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On the generating sequences of regular languages
on k symbols

MARIE-PIERRE BEAL and DOMINIQUE PERRIN
University of Marne-la-Vallée, France

The main result is a characterization of the generating sequences of the length of words in a
regular language on k symbols. We say that a sequence s of integers is regular if there is a finite
graph G with two vertices 4,¢ such that s, is the number of paths of length n from i to ¢ in G.
Thus the generating sequence of a regular language is regular. We prove that a sequence s is the
generating sequence of a regular language on k symbols if and only if both sequences s = (sn)n>0
and t = (k™ — sn)p>0 are regular. B

Categories and Subject Descriptors: F.4.3 [Theory of computation]: Mathematical logics and
formal languages—Formal languages; G.2.1 [Discrete mathematics]: Combinatorics—Counting
problems, generating functions

General Terms: Theory
Additional Key Words and Phrases: Generating sequences, rational sequences, regular languages,
regular sequences

1. INTRODUCTION

The notion of a generating sequence for a formal language L is a simple one: it
is the sequence (s,)n>0 where s, is the number of words of length n in L. Even
if the non-commutative nature of words is lost, this sequence carries important
information concerning a formal language since it measures in a sense the size
of the language. It is moreover of interest in coding. In fact, a length-preserving
encoding defines a one-to-one correspondence between words. The two sets of words
in such a correspondence will have the same length distribution.

The characterization of the generating sequences of regular languages has long
been known. Indeed, a sequence (s,)n>0 is the generating sequence of a regular
language on some alphabet if and only if it is regular, i.e., there exists a finite graph
G with two vertices ¢, ¢ such that s, is the number of paths of length n from i to ¢
in G.

The idea of fixing the cardinality of the alphabet in this problem has surprisingly
never been considered. In other terms, for a given integer k, when is an integer
sequence the generating sequence of a regular language on k symbols?

Suppose for example that we consider the regular language on three symbols
L = (a+b)*ct. Tts number of words of length n is 27~!. It has the same generating
sequences as the regular language on two symbols L' = (a + b)*ab*. We address
here the problem of characterizing the regular languages L for which such a coding
on a smaller alphabet is possible and we describe explicitly how to realize it. Our
main result is a characterization of the generating sequences of regular languages
on k symbols.

Our characterization is the following. We prove that a sequence s is the gener-
ating sequence of a regular language on k symbols if and only if both sequences
s = (sp)n>0 and the complementary sequence t = (k" — s,),>0 are regular (Theo-
rem 3.2). Observe that the second condition implies the obviously necessary con-
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2 . M.-P. Béal and D. Perrin

dition that s, < k™ for all n.

The proof is based on the use of forward and backward elementary equivalences,
which we define as follows. A representation over a semiring K of a sequence
s = (sp)n>0 is a triple (i, M, t), where i is a row vector over K, t is a column vector
over K, and M a matrix over K, with s, = iM"™t for any non-negative integer
n. The representation is said to specify s. We say that a matrix U such that
NU =UM, jU =1i, x = Ut defines a forward elementary equivalence from (i, M, t)
to (j, N, x). It defines a backward elementary equivalence in the opposite direction.
It is easy to verify that both representations specify the same sequence. This
notion of forward elementary equivalence extends to representations of sequences
the classical notion of multiset construction used in automata theory, and the notion
of graph extension introduced in [Bassino et al. 2000]. This notion is also linked to
the notion of intertwining between representations introduced in [Flouret 1999].

The classical computation of a reduced representation of an integer sequence is
actually obtained by the composition of a forward elementary equivalence followed
by a backward one (or the converse) with transfer matrices with integer coefficients
(see [Berstel and Reutenauer 1988] on this notion).

An important step in the proof of the main result is a forward elementary equiv-
alence obtained by extending to representations over Z a theorem from Lind [Lind
and Marcus 1995] which states that for any Perron number, there is a primitive
integer matrix whose spectral radius is this Perron number. By taking into account
the row and column vectors, we prove that a representation over N can be obtained
by only one forward elementary equivalence from any reduced representation over
7 of the sequence (Theorem 6.1).

Our main result is a particular case of the following more general one. Let k
be a positive integer and let sV, s ... s be [ regular sequences whose n-
terms add to k™ for all n > 0. Then there is a deterministic automaton A =
(Q,A,0,i,Q) on a k-letter alphabet A with an initial state ¢, a transition function
0 and a set of terminal states equal to set @) of all states such that the following
holds: There is a partition of the set of states ) in [ sets T such that for each
1 < j <, the automaton (Q, A4, §,i,T;) recognizes a regular language on k symbols
whose generating sequence is exactly s(). We prove this more general formulation
(Theorem 7.5).

The paper is organized as follows. Section 2 contains the definitions of representa-
tions and the main result is stated in Section 3. In Section 4 we define the notion of
a forward or backward elementary equivalence. Section 5 establishes some lemmas
based on Perron theory which are used in Section 6 to show that, for any reduced
representation of a non-negative Perron sequence, there is a forward elementary
equivalence from this representation to an N-representation. Section 7 presents the
proof of the characterization of generating sequences of regular languages over k
symbols. The proof is constructive in the sense that the regular language over k
symbols can be built in an effective way, although with a high complexity. The
construction process is composed of two forward elementary equivalences followed
by one backward elementary equivalence. We give an example of this computation.

A preliminary shorter version of this paper was presented at the STACS 2002
conference [Béal and Perrin 2002]. We wish to thank the anonymous referees for
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On the generating sequences of regular languages on k symbols . 3
helping us to improve the quality of our presentation.

2. RATIONAL AND REGULAR SEQUENCES

Let K be a semiring. In most cases, we have in mind K = Z or N. In the
most general case, K is not even supposed to be commutative. However, we shall
often make the hypothesis that K is a principal ideal domain (this is the same as a
commutative principal ideal ring without zero divisors and holds in particular when
K =17).

We consider sequences of elements of K denoted by s = (s,)n>0. We shall not
distinguish between such a sequence and the formal series in one variable s(z) =
Y om0 Sn2". We usually denote a vector with coefficients in K and indexed by
elements of a set (), also called a Q-vector, with boldface symbols. A @) x () matrix
on K is a family M, of elements of K indexed by @ x Q.

A sequence s is said to be K-rational if there exist a set @) of cardinality d and
a triple (i, M,t), where i is a row @Q-vector, t is a column @-vector, and M is a
Q@ X @ matrix, all with coefficients in K, such that, for any non-negative integer n,
Sp = 1M™t.

Such a triple is called a representation over K, or a K-representation of the
sequence s, and d is its dimension. We say that the representation (i, M, t) specifies
the sequence s.

A word about our terminology. A sequence of elements of K can be considered
as a K-subset of ¥*, where ¥ has only one symbol. Our definition of a K-rational
sequence corresponds to what is called a recognizable K-subset in Eilenberg’s book
[Eilenberg 1974]. A rational K-subset is defined using rational expressions with
multiplicities, and a classical result proves the equivalence of the notions of recog-
nizable or rational K-subsets when ¥ is finite (this is the Kleene-Schiitzenberger
theorem, see [Eilenberg 1974, p. 175]). We shall occasionally use rational expres-
sions to denote rational sequences. For example, (kz)* is the same as 17—1162

A representation over K is reduced if it has a minimal dimension among all
representations over K that specify the same sequence. If K is a principal ideal
domain, this minimal dimension is the same over K and over the quotient field of
K [Berstel and Reutenauer 1988, p. 77]. This minimal dimension is called the rank
of the rational sequence.

