hen
e, for a large enough n, uM

n

=�

n

�

1

(u) belongs to K

"

(w) and thus uM

n

also.

Let s be a Z-ratio nal sequen
e of non-negative integers. The 
omplexity of the

sequen
e s is de�ned as the inverse of its 
onvergen
e radius, i.e., lim sup

n!1

s

1=n

n

.

Lemma 5.2. Let (i;M; t) be a spe
trally Perron representation with a spe
tral

radius � su
h that the sequen
e spe
i�ed is non-negative and has 
omplexity �.

Then �

1

(i) > 0 and w � t > 0.

Proof. Sin
e

i = �

1

(i)w + �

2

(i);

we have

iM

n

t = �

n

�

1

(i)w � t+ �

2

(i)M

n

t;

with a growth rate of M on V stri
tly less than �. If s has 
omplexity �, �

1

(i) 6= 0

and w �t 6= 0. Moreover, sin
e the sequen
e spe
i�ed is non-negative, �

1

(i):(w �t) �

0. Under the hypothesis on the 
hoi
e of w, we get �

1

(i) > 0. Thus w � t > 0.

Lemma 5.3. Let (i;M; t) be a spe
trally Perron representation with a spe
tral

radius � su
h that the sequen
e spe
i�ed is non-negative and has 
omplexity �.

Then there exists a positive real number � su
h that for any ve
tor u 2 K

+

�

(w), we

have u � t > 0.

Proof. This follows dire
tly from Lemma 5.2.

Lemma 5.4. Let (i;M; t) be a spe
trally Perron representation. For any positive

real number �, there exists a positive real number " su
h that, for any positive

integer n, u 2 K

"

(w), then uM

n

2 K

�

(w).

Proof. Let u 2 K

"

(w). Thus u = �(w + z), where z 2 B(0; ") and � is a

positive real number. One has z = �

1

(z)w + v, where v 2 V .

Then for any non-negative integer n

uM

n

�

n

= �(w + �

1

(z)w +

vM

n

�

n

):
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Sin
e kzk = k�

1

(z)wk+ kvk, k�

1

(z)wk � " and kvk � ".

It follows from the Jordan 
anoni
al form that the growth rate of M on V is

stri
tly less than �. Thus there is an integerm su
h that for any n > m, kM

n

k=�

n

�

1 on the spa
e V . Let N be the maximum of kM

n

k=�

n

for all 0 � n � m.

We now 
hoose " = min(

�

2

;

�

2N

). Then k�

1

(z)w+

vM

n

�

n

k < � for any non-negative

integer n. It follows that, for any non-negative integer n,

uM

n

�

n

2 K

�

(w) and thus

uM

n

also.

Remark 5.5. We note for future use that, if moreover � < 1 and u 6= 0, then,

for any non-negative integer n, uM

n

6= 0.

We now state and prove a geometri
al lemma whi
h is used in the 
onstru
tion

of Se
tion 6. The lemma is essentially due to Lind (see [Lind and Mar
us 1995,

p. 374℄), who proved that there is a positive real number " su
h that all integer

ve
tors in K

"

(w) are non-negative integral 
ombinations of a �nite number of in-

teger ve
tors. With a slight modi�
ation, we show below that there is a positive

real number " su
h that all integer ve
tors in K

"

(w) are non-negative integral


ombinations of a �nite number of integer ve
tors in K

2"

(w).

Lemma 5.6. For a small enough positive real ", there is a �nite set P of integer

points in K

2"

(w) su
h that ea
h integer point of K

"

(w) is a non-negative integral


ombination of points of P .

Proof. For te
hni
al reasons that will appear below, we 
hoose " < 1=2.

We 
hoose a left eigenve
tor w with norm 1. If q is a point of B(w; "), B(q; ") �

B(w; 2") � K

2"

(w). As a 
onsequen
e, for any positive real number R, any ball

B(Rq; R") is 
ontained in K

2"

(w). Let D be the minimal value su
h that any ball

of size D 
ontains at least one integer point. This value depends on the norm kk


hosen. We �x a large enough R su
h that r = R" > 2D. Note that R > r.

We de�ne the �nite set of integer points P = K

2"

(w) \B(0; 3R)\ N

d

. We show

that all integer points of K

"

(w) are non-negative integral 
ombinations of points of

P .

Let us assume that this property is false, and denote by x an integer point of

minimal norm whi
h is in K

"

(w) and whi
h is not a non-negative integral 
ombi-

nation of points of P . Then x does not belong to P , and its norm is greater than

2R.

Let p

0

be a point of B(w; ") whi
h belongs to the semi-line de�ned by the point

x and the null origin (see Figure 1). Su
h a point exists sin
e x belongs to K

"

(w).

Note that x = l

0

p

0

, where l

0

is a positive real number. Sin
e w has norm 1, we have

1� " � kp

0

k � 1 + ".

Let p = Rp

0

, and l = l

0

=R. We have

(1� ")R � kpk � (1 + ")R < kxk=2: (1)

Let m

1

=

Rw+p

2

and m

2

= 2p �m

1

. Thus the ball B(m

1

; r=2) is in
luded in

B(p; r) and in B(Rw; r). Thus B(m

1

; r=2) � K

"

(w). It follows that

B(m

2

; r=2) � B(p; r) � B(Rw; 2r) � K

2"

(w): (2)

A point u is in B(m

2

; r=2) if and only if 2p� u is in B(m

1

; r=2).
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Sin
e r=2 � D, there is an integer point u in B(m

2

; r=2). Thus 2p� u belongs

to B(m

1

; r=2) � K

"

(w). We get 2p� u 2 K

"

(w) and u 2 K

2"

(w).

