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Marie-Pierre Béal ∗ Dominique Perrin ∗

Institut Gaspard-Monge, Université de Marne-la-Vallée, 77454 Marne-la-Vallée

Cedex 2, France.

Abstract

We study the relationship between codes and unambiguous automata inside a sofic
system. We show that a recognizable set is a code in a sofic system if and only
if a particular automaton associated to the set and the shift is unambiguous. We
discuss an example of a finite complete code in a sofic system in connection with
the factorization conjecture.

1 Introduction

This is the third of our papers on codes in sofic shifts. In the first one [1], we
have developed the point of view of measures and polynomials in the spirit of
the Kraft-McMillan inequality. In the second one [2], we have discussed the
notions of complete and maximal codes in sofic shifts and their relationship.
This generalization of the theory of (variable length) codes extends previous
works of Reutenauer [3], Restivo [4] and Ashley et al. [5]. It is also related with
recent work by Dalai and Leonardi [6], who study a close problem. They use
Markov chains on the source symbols instead of constraints on the channel
as we do. Codes with constraints on the source are also studied by Güney
Gönenç in [7].

In this paper, we show how the use of unambiguous automata can be adapted
to the framework of codes in sofic systems. This gives us a particular a method
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for checking whether a regular set is a code in a sofic shift. Another method
generalizing the Sardinas-Patterson algorithm is also described.

We use these notions to discuss an interesting example of a complete code in
a sofic system, in particular in connection with the factorization conjecture of
Schützenberger. We show that its generalization to code in sofic shifts is not
true.

We would like to thank Christophe Reutenauer and the anonymous referees
for useful comments on an earlier version.

2 Codes in sofic systems

We begin with some definitions from symbolic dynamics. For a general refer-
ence, we refer to [8]. A sofic shift S is the set of bi-infinite sequences of symbols
labelling paths in a finite automaton A = (Q, E), where Q is the set of states
and E the set of edges. We say that A recognizes S. The set of factors of S,
denoted by Fact(S), is the set of blocks appearing in the elements of S. An
edge shift is the set of bi-infinite paths in a finite graph. A shift of finite type
is the set of bi-finite sequences of symbols avoiding a finite set of words. An
edge shift is a particular case of a shift of finite type, which is a particular case
of a sofic shift. The full shift on a finite alphabet A is the set of all bi-infinite
sequences of symbols in A.

A sofic shift is irreducible if it is recognized by an automaton with a strongly
connected graph. There is a unique minimal deterministic automaton recog-
nizing a given irreducible sofic shift. It is called the Fischer cover of the shift.

Example 1 Let S be the irreducible sofic shift whose Fischer cover is repre-
sented in Figure 1. This shift is called the even system. It is a sofic shift which
is not of finite type.

1 2a

b

b

Fig. 1. The even system.

Let S be a sofic shift over the alphabet A. We denote by Z[S] the algebra
of linear combinations with coefficients in Z of elements of Fact(S) using the
product

u · v =







uv if uv ∈ Fact(S)

0 otherwise.
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For U ∈ Z[S] and w ∈ Fact(S), we denote by (U, w) the coefficient of w in
U . We denote by N[S] the set of linear combinations with coefficients in N

of elements of Fact(S). We also use the corresponding large algebra which
consists of the infinite linear combinations of elements of Fact(S). We often
identify a subset of Fact(S) with the sum of all its elements. We have in
particular the equation in the large algebra.

(1 − A) Fact(S) = Fact(S)(1 − A) = 1.

We may as well write Fact(S) = A∗, provided the star operation is understood
to refer to the product defined above.

A set X of elements of Fact(S) is called an S-code if any element of Fact(S)
has at most one decomposition in code words. We also say that X is a code
in S. Thus a code in the usual sense is a code in the full shift. A set of words
X is S-complete (or complete in S) if any element of Fact(S) occurs within
some concatenation of elements of X.

It is known that a maximal S-code is S-complete (see [2]). The converse is
not true since for example X = {ab} is complete in the shift of finite type
avoiding aa and bb. However, it is not maximal since it is included in {ab, ba}.

If X is an S-code, we have in the large algebra of Fact(S)

(1 − X)X∗ = X∗(1 − X) = 1,

where the star operation is again understood to refer to the product defined
above.

