
HAL Id: hal-00619217
https://hal.science/hal-00619217

Submitted on 5 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing the prefix of an automaton
Marie-Pierre Béal, Olivier Carton

To cite this version:
Marie-Pierre Béal, Olivier Carton. Computing the prefix of an automaton. Informatique Théorique
et Applications, 2000, 34 (6), pp.503-514. �hal-00619217�

https://hal.science/hal-00619217
https://hal.archives-ouvertes.fr

Computing the pre�x of an automatonMarie-Pierre B�ealInstitut Gaspard Monge�Universit�e de Marne-la-Vall�ee Olivier CartonInstitut Gaspard Monge�Universit�e de Marne-la-Vall�eeMar
h 7, 2001Abstra
tWe present an algorithm for
omputing the pre�x of an automaton.Automata
onsidered are non-deterministi
, labelled on words, and
anhave "-transitions. The pre�x automaton of an automaton A has thefollowing
hara
teristi
 properties. It has the same graph as A. Ea
ha

epting path has the same label as in A. For ea
h state q, the longest
ommon pre�x of the labels of all paths going from q to an initial or�nal state is empty. The interest of the
omputation of the pre�x of anautomaton is that it is the �rst step of the minimization of sequentialtransdu
ers.The algorithm that we des
ribe has the same worst
ase time
omplex-ity as another algorithm due to Mohri but our algorithm allows automatathat have empty labelled
y
les. If we denote by P (q) the longest
ommonpre�x of labels of paths going from q to an initial or �nal state, it operatesin time O((P + 1)� jEj) where P is the maximal length of all P (q).1 Introdu
tionTransdu
ers are �nite state ma
hines whose transitions or edges are labelledby a pair made of an input word and an output word. They are widely usedin pra
ti
e to model various things like lexi
al analyzers in language pro
essing[14℄, operations in numeration systems [11℄ or also en
oding or de
oding s
hemesfor
hannels [2℄. As a transdu
er has input and output labels, and even if theselabels are letters, there is in general no minimal equivalent obje
t like for simple�nite state automata. It is very often required that the transdu
er has letters asinput labels and has moreover a deterministi
 input automaton. It is then
alledsequential. Used as an en
oder, this means that the output
odeword is obtainedsequentially from the input data. Transdu
ers whi
h are not sequential, butwhi
h realize sequential fun
tions,
an be �rst determinized (see for instan
e [4℄�Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee, 5 boulevard Des
artes, 77454Marne-la-Vall�ee Cedex 2, Fran
e. http://www-igm.univ-mlv.fr/~fbeal,
artong1