We have a su

ession of inequalities. First, kx� uk � kx� pk+ kp� uk. Sin
e

x and p are 
olinear, we have kx � pk = kxk � kpk. Also kp � uk � r sin
e

u 2 B(m

2

; r=2) and B(m

2

; r=2) � B(p; r) by Equation (2). Thus

kx� uk � kxk � kpk+ r:

This implies by Inequality (1)

kx� uk � kxk+ ("� (1� "))R:

Sin
e " < 1=2, we obtain kx� uk < kxk.

Sin
e x = lp with l > 2, x� u = (l� 2)p+ (2p� u). Sin
e (l� 2)p and 2p� u

belong to K

"

(w), the point x� u is also in K

"

(w).

Thus x�u is an integer point of K

"

(w) whi
h is stri
tly 
loser to the origin than

x. By hypothesis, x�u is then a non-negative integral 
ombination of points of P .

From kuk � kpk+ kp � uk, we get kuk � (1 + ")R + "R � 2R. This shows that

u 2 P . Then x = (x � u) + u is a non-negative integral 
ombination of points of

P . This 
ontradi
ts the hypothesis, 
on
luding the proof of this lemma.

w

p’

p

u

x

x - u

Rw

Fig. 1. The geometri
al lemma (Lemma 5.6).
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6. FROM A Z-REPRESENTATION TO AN N-REPRESENTATION

In this se
tion, we prove a result whi
h gives a suÆ
ient 
ondition for a sequen
e

to be regular (Theorem 6.1).

It is known that a non-negative Z-rational sequen
e that has a dominating pole

is regular (Soittola 1976, Katayama et al. 1978, see [Berstel and Reutenauer 1988,

p. 83℄ or also [Salomaa and Soittola 1978℄). From this result and the results of

Se
tion 4 follows that any Z-representation of a non-negative sequen
e that has a

dominating pole is equivalent over Z to a regular representation. In the parti
ular


ase of a spe
trally Perron non-negative sequen
e, we show that an N-representation


an be obtained by only one forward elementary equivalen
e from any redu
ed Z-

representation of the sequen
e. This result is an adaptation to representations of a

result from Lind ([Lind 1983℄, [Lind 1984℄, see also [Lind and Mar
us 1995, Theorem

11.1.4 p. 369℄) whi
h says that for any Perron number, there is a primitive integral

matrix whose spe
tral radius is this Perron number.

Theorem 6.1. Let (i;M; t) be a Z-representation of a sequen
e s of non-negative

integers. If the two following 
onditions are satis�ed,

(i) M is spe
trally Perron,

(ii) the 
omplexity of s is the spe
tral radius of M ,

then there exists a forward elementary equivalen
e from (i;M; t) to an N-representation.

Proof. Let (i;M; t) be a spe
trally Perron Z-representation of a non-negative

sequen
e s. The matrix M is thus spe
trally Perron with a spe
tral radius �. Let

w be a left Perron eigenve
tor su
h that i has a non-negative dominant 
oordinate.

By Lemma 5.2, i has a positive dominant 
oordinate.

By Lemma 5.3, there is a positive real number � su
h that for any ve
tor u 2

K

+

�

(w), we have u �t > 0. We moreover 
hoose � small enough su
h that any ve
tor

in K

+

�

(w) has a positive dominant 
oordinate.

By Lemma 5.4 there exists a positive real number " su
h that, for any positive

integer n, if u 2 K

2"

(w) then uM

n

2 K

�

(w). Let us �x su
h a positive real number

" with moreover " < 1=2 and 2" < �. Thus K

"

(w) � K

2"

(w) � K

�

(w).

By Lemma 5.6, there is �nite set P of integer points in K

2"

(w) su
h that ea
h

integer point of K

"

(w) is a non-negative integral 
ombination of points of P .

By Lemma 5.1 and sin
e P is a �nite set of points of K

2"

(w), there is an integer

n

0

su
h that for any ve
tor v 2 P [ fig, the ve
tor vM

n

0

2 K

"

(w).

We de�ne a forward elementary equivalen
e from (i;M; t) to a representation

(j; N;x) as follows. The rows of the transfer matrix U are the nonzero row ve
tors

vM

j

, with v 2 P [ fig and 0 � j � n

0

� 1. We de�ne the matrix N as a matrix

of the multipli
ation by M on the right on the set S formed by these row ve
tors.

If u is in S, either uM is in S or uM belongs to K

"

(w). In the latter 
ase,

it is a 
onsequen
e of the geometri
al lemma that uM is a non-negative integral


ombination of points of P . If u is in S and uM =

P

v2S

�

u;v

v, with �

u;v

2 N,

we de�ne the 
oeÆ
ient of index u;v of N as �

u;v

. Thus the matrix N has non-

negative integral 
oeÆ
ients. Note that sin
e S is not ne
essarily a basis, N is

not ne
essarily unique. By de�nition, UM = NU . We only keep in S the verti
es

a

essible from i in the graph de�ned by the matrix N . Moreover, we order the

rows of U in su
h a way that the �rst row of U is the ve
tor i.
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We de�ne the row ve
tor j of length jSj by j =

�

1 0 : : : 0

�

and the 
olumn ve
tor

x by x = Ut. If u = iM

j

for 0 � j � n

0

� 1, then x

u

= u � t = iM

j

t = s

j

� 0.

By Remark 5.5, if u is a nonzero ve
tor in K

2"

(w), then uM

j

2 K

+

�

(w) for any

j � 0. Then uM

j

t > 0 for any j � 0. Thus x has non-negative integral 
oeÆ
ients.

Note that the transfer matrix U has its 
oeÆ
ients in Z. Thus we have proved that

(i;M; t)

U

�! (j; N;x) is a ba
kward elementary equivalen
e over Z and (j; N;x) is

an N-representation of s. This 
on
ludes the proof of the theorem.

We add two remarks on further 
onsequen
es of the above proof for future refer-

en
e. Both follow from the last paragraph of the proof.