If K is a principal ideal domain, a representation over K is said to be left reduced
(respectively right reduced) if and only the module generated by the vectors iM"
(respectively M™t), for all n > 0, is the full space K'*? (respectively K?*!). The
representation is then reduced if and only if it is both left and right reduced (see
[Berstel and Reutenauer 1988, p. 26]). We define the left minimal representation
over K of a sequence s as the unique reduced representation (i, M, t) of s over K,

where i = [1 0--- 0] and M is a companion matrix, i.e., of the form
01 0... 0
0 01 0
M=|: L
0 00... 1
g ay; as ... Qpr_1
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4 . M.-P. Béal and D. Perrin

We say that a sequence of integers is non-negative if all its terms are non-negative.
An N-rational sequence is also called regular. In the case of a regular sequence,
there is an equivalent form of a representation. Let us consider a triple (I,G,T),
where G is a directed multigraph and I, T two sets of vertices. Such a triple specifies
the sequence s where s, is the number of paths of length n going from I to T'. The
sequence s is regular since it is also specified by the representation (i, M, t), where
M is the adjacency matrix of G and 1, t are the characteristic vectors of the sets
I and T respectively. It can be shown conversely that any regular sequence can be
specified by such a triple.

A matrix or vector with coefficients equal to zero or one is called a 0-1 matriz
or a 0-1 vector. Let k be a positive integer. A k-ary matriz is a matrix with non-
negative integral coefficients such that the sum of each row is k. In a similar way,
a graph G is called k-ary if its adjacency matrix is k-ary. This means that each
vertex of G has out-degree k.

An N-representation (i, M,t) with M a @ x @ matrix, is said to be trim if for
each index p € @) there is a non-negative integer n such that (iM™), > 0 and there
is a non-negative integer m such that (AM™t), > 0.

A sequence s = (8,),>0 is said to be the merge of the sequences s . sp=1),
where p is a positive integer, if .953) = Sitnp for 0 < ¢ < p — 1. Equivalently,
s(z) = Zf:_ol 2ts(D(2P). Tf (i, M, t) is an N-representation of s, then (iM%, MP t) is
an Nerepresentation of s(¥ for each integer 0 <i < p — 1.

A Z-rational sequence is said to have a dominating pole if it can be written as a
rational fraction s(z) = p(z)/q(z), with p, q relatively prime, where ¢ has a simple
root r such that ' > r for any other root ’.

The following theorem is known as Soittola’s theorem. We state it without proof
(see [Berstel and Reutenauer 1988, p. 90] or [Salomaa and Soittola 1978, p. 74]).

THEOREM 2.1. A Z-rational sequence with non-negative terms is regular if and
only it is the merge of Z-rational sequences with a dominating pole.

As a consequence of Soittola’s theorem, given a triple (i, M,t), it is decidable
whether the specified Z-rational sequence is regular. If s is a regular sequence, there
is a computable positive integer p (the period) such that s;i,, ~ cjnlﬂ' aj asn —
o (j =0,...,p—1), where ¢; > 0, [; € N and «; is a non-negative real (see for
instance [Salomaa and Soittola 1978, p. 62]). Furthermore, «; and [; are com-
putable.

3. GENERATING SEQUENCE OF A REGULAR LANGUAGE ON K SYMBOLS

In this section, we state the main result of this paper, which is a characterization
of the generating sequences of regular languages on k symbols.

Let A be a k-letter alphabet and L be a language over A, that is, a subset of
A*, where A* is the set of all finite words whose letters are in A. The generating
sequence of L is defined as the sequence s = (s,),>0, Where s, is the number of
words of L of length n.

The generating sequence of a formal language L gives useful information on
L. For example, assuming that the letters are chosen at random uniformly and
independently, the probability that a word of length n is in L is equal to 3%. The
Journal of the ACM, Vol. V, No. N, Month 20YY.



On the generating sequences of regular languages on k symbols . 5

sequence s, is also used to define the notion of entropy of L as the superior limit
of the sequence +log s, (see [Lind and Marcus 1995] or [Kuich 1970]).

It is known that the generating sequence of a regular language is a regular se-
quence. It is also clear that the generating sequence of a regular language over
a k-letter alphabet satisfies the following two conditions of being the generating
sequence of

—a language over a k-letter alphabet,

—a regular language.

The first condition is equivalent to the fact that the generating sequence s satisfies
sp < k™, for any n > 0. The second condition is equivalent to the fact that the
sequence is regular. A natural question is the sufficiency of the two conditions
to ensure that s is the generating sequence of a regular language over a k-letter
alphabet. This question is similar to one solved in [Bassino et al. 2000] (see also
[Bassino et al. 2001] and [Bassino et al. 1999]), where it is shown that a sequence
is the generating sequence of a regular k-ary tree if and only if it is the generating
sequence of k-ary tree and if it is regular.

The situation is quite different here since we give below an example of a regular
sequence s that is not the generating sequence of a regular language over a k-letter
alphabet, although s,, < k™ for any n > 0. The counterexample is based on an
example of a Z-rational sequence with non-negative terms that is not regular (see
[Eilenberg 1974, p. 216-218] or [Berstel and Reutenauer 1988, p. 95]).

Example 3.1. Let r be the sequence such that, for any n > 0, r, = b>" cos?(n#é),
with cos) = ¢, where the integers a,b are such that b # 2a and 0 < a < b. We
also assume that b?> < k. The sequence r is Z-rational, has non-negative integer
terms and is not regular [Eilenberg 1974, p. 216-218]. Note that, for any n > 0,
rn, < k™. We now define the sequence s by s, = k™ —r,,. By Soittola’s theorem, the
sequence s is regular since it is a merge of rational sequences having a dominating
pole, and it satisfies s,, < k™ for any n > 0. If s were the generating sequence of a
regular language L over a k-letter alphabet A, its complementary sequence r would
be the generating sequence of the complement of L. Thus r would be regular, a
contradiction.

Example 3.1 leads us to state the following result which completely characterizes
the sequences that are generating sequences of languages over a k-letter alphabet.
It is proved in Section 7.

THEOREM 3.2. A sequence s is the generating sequence of a reqular language
over a k-letter alphabet if and only if both sequences s = (sp)n>0 and t = (kK" —
Sp)n>0 are regular.

Observe first that the second condition implies that s, < k™ for all n since by
definition a regular sequence has non-negative terms. If s is a given Z-rational
sequence and k a positive integer, the two conditions are decidable as seen above.
Moreover if s is regular, one can compute the least integer ko such that s, < kT,
for any integer n > 0. For k > kg, the second condition is automatically satisfied
again by Soittola’s theorem. It follows that, given some regular sequence, one can
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6 . M.-P. Béal and D. Perrin

characterize the minimal alphabet such that s is the generating sequence of a regular
language on this alphabet.

4. EQUIVALENCE OF REPRESENTATIONS

In this section, we define a transformation on a representation of a sequence over a
semiring that extends the notion of multiset extension introduced in [Bassino et al.
2000] to representations.

Let (i, M,t) and (j, N,x) be two representations, and U be a matrix such that

NU = UM,
U =i,
x = Ut.

The transformation from (i, M, t) to (j, N, x) is called a forward elementary equiv-
alence. The matrix U is called the transfer matriz of the elementary equivalence,
denoted (i, M,t) R (j,N,x), or (i, M,t) % (j, N,x) to specify that U has its
coefficients in K. In this case, we also talk of a K-forward elementary equivalence.
Note that M or N may have coefficients outside K.

Notice that, if we identify an element of S to the row @-vector of U of the
corresponding index, the equality NU = U M is equivalent to the fact that, for any
element u of S,

ulM = Z Nyvv.
veSs

The inverse transformation is called a backward elementary equivalence, denoted

(i, M,t) A (j,N,x). A forward or backward elementary equivalence is called an
elementary equivalence. The symmetric and transitive closure of the relation of
forward elementary equivalence with transfer matrices with coefficients in K, is
called the equivalence over K, denoted by ~ .

Our definition of an elementary equivalence is connected with classical notions on
matrices. Indeed, the definition of a forward elementary equivalence uses a relation
between the matrices M, N which generalizes the conjugacy relation. The general
solution of the matrix equation NX = X M is given in [Gantmacher 1977, p. 219].
A nonzero solution exists if and only if M and N have a common characteristic
eigenvalue. It is also known [Lind and Marcus 1995, p. 285] that, when M, N
are non-negative real matrices with the same dominant eigenvalue, the equation
NX = XM has a non-negative and nonzero solution.