or [3℄). In the
ase of sequential transdu
ers, there exists a minimal equivalentsequential transdu
er, even if the output labels are variable length words.A
hara
terization of minimal sequential transdu
ers was �rst given in [7℄. Apro
edure to produ
e a minimal sequential transdu
er is there indi
ated. It is inparti
ular shown in [7℄ that the minimal sequential transdu
er is obtained in twosteps. The �rst one is the
omputation of the pre�x automaton of the outputautomaton of the transdu
er. The se
ond step is a
lassi
al minimization of thetransdu
er obtained at the end of the �rst step, seen as an ordinary �nite stateautomaton. The pre�x of an automaton
an be interpreted as an automatonwith the same underlying graph, same behaviour but produ
es its output assoon as possible. Its name
omes from the fa
t that for any state q, the longest
ommon pre�x P (q) of labels of paths going from q to an initial or �nal state isempty.The �rst algorithm of
omputation of the pre�x of an automaton appears in[12℄ and [13℄. The
onstru
tion is there
alled a quasi-determinization. It hasbeen noti
ed by Mohri that the �rst step of the minimization of sequential trans-du
ers is independent from the notion of transdu
ers. The quasi-determinizationis an algorithm that works on �nite state automata. It keeps the graph of an au-tomaton and
hanges only the labels of the edges. Roughly speaking, it pushesthe labels of the edges from the �nal states towards the initial states as mu
h aspossible. The algorithm of Mohri has a time
omplexity O((P +1)�jEj), whereE is the set of edges and P the maximum of the lengths of P (q) for all states q.We assume here that the number of states jQj is less than the number of edges.Another algorithm for
omputing the pre�x of automaton has been presentedin [5℄ and [6℄. The approa
h of this algorithm is really di�erent from ours. It isbased on the
onstru
tion of the suÆx tree of a tree and its time
omplexity isO(jQj+ jEj+S log jAj), where A is the alphabet and S is the sum of the lengthsof the labels of all edges of the automaton. Breslauer's algorithm
an thus bebetter when there is a small number of edges and Mohri's algorithm is better inthe other
ase. In pra
ti
e, S
an be very large and P
an be very small. Thismakes the algorithms of Mohri and ours almost linear. A
omparison of the two
omplexities is given in [13℄.Our algorith uses the same prin
iple of pushing letters through states asMohri's algorithm does. Main restri
tion to Mohri's algorithm is that it doesnot work when the automaton
ontains a
y
le of empty label (the system ofequations given in [13, Lemma 2 p. 182℄ does not admits a unique solution inthis
ase). Some step in Mohri's algorithm requires that the automaton has noempty labelled
y
le. However, if the starting automaton does not have any su
h
y
le, this property is kept along the pro
ess. The algorithm is therefore
orre
tin this
ase. This restri
tion is not really important for appli
ations sin
e thetransdu
ers used in pra
ti
e, like in language pro
essing, have no empty labelled
y
les in output.In this paper, we present another algorithm of
omputation of the pre�xof an automaton whi
h has the same worst
ase time
omplexity as Mohri'salgorithm, O((P + 1) � jEj), and that works for all automata. The existen
eof empty labelled
y
les a

ounts for most of the diÆ
ulty in the
oming algo-2

rithm. The time
omplexity is independent of the size of the alphabet. Thealgorithm
onsists in de
reasing by 1 the value P at ea
h step. We present ouralgorithm for sequential transdu
ers but it
an be dire
tly extended to the
aseof subsequential transdu
ers (see [7℄ or [4℄ for the de�nition of a subsequentialtransdu
er).In Se
tion 2, we re
all some basi
 de�nitions from automata theory and wede�ne the pre�x automaton of an automaton. The
omputation algorithm ofthe pre�x of an automaton is presented in Se
tion 3. The
omplexity is analyzedin Se
tion 4. In that se
tion some data stru
tures are des
ribed whi
h
an beused to get the right time
omplexity of the algorithm.2 Pre�x of an automaton and appli
ationsIn the sequel, A denotes a �nite alphabet and " is the empty word. A word uis a pre�x of a word v if there is a word w su
h that v = uw. The word w isdenoted by u�1v. The longest
ommon pre�x of a set of words is the longestword whi
h is pre�x of all words of the set.An automaton over A� is
omposed of a set Q of states, a set E � Q�A��Qof edges and two sets I; F � Q of initial and �nal states. An edge e = (p; u; q)from p to q is denoted by p u�! q, the word u being the label of the edge. Theautomaton is �nite if Q and E are �nite. A path is a possibly empty sequen
e of
onse
utive edges. Its label is the
on
atenation of the labels of the
onse
utiveedges. An automaton is often denoted by A = (Q;E; I; F). An a

epting pathis a path from an initial state to a �nal state. The language or set of wordsre
ognized (or a

epted) by an automaton is the set of labels of a

epting paths.An automaton is deterministi
 if it is labelled by letters of a �nite alphabet A,if it has one initial state and if for ea
h state p and ea
h letter a in A, there isat most one edge p a�! q for some q.We now de�ne the pre�x automaton of a given automaton A. This pre�xautomaton has the same graph as A, but the labels of the edges are
hanged.However the labels of the a

epting paths remain un
hanged and the pre�xautomaton re
ognizes the same words. Furthermore, for any state q of thepre�x automaton the longest
ommon pre�x of the labels of all paths goingfrom q to an initial or �nal state is empty.Let A = (Q;E; I; F) be a �nite non-deterministi
 automaton labelled bywords. We assume that the automaton is trim, that is, any state belongs to ana