Remark 6.2. If the sequen
e s satis�es the additional hypothesis s

n

> 0 for any

non-negative integer n, then the ve
tor x is a positive integral ve
tor.

Remark 6.3. If t

0

is another non-negative ve
tor su
h that u � t

0

> 0 for any

ve
tor u 2 K

+

�

(w), and su
h that (i;M; t

0

) spe
i�es a sequen
e of non-negative

integers, x

0

= Ut

0

is a non-negative ve
tor.

Corollary 6.4. From any redu
ed spe
trally Perron representation of a non-

negative sequen
e, there exits a forward elementary equivalen
e to a regular repre-

sentation.

Proof. If (i;M; t) is a redu
ed Z-representation of a sequen
e of non-negative

integers s, the 
omplexity of s is equal to the spe
tral radius of M .

Example 6.5. Let us 
onsider the regular sequen
e s de�ned by, for n � 2,

s

0

= 1;

s

1

= 2;

s

n

= 4s

n�1

� 3s

n�2

:

A Z-representation of this sequen
e is

i =

�

1 0

�

;M =

�

0 1

�3 4

�

; t =

�

1

2

�

:

The matrix M is spe
trally Perron with a spe
tral radius 3 sin
e its 
hara
teristi


polynomial is (X � 3)(X � 1). The 
omputation of the �rst powers iM

n

gives

iM

0

=

�

1 0

�

;

iM

1

=

�

0 1

�

= u+ i;

where u =

�

�1 1

�

. We have uM = 3u and thus the set of non-negative integral


ombinations of the ve
tors i, u is stable by M . As in the proof of Theorem 6.1,

we 
hoose as transfer matrix

U =

�

1 0

�1 1

�

:

Thus s has the following N-representation whi
h is elementary equivalent to (i;M; t):

j =

�

1 0

�

; N =

�

1 1

0 3

�

;x =

�

1

1

�

:

The sequen
e s is thus spe
i�ed by the triple (f1g; H; f1; 2g), where H is the graph

of Figure 2.
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1 2

1 1

Fig. 2. An N-representation of the sequen
e s de�ned by s

0

= 1, s

1

= 2, and s

n

= 4s

n�1

� 3s

n�2

for n � 2. The vertex 1 (marked with an in
oming arrow) is the initial vertex and 1; 2 (marked

with an outgoing arrow) are the terminal verti
es.

7. THE MAIN RESULT

We now prove the main result in a slightly more general form (Theorem 7.5 below).

The 
hara
terization of the generating sequen
es of regular languages on k symbols

given in Theorem 3.2 of Se
tion 3 is a 
onsequen
e of Theorem 7.5. We �rst state

several lemmas. Lemma 7.4 
onstitutes one of the main parts of the proof of

Theorem 7.5.

We re
all the notion of approximate eigenve
tor. Let k be a positive integer. A

right k-approximate eigenve
tor of a non-negative matrix M is an integer 
olumn

ve
tor v � 0 su
h that Mv � kv. When M is the adja
en
y matrix of a graph G,

we also say that v is a k-approximate eigenve
tor of G.

Lemma 7.1. Let (j; N;x) be an N-representation su
h that x is a positive right

k-approximate eigenve
tor (respe
tively a positive right k-eigenve
tor) of N . Then

there is an N-representation (j; N;x) and a ba
kward elementary equivalen
e (i;M; t)

U

 �

(j; N;x), su
h that t is a positive right k-approximate eigenve
tor (respe
tively a

positive k-eigenve
tor) of M whi
h has all its 
oeÆ
ients equal to 1.

Moreover if x =

P

l

i=1

x

i

, where ea
h x

i

is a non-negative integral ve
tor, then

there are non-negative integral ve
tors t

i

su
h that x

i

= Ut

i

.

Proof. We give the proof in the 
ase of approximate eigenve
tors. The other

alternative is similar. Let us denote by Q the set of indi
es of j. Let Q

0

be the set

of pairs (q; j) with q 2 Q and 1 � j � x

q

. For ea
h p 2 Q, let us 
onsider the set

of triples f(q; j; l) j q 2 Q; 1 � j � x

q

; 1 � l � N

pq

g. Its 
ardinality is

P

q2Q

N

pq

x

q

.

Sin
e for ea
h p 2 Q, we have

X

q2Q

N

pq

x

q

� kx

p

;

it is possible to partition this set in x

p

sets X

(p;1)

; X

(p;2)

; : : : ; X

(p;x

p

)

of at most k

elements. We now de�ne the square Q

0

� Q

0

matrix M by de�ning M

(p;i)(q;j)

, for

p; q 2 Q, 1 � i � x

p

and 1 � j � x

q

, as the number of triples in X

(p;i)

whose �rst

two 
omponents are (q; j). Let U be the Q�Q

0

matrix de�ned by U

q(q;j)

= 1, for

any 1 � j � x

q

, the other 
oeÆ
ients being zero. By 
onstru
tion, we get

NU = UM:

Indeed, the 
oeÆ
ient of index p; (q; j), where 1 � j � x

q

, of NU is

X

r2Q

N

pr

U

r(q;j)

= N

pq

:
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And the 
oeÆ
ient of index p; (q; j) of UM is

X

(r;i)2Q

0

U

p(r;i)

M

(r;i)(q;j)

=

X

1�i�x

p

M

(p;i)(q;j)

= N

pq

:

We de�ne the row Q

0

-ve
tor i by i = jU . Let t be the 
olumn Q

0

-ve
tor with all

its 
oeÆ
ients equal to 1. It is straightforward that x = Ut. Thus

(i;M; t)

U

�! (j; N;x):

Sin
e the sum of ea
h row ofM is less than or equal to k, t is a right k-approximate

eigenve
tor of M .