A simple example of forward (or backward) elementary equivalence is similarity.
Two K-representations (i, M, t) and (i’, M', t') are said to be similar over K if and
only if there is a matrix P, invertible in K, such that (i, M, t) i i, M',t").

Another example of a backward elementary equivalence is the out-splitting that
comes from symbolic dynamics [Lind and Marcus 1995, p. 55]. Let (j, NV,x) be an
N-representation. The matrix IV is the adjacency matrix of a graph G on a set S
of vertices. Let us consider the graph H on a set Q = (S — {i})U{i’,i"} of vertices
obtained from G by splitting the vertex i of G into two vertices ¢’ and 7" according
to a partition in two parts P;, Py of edges going out of i. The edges coming in i are
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duplicated in H into edges coming in i’ and i”. Let M be the adjacency matrix of
H. Let D be the S x () matrix defined by D,, = 1if p #4¢, D;y = Dj;» = 1, and
D,, = 0 otherwise. Let E be the ) x S matrix defined by E,; = Mp, if p # ',i"
and Ej, (respectively E;n,) is the number of edges in P; (respectively P») going
from i to ¢. It can be easily checked (see [Lind and Marcus 1995, p. 55]) that

ED = M and DE = N.
Then
DM = ND and EN = ME.

The matrix M is said to be obtained by an out-splitting of N. For any non-negative
integral vector x, there is an a non-negative integral vector t such that x = Dt. By

setting i = jD, we get (i, M, t) b, (j, N,x). This can be stated as follows.

PROPOSITION 4.1. For any N-representation (j, N,x) and any matriz M that
is obtained by out-splitting of N, there are non-negative integral vectors i,t and a

transfer matriz D such that (1, M, t) % (4, N, x).

Similar results can be obtained for input state splitting. The notion of forward
or backward elementary equivalence is nevertheless much weaker than the symbolic
dynamics notion of conjugacy or even the notion of shift equivalence (see [Lind and
Marcus 1995], [Kitchens 1997] for these notions).

The following two propositions are direct consequences of the definitions.

PROPOSITION 4.2. Fquivalent representations specify the same sequence.

Proor. If (i, M,t) LR (j, N,x), then iM™t = jJUM"™t = jN"Ut = jN"x, for
any non-negative integer n. [

PROPOSITION 4.3. The composition of two forward (respectively backward) ele-
mentary equivalences is a forward (respectively backward) elementary equivalence.

If i, M, t) 5 (3, N,x) and (§, N,x) - (§', N',x'), then (i, M,t) ~% (§', N',x").
ProOF. The proof is straightforward. O

Checking whether two representations over a field K are elementary equivalent
is decidable, as shown in the following proposition.

PROPOSITION 4.4. Let K be a field. Given two K -representations, (i, M,t) and

(3, N, x), it is decidable whether there is a K-forward elementary equivalence from
(i, M,t) to (j,N,x).

Proor. If (i, M,t) has dimension d and (j, V,x) dimension d', the existence of
a matrix U such that NU = UM, jU = i and x = Ut, is obtained by solving a
Cramer system of dd’' +d+d' equations with dd’ unknowns. This can be performed
in cubic time. [J

The converse of Proposition 4.2 is due to Schiitzenberger. His result states that
if K is a principal ideal domain, any K-rational sequence has a reduced represen-
tation that can be computed in two steps (see for instance [Berstel and Reutenauer
1988], [Salomaa and Soittola 1978] or [Sakarovitch 2003]). These two steps are
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8 . M.-P. Béal and D. Perrin

respectively a forward elementary equivalence and a backward elementary equiva-
lence (or conversely). This leads to the following statement in which K is supposed
to be a principal ideal domain.

PROPOSITION 4.5. Let (i, M,t) be a representation over K of a sequence, and
(3, N,x) its left minimal representation over K. There is a forward elementary
equivalence followed by a backward elementary equivalence from (i, M, t) to (j, N, x).
As a consequence, two K -representations specify the same sequence if and only if
they are equivalent over K.

We briefly recall the construction of Schiitzenberger. Notice that K is not nec-
essarily a field.

Proor. We already know that two K-representations that are equivalent over
K specify the same sequence.

Conversely, let (i,M,t) be a K-representation of dimension d. Let F be the
quotient field of K. We first show that (i,M,t) is equivalent over K to a K-
representation which is reduced over K and over F. For any non-negative integer
n, iM"™ € K'*¢ Thus the K-module E generated by the vectors iM" for n > 0, is
a submodule of the free K-module K*?. Tt is thus a free K-module. Let d' be its
dimension as K-module and let eq,...,es be one of its basis. Each e; is a linear
combination over K of the vectors iM™ for n > 0. Let U be the d' x d matrix
over K whose rows are the vectors e;, 1 < i < d'. The K-module F is stable by
multiplication on the right by the matrix M. Let N be d’' x d matrix over K that
represents the action of M in the basis e, ..., eq, thatis, if e;M = a1e1 +...aqeq
for some elements ay,...,ay € K, one defines the row of index i of N to be
[a1,...,aq4]. It is a consequence of the definition that UM = NU. Since i belongs
to the K-module E, the vector iis a K-linear combination of the e;. Thus there
exists a vector j, with coefficients in K, such that 1 = jJU. We also set x = Ut. Note
that the K-module generated by the vectors JN™ for n > 0 has the same dimension
d' as the K-module E.

Symmetrically, let r < d' be the dimension of the K-module generated by the
vectors N™x for n > 0. By considering the transpose (X, N,t) of the triple (j, N,x),

where N denotes the transpose of the matrix N, there is a K-representation of

dimension r, (k,P,y), and a transfer matrix V over K such that (k,P,y) %

(, N,x). Since (i, M,t) % (j, N,x), we obtain that the representations (i, M, t)

and (k, P,y) are equivalent over K.

Let us denote by V(j, N) the vector space over F' generated by the vectors jN™
for n > 0. Since V(k, P) = V(j,N), and since V(j, N) = K'*% the dimension
of V(j,N) = V(k, P) is the rank r of V. Thus (k, P,y) is reduced over F' and
thus also over K. It has been obtained from (i, M, t) with one forward elementary
equivalence followed by one backward elementary equivalence.

A similar proof shows that there is a backward elementary equivalence followed
by a forward elementary equivalence from (i, M, t) to a representation reduced over
F.

We now show that if (i, M,t) is a K-representation of dimension r of s, there is
a forward elementary equivalence from (i, M, t) to the minimal left representation

Journal of the ACM, Vol. V, No. N, Month 20YY.



On the generating sequences of regular languages on k symbols . 9

of s which completes the proof since the composition of two forward elementary
equivalences is a forward elementary equivalence.

Thus V (i, M) is a vector space of dimension r over F. Then (i,iM, ..., iM"™ 1)
is a basis of this space over F' and there are ag,a1,...a,_1 € F such that iM" =
aoi + a1iM + -+ -+ a,_1iM"~!. Let U be the r x r matrix over K, invertible in F,
defined by

i
iM
U=
iM‘r—l
Let N be the matrix of dimension r with coefficients in F which represents the
right multiplication by M in the basis (i,...,iM""1). We get (i, M, t) %} (3,N,x)
with

0 1 0. 0
0 0 1. 0
J:[IO 0],N: ,x =tU.
0 0O 1
Gp a1 a3 Qr_—1
Since (j, NV, x) specifies s, we have
So
x=|

Sr—1

Since U is invertible in F, the characteristic polynomials of A and N are equal and
the characteristic polynomial of M has its coefficients in K. Since this polynomial
is X" —a,_1 X" —--- —a; X — ap, the matrix N has its coefficients in K. O

It is also known (Schiitzenberger 1961, Fliess 1974) [Berstel and Reutenauer 1988,
p. 27] that, if K is a field, all reduced representations are similar over K. Note
that the result is not true if K is not a field. Consider for instance the two Z-
representations of dimension one: (i = [2],M = [1],t = [3]) and (j = [3],N =
[1],x = [2]). They are similar over Q but not over Z. It is known that checking
whether two K -representations specify the same sequence is decidable in polynomial
time (see for instance [Berstel and Reutenauer 1988]).