epting path. For ea
h state q, we denote by PA(q), or just P (q), the longest
ommon pre�x of the labels of all paths going from q to an initial or �nal state.Remark that P (q) = " if q is initial or �nal.The pre�x automaton of A is the automaton A0 = (Q;E0; I; F) de�ned asfollows. E0 = fq P (q)�1uP (r)��������! r j q u�! r is an edge of Ag:One may easily
he
k that if q u�! r is an edge of A, then the word P (q) is3

by de�nition a pre�x of the word uP (r) and the previous de�nition is thus
onsistent.Note that a path labelled by w from q to r in A be
omes a path labelled byP (q)�1wP (r) from q to r in the pre�x automaton. If this path is a

epting, qis initial and r is �nal and thus P (q) and P (r) are both empty. Then the labelof the path in the pre�x automaton is the same as in A. The label of a
y
leof A is
onjugated to its label in the pre�x automaton. In parti
ular the emptylabelled
y
les of the pre�x automaton are the same as the ones of A.By
onstru
tion the longest
ommon pre�x of the labels of all paths goingfrom q to an initial or �nal state is empty in the pre�x automaton.Our de�nition of the pre�x automaton allows edges
oming in an initialstate. In most
ases, there is none and for ea
h non-initial state q, P (q) is thelongest
ommon pre�x of the labels of all paths going from q to a �nal state.The words P (q) are the longest words su
h that P (q) = " if q is initial or�nal and su
h that P (q) is a pre�x of uP (r) for any edge q u�! r. Indeed, if afun
tion P 0 maps any state q to a word su
h that these two
onditions are met,then P 0(q) is a pre�x of P (q) for any state q.
1 2

3 4ba "" aa
aFigure 1: An automaton A.
1 2

3 4baa "" a
"Figure 2: The pre�x automaton of A.Example 1 Consider the automaton A pi
tured in Figure 1 where the initialstate is 1 and the �nal state is 4. The pre�x automaton of A is pi
tured inFigure 2. 4

The main appli
ation of the pre�x of an automaton is minimization of se-quential and subsequential transdu
ers. A transdu
er is de�ned as an automa-ton, ex
ept that the labels of the edges are pairs made of an input word andan output word. A transdu
er labelled in A � B� is sequential if its input au-tomaton is deterministi
. It has been proved [7℄, [8, p. 95℄, see also [12℄ and[13℄, that among the sequential transdu
ers
omputing a given fun
tion, thereis a minimal one whi
h
an be obtained from any sequential transdu
er
om-puting the fun
tion. This minimization is performed in two steps. The �rststep is the
omputation of the pre�x automaton of the output automaton ofthe transdu
er. The se
ond step is a minimization of the resulting transdu
er,
onsidered as a �nite automaton.We refer to [12℄ for examples of minimization of sequential transdu
ers.3 Computation of the pre�x of an automatonIn this se
tion, we des
ribe an algorithm whi
h
omputes the pre�x of an au-tomaton. The automaton A = (Q;E; I; T) is a non-deterministi
 automatonwhose edges are labelled by words over a �nite alphabet A. The labels
an bethe empty word and
y
les with empty labels are allowed.We �rst des
ribe the prin
iple of the algorithm. If q is a state of A, we re
allthat P (q) denotes the longest
ommon pre�x of the labels of all paths goingfrom q to an initial or �nal state. We denote by p(q) the �rst letter of P (q) ifP (q) 6= ", and " if P (q) = ".We denote by PA the maximum of the lengths of all P (q) for all states q.If PA > 0, we
onstru
t from the automaton A = (Q;E; I; T) an automa-ton A0 = (Q;E0; I; T) whose edges are de�ned as follows:E0 = fq p(q)�1up(r)��������! r j q u�! r is an edge of Ag:It re
ognizes the same language as A and satis�es PA0 = PA � 1. By iteratingthis pro
ess, we get the pre�x automaton.We now explain the
omputation of the automaton A0. We
all "-edgeany edge whose label is ". Let A" be the sub-automaton of A obtained bykeeping only the "-edges. We �rst
ompute the strongly
onne
ted
omponentsof A". This
an be performed by depth-�rst explorations of A" [9℄. The strongly
onne
ted
omponents are stored in an array
 indexed by Q. For ea
h stateq we denote by
[q℄ a state that represents the strongly
onne
ted
omponentof q. The
all to Strongly-Conne
ted-Components(A") in the pseudo
odebelow will refer to this pro
edure that
omputes the array
.Note that all states q in a same strongly
onne
ted
omponent of A" havesame P (q) and thus same p(q).The
onstru
tion of A0 is then done with two depth-�rst explorations, �rstan exploration of A", se
ond, an exploration of A.The �rst exploration
omputes p(q) for ea
h state q of A". This symbol,either a letter or ", is stored in the
ell letter[q℄ of an array letter. As p(q)5