Let us now assume that x =

P

l

i=1

x

(i)

, where x

(i)

is a non-negative integral

ve
tor. Let us de�ne the 
olumnQ

0

-ve
tor t

(i)

by t

(i)

(q;j)

= 1 if and only if 1 � j � x

(i)

q

and t

(i)

(q;j)

= 0 otherwise for 1 � i � l. Then

(Ut

(i)

)

p

=

X

(q;j)2Q

0

U

p(q;j)

t

(i)

(q;j)

=

X

1�j�x

p

t

(i)

(p;j)

= x

(i)

p

:

We get x

(i)

= Ut

(i)

for 1 � i � l.

We mention that a stronger form of this lemma 
an be proved by the use of the

ACH algorithm of [Adler et al. 1983℄ whi
h is based on state splitting.

Lemma 7.2. Let (i;M; t)

U

 � (j; N;x) be a forward elementary equivalen
e be-

tween Z-representations. If t is a right k-eigenve
tor of M , then x is a right

k-eigenve
tor of N .

Proof. The proof is straightforward. IfMt = kt and (i;M; t)

U

�! (j; N;x), then

Nx = NUt = UMt = Ukt = kx.

Lemma 7.3. Any left redu
ed Z-representation (j; N;x) of m(kz)

�

, where m and

k are positive integers, is su
h that x is a right k-eigenve
tor of N .

Proof. We 
onsider a left redu
ed representation (j; N;x) ofm(kz)

�

. By Propo-

sition 4.5, there is a ba
kward elementary equivalen
e from (j; N;x) to ([m℄; [k℄; [1℄),

whi
h is the right minimal representation of m(kz)

�

. Thus

([m℄; [k℄; [1℄)

V

�! (j; N;x);

where V is the transfer matrix of this elementary equivalen
e. Sin
e

V [k℄ = NV; [m℄ = jV; x = V [1℄;

we get V = x and x is a right k-eigenve
tor of N .

The following lemma 
onstitutes the main part of the proof of Theorem 7.5. We

use here a variant of the terminology of �nite automata. Let A = (Q;A; Æ; I; T ) be

a �nite automaton with set of states Q, alphabet A, transition fun
tion Æ, set of

initial states I , and set of terminal states T . Let L be the language re
ognized by

A. We 
an de�ne a labelled graph G with Q as set of verti
es and the pairs (p; a; q)

where q 2 Æ(p; a) as edges. Conversely any su
h graph 
orresponds uniquely to an

automaton A. When A is deterministi
 we say that G is deterministi
ally labelled.

We also say that (I;G; T ) is a deterministi
 automaton that re
ognizes L.
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Lemma 7.4. Let l be a positive integer and s

1

; : : : s

l

be l regular sequen
es spe
-

i�ed by N-representations (i;M; t

i

) respe
tively, su
h that s

1

(z) + � � � + s

l

(z) =

m(kz)

�

, where m and k are positive integers. Let us assume that M has a domi-

nating eigenvalue k, that all s

i

have 
omplexity k, and that (i;M;

P

l

i=1

t

i

) is trim.

Then there is a �nite deterministi
ally labelled graph G on a k-letter alphabet, with

m initial states and a partition of the set of states of G in l sets T

i

, with 1 � i � l,

su
h that the automaton (I;G; T

i

) re
ognizes a regular language on k symbols whose

generating sequen
e is exa
tly s

i

.

Proof. We denote by t the 
olumn ve
tor

P

l

i=1

t

i

and thus (i;M; t) spe
i�es

s(z) =

P

l

i=1

s

i

(z) = m(kz)

�

. We denote by J

r

(k) the Jordan blo
k of size r:

J

r

(k) =

2

6

6

6

6

6

6

6

4

k 1 0 : : : 0 0

0 k 1 : : : 0 0

0 0 k : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : k 1

0 0 0 : : : 0 k

3

7

7

7

7

7

7

7

5

:

Sin
e (i;M; t) is a trim N-representation whi
h spe
i�es m(kz)

�

, the Jordan 
anon-

i
al form of M has no blo
k J

r

(k) where r > 1. Indeed, let us assume that the

Jordan form of M 
ontains su
h a blo
k. Then there is a positive real number 


su
h that for any large enough integer n, s

n

� 
n

r�1

k

n

. Thus the sequen
e s(z)


annot be equal to m(kz)

�

.

We 
ompute from (i;M; t) a left redu
ed Z-representation (j; N;x) of m(kz)

�

.

We know from Proposition 4.5 that there exists a transfer matrix U su
h that

(i;M; t)

U

�!

Z

(j; N;x):

Sin
e (j; N;x) is left redu
ed, the dimension of the Z-module generated by the

ve
tors jN

n

, for n � 0, is the size d of the square matrix N . This dimension is

also equal to the dimension of the ve
tor spa
e E generated by the ve
tors jN

n

, for

n � 0, over the �eld R. Let E

0

be the eigenspa
e of N asso
iated to the eigenvalue

k in E and let E

00

be a 
omplementary N -invariant subspa
e. Thus d is the sum

of the dimensions of E

0

and of E

00

. We 
laim that E

0

has dimension one. Indeed,

the ve
tor j 
an be written

j = u+ v;

where u 2 E

0

and v 2 E

00

. Sin
e for any integer n � 0,

jN

n

= k

n

u+ vN

n

;

the ve
tor spa
e over R generated by the ve
tors jN

n

, for n � 0, is in
luded in

hui + E

00

, where hui denotes the ve
tor spa
e over R generated by u. Thus the

dimension of E

0

is one.