5. PERRON GEOMETRY

In this section, we consider Z-rational sequences and regular sequences. We prove a
series of lemmas used in the next section. The proofs rely on the Perron-Frobenius
theory of non-negative matrices (see [Lind and Marcus 1995] for an introduction or
[MacCluer 2000] for a recent survey).

If v = (vg)qeq is a vector with coefficients in R, we say that v is non-negative,
denoted v > 0, (respectively positive, denoted v > 0) if v, > 0 (respectively v, > 0)
for all ¢ € Q. The same conventions are used for matrices.

Journal of the ACM, Vol. V, No. N, Month 20YY.



10 . M.-P. Béal and D. Perrin

An integer matrix has a dominating eigenvalue, i.e., has an eigenvalue A > 0 such
that A > |u| for all other eigenvalues pu of M. An integer matrix M is said to be
spectrally Perron if it has a dominating eigenvalue which is simple!.

A sequence of integers s is said to be spectrally Perron if it has a reduced repre-
sentation over Z with a spectrally Perron matrix. A representation over Z with a
spectrally Perron matrix is called a spectrally Perron representation. The left min-
imal representation, and more generally all reduced representations, of a spectrally
Perron sequence are spectrally Perron representations. The spectral radius of the
matrix of a reduced spectrally Perron representation is called the Perron value of
the sequence specified.

Let (i, M, t) be a spectrally Perron representation. The matrix M is a spectrally
Perron (@ x (Q matrix whose spectral radius is A, where () is the finite set of states
of the representation. We denote by d the dimension of M. The matrix M has a
nonzero left eigenvector w associated to the eigenvalue A. All other eigenvectors
associated to A are colinear to it.

Let W be the span of w over R. According to the Jordan canonical form of
M, there is a complementary M -invariant subspace V' corresponding to eigenvalues
|| < A. The space R'*? is a direct sum of W and V. We denote by m; : R2*? — W
the projection to W along V and by m : R'™*? — V the projection to V along W.
We also denote by a; : R'™*? — R the function associating to each vector u the
real number a4 (u) such that 71 (u) = ay (u)w. The real number a4 (u) is called the
dominant coordinate of u.

Thus each vector u of R'*? can be written

u = a;(u)w + m2(u).
Note that
uM = Aoy (0)w + 73 (u) M.

Hence, since V' is invariant by M, a;(uM) = Aa;(u) and m2(u)M = my(uM).

When i has a nonzero dominant coordinate, it will be convenient to choose a left
Perron eigenvector w such that a1(i) > 0. This is done by changing w to —w if
a1(i) < 0. Note that w depends only on M and i. When the representation is
left-reduced, the vector i has a positive dominant coordinate.

For any real number r, we denote by B(v,r) the ball of radius r centered on
the point v, which is the set of vectors u such that ||v — u|| < r where || || is any
equivalent norm of R ¢, Tt will be convenient (in order to prove Lemma 5.4 below
for instance) to use a norm that satisfies, for any vector u,

[Tall = {lm ()| + ||z (w)]].
Let w be a left Perron eigenvector of (i, M, t). We denote by K,.(w) the set
Ko(w) = {pv | v € B(w,1),p > 0}.
We also denote by K, (w) the nonzero vectors of K, (w).

The following lemma is from [Lind and Marcus 1995, p. 373].

I'The definition taken from [Lind and Marcus 1995, p. 371] (see also [Lind and Marcus 1995,
p. 369]) uses A > 1 instead of A > 0.
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On the generating sequences of regular languages on k symbols . 11

LeEmMA 5.1. Let (i, M,t) be a spectrally Perron representation. Let € be a posi-
tive real number and let u be an integer vector with a positive dominant coordinate.
Then there is a positive integer m such that uM™ belongs to K.(w) for n > m.

Proor. We follow the lines of [Lind and Marcus 1995, p. 373] for the proof. We

have
u = a;(u)w + m2(u).
Thus
uM™ = Aoy (0)w + ma(u) M ™.
It follows from the Jordan canonical form that the growth rate of M on V is strictly
less than A, i. e., for v € V, [[vM™||/A™ — 0 as n — oo. Then, for a large enough
n’
[|ma(0) M™|| < A"y (u)e.

Hence, for a large enough n, uM™/\"a;(u) belongs to K.(w) and thus uM™
also. O
Let s be a Z-ratio nal sequence of non-negative integers. The complezity of the
sequence s is defined as the inverse of its convergence radius, i.e., lim sup,,_, si/™
LEMMA 5.2. Let (i, M,t) be a spectrally Perron representation with a spectral
radius A such that the sequence specified is non-negative and has complexity A.
Then ay(i) > 0 and w -t > 0.

PROOF. Since
i=a;(i)w + m= (i),
we have
IM™ = Na ()w - t + o (1) M"t,

with a growth rate of M on V strictly less than A. If s has complexity A, a1 (i) # 0
and w-t # 0. Moreover, since the sequence specified is non-negative, a; (i).(w-t) >
0. Under the hypothesis on the choice of w, we get a1 (i) > 0. Thusw-t >0. O

LeEMMA 5.3. Let (i, M,t) be a spectrally Perron representation with a spectral
radius A such that the sequence specified is non-negative and has complexity \.
Then there exists a positive real number 1 such that for any vector u € Kn*(w), we
have u-t > 0.

ProoF. This follows directly from Lemma 5.2. [

LEmMA 5.4. Let (i, M,t) be a spectrally Perron representation. For any positive
real number n, there exists a positive real number € such that, for any positive
integer n, u € K.(w), then uM™ € K, (w).

PROOF. Let u € K.(w). Thus u = p(w + z), where z € B(0,¢) and p is a
positive real number. One has z = «;(z)w + v, where v e V.
Then for any non-negative integer n
uM™ vM™
o p(w+ ai(z)w + 0 ).
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12 . M.-P. Béal and D. Perrin

Since [[2] = llas (2)wl| + [¥], llas (2)w]| < = and [Iv]] <.
It follows from the Jordan canonical form that the growth rate of M on V is
strictly less than A. Thus there is an integer m such that for any n > m, ||[M™||/A\"™ <
1 on the space V. Let N be the maximum of [|[M™]|/A™ for all 0 < n < m.
We now choose ¢ = min(Z, 5%). Then ||a;(z)w+ ")\Ln" || < n for any non-negative
integer n. It follows that, for any non-negative integer n, “AL: € K,(w) and thus
uM™ also. O

Remark 5.5. We note for future use that, if moreover n < 1 and u # 0, then,
for any non-negative integer n, uM™ # 0.

We now state and prove a geometrical lemma, which is used in the construction
of Section 6. The lemma is essentially due to Lind (see [Lind and Marcus 1995,
p. 374]), who proved that there is a positive real number € such that all integer
vectors in K. (w) are non-negative integral combinations of a finite number of in-
teger vectors. With a slight modification, we show below that there is a positive
real number e such that all integer vectors in K.(w) are non-negative integral
combinations of a finite number of integer vectors in K. (w).

LEMMA 5.6. For a small enough positive real €, there is a finite set P of integer
points in Koo (W) such that each integer point of K.(w) is a non-negative integral
combination of points of P.

PROOF. For technical reasons that will appear below, we choose € < 1/2.

We choose a left eigenvector w with norm 1. If q is a point of B(w,¢), B(q,&) C
B(w,2¢) C Ky.(w). As a consequence, for any positive real number R, any ball
B(Rq, Re) is contained in K».(w). Let D be the minimal value such that any ball
of size D contains at least one integer point. This value depends on the norm |||
chosen. We fix a large enough R such that r = Re > 2D. Note that R > r.

We define the finite set of integer points P = K».(w) N B(0,3R) N N¢. We show
that all integer points of K.(w) are non-negative integral combinations of points of
P.