is
ommon to all states q in a same strongly
onne
ted
omponent of A", we
ompute it only for the states
[q℄.At the beginning of the
omputation, all
ells letter[q℄ are set to the defaultvalue > whi
h stands for unde�ned. During the
omputation, these values are
hanged into symbols of A [f"g. Let X be the set A [f";>g. We de�ne apartial order on the set X as follows. For ea
h a 2 A," < a < >:Note that ea
h subset of X has an inf in X su
h that, for all x 2 X , all a; b 2 Awith a 6= b, inf("; x) = ";inf(>; x) = x;inf(a; b) = ":We also assume that an array lo
al indexed by Q gives, for ea
h state q, either" if q is �nal or initial, or inf(S) where S is the set of letters that appear asthe �rst letter of a non-empty label of an edge going out of q. Note that ifthere is no edge with a non-empty label going out of q, lo
al[q℄ is equal to >.The array lo
al is initialized by the pro
edure Init-Table and updated withthe pro
edures Update-Table-Head and Update-Table-Tail that we shalldes
ribe later.For ea
h state q in Q, the value of letter[
[q℄℄ is �rst set to the inf of lo
al[r℄,for all states r in the same strongly
onne
ted
omponent of A" as q. This isdone by the pro
edure Init-Letter. During the exploration of the automatonA", if q has a su

essor r su
h that letter[
[r℄℄ < letter[
[q℄℄, then letter[
[q℄℄ is
hanged in inf(lo
al[q℄; letter[
[q℄℄). We
laim that the
ell of index q of the arrayletter
ontains p(q) at the end of this exploration. This exploration is done bythe fun
tion Find-Letter. It returns a boolean whi
h is true if there is at leastone state q with p(q) non-empty.We give below a pseudo
ode for the pro
edures Init-Letter, Find-Letterand Find-Letter-Visit. We follow the depth-�rst sear
h presentation of [9℄.Init-Letter(set of states Q)for ea
h state q 2 Q doletter[
[q℄℄ >for ea
h state q 2 Q doletter[
[q℄℄ inf(lo
al[q℄; letter[
[q℄℄)Find-Letter(automaton A" = (Q;E"; I; F))bool falsefor ea
h state q 2 Q do
olor[q℄ whitefor ea
h state q 2 Q doif
olor[q℄ = white thenFind-Letter-Visit(A"; q)return bool 6