The Jordan 
anoni
al form of N has thus a dominating eigenvalue, has no

blo
k J

r

(k), where r > 1 , and has a one dimensional eigenspa
e asso
iated to

the spe
tral radius k. The matrix N is thus a spe
trally Perron matrix. Moreover,

by Lemma 7.3, x is an integer right k-eigenve
tor of N . For ea
h integer 1 � i � l,

we de�ne x

i

= Ut

i

.
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By Theorem 6.1, there exists a forward elementary equivalen
e to a regular rep-

resentation from (j; N;x) to an N-representation (k; L;y). Let V be its transfer

matrix. Sin
e the sequen
e spe
i�ed is m(kz)

�

, it has positive terms. Thus the ve
-

tor y is a positive ve
tor (see Remark 6.2 at the end of the proof of Theorem 6.1).

By Lemma 7.2, the ve
tor y is a right k-eigenve
tor of L. It is thus a positive

integral eigenve
tor of L.

Sin
e (j; N;x

i

) is a left redu
ed representation whi
h spe
i�es s

i

, and sin
e s

i

has


omplexity k, one 
hooses by Lemma 5.3 a positive real number � su
h, that for

ea
h integer 1 � i � l, for any ve
tor u 2 K

+

�

(w), we have u � x > 0 and u � x

i

> 0.

It follows from Remark 6.3 at the end of the proof of Theorem 6.1 that the l ve
tors

y

i

= V x

i

are non-negative integral ve
tors.

The �nal step is given by Lemma 7.1. There is a regular ba
kward elementary

equivalen
e from (k; L;y) to anN -representation (i

0

;M

0

; t

0

) su
h that t

0

is a positive

right k-approximate eigenve
tor of M

0

whi
h has all its 
oeÆ
ients equal to 1. Let

us denote byW the transfer matrix of this ba
kward elementary equivalen
e. Sin
e

y =

P

l

i=1

y

i

where the ve
tors y

i

are non-negative integral ve
tors, there are two

non-negative integral ve
tors t

0

i

su
h that y

i

=W t

0

i

.

The two previous forward elementary equivalen
es and the ba
kward elementary

equivalen
e 
an be summarized in

(i;M; t)

U

�!

Z

(j; N;x)

V

�!

Z

(k; L;y)

W

 �

N

(i

0

;M

0

; t

0

):

We also have for ea
h integer 1 � i � l,

(i;M; t

i

)

U

�!

Z

(j; N;x

i

)

V

�!

Z

(k; L;y

i

)

W

 �

N

(i

0

;M

0

; t

0

i

):

Thus, for ea
h integer 1 � i � l, we get an N-representation (i

0

;M

0

; t

0

i

) of the

sequen
e s

i

. The 
oeÆ
ients of all t

0

i

are 0 or 1 and the sum of the ve
tors t

0

i

is the

ve
tor t

0

whose 
oeÆ
ients are all equal to 1. Let us denote by T

i

the set of indi
es

of t

0

i


orresponding to a 
oeÆ
ient 1. Sin
e t

0

is a right k-eigenve
tor of M

0

, the

sum of ea
h row ofM

0

is equal to k. The matrixM

0

is thus the transition matrix of

a k-ary dire
ted multigraph G. Let Q be the set of states of G. Sin
e i

0

�t

0

= m, the

sum of the 
oeÆ
ients of the ve
tor i

0

is m. We de�ne a new graph G

0

by adding

to G a new set I of m states (p; j), for p 2 Q and 1 � j � i

p

, and n edges from

(p; j) to q if there are n edges from p to q in G. This last transformation is again a

ba
kward elementary equivalen
e. Sin
e the graph G

0

is still k-ary, one 
an label it

with k symbols in a deterministi
 way. Then the automaton (I;G

0

; T

i

) re
ognizes

a regular language on k symbols whose generating sequen
e is exa
tly s

i

.

We now state and prove the main result. Theorem 3.2 is a formulation of Theo-

rem 7.5 in the 
ase of two sequen
es.

Theorem 7.5. Let m and k be two positive integers. Let s

(1)

; s

(2)

; : : : ; s

(l)

be

l regular sequen
es su
h that s

(1)

+ s

(2)

+ : : : + s

(l)

(z) = m(kz)

�

. Then there is a

�nite deterministi
ally labelled graph G on a k-letter alphabet, with m initial states

and a partition of the set of states of G in l sets T

i

, with 1 � i � l, su
h that the

automaton (I;G; T

i

) re
ognizes a regular language on k symbols whose generating

sequen
e is exa
tly s

(i)

.
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The proof 
ontains two main parts. The �rst part 
orresponds to sequen
es that

all have 
omplexity k and relies mainly on Lemma 7.4. The se
ond part treats the

other 
ase.

Proof. We �rst order the sequen
es in su
h a way that there is an integer

0 � l

0

� l�1 su
h that s

(1)

; s

(2)

; : : : ; s

(l

0

)

have a 
omplexity stri
tly less than k and

that s

(l

0

+1)

; : : : ; s

(l)

have 
omplexity k. Note that at least one of the sequen
es has


omplexity k sin
e the sum of the sequen
es is m(kz)

�

.

Let us 
onsider �rst the 
ase where l

0

= 0, that is, where all sequen
es s

(i)

have 
omplexity k. Let (i

(i)

;M

(i)

; t

(i)

) be a trim regular representation of s

(i)

for

1 � i � l. Thus the regular representation (i;M;x

(i)

) de�ned by

(i;M;x

(i)

) = (

�

i

(1)

: : : i

(l)

�

;

2

6

6

6

6

4

M

(1)

0 � � � 0

0 M

(2)

.

.

.

.

.

.

.

.

.

0

0 : : : 0 M

(l)

3

7

7

7

7

5

;

2

6

6

6

6

6

6

4

0

.

.

.

t

(i)

.

.

.

0

3

7

7

7

7

7

7

5

):

spe
i�es the sequen
e s

(i)

for 1 � i � l. We denote by t the 
olumn ve
tor

P

l

i=1

x

(i)

and thus (i;M; t) spe
i�es s(z) =

P

l

i=1

s

(i)

(z) = m(kz)

�

. Sin
e (i

(i)

;M

(i)

; t

(i)

) are

trim representations, (i;M; t) is also trim.