A prefix code in a sofic shift S is a set X of elements of Fact(S), such that no
proper prefix of a word of X belongs to X. A set of words X is right complete
in S if any element of Fact(S) is a prefix of a word in X∗. A prefix code which
is maximal is right-complete and conversely (the proof is the same as in the
case of the full shift). It is not true however that a prefix code in a sofic shift
which is complete is also right-complete as shown by the example of X = {ab}.

Let X be a maximal prefix code in a sofic shift S, and let P be the set of
proper prefixes of words of X. We have in the large algebra of Fact(S) the
equations

X − 1 = P (A − 1),

Fact(S) = X∗P.

For example, if S is the subshift of finite type avoiding aa and bb, and if
X = {ab, ba}, we have in the algebra of Fact(S)

X − 1 = (A + 1)(A − 1).
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Interestingly, for X = {ab}, we do not have such an identity because it is not
maximal. But we have the 3-factors product

X − 1 = (a + 1)(a + b − 1)(b + 1).

3 Unambiguous automata

There are at least two methods which can be used to check whether a set X

is a code, the classical Sardinas-Patterson algorithm and the test of unambi-
guity for automata. We extend here these methods to codes in sofic systems.
The extension of the Sardinas-Patterson algorithm to codes in edge shifts has
already been described by C. Reutenauer in [3].

We begin with the extension of the Sardinas-Patterson algorithm. Let S be
a sofic system and let X be a subset of Fact(S). Let A = (Q, E, i, T ) be the
minimal deterministic automaton of Fact(S). We consider the following notion
on subsets of A∗ × Q. For U, V ⊆ A∗ × Q, let

U−1V = {(w, q) | (uw, q) ∈ V and p
w
−→ q for some (u, p) ∈ U}.

We denote

Y = {(x, p) | x ∈ X, p ∈ Q and i
x
−→ p}.

We then define a sequence (Un)n≥0 of subsets of A∗×Q by the usual formulas.

U0 = Y −1Y − {(ε, p), p ∈ Q},

Un+1 = Y −1Un ∪ U−1

n Y.

It is easy to verify that there is a finite number of possible sets (Un)n≥0 when
X is finite (it is also true when X is regular). The proof of the following result
is similar to the classical one.

Proposition 1 The set X is a code if and only if none of the sets Un contains
a pair (ε, p) with p ∈ T .

Example 2 We consider the even shift S of Figure 1. Its set of finite factors
is recognized by the automaton of Figure 2.

Let X = {a, ab, ba}. We have

Y = {(a, 1), (ab, 2), (ba, 1)},

U0 = {(b, 2)},

U1 = ∅.
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1 2a

b

a

b

b

Fig. 2. A deterministic automaton recognizing Fact(S).

Thus X is an S-code although it is not a code in the full shift. We will have
more to say about this example later (Section 4).

We now come to the method using automata. It is well known that for a set
X of words, one can construct a non-deterministic automaton such that X∗ is
the stabilizer of one state and that X is a code if and only if this automaton
is unambiguous (see [9]). Such an automaton also allows one to check easily
whether the code is complete. We extend below this method to codes in sofic
systems.

Recall that a nondeterministic automaton is unambiguous if whenever there
are two paths of the form

p
u
−→ r

v
−→ q

p
u
−→ s

v
−→ q,

we have r = s. In other terms there is a unique path with a given origin, end,
and label.

Let S be an irreducible sofic system on the alphabet A and let X ⊂ Fact(S)
be a set of words. We suppose in a first step that X is a finite set. As we shall
see later, the construction below also works for a regular set X.

Let A = (Q, E) be the minimal deterministic automaton recognizing S (see
[10] for an exposition of the links between automata and symbolic systems).
We build an automaton B as follows. The set of states is formed by the set Q

plus |x| − 1 new states for each path in A of the form p
x
→ q for x ∈ X. It is

easy to verify that the automaton B recognizes X∗ ∩Fact(S) with Q as set of
initial and terminal states.

When X is regular, we proceed as follows. Let C = (P, F, i, t) be an unam-
biguous normalized automaton recognizing X. A classical construction (see [9,
p. 185]) allows one to build an automaton C∗ = (P ∪ ω, ω, ω), where ω is a
new state obtained by merging the states i and t, such that the number of
paths from ω to ω labeled by w is the number of factorizations of w in words
of X. The automaton B is now chosen as A× C∗. The previous construction
corresponds to the choice of the flower automaton of the set X for C∗.
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The following statement shows in particular that one can use the automaton
B to verify whether X is an S-code.