Find-Letter-Visit(automaton A" = (Q;E"; I; F), state q)
olor[q℄ bla
kfor ea
h edge (q; "; r) doif
olor[r℄ = white thenFind-Letter-Visit(A"; r)letter[
[q℄℄ inf(letter[
[q℄℄; letter[
[r℄℄)if letter[
[q℄℄ 6= " thenbool trueWe now prove the
orre
tness of our algorithm.Proposition 2 Fun
tion Find-Letter
omputes p(q) for ea
h state q.Proof. For ea
h state q, \letter[
[q℄℄ � p(q)" is an invariant of the fun
tion Find-Letter. Indeed, one has lo
al[r℄ � p(q), for ea
h state r in the same strongly
onne
ted
omponent as q. This implies that \letter[
[q℄℄ � p(q)" is an invariantof the fun
tion Init-Letter(Q). Moreover, if there is an edge (q; "; r) and ifletter[
[r℄℄ � p(r), we get letter[
[r℄℄ � p(r) � p(q). Then \letter[
[q℄℄ � p(q)" isinvariant during Find-Letter-Visit(A" ; q).We now show that if there is an edge (q; "; r) between two states q and r, wehave letter[
[q℄℄ � letter[
[r℄℄ at the end of Find-Letter(A"). This fa
t is trivialif q and r belong to the same strongly
onne
ted
omponent of A". If not, theend of the exploration of state r is before the end of the exploration of q. Thenthe line 5 of Find-Letter-Visit(A"; q) implies that letter[
[q℄℄ � letter[
[r℄℄.Let us assume there is a (possibly empty) path from q to a state r whi
hhas an empty label and an edge going out of r labelled with au, where u is aword. Then letter[
[q℄℄ � a at the end of Find-Letter-Visit(A"; q). Indeed,at the end of Find-Letter-Visit(A"; q), we have letter[
[r℄℄ � a, and then alsoletter[
[q℄℄ � letter[
[r℄℄ � a.Let us assume that p(q) is a letter a in A. Then there is a (possibly empty)path from q to a state r whi
h has an empty label and an edge going out of rlabelled with au, where u is a word. As a
onsequen
e letter[
[q℄℄ � a and thenletter[
[q℄℄ = p(q). Let us now assume that p(q) is the empty word. Then thereis either a (possibly empty) path from q to a state r whi
h has an empty labeland an edge going out of r labelled with au, where u is a word, and there isa (possibly empty) path from q to a state r0 whi
h has an empty label and anedge going out of r0 labelled with bu, where u is a word, with b 6= a. In this
aseletter[
[q℄℄ � inf(a; b) = ", and then letter[
[q℄℄ = p(q). Or there is a (possiblyempty) path from q to a state r whi
h has an empty label and with r �nal orinitial. Again letter[
[q℄℄ � letter[
[r℄℄ = ". Finally, letter[
[q℄℄ = p(q) for ea
h q.� The se
ond depth-�rst exploration is an exploration of the automaton A. Itupdates the labels of A in order to de
rease the length of P (q) for ea
h state qsu
h that p(q) is non-empty. For ea
h edge (q; u; r), where u is a �nite word, thefollowing two operations are performed. The letter (or empty word) p(
[r℄) isadded at the end of u. Then the �rst letter (or empty word) p(
[q℄) is removed7

from the beginning of u. Note that these two operations are possible. If u isnonempty, then p(
[q℄) is the �rst letter of u and if u = " then p(
[q℄) = p(
[r℄)or p(
[q℄) = ". These operations
hange the labels of the edges of the automatonA and thus also the values of the array lo
al. Lines 3 and 5 of Move-Letter-Visit
hange the labels of the edge e in A. Sin
e an edge with empty label
an be
ome an edge with a non-empty label and
onversely, the edge of A"are also updated there. The values of the array lo
al are updated with twopro
edures Update-Table-head and Update-Table-Tail des
ribed later.The exploration is done during the run of pro
edure Move-Letter whosepseudo
ode is given below.Move-Letter(automaton A = (Q;E; I; F))for ea
h state q 2 Q do
olor[q℄ whitefor ea
h state q 2 Q doif
olor[q℄ = white thenMove-Letter-Visit(A; q)Move-Letter-Visit(automaton A = (Q;E; I; F)), state q)
olor[q℄ bla
kfor ea
h edge e = (q; u; r) where u is a (possibly empty) word doappend letter[
[r℄℄ at the end of the label of e in A and update A"Update-Table-Tail(e; letter[
[r℄℄)remove letter[
[q℄℄ from the head of the label of e in A and update A"Update-Table-Head(e; letter[
[q℄℄)if
olor[r℄ = whitethenMove-Letter-Visit(A; r)Proposition 3 Fun
tion transforms the automaton A in an automaton A0whose edges are:E0 =fq p(q)�1up(r)��������! r j q u�! r is an edge of Ag:Therefore, the fun
tion Move-Letter
hanges the label w of any path from qto r into p(q)�1wp(r).Proof. This follows dire
tly from the
onstru
tion. �Proposition 4 Fun
tion Move-Letter transforms the automaton A in anautomaton A0 whi
h has the same graph as A, keeps the labels of a