By the Perron-Frobenius theorem [Ma
Cluer 2000℄, the eigenvalues of maximal

modulus of M are equal to ��, where � is a positive real number and where � is a

root of unity. Thus there is an integer p su
h that M

p

has a dominating eigenvalue.

Ea
h sequen
e s

(i)

is a merge of p sequen
es s

(i;j)

spe
i�ed by (iM

j

;M

p

;x

(i)

), for

0 � j � p � 1. These representations may not be trim but M

p


annot have a

Jordan 
anoni
al form that 
ontains a blo
k J

r

(k

p

) with r > 1. Indeed, let us

assume that it is not true. Then there is at least one 
oeÆ
ient (M

p

)

n

qr

of (M

p

)

n

whose growth rate is at least 
n

r�1

k

pn

, where 
 is a positive real number. Sin
e

(i;M; t) is trim, there is a non-negative integer n

1

su
h that (iM

n

1

)

q

> 0, and

there is a non-negative integer n

2

su
h that (M

n

2

t)

r

> 0. Thus (s

n

1

+n

2

+pn

)

n�0

would have a growth rate whi
h is, up to a positive 
onstant, at least n

r�1

k

pn

whi
h is too mu
h. Note that the sequen
e

P

l

i=1

s

(i;j)

(z) is equal to mk

j

(k

p

z)

�

,

for 0 � j � p� 1.

Let j be an integer su
h that 0 � j � p � 1. Either all sequen
es s

(i;j)

have


omplexity k

p

or at least one of them has a 
omplexity stri
tly less than k

p

. In

the former 
ase, Lemma 7.4 
onstru
ts automata (I

(j)

; G

(j)

; T

(j)

i

) that re
ognize

s

(i;j)

on the alphabet A

p

, where A is a �nite alphabet with k symbols, and where

I

(j)

has 
ardinal mk

j

. For a given j, these representations de�ne l disjoint regular

languages L

(i)

j

on a k-letter alphabet with generating sequen
es s

(i;j)

. The latter


ase 
orresponds to an instan
e of the statement of the theorem when at least one

sequen
e has a 
omplexity stri
tly less than k

0

= k

p

with m

0

= mk

j

. This 
ase is

proved below. Then the sets [

p�1

j=0

L

(i)

j

, with 1 � i � l, are disjoint regular languages

on a k-letter alphabet having s

(i)

as generating sequen
es.

We now 
onsider the 
ase where there is at least one sequen
e with a 
omplexity

stri
tly less than k. We denote by t

(l

0

+1)

the sequen
e s

(1)

+ : : : + s

(l

0

)

+ s

(l

0

+1)

.
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Thus t

(l

0

+1)

is a regular sequen
e whi
h has 
omplexity k. Thus, by applying the


onstru
tion used in the 
ase where all sequen
es have 
omplexity k, we get regular

representations with 0-1 
oeÆ
ients (j; N;y

(i)

) of s

(i)

for l

0

+ 2 � i � l, and t

(l

0

+1)

for i = l

0

+ 1, su
h that j has exa
tly m 
oeÆ
ients equal to 1, and su
h that N is

a k-ary matrix. Note that the �rst 
ase where all sequen
es have 
omplexity k is

applied to at most l � 1 sequen
es and thus that we 
an reason by indu
tion.

We denote byQ the set of indi
es ofN , also 
alled states, and by d

0

the 
ardinality

of Q. If q is a state, we denote by q the 
hara
teristi
 row ve
tor of q of size d

0

.

A state q is said to be a �nal for (j; N;y

(l

0

+1)

) if y

(l

0

+1)

q

= 1. Moreover the ve
tor

z =

P

l

i=l

0

+1

y

(i)

has all its 
oeÆ
ients equal to 1. A prin
ipal 
omponent of N is an

irredu
ible 
omponent of N whose spe
tral radius is k. Sin
e N is a k-ary matrix,

ea
h prin
ipal 
omponent of N is a sink, that is, n has no nonzero 
oeÆ
ient N

pq

with p inside the 
omponent and q outside (i.e., a 
omponent from whi
h there is

\no es
ape"). A prin
ipal 
omponent that 
ontains a �nal state for (j; N;y

(l

0

+1)

)

is 
alled a �nal 
omponent. Sin
e t

(l

0

+1)

has 
omplexity k, there is at least a �nal


omponent C of N that 
ontains a �nal state q for (j; N;y

(l

0

+1)

). Moreover, there

is a positive integer s su
h that (jN

s

)

q

> 0.

We denote by p the period ofN , whi
h is the least 
ommon multiple of the periods

of the irredu
ible 
omponents of N . Re
all that the period of an irredu
ible matrix

N

0

is the g
d of positive integers n su
h that the tra
e of N

0

n

is positive. By

applying the 
onstru
tion, with other values of m and k, to the sequen
es s

(i;j)

de�ned, for 1 � i � l and 0 � j � p� 1, by s

(i;j)

n

= s

(i)

j+pn

, we 
an assume that N

has period 1 and thus that C is a primitive matrix.

As a 
onsequen
e of the Perron-Frobenius theorem, there is a positive real number

� and a positive integer n

0

su
h that for any integer n � n

0

and any two states p; q

of the �nal 
omponent C, C

n

pq

� �k

n

.