Let us assume that this property is false, and denote by x an integer point of
minimal norm which is in K.(w) and which is not a non-negative integral combi-
nation of points of P. Then x does not belong to P, and its norm is greater than
2R.

Let p’ be a point of B(w,e) which belongs to the semi-line defined by the point
x and the null origin (see Figure 1). Such a point exists since x belongs to K. (w).
Note that x = I'p’, where I’ is a positive real number. Since w has norm 1, we have
I—e<pl<1+e

Let p = Rp’, and [ =1'/R. We have

(1—e)R <|pll < (1 +2)R <[Ix||/2. (1)

Let m; = w and my = 2p — my. Thus the ball B(my,r/2) is included in
B(p,r) and in B(Rw,r). Thus B(m;,r/2) C K.(w). It follows that

B(my,r/2) C B(p,r) C B(Rw,2r) C Ka.(w). (2)

A point u is in B(ms,r/2) if and only if 2p — u is in B(my,r/2).
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On the generating sequences of regular languages on k symbols . 13

Since r/2 > D, there is an integer point u in B(mgz,r/2). Thus 2p — u belongs
to B(my,r/2) C K.(w). We get 2p —u € K.(w) and u € Ky.(w).

We have a succession of inequalities. First, ||x —u|| < ||x —p|| + ||p — u]. Since
x and p are colinear, we have ||x — p|| = ||x|| — ||p|]. Also ||p — u|| < r since
u € B(my,r/2) and B(my,r/2) C B(p,r) by Equation (2). Thus

llx —uf| < [Ix]| = |lp[| + 7.
This implies by Inequality (1)
llx —uf| <[lx||+ (e = (1 =€) R.

Since £ < 1/2, we obtain [|x —u|| < [|x]|

Since x =lp with{ > 2, x—u= (I —2)p + (2p — u). Since (I — 2)p and 2p —u
belong to K.(w), the point x — u is also in K.(w).

Thus x —u is an integer point of K.(w) which is strictly closer to the origin than
x. By hypothesis, x —u is then a non-negative integral combination of points of P.
From ||u|| < ||p]| + |lp — ul|, we get |Jul] < (1 +¢)R +eR < 2R. This shows that
u € P. Then x = (x — u) + u is a non-negative integral combination of points of
P. This contradicts the hypothesis, concluding the proof of this lemma. O

Fig. 1. The geometrical lemma (Lemma 5.6).
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14 . M.-P. Béal and D. Perrin

6. FROM A Z-REPRESENTATION TO AN N-REPRESENTATION

In this section, we prove a result which gives a sufficient condition for a sequence
to be regular (Theorem 6.1).

It is known that a non-negative Z-rational sequence that has a dominating pole
is regular (Soittola 1976, Katayama et al. 1978, see [Berstel and Reutenauer 1988,
p. 83] or also [Salomaa and Soittola 1978]). From this result and the results of
Section 4 follows that any Z-representation of a non-negative sequence that has a
dominating pole is equivalent over Z to a regular representation. In the particular
case of a spectrally Perron non-negative sequence, we show that an N-representation
can be obtained by only one forward elementary equivalence from any reduced Z-
representation of the sequence. This result is an adaptation to representations of a
result from Lind ([Lind 1983], [Lind 1984], see also [Lind and Marcus 1995, Theorem
11.1.4 p. 369]) which says that for any Perron number, there is a primitive integral
matrix whose spectral radius is this Perron number.

THEOREM 6.1. Let (i, M,t) be a Z-representation of a sequence s of non-negative
integers. If the two following conditions are satisfied,

(i) M is spectrally Perron,
(ii) the complexity of s is the spectral radius of M,

then there exists a forward elementary equivalence from (i, M, t) to an N-representation.

Proor. Let (i, M,t) be a spectrally Perron Z-representation of a non-negative
sequence s. The matrix M is thus spectrally Perron with a spectral radius A. Let
w be a left Perron eigenvector such that i has a non-negative dominant coordinate.
By Lemma 5.2, i has a positive dominant coordinate.

By Lemma 5.3, there is a positive real number 5 such that for any vector u €
K ,7+ (w), we have u-t > 0. We moreover choose n small enough such that any vector
in Kt (w) has a positive dominant coordinate.

By Lemma 5.4 there exists a positive real number ¢ such that, for any positive
integer n, if u € Ko, (w) then uM™ € K, (w). Let us fix such a positive real number
¢ with moreover ¢ < 1/2 and 2e < n. Thus K.(w) C Ks.(w) C K,(w).

By Lemma 5.6, there is finite set P of integer points in K».(w) such that each
integer point of K. (w) is a non-negative integral combination of points of P.

By Lemma 5.1 and since P is a finite set of points of K. (w), there is an integer
no such that for any vector v € P U {i}, the vector vM™ € K.(w).

We define a forward elementary equivalence from (i, M,t) to a representation
(j, N, x) as follows. The rows of the transfer matrix U are the nonzero row vectors
vMJ, with v.€ PU{i} and 0 < j < ng — 1. We define the matrix N as a matrix
of the multiplication by M on the right on the set S formed by these row vectors.
If u is in S, either uM is in S or uM belongs to K.(w). In the latter case,
it is a consequence of the geometrical lemma that uM is a non-negative integral
combination of points of P. If uis in S and uM = ZVES Qy,vV, With ayyv € N,
we define the coefficient of index u,v of N as ay,y. Thus the matrix N has non-
negative integral coefficients. Note that since S is not necessarily a basis, N is
not necessarily unique. By definition, UM = NU. We only keep in S the vertices
accessible from i in the graph defined by the matrix N. Moreover, we order the
rows of U in such a way that the first row of U is the vector i.
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On the generating sequences of regular languages on k symbols . 15

We define the row vector j of length |S| by j = [1 0... 0] and the column vector
xbyx=Ut. fu=iM7 for 0 <j<np—1,thenzy, =u-t =iM't =s; > 0.

By Remark 5.5, if u is a nonzero vector in K».(w), then uM/’ € K (w) for any
4 > 0. Then uMJt > 0 for any 5 > 0. Thus x has non-negative integral coefficients.
Note that the transfer matrix U has its coefficients in Z. Thus we have proved that

(i, M,t) Y, (j, N, x) is a backward elementary equivalence over Z and (j, N,x) is
an N-representation of s. This concludes the proof of the theorem. [

We add two remarks on further consequences of the above proof for future refer-
ence. Both follow from the last paragraph of the proof.

Remark 6.2. If the sequence s satisfies the additional hypothesis s, > 0 for any
non-negative integer n, then the vector x is a positive integral vector.

Remark 6.3. If t' is another non-negative vector such that u-t' > 0 for any
vector u € Kn+ (w), and such that (i, M,t") specifies a sequence of non-negative
integers, x’ = Ut' is a non-negative vector.

COROLLARY 6.4. From any reduced spectrally Perron representation of a mon-
negative sequence, there exits a forward elementary equivalence to a regular repre-
sentation.

Proor. If (i, M,t) is a reduced Z-representation of a sequence of non-negative
integers s, the complexity of s is equal to the spectral radius of M. O

Ezample 6.5. Let us consider the regular sequence s defined by, for n > 2,
sp = 1,
51 = 2,
Sp = 48,1 — 35,_9.

A Z-representation of this sequence is

= [10],M= [_03 ﬂ t— B]
The matrix M is spectrally Perron with a spectral radius 3 since its characteristic
polynomial is (X — 3)(X — 1). The computation of the first powers iM™ gives
iM°® = [10],
iM' = [0 1] =u+i,
where u = [—1 1]. We have uM = 3u and thus the set of non-negative integral

combinations of the vectors i, u is stable by M. As in the proof of Theorem 6.1,
we choose as transfer matrix
10
U= {_1 1] .

Thus s has the following N-representation which is elementary equivalent to (i, M, t):

o]

The sequence s is thus specified by the triple ({1}, H,{1,2}), where H is the graph
of Figure 2.
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16 . M.-P. Béal and D. Perrin

Fig. 2. An N-representation of the sequence s defined by so =1, s1 =2, and sy, = 45p—1 — 35p—2
for n > 2. The vertex 1 (marked with an incoming arrow) is the initial vertex and 1,2 (marked
with an outgoing arrow) are the terminal vertices.