Proposition 2 The set X is an S-code if and only if the automaton B is
unambiguous.

PROOF. For any two states p, q in Q, let Lpq be the set of words labels of
paths from p to q in A. Each state of B is accessible and co-accessible from
a state in Q × ω. Hence B is unambiguous if and only if, for any pair p, q of
states of Q and any word w, there is at most one path in B labeled by w from
(p, ω) to (q, ω). By construction, the number of paths from (p, ω) to (q, ω)
labeled by w is the number of factorizations of w in words of X. Thus if X

is an S-code, B is unambiguous. Conversely, if X is not an S-code, there is a
word w ∈ Lpq for some states p, q ∈ Q which has at least two factorizations in
words of X, which implies that B is ambiguous. 2

Example 3 For the set X = {a, ab, ba} of Example 2 in the even shift, the
automaton B is represented in Figure 3. It is an unambiguous automaton. A
lookahead of one symbol suffices to resolve the nondeterminism in state 1. This
gives a second proof that X is an S-code.

1 2

3

4

a

a b

ba

Fig. 3. The unambiguous automaton B.

Moreover, the automaton B can be used to verify whether X is S-complete.
Indeed

Proposition 3 The set X is S-complete if and only if B recognizes S.

In practice, if S is irreducible, since B recognizes a subshift T of S, it is enough
to verify that the entropy of T is equal to the entropy of S. This can be done
in polynomial time (see [11]).

4 A complete code in the even system

In this section, we develop in some detail an example of a complete code in a
sofic system.
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We consider again the set of words X = {a, ab, ba}. It is the simplest example
of a set which is not a code. In fact, one has the two factorizations (ab)(a) =
(a)(ba). However, one has the following statement

Proposition 4 The set X is a code in any sofic system such that the block
aba is forbidden.

PROOF. The simplest way to see this is as follows. An ambiguous factoriza-
tion should begin with (a)(b · · · = (ab) · · · . Since aba is forbidden, the prefix
ab should be followed by a b as (a)(bb · · · = (ab)(b · · · which is clearly impos-
sible. 2

For example, the set X is a code in the system Saba which is represented on
Figure 4, which is the subshift of finite type on the alphabet A = {a, b} defined
by the unique forbidden block aba.

1 2 3b
a

a

b

b

Fig. 4. The system Saba.

We will verify the following statement.

Proposition 5 The code X cannot be finitely completed in the system Saba.

PROOF. Let us assume the contrary and let Y be a finite complete code
in Saba containing X. Let n ≥ 1 be such that bn ∈ Y . Then (a)(bn)(ba) =
(ab)(bn)a, a contradiction. 2

This contrasts with the situation for codes (in the full shift) for which the sim-
plest example of a code without any finite completion (i.e. the set {a5, b, ab, ba2})
relies on counting modulo some integer (see [12] or [9, p. 64]).

The set X is also a code in the even system represented on Figure 1. Let us
now consider the following set containing X.

Y = {a, ab, ba, bab, bbbb}.

We are going to verify that, in contrast with the previous proposition, the
following holds.
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Proposition 6 The set Y is a complete code in the even system.

PROOF. The fact that Y is a code follows from Proposition 1. To see that
it is complete, we compute the automaton recognizing Y ∗ as indicated by the
method of Section 3. Up to the merge of some states, we obtain the automaton
shown on Figure 5. It recognizes Y ∗ with 1 and 3 as initial and terminal states.

8

7

9

1

2

4

3

5

6

bb

b b

a

a b

b
a

a

b

b b

Fig. 5. An automaton recognizing Y ∗.

A part of the subset construction applied to this automaton and represented
on Figure 6 constitutes an automaton with five states {1, 2}, {3, 7}, {4, 8},
{1, 5} and {6, 9} recognizing the even system. This can be seen by minimizing
the deterministic automaton with these five states, which gives the Fischer
cover of the even system. Thus the code is complete in this system. 2

1, 2 1, 2a

3, 7
b

4, 8b 1, 5a 1, 2a

3, 7
b

6, 9

b

1, 5b

Fig. 6. The state diagram.