epting pathsand satis�es PA0 = PA � 1.Proof. Let w be the label of a path from an initial state i to a �nal state t inA. The label of the same path obtained at the end of Move-Letter in A0 isp(i)�1wp(t) = w. Thus the labels of a

epting paths are un
hanged. Moreover,for ea
h state q one has PA0(q) = pA(q)�1PA(q). It follows that PA0 = PA � 1if PA � 1. � 8

We now give a pseudo
ode of the pro
edure Make-Prefix whi
h is themain pro
edure of the algorithm.Make-Prefix(automaton A = (Q;E; I; F))Init-Table(A)Strongly-Conne
ted-Components(A")repeatInit-Letter(Q)bool Find-Letter(A")if bool thenMove-Letter(A)until bool = falseThe result of the
omputation of the automaton A pi
tured in Figure 1 isthe automaton pi
tured in Figure 2. The automaton A is su
h that PA = ".Note that this automaton has an empty labelled
y
le.Remark 5 The two pro
edures Find-Letter and Find-Letter-Visit
an beperformed on the dire
ted a
y
li
 graph obtained as the quotient of A" by therelation of being in a same strongly
onne
ted
omponent. This graph
an bemu
h smaller than A" itself. It
an be
omputed by the pro
edure Strongly-Conne
ted-Components.Remark 6 By proposition 3, the label of a
y
le is
hanged into one of its
on-jugate by the fun
tion Move-Letter. Therefore, the strongly
onne
ted
om-ponents of A" are un
hanged during the iteration of fun
tion Make-Prefix.4 Data stru
tures and
omplexityIn order to analyze the
omplexity of our algorithm, we brie
y dis
uss a possibleimplementation of stru
tures required in the
onstru
tion.A
lassi
al way for implementing the automaton A is to use jQj adja
en
ylists that represent the edges. We may assume that we have two adja
en
y listsfor ea
h state q. The �rst one represents the edges of empty label going out ofq, that is the edges that also belong to A". The se
ond one represents the edgesof non-empty label going out of q.In order to
ompute, for ea
h state q, lo
al(q) in a
onstant time, we maintainan array L indexed by Q de�ned as follows:� L[q℄ is the list of pairs (a; n) with a 2 A; n > 0 2 N, su
h that q has atleast one outgoing edge labelled by a word whose �rst letter is a and su
hthat n is the positive number of edges going out of q and whose �rst letteris a. 9

We point out that the �rst
omponent of an element of L[q℄ is a letter and never
ontains ". Thus lo
al(q) is " if L[q℄ has more than one element or if q is initialor �nal. It is the letter a if L[q℄
ontains exa
tly one pair (a; n) and q is neitherinitial nor �nal. It is > otherwise.The operation performed in the lists are the insertion of a new letter, that isa pair (a; 1), the in
rementation and de
rementation of the se
ond
omponentof an element, and the deletion of a letter, that is of a pair (a; 1). We need allthese operations to be performed in a
onstant time.We use a known te
hnique whi
h allows us to get this time
omplexity (seefor example [1℄ exer
ise 2.12 p. 71 and [10℄ exer
ise \Implantation de fon
tionspartielles" 1.14 Chapter 1). This te
hnique is based on the use of array of sizejQj � jAj whi
h is not initialized.We assume that the lists L[q℄ are doubly linked and implemented with
ur-sors. We denote by T an array of variable size. The
ells of T are used to storethe elements of the lists L[q℄. Ea
h
ell has several �elds: a �eld label whi
h
ontains the letter, a �eld number that
ontains the number of edges going outof q whose �rst letter is label, a �eld state whi
h
ontains the state q su
h thatthe
ell belongs to L[q℄, and �nally �elds next and prev that give the index ofthe next (respe
tively previous) element in the same list. The
ell of index q ofthe array L is the index in T of the �rst element of L[q℄, if this list is non-empty.Another array U , indexed by Q�A, gives for ea
h pair (q; a) the index in Tof the
ell of L[q℄ whose letter is a, if this letter is in L[q℄. This array allows usto a