7. THE MAIN RESULT

We now prove the main result in a slightly more general form (Theorem 7.5 below).
The characterization of the generating sequences of regular languages on k symbols
given in Theorem 3.2 of Section 3 is a consequence of Theorem 7.5. We first state
several lemmas. Lemma 7.4 constitutes one of the main parts of the proof of
Theorem 7.5.

We recall the notion of approximate eigenvector. Let k be a positive integer. A
right k-approzimate eigenvector of a non-negative matrix M is an integer column
vector v > 0 such that Mv < kv. When M is the adjacency matrix of a graph G,
we also say that v is a k-approximate eigenvector of G.

LeEMMA 7.1. Let (j, N,x) be an N-representation such that x is a positive right

k-approzimate eigenvector (respectively a positive right k-eigenvector) of N. Then

there is an N-representation (j, N, x) and a backward elementary equivalence (i, M, t) Y

(3, N,x), such that t is a positive right k-approzimate eigenvector (respectively a
positive k-eigenvector) of M which has all its coefficients equal to 1.

Moreover if x = 22:1 X;, where each X; is a non-negative integral vector, then
there are non-negative integral vectors t; such that x; = Ut;.

PrOOF. We give the proof in the case of approximate eigenvectors. The other
alternative is similar. Let us denote by @ the set of indices of j. Let Q' be the set
of pairs (¢, j) with ¢ € Q and 1 < j < z,. For each p € @, let us consider the set
of triples {(q,7,1) | ¢ € Q,1 < j < x4, 1 <1 < Npg}. Its cardinality is Y-, c o Npg@q-
Since for each p € @), we have

Z Npgxq < kzxp,
7€Q

it is possible to partition this set in z; sets X, 1), X(p,2),--+, X(p,z,) Of at most k
elements. We now define the square Q' x Q" matrix M by defining M, ;)(,.;), for
p,q€Q,1<i<mz,and 1< j <z, as the number of triples in X, ;) whose first
two components are (g,7). Let U be the @ x Q" matrix defined by Uy, ;) = 1, for
any 1 < j < z,, the other coefficients being zero. By construction, we get

NU =UM.

Indeed, the coefficient of index p, (¢, j), where 1 < j < z,, of NU is
Z NprUr(q,5) = Npg-

reQ
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On the generating sequences of regular languages on k symbols . 17

And the coefficient of index p, (¢q,7) of UM is
Z p(ryi) M(r,i)(q.5) = Z Mp,i)(q,5) = Npq-
(r,i)€Q’ 1<i<zp

We define the row Q'-vector i by i = jU. Let t be the column Q’-vector with all
its coefficients equal to 1. It is straightforward that x = Ut. Thus

(i, M,6) <> (5, N, ).

Since the sum of each row of M is less than or equal to &, t is a right k-approximate
eigenvector of M.
Let us now assume that x = 22:1 x| where x(?) is a non-negative integral

vector. Let us define the column Q'-vector t(9) by tg)’j) =lifandonlyifl <j < x,(f)
and tE ) B = = 0 otherwise for 1 <4 <. Then
WD)y = 3 Uaitoy = 2 top =75
(¢,5)€Q’ 1<j<zp
We get x = Ut for 1 <i<l. O
We mention that a stronger form of this lemma can be proved by the use of the

ACH algorithm of [Adler et al. 1983] which is based on state splitting.

LEMMA 7.2. Let (i, M,t) L (j, N,x) be a forward elementary equivalence be-
tween Z-representations. If t is a right k-eigenvector of M, then x is a right
k-eigenvector of N.

ProOOF. The proof is straightforward. If Mt = kt and (i, M, t) Y, (j, N, x), then
Nx=NUt=UMt =Ukt = kx. O

LeEMMA 7.3. Any left reduced Z-representation (j, N,x) of m(kz)*, where m and
k are positive integers, is such that x is a right k-eigenvector of N.

PRrOOF. We consider a left reduced representation (j, N, x) of m(kz)*. By Propo-
sition 4.5, there is a backward elementary equivalence from (j, NV, x) to ([m], [], [1]),
which is the right minimal representation of m(kz)*. Thus

(Im], [K], 1)) 5 (G, N, %),
where V is the transfer matrix of this elementary equivalence. Since
VIk] = NV, [m] =jV, x=V[1],
we get V = x and x is a right k-eigenvector of N. [

The following lemma, constitutes the main part of the proof of Theorem 7.5. We
use here a variant of the terminology of finite automata. Let A = (Q, A,6,1,T) be
a finite automaton with set of states (), alphabet A, transition function J, set of
initial states I, and set of terminal states T. Let L be the language recognized by
A. We can define a labelled graph G with @ as set of vertices and the pairs (p, a, q)
where ¢ € §(p,a) as edges. Conversely any such graph corresponds uniquely to an
automaton 4. When A is deterministic we say that G is deterministically labelled.
We also say that (I,G,T) is a deterministic automaton that recognizes L.
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18 . M.-P. Béal and D. Perrin

LEMMA 7.4. Let | be a positive integer and s1,...s; be | reqular sequences spec-
ified by N-representations (i, M,t;) respectively, such that si(z) + --- + si(z) =
m(kz)*, where m and k are positive integers. Let us assume that M has a domi-
nating eigenvalue k, that all s; have complexity k, and that (i, M, Zizl t;) is trim.
Then there is a finite deterministically labelled graph G on a k-letter alphabet, with
m initial states and a partition of the set of states of G inl sets T;, with 1 < i <1,
such that the automaton (I,G,T;) recognizes a reqular language on k symbols whose
generating sequence is exactly s;.

PRrOOF. We denote by t the column vector 2221 t; and thus (i, M,t) specifies
s(z) = Zizl si(z) = m(kz)*. We denote by J,.(k) the Jordan block of size r:

k10 ...00]

0Ok1..00

00Fk...00
Tr(k) =

000...k1

_000...0kJ

Since (i, M, t) is a trim N-representation which specifies m(kz)*, the Jordan canon-
ical form of M has no block J,.(k) where r > 1. Indeed, let us assume that the
Jordan form of M contains such a block. Then there is a positive real number ¢
such that for any large enough integer n, s, > en” k™. Thus the sequence s(2)
cannot be equal to m(kz)*.

We compute from (i, M,t) a left reduced Z-representation (j, N,x) of m(kz)*.
We know from Proposition 4.5 that there exists a transfer matrix U such that

(i, M, ) = (5, N, ).

Since (j, N,x) is left reduced, the dimension of the Z-module generated by the
vectors jN™, for n > 0, is the size d of the square matrix N. This dimension is
also equal to the dimension of the vector space E generated by the vectors jN™, for
n > 0, over the field R. Let E’ be the eigenspace of N associated to the eigenvalue
k in E and let E"” be a complementary N-invariant subspace. Thus d is the sum
of the dimensions of E' and of E”". We claim that E’' has dimension one. Indeed,
the vector j can be written

j=u+v,
where u € E' and v € E”. Since for any integer n > 0,
JN" = k"u+vN",

the vector space over R generated by the vectors JN™, for n > 0, is included in
(u) + E", where (u) denotes the vector space over R generated by u. Thus the
dimension of E’ is one.

The Jordan canonical form of N has thus a dominating eigenvalue, has no
block J,(k), where r > 1 , and has a one dimensional eigenspace associated to
the spectral radius k. The matrix N is thus a spectrally Perron matrix. Moreover,

by Lemma 7.3, x is an integer right k-eigenvector of N. For each integer 1 <i </,
we define x; = Ut;.
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By Theorem 6.1, there exists a forward elementary equivalence to a regular rep-
resentation from (j, N,x) to an N-representation (k,L,y). Let V be its transfer
matrix. Since the sequence specified is m(kz)*, it has positive terms. Thus the vec-
tor y is a positive vector (see Remark 6.2 at the end of the proof of Theorem 6.1).
By Lemma 7.2, the vector y is a right k-eigenvector of L. It is thus a positive
integral eigenvector of L.