We get that for any integer n � n

0

+ s, any state q of the 
omponent C, and

any index l

0

+ 1 � i � l, jN

n

y

(i)

� �k

n�s

and qN

n

y

(i)

� �k

n�s

. Without loss

of generality, by in
reasing the value of s, we 
an assume that � is the positive

integer 1. Thus for any n � n

0

+ s, any q 2 C, and any l

0

+ 1 � i � l,

qN

n

z = k

n

(sin
e N is k-ary) (3)

jN

n

z = mk

n

(4)

qN

n

y

(i)

� k

n�s

(5)

jN

n

y

(i)

� k

n�s

(6)

Let us now 
onsider the sequen
es having a 
omplexity stri
tly less than k. Let

(i

(i)

;M

(i)

; t

(i)

) be a trim N-representation of s

(i)

for 1 � i � l

0

. We 
an moreover

assume that i

(i)

and t

(i)

have 0-1 
oeÆ
ients. Thus the N-representation (i;M;x

(i)

)

de�ned by

(i;M;x

(i)

) = (

�

i

(1)

: : : i

(l

0

)

�

;

2

6

6

6

6

4

M

(1)

0 � � � 0

0 M

(2)

.

.

.

.

.

.

.

.

.

0

0 : : : 0 M

(l

0

)

3

7

7

7

7

5

;

2

6

6

6

6

6

6

4

0

.

.

.

t

(i)

.

.

.

0

3

7

7

7

7

7

7

5

):
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spe
i�es the sequen
e s

(i)

for 1 � i � l

0

. The ve
tors i and x

(i)

have 0-1 
oeÆ
ients.

Let � be the spe
tral radius of M . For an in�nite number of indi
es n, the terms of

s

(i)

are, up to 
onstant, at most P

(i)

(n)�

n

, where P

(i)

(n) is a nonzero polynomial

in n. Sin
e ea
h s

(i)

, for 1 � i � l

0

, has a 
omplexity stri
tly less than k, � < k.

Let d be the size of M and P the set of indi
es of M . If p is in P , we denote

by p the 
hara
teristi
 row ve
tor of p of size d. We denote by t the 0-1 
olumn

ve
tor

P

l

0

i=1

x

(i)

. We denote by w the 
olumn ve
tor of size d with all 
oeÆ
ients

equal to 1.

Sin
e � < k, there is a positive integer r su
h that for any n � r and any p 2 P ,

the following inequalities hold

pM

n

w � k

n�s

; (7)

iM

n

w � k

n�s

: (8)

As a 
onsequen
e, for any n � r and any p 2 P ,

pM

n

t � k

n�s

; (9)

iM

n

t � k

n�s

: (10)

We moreover 
hoose r � n

0

+ s.

We de�ne a produ
t of size d+d

0

of the representations (i;M;x

(i)

) and (j; N;y

(j)

)

as follows. For 1 � i � l

0

, and l

0

+ 1 � j � l, let

k =

�

i j

�

; L =

�

M 0

0 N

�

; X

(i)

=

�

x

(i)

0

�

; Y

(j)

=

�

0

y

(j)

�

; Z =

�

0

z

�

:

Then the N-representation (k; L;X

(i)

) spe
i�es s

(i)

for 1 � i � l

0

. The N-representation

(k; L;Y

(l

0

+1)

) spe
i�es t

(l

0

+1)

. The regular representation (k; L;Y

(j)

) spe
i�es s

(j)

for l

0

+ 2 � j � l. Finally (k; L;Z) spe
i�es m(kz)

�

.

We now de�ne forward elementary equivalen
es from these N-representations

with a transfer matrix denoted by U of size d

00

� (d + d

0

). Let U be the matrix

whose set of rows is formed by row ve
tors of size (d + d

0

), the ve
tors kL

n

, with

0 � n � (2r � 1), the ve
tors (pM

n

;qN

n

), with r � n � (2r � 1), p 2 P , q 2 C,

and the ve
tors (0;qN

r

) for q 2 Q.

Let us 
onsider a linear transformation of the rows of U de�ned as follows.

|Ea
h ve
tor kL

n

for 0 � n < (2r � 1) is transformed to kL

n+1

.

|Ea
h ve
tor (pM

n

;qN

n

), for 0 � n < (2r � 1), p 2 P , q 2 C, is transformed in

(pM

n+1

;qN

n+1

).

|Ea
h ve
tor (0;qN

r

) for q 2 Q is transformed in a sum of k ve
tors (0;q

i

N

r

),

where qN =

P

k

i=1

q

i

.

|Let p be either i or a 
hara
teristi
 ve
tor p of a state p 2 P , and q be either

j or a 
hara
teristi
 ve
tor q of a state q 2 C. Sin
e pM

r

w � k

r�s

, the ve
tor

pM

r

is the sum of K � k

r�s


hara
teristi
 ve
tors p

i

. If q 2 C, qN

r

is the

sum of k

r


hara
teristi
 ve
tors of states in C. If q = j, qN

r

is the sum of mk

r


hara
teristi
 ve
tors of states in Q su
h that at least k

r�s

among them belong

to C. Then in both 
ases, qN

r

is then the sum of K

0

� k

r�s

ve
tors q

i

su
h

that q

i

2 C for 1 � i � k

r�s

. We transform (pM

2r�1

;qN

2r�1

) in the sum of

the K ve
tors (p

i

M

r

;q

i

N

r

), for 1 � i � K and the K

0

�K ve
tors (0;q

i

N

r

),
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for K + 1 � i � K

0

. Note that all these ve
tors are rows of the matrix U and

that their sum is equal to (pM

2r

;qN

2r

).

We denote by R the transition matrix of this linear transformation. The matrix R

has non-negative integral 
oeÆ
ients and RU = UL. We denote by l the row ve
tor

�

1 0 � � � 0

�

of size d

00

. We have the following forward elementary equivalen
es over

N between N-representations for 1 � i � l

0

and l

0

+ 1 � j � l.

(k; L;X

(i)

)

U

�!

N

(l; R; UX

(i)

);

(k; L;Y

(j)

)

U

�!

N

(l; R; UY

(j)

);

(k; L;Z)

U

�!

N

(l; R; UZ):

Then, U , UZ and RUZ have the following forms.

U =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

k

kL

.

.