We now consider the polynomial of the code Y . This is by definition the
determinant of the matrix I − M(Y ) (with entries in Z[A]), where M(Y ) is
the matrix associated with the action of the words of the code on the minimal
automaton of the shift. This action is represented on Figure 7.

The matrix M(Y ) is

M(Y ) =







a + b4 ab

ba bab + b4






.
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1 2a, b4

ab

ba

bab, b4

Fig. 7. The action of Y on the even system.

Thus the polynomial of the code is

p(Y ) = 1 − a − 2b4 − a2b2 − ab2 + (a + b4)(ab2 + b4)

= 1 − a − ab2 − 2b4 + ab4 + ab6 + b8.

In accordance with the main result of [2], the polynomial p(Y ) is divisible by
p(A) = 1 − a − b2. Indeed, we have

p(Y ) = (1 + b2)(1 − a − b2)(1 − b4).

It is interesting to remark that this factorization can be lifted to a non-
commutative one. Indeed, one has in non-commuting variables







1 − a − b4 −ab

−ba 1 − bab − b4





 =







1 0

b 1 + b2













1 − a −b

−b 1













1 b

b3 1







Thus, we have obtained the existence of matrices P, Q with elements in the
subsets of A∗ such that

I − M(Y ) = P (I − M(A))Q. (1)

We will have more to say on this equation in the next section.

5 A complete code in an edge shift

We finally consider what happens if one replaces the even system by the sub-
shift of finite type S represented on Figure 8 and consisting in giving distinct
names to the edges of the automaton of the graph of Figure 1. This is actually
the edge shift of the graph of Figure 1.

1 2a

b

c

Fig. 8. A subshift of finite type.

We replace Y by the set

Z = {a, ab, ca, cab, bcbc, cbcb}
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obtained by renaming the paths labeled by the words of Y in the graph of the
automaton recognizing the even system. The set Z is again a complete code
in S. The matrix M(Z) is

M(Z) =







a + bcbc ab

ca cab + cbcb







and we have the factorization






1 − a − bcbc −ab

−ca 1 − cab − cbcb





 =







1 0

c 1 + cb













1 − a −b

−c 1













1 b

cbc 1







This factorization has the same form I − M(Z) = P (I − M(A))Q as the
factorization (1) but this time, the matrices P, Q are the matrices of the action
of sets U, V with U = {1, c, cb}, V = {1, b, cbc}. We can even write simply

1 − Z = U(1 − A)V, (2)

provided the expressions on both sides are computed in the algebra Z[S].

A finite subset Z of Fact(S) such that there exists two polynomials U, V ∈ Z[S]
(resp. two sets U, V ⊆ Fact(S)) satisfying Equality (2) is called Z-factorizing
(resp. N-factorizing).

An N-factorizing set is an S-complete code. Indeed, Equation (2) is equivalent
to Fact(S) = V (1 − Z)−1U in the large algebra of Fact(S). The last equality
implies that (1 − Z)−1 has coefficients equal to 0 or 1, and thus that it is an
S-code. It also implies that it is S-complete. It is conjectured that any finite
complete code in the full shift is N-factorizing. This is called the factorization
conjecture (see [9]).

C. Reutenauer has proved that any finite complete code in the full shift is
Z-factorizing (see [13]). He has conjectured in [3] that any finite code which
is complete and minimal for this property in an edge shift is Z-factorizing.

The following statement shows that the extension to sofic shifts of Reutenauer’s
conjecture is not true. Indeed, the set Y defined below is a complete code in
the even system by Proposition 6. It is also minimal for this property as one
may verify.

Proposition 7 The code Y = {a, ab, ba, bab, bbbb} is not Z-factorizing in the
even shift.

PROOF. Let S be the even shift. Suppose that U, V are two polynomials
in Z[S] such that 1 − Y = U(1 − A)V . Since any word in Y has at most
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one occurrence of a, the monomials of U and V belong to b∗. The equation
1 − Y = U(1 − A)V is equivalent to the equation A∗ = V Y ∗U . We have
(U, 1) = (V, 1) = 1. Next, we have either (U, b) = 1 and (V, b) = 0, or (V, b) = 1
and (U, b) = 0. Suppose for instance that (U, b) = 1 and (V, b) = 0. Then

(V Y ∗U, ba) = (V, b)(Y ∗, a)(U, 1) + (V, 1)(Y ∗, ba)(U, 1) = 2,

which is a contradiction. 2
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