Since (j, NV, x;) is a left reduced representation which specifies s;, and since s; has
complexity k, one chooses by Lemma 5.3 a positive real number 1 such, that for
each integer 1 < i <, for any vector u € Kn+(w), we have u-x > 0 and u-x; > 0.
It follows from Remark 6.3 at the end of the proof of Theorem 6.1 that the I vectors
y; = Vx; are non-negative integral vectors.

The final step is given by Lemma 7.1. There is a regular backward elementary
equivalence from (k, L,y) to an N-representation (i’, M', t") such that t' is a positive
right k-approximate eigenvector of M’ which has all its coefficients equal to 1. Let
us denote by W the transfer matrix of this backward elementary equivalence. Since
y = 22:1 y; where the vectors y; are non-negative integral vectors, there are two
non-negative integral vectors t'; such that y; = Wt/;.

The two previous forward elementary equivalences and the backward elementary
equivalence can be summarized in

(i, M,8) = (G.N.%) = (k, L,y) & (i, M',t).
We also have for each integer 1 <i </,
(3, M) =5 (5, N, x0) = (k, Lyyi) e (1, M, 815,

Thus, for each integer 1 < i < I, we get an N-representation (i', M',t';) of the
sequence s;. The coefficients of all t’; are 0 or 1 and the sum of the vectors t’; is the
vector t' whose coefficients are all equal to 1. Let us denote by Tj; the set of indices
of t'; corresponding to a coefficient 1. Since t’ is a right k-eigenvector of M’, the
sum of each row of M’ is equal to k. The matrix M’ is thus the transition matrix of
a k-ary directed multigraph G. Let @ be the set of states of G. Since i’ -t = m, the
sum of the coefficients of the vector i’ is m. We define a new graph G’ by adding
to G a new set I of m states (p,j), for p € Q and 1 < j < iy, and n edges from
(p,7) to g if there are n edges from p to ¢ in G. This last transformation is again a
backward elementary equivalence. Since the graph G’ is still k-ary, one can label it
with k symbols in a deterministic way. Then the automaton (I,G’,T;) recognizes
a regular language on k symbols whose generating sequence is exactly s;. O

We now state and prove the main result. Theorem 3.2 is a formulation of Theo-
rem 7.5 in the case of two sequences.

THEOREM 7.5. Let m and k be two positive integers. Let sV, 52 ... s() pe
I regular sequences such that sV + s + ...+ s (2) = m(kz)*. Then there is a
finite deterministically labelled graph G on a k-letter alphabet, with m initial states
and a partition of the set of states of G inl sets T;, with 1 < i <, such that the
automaton (I,G,T;) recognizes a regular language on k symbols whose generating
sequence is exactly s().
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The proof contains two main parts. The first part corresponds to sequences that
all have complexity k£ and relies mainly on Lemma 7.4. The second part treats the
other case.

ProoOF. We first order the sequences in such a way that there is an integer
0 <1’ <1—1such that s, s® ... s() have a complexity strictly less than k and
that s+ ... s have complexity k. Note that at least one of the sequences has
complexity k since the sum of the sequences is m(kz)*.

Let us consider first the case where I’ = 0, that is, where all sequences s(*)
have complexity k. Let (i), M) t()) be a trim regular representation of s() for
1 <i <. Thus the regular representation (i, M,x?) defined by

MM 0 0 0
. (2) 3
a,M,x?) = (1o ...ij0], | © M @]y
: . 0 .
0 ... 0 M®

specifies the sequence s( for 1 < i < [. We denote by t the column vector 2221 x(%)
and thus (i, M, t) specifies s(z) = Y\, s (2) = m(kz)*. Since (i), M® () are
trim representations, (i, M,t) is also trim.

By the Perron-Frobenius theorem [MacCluer 2000], the eigenvalues of maximal
modulus of M are equal to Ap, where A is a positive real number and where p is a
root of unity. Thus there is an integer p such that MP has a dominating eigenvalue.
Each sequence s(?) is a merge of p sequences s(i7) specified by (iM7, M?,x(), for
0 < j < p—1. These representations may not be trim but MP? cannot have a
Jordan canonical form that contains a block J.(kP) with r > 1. Indeed, let us
assume that it is not true. Then there is at least one coefficient (MP)y,. of (MP)"
whose growth rate is at least cn™ 'kP", where ¢ is a positive real number. Since
(i, M,t) is trim, there is a non-negative integer ny such that (iM™), > 0, and
there is a non-negative integer n, such that (M™t), > 0. Thus (Sp,+nstpn)n>0
would have a growth rate which is, up to a positive constant, at least n"~'kP?
which is too much. Note that the sequence 22:1 509 (2) is equal to mk’ (kPz)*,
for0<j<p-1.

Let j be an integer such that 0 < j < p — 1. Either all sequences s(»7) have
complexity kP or at least one of them has a complexity strictly less than k7. In
the former case, Lemma 7.4 constructs automata (I, G@ TY) that recognize
s(i7) on the alphabet AP, where A is a finite alphabet with k symbols, and where
IU) has cardinal mk?. For a given j, these representations define [ disjoint regular
languages LS.Z) on a k-letter alphabet with generating sequences s(»7). The latter
case corresponds to an instance of the statement of the theorem when at least one
sequence has a complexity strictly less than k' = kP with m’ = mk’. This case is
proved below. Then the sets U?;S L;l), with 1 < ¢ <, are disjoint regular languages
on a k-letter alphabet having s(*) as generating sequences.

We now consider the case where there is at least one sequence with a complexity
strictly less than k. We denote by ¢+ the sequence s + ... 4+ s(') 4 g('+1),
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Thus '+ is a regular sequence which has complexity k. Thus, by applying the
construction used in the case where all sequences have complexity k, we get regular
representations with 0-1 coefficients (j, N,y*) of s for I' + 2 < i < I, and '+
for i = 1I' + 1, such that j has exactly m coefficients equal to 1, and such that N is
a k-ary matrix. Note that the first case where all sequences have complexity k is
applied to at most [ — 1 sequences and thus that we can reason by induction.

We denote by @ the set of indices of NV, also called states, and by d’ the cardinality
of Q. If ¢ is a state, we denote by q the characteristic row vector of ¢ of size d'.
A state ¢ is said to be a final for (j, N,y(l’“)) if ygm_l) = 1. Moreover the vector
7 = Zizl,ﬂ y( has all its coefficients equal to 1. A principal component of N is an
irreducible component of N whose spectral radius is k. Since N is a k-ary matrix,
each principal component of N is a sink, that is, n has no nonzero coefficient Np,
with p inside the component and ¢ outside (i.e., a component from which there is
“no escape”). A principal component that contains a final state for (j,N,y(lI“))
is called a final component. Since t¢'+1) has complexity k, there is at least a final
component C of N that contains a final state ¢ for (j, N,y *1). Moreover, there
is a positive integer s such that (jN*®), > 0.

We denote by p the period of N, which is the least common multiple of the periods
of the irreducible components of N. Recall that the period of an irreducible matrix
N' is the ged of positive integers n such that the trace of N'" is positive. By
applying the construction, with other values of m and k, to the sequences 5(isd)
defined, for 1 <i<land 0 <j<p-—1, by sgf’j) = sﬁpn, we can assume that N
has period 1 and thus that C' is a primitive matrix.

As a consequence of the Perron-Frobenius theorem, there is a positive real number
p and a positive integer ng such that for any integer n > ng and any two states p, ¢
of the final component C, Cp, > pk™.