.

kL

2r�1

(pM

r

;qN

r

)

.

.

.

(pM

2r�1

;qN

2r�1

)

.

.

.

(0;qN

r

)

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; UZ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

m

mk

.

.

.

mk

2r�1

k

r

.

.

.

k

2r�1

.

.

.

k

r

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; RUZ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

mk

mk

2

.

.

.

mk

2r

k

r+1

.

.

.

k

2r

.

.

.

k

r+1

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Thus UZ is a positive right k-eigenve
tor of R. Moreover, it follows from Equa-

tions (3) to (10), and sin
e

P

l

0

i=1

s

(i)

� t

(l

0

+1)

, that UX

(i)

and UY

(j)

, for 1 � i � l

0

and l

0

+ 1 � j � l, are non-negative ve
tors su
h that

l

0

X

i=1

UX

(i)

� UY

(l

0

+1)

� UZ;

and

UY

(j)

� UZ:

We now do ba
kward elementary equivalen
es with a transfer matrix denoted

by V . By Lemma 7.1, there is a ba
kward elementary equivalen
e from (l; R; UZ)

to an N-representation (i

0

;M

0

; t

0

) su
h that t

0

is a positive right k-eigenve
tor of

M

0

whi
h has all its 
oeÆ
ients equal to 1. Thus M

0

is a k-ary matrix. The

ve
tor i

0

has m entries 1, the other ones being 0. Moreover, for 1 � i � l, there

are non-negative integral ve
tors t

0

(i)

, su
h that t

0

(i)

= V UX

(i)

, for 1 � i � l

0

,

t

0

(l

0

+1)

= V (UY

(l

0

+1)

�

P

l

0

i=1

UX

(i)

) and t

0

(i)

= V UY

(i)

, for l

0

+ 2 � i � l. Then

(i

0

;M

0

; t

0

(i)

), for 1 � i � l, spe
i�es s

(i)

and

P

l

i=1

t

0

(i)

= t

0

.
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Example 7.6. Let us 
onsider the sequen
es s

1

and s

2

spe
i�ed by the N-representations

(i;M; t

1

) and (i;M; t

2

) respe
tively, where

i =

�

1 0 0

�

; M =

2

4

1 1 1

0 1 1

0 2 2

3

5

; t

1

=

2

4

1

1

0

3

5

; t

2

=

2

4

0

0

1

3

5

:

These N-representations of s

1

and s

2

are pi
tured in Figure 3. The sequen
e s(z) =

s

1

(z) + s

2

(z) is equal to (3z)

�

, and the sequen
e s

1

and s

2

have both a 
omplexity

equal to 3. The spe
tral radius of M is 3. We su

essively get

1

2 3

Fig. 3. The N-representations (i;M; t

1

) and (i;M; t

2

).

i =

�

1 0 0

�

;

iM =

�

1 1 1

�

;

iM

2

=

�

1 4 4

�

= 4iM � 3i;

Thus one 
an 
hoose for U the 2� 3 matrix whose rows are i and iM with

j =

�

1 0

�

; N =

�

0 1

�3 4

�

; x =

�

1

3

�

;x

1

=

�

1

2

�

;x

2

=

�

0

1

�

:

The matrixN is spe
trally Perron with spe
tral radius 3, and x is a right eigenve
tor

of N for the eigenvalue 3. The next 
omputation is detailed in the example of

Se
tion 5. We 
an 
hoose for V the 2 � 2 matrix whose rows are j and u, where

u =

�

�1 1

�

(see Se
tion 5), with

k =

�

1 0

�

; L =

�

1 1

0 3

�

; y =

�

1

2

�

;y

1

=

�

1

1

�

;y

2

=

�

0

1

�

:

The N-representation (k; L;y

1

) of s

1

is pi
tured in Figure 2.

The �nal representation is indexed by the set f(1; 1); (2; 1); (2; 2)g and one 
an


hoose

i

0

=

�

1 0 0

�

; M

0

=

2

4

0 1 1

0 2 1

0 1 2

3

5

; t

0

=

2

4

1

1

1

3

5

; t

0

1

=

2

4

1

0

1

3

5

; t

0

2

=

2

4

0

1

0

3

5

:

Thus the sequen
e s

1

is spe
i�ed by the graph of Figure 4 where the �nal states are

(1; 1) and (2; 2), and where the initial state is (1; 1). The sequen
e s

2

is spe
i�ed

by the same graph where the �nal state is (2; 1).
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1; 1

2; 1 2; 2

Fig. 4. An N-representation of s

1

whose graph is 3-ary.

From the previous result, we get the following 
orollary.

Corollary 7.7. Let k be a positive integer and s be a regular sequen
e of non-

negative integers that has a 
omplexity stri
tly less than k. Then s is the sum of

generating sequen
es of regular languages on k symbols.

Proof. Sin
e s is regular and has a 
omplexity stri
tly less than k, there is

a positive integer m su
h that its terms s

n

are bounded by mk

n

. Moreover the


omplementary sequen
e of s is regular by Soittola's theorem. The result is then a


onsequen
e of Theorem 7.5 for the 
ase l = 2.

Finally, we mention an open problem and a general question. Suppose that we

are given a regular language X and two regular sequen
es s; t su
h that s+ t is the

generating sequen
e of X . Is it true that there exists a partition X = Y + Z su
h

that s is the generating sequen
e of Y and t is the generating sequen
e of Z? By

Theorem 3.2, the answer is yes when X is the set of all words on k symbols. We

wonder whether the result holds in general.

A more general question is the following. Soittola's theorem 
hara
terizes regular

sequen
es among Z-rational ones. Su
h a 
hara
terization is not known in several

variables. In parti
ular it is not known when the di�eren
e of two N-rational sets

is N-rational. An answer to this question would 
ertainly enlighten the �eld of

automata with multipli
ities.
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