ess an element of a list in a
onstant time. The operations of insertion,deletion of an element in a list are then done in a
onstant time. The operationsof in
rementation and de
rementation of the �eld number of the
ell of a givenlabel in a given list are also done in a
onstant time. Indeed, to in
rement the�eld number of the letter a in L[q℄, one in
rements the �eld number of the
ellof T indexed by U [q; a℄.The array T is initially empty and its size is 0. The size of T is in
rementedwhen a new
ell is needed in T . A
ell that
orresponds to an element of a listthat has just been removed is marked to be free. Thus the existen
e of a lettera in L[q℄ is obtained by
he
king whether U [q; a℄ is an index i in [1; size(T)℄,whether the
ell T [i℄ is not marked free, and whether the �elds label and stateare respe
tively equal to a and q. This is performed in a
onstant time.All the lists of su

essors that represent the edges of the automaton A andA", and the arrays lo
al, L, T , U are updated when the label of an edge is
hanged during the pro
ess. The arrays L and lo
al are initialized by the pro
e-dure Init-Table. The arrays L, T , U and lo
al are updated by the pro
eduresUpdate-Table-Head and Update-Table-Tail.We give below a pseudo
ode for the pro
edure Init-Table.Init-Table(automaton A = (Q;E; I; F))for ea
h q 2 Q doL[q℄ the empty listlo
al[q℄ >for ea
h q 2 Q do 10

for ea
h edge (q; au; r) where a is letter and u a word doif a is not in L[q℄ theninsert the pair (a; 1) in L[q℄else in
rement the �eld number of the letter a in L[q℄if L[q℄ has more than one element or if q is initial or �nal thenlo
al[q℄ "else if L[q℄ is not empty thenlo
al[q℄ the unique letter of L[q℄We now des
ribe the updating of the tables and lists. An update is neededas soon as the label of an edge of A is
hanged. Note that the labels of the edgesof the automata A and A" are
hanged in a
onstant time. Indeed, a label of anedge going out of a state q that be
omes empty is removed from the list of edgesof non-empty labels going out of q, and added into the list of edges of emptylabels going out of q (and
onversely). This is performed in a
onstant time inline 3 and line 5 of Move-Letter-Visit. To update the arrays L, T , U andlo
al, we distinguish the two kinds of modi�
ation of the labels of the edges. Aletter or the empty word
an be added at the end of a label. The pro
edure
alled to update is in this
ase the pro
edure Update-table-Tail. A letteror the empty word
an be removed from the head of the label. The pro
edure
alled to update is in this
ase the pro
edure Update-table-Head.Pseudo
odes for Update-table-Tail and Update-table-Head are givenbelow.Update-table-Tail(edge e = (q; u; r), letter (or empty word) x)if u = " and x 6= " thenif x is not in L[q℄ theninsert the pair (x; 1) in L[q℄else in
rement the �eld number of the letter x in L[q℄if L[q℄ has more than one element or if q is initial or �nal thenlo
al[q℄ "else lo
al[q℄ the unique letter of L[q℄Update-table-Head(edge e = (q; u; r), letter (or empty word) x)We have u = xu0, where u0 is a �nite word, whenever x 6= "if x 6= " thende
rement the �eld number of the letter x in L[q℄if this �eld is equal to 0 thenremove the pair (x; 0) from L[q℄if u0 = bu00 where b is a letter of A thenif b is not in L[q℄ theninsert the pair (b; 1) in L[q℄else in
rement the �eld number of the letter b in L[q℄if L[q℄ has more than one element or if q is initial or �nal thenlo
al[q℄ "else if L[q℄ has exa
tly one element thenlo
al[q℄ the unique letter of L[q℄11