We get, that for any integer n > ng + s, any state ¢ of the component C, and
any index I’ +1 < i < [, jN?y(@D > pkn=s and gN"y® > pk"=5. Without loss
of generality, by increasing the value of s, we can assume that p is the positive
integer 1. Thus for any n > ng +s,any ¢ € C,and any I’ +1 < </,

qN"z = k" (since N is k-ary) (3)
JN"z = mk" (4)
Ny > ke (5)
Nty > g (6)

Let us now consider the sequences having a complexity strictly less than k. Let
(i, M@ t()) be a trim N-representation of s() for 1 < i < I'. We can moreover
assume that i and t(9 have 0-1 coefficients. Thus the N-representation (i, M, x(i))
defined by

MD 0 0 0
. , (2) 3
(i, M,x?) = ({0 ...i0)] 0 M £ )
: . 0
0 ... 0 M®
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specifies the sequence s() for 1 < i < 1'. The vectors i and x() have 0-1 coefficients.
Let A be the spectral radius of M. For an infinite number of indices n, the terms of
s() are, up to constant, at most P(Y)(n)A", where P(¥)(n) is a nonzero polynomial
in n. Since each s(9, for 1 < i < I’, has a complexity strictly less than k, A < k.

Let d be the size of M and P the set of indices of M. If p is in P, we denote
by p the characteristic row vector of p of size d. We denote by t the 0-1 column
vector Zilzl x(¥. We denote by w the column vector of size d with all coefficients
equal to 1.

Since A < k, there is a positive integer r such that for any n > r and any p € P,
the following inequalities hold

pPM"w < k"7, (7)
iM"w < k"%, (8)
As a consequence, for any n > r and any p € P,
pPM"™t < k"2, 9)
iM™t < k"8 (10)

We moreover choose r > ng + s.
We define a product of size d+d’ of the representations (i, M, x()) and (j, N,y ")
as follows. For 1 <i<!l',and l' +1<j <1, let

.. M 0 ; x(9) , 0 0
s o= 3] x5 w= 2] 2= )

Then the N-representation (k, L, X(9) specifies s() for 1 < i < I'. The N-representation
(k, L, YT+ gpecifies t('+1). The regular representation (k, L, Y@)) specifies s(/)
for I' + 2 < j <. Finally (k, L, Z) specifies m(kz)*.

We now define forward elementary equivalences from these N-representations
with a transfer matrix denoted by U of size d” x (d 4+ d'). Let U be the matrix
whose set of rows is formed by row vectors of size (d + d'), the vectors kL™, with
0 <n < (2r—1), the vectors (pM",qN"), with r <n < (2r —1),p€ P, q € C,
and the vectors (0,qN") for q € Q.

Let us consider a linear transformation of the rows of U defined as follows.

—FEach vector kL" for 0 < n < (2r — 1) is transformed to k"1,

—FEach vector (pM™,qN"), for 0 <n < (2r —1), p € P, q € C, is transformed in
(PM™ 1, gN" ).

—Each vector (0,gN") for ¢ € @ is transformed in a sum of k vectors (0,q;N"),
where @V = Zle q;.

—Let p be either i or a characteristic vector p of a state p € P, and q be either
j or a characteristic vector q of a state ¢ € C. Since pM"™w < k"%, the vector
pM?™ is the sum of K < k"~* characteristic vectors p;. If ¢ € C, @N" is the
sum of k" characteristic vectors of states in C. If q = j, q/N" is the sum of mk”
characteristic vectors of states in ) such that at least k"~ among them belong
to C. Then in both cases, gN" is then the sum of K’ > k"% vectors q; such
that q; € C for 1 < i < k"=%. We transform (pM?2"~! qN?"~!) in the sum of
the K vectors (p;M",q;N"), for 1 < i < K and the K' — K vectors (0,q;N"),
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for K +1 < i < K'. Note that all these vectors are rows of the matrix U and
that their sum is equal to (pM>",qN?").

We denote by R the transition matrix of this linear transformation. The matrix R
has non-negative integral coefficients and RU = U L. We denote by 1 the row vector
[1 0--- 0] of size d". We have the following forward elementary equivalences over
N between N-representations for 1 <i<[l"andl' +1<j <.

Then, U, UZ and RUZ have the following forms.

[k W [m 1 [ mk
kL mk mk?
i(LQT—l ;TLk'QT_l ‘Tnk.Qr
(PM",GN") k" kTt

U= s ) UZ = : ’ RUZ = :
‘(ﬁMQT_l,(_lNQT_l) ‘er—l ‘er
(O,GNT) kT kr+1

Thus UZ is a positive right k-eigenvector of R. Moreover, it follows from Equa-
tions (3) to (10), and since Y1_, s < t¢'+1) that UX® and UYW), for 1 <i <1’
and I’ + 1 < j <, are non-negative vectors such that

ll

S ux <oy <vz,

i=1
and

UYy <Uz.

We now do backward elementary equivalences with a transfer matrix denoted
by V. By Lemma 7.1, there is a backward elementary equivalence from (1, R, UZ)
to an N-representation (i', M’ t') such that t' is a positive right k-eigenvector of
M' which has all its coefficients equal to 1. Thus M’ is a k-ary matrix. The
vector i’ has m entries 1, the other ones being 0. Moreover, for 1 < i < [, there
are non-negative integral vectors t’(i), such that t'() = VUXD for1 <i <1,
) =y @+ 1 UX®) and /D = VUYD, for I' + 2 < i < I. Then
(i’,M’,t’(i)), for 1 < i <1, specifies s(9) and Zizl '@ =¢. O
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Example 7.6. Let us consider the sequences s; and s specified by the N-representations
(i, M,t1) and (i, M, ts) respectively, where

111 1 0
i=[100], M=[011|, t,=|1], to= [0
022 0 1

These N-representations of s; and s are pictured in Figure 3. The sequence s(z) =
s1(2) + s2(2) is equal to (32)*, and the sequence s; and s, have both a complexity
equal to 3. The spectral radius of M is 3. We successively get

Fig. 3. The N-representations (i, M,t1) and (i, M, t2).

i=1[100],
iMo=[111],
iM® = [1 4 4] =4iM - 3i,

Thus one can choose for U the 2 x 3 matrix whose rows are 1 and 1M with

00 0= (4] e [l ]

The matrix N is spectrally Perron with spectral radius 3, and x is a right eigenvector
of N for the eigenvalue 3. The next computation is detailed in the example of
Section 5. We can choose for V' the 2 x 2 matrix whose rows are j and u, where
u = [—1 1] (see Section 5), with

k=1 0], Lz[é ;] y=B],yl=maY2=m.

The N-representation (k, L,y;) of sy is pictured in Figure 2.
The final representation is indexed by the set {(1,1),(2,1),(2,2)} and one can

choose
. Bt DRI Y P P
i'=[100], M= [8 % ;J, t' = HJ,t’l_ [(;J,t’z_ [éJ

Thus the sequence s; is specified by the graph of Figure 4 where the final states are

(1,1) and (2,2), and where the initial state is (1,1). The sequence s» is specified
by the same graph where the final state is (2,1).
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Fig. 4. An N-representation of s; whose graph is 3-ary.

From the previous result, we get the following corollary.

COROLLARY 7.7. Let k be a positive integer and s be a reqular sequence of non-
negative integers that has a complexity strictly less than k. Then s is the sum of
generating sequences of reqular languages on k symbols.

PROOF. Since s is regular and has a complexity strictly less than k, there is
a positive integer m such that its terms s, are bounded by mk™. Moreover the
complementary sequence of s is regular by Soittola’s theorem. The result is then a
consequence of Theorem 7.5 for the case l =2. O

Finally, we mention an open problem and a general question. Suppose that we
are given a regular language X and two regular sequences s, t such that s+ ¢ is the
generating sequence of X. Is it true that there exists a partition X =Y + Z such
that s is the generating sequence of Y and ¢ is the generating sequence of Z?7 By
Theorem 3.2, the answer is yes when X is the set of all words on k symbols. We
wonder whether the result holds in general.

A more general question is the following. Soittola’s theorem characterizes regular
sequences among Z-rational ones. Such a characterization is not known in several
variables. In particular it is not known when the difference of two N-rational sets
is Nrational. An answer to this question would certainly enlighten the field of
automata with multiplicities.
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