else lo
al[q℄ >We analyze now the
omplexity of our algorithm. We denote by jSj the
ardinality of a set S. As the automaton is trim, jQj � jEj+1. We also denoteby jE"j the
ardinality of the
urrent automaton A". We always have jE"j � jEjbut the automaton A" may be mu
h smaller than A. We denote here by P themaximal length of the words P (q) for all states q.Proposition 7 Fun
tion Make-Prefix works in time O((P + 1)� jEj).Proof. Fun
tion Init-Table
an be implemented to work in time O(jQj +jEj). Fun
tions Strongly-Conne
ted-Components and Find-Letter
anbe implemented to work in time O(jQj+ jE"j). Fun
tion Init-Letter works intime O(jQj). As dis
ussed above, fun
tion Update-Table works in time O(1).Fun
tion Move-Letter works in time O(jQj + jEj). Finally the loop inMake-Prefix is exe
uted at most P+1 times. The
omplexity of our algorithmis then O((jQj + jEj) � (P + 1) + (jQj + jE"j) � (P + 1)). Sin
e the automata
onsidered are trim, jQj � jEj+1 and the
omplexity is thus O((P +1)� jEj).� Let S be the sum of the lengths of the labels of all edges of the automaton.The spa
e
omplexity of the algorithm is O((jQj � jAj) + jEj+ S).5 A
knowledgementsWe thank Christian Cho�rut and Maxime Cro
hemore for useful dis
ussions and
omments. Christian Cho�rut pointed out to us the ina

ura
y of the algorithmof [13℄ in the parti
ular
ase where the automaton has an empty labelled
y
le.We also thank the anonymous referees for their relevant remarks.Referen
es[1℄ Aho, A. V., Hop
roft, J. E., and Ullman, J. D. The Design andAnalysis of Computer Algorithms. Addison Wesley, 1974.[2℄ B�eal, M.-P. Codage Symbolique. Masson, 1993.[3℄ B�eal, M.-P., and Carton, O. Determinization of transdu
ers over �niteand in�nite words. Te
h. Rep. 99-12, I.G.M., Universit�e de Marne-la-Vall�ee,1999.[4℄ Berstel, J. Transdu
tions and Context-Free Languages. B.G. Teubner,1979.[5℄ Breslauer, D. The suÆx tree of a tree and minimizing sequential trans-du
ers. In CPM'96 (1996), vol. 1075 of Le
ture Notes in Computer S
ien
e,Springer-Verlag, pp. 116{129. 12

[6℄ Breslauer, D. The suÆx tree of a tree and minimizing sequential trans-du
ers. Theoret. Comput. S
i., 191 (1998), 131{144.[7℄ Choffrut, C. Contribution �a l'�etude de quelques familles remarquablesde fon
tions rationnelles. Th�ese d'�Etat, Universit�e Paris VII, 1978.[8℄ Choffrut, C. A generalization of Ginsburg and Rose's
hara
terization ofgsm mappings. In ICALP'79 (1979), vol. 71 of Le
ture Notes in ComputerS
ien
e, Springer-Verlag, pp. 88{103.[9℄ Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introdu
tion toAlgorithms. MIT Press, 1990.[10℄ Cro
hemore, M., Han
art, C., and Le
roq, T. Algorithmique duTexte. Vuibert, 2000. to appear.[11℄ Frougny, C. Numeration systems. In Algebrai
 Combinatori
s on Words,M. Lothaire, Ed. Cambridge, 2000. to appear.[12℄ Mohri, M. Minimization of sequential transdu
ers. In CPM'94 (1994),M. Cro
hemore and D. Gus�eld, Eds., vol. 807 of Le
ture Notes in Com-puter S
ien
e, Springer-Verlag, pp. 151{163.[13℄ Mohri, M. Minimization algorithms for sequential transdu
ers. Theoret.Comput. S
i., 234 (2000), 177{201.[14℄ Ro
he, E., and S
habes, Y. Finite-State Language Pro
essing. MITPress, Cambridge, 1997,
h. 7.

13

