\

Computing the prefix of an automaton

Marie-Pierre Béal, Olivier Carton

» To cite this version:

Marie-Pierre Béal, Olivier Carton. Computing the prefix of an automaton. Informatique Théorique
et Applications, 2000, 34 (6), pp.503-514. hal-00619217

HAL Id: hal-00619217
https://hal.science/hal-00619217

Submitted on 5 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00619217
https://hal.archives-ouvertes.fr

Computing the prefix of an automaton

MARIE-PIERRE BEAL OLIVIER CARTON
Institut Gaspard Monge* Institut Gaspard Monge*
Université de Marne-la-Vallée Université de Marne-la-Vallée

March 7, 2001

Abstract

We present an algorithm for computing the prefix of an automaton.
Automata considered are non-deterministic, labelled on words, and can
have e-transitions. The prefix automaton of an automaton 4 has the
following characteristic properties. It has the same graph as A. Each
accepting path has the same label as in A. For each state ¢, the longest
common prefix of the labels of all paths going from ¢ to an initial or
final state is empty. The interest of the computation of the prefix of an
automaton is that it is the first step of the minimization of sequential
transducers.

The algorithm that we describe has the same worst case time complex-
ity as another algorithm due to Mohri but our algorithm allows automata
that have empty labelled cycles. If we denote by P(q) the longest common
prefix of labels of paths going from ¢ to an initial or final state, it operates
in time O((P + 1) x |E|) where P is the maximal length of all P(q).

1 Introduction

Transducers are finite state machines whose transitions or edges are labelled
by a pair made of an input word and an output word. They are widely used
in practice to model various things like lexical analyzers in language processing
[14], operations in numeration systems [11] or also encoding or decoding schemes
for channels [2]. As a transducer has input and output labels, and even if these
labels are letters, there is in general no minimal equivalent object like for simple
finite state automata. It is very often required that the transducer has letters as
input labels and has moreover a deterministic input automaton. It is then called
sequential. Used as an encoder, this means that the output codeword is obtained
sequentially from the input data. Transducers which are not sequential, but
which realize sequential functions, can be first determinized (see for instance [4]

*Institut Gaspard Monge, Université de Marne-la-Vallée, 5 boulevard Descartes, 77454
Marne-la-Vallée Cedex 2, France. http://www-igm.univ-mlv.fr/”{beal,carton}

or [3]). In the case of sequential transducers, there exists a minimal equivalent
sequential transducer, even if the output labels are variable length words.

A characterization of minimal sequential transducers was first given in [7]. A
procedure to produce a minimal sequential transducer is there indicated. It is in
particular shown in [7] that the minimal sequential transducer is obtained in two
steps. The first one is the computation of the prefix automaton of the output
automaton of the transducer. The second step is a classical minimization of the
transducer obtained at the end of the first step, seen as an ordinary finite state
automaton. The prefix of an automaton can be interpreted as an automaton
with the same underlying graph, same behaviour but produces its output as
soon as possible. Its name comes from the fact that for any state ¢, the longest
common prefix P(q) of labels of paths going from ¢ to an initial or final state is
empty.

The first algorithm of computation of the prefix of an automaton appears in
[12] and [13]. The construction is there called a quasi-determinization. It has
been noticed by Mohri that the first step of the minimization of sequential trans-
ducers is independent from the notion of transducers. The quasi-determinization
is an algorithm that works on finite state automata. It keeps the graph of an au-
tomaton and changes only the labels of the edges. Roughly speaking, it pushes
the labels of the edges from the final states towards the initial states as much as
possible. The algorithm of Mohri has a time complexity O((P+1) x |E|), where
E is the set of edges and P the maximum of the lengths of P(q) for all states q.
We assume here that the number of states |@| is less than the number of edges.
Another algorithm for computing the prefix of automaton has been presented
in [5] and [6]. The approach of this algorithm is really different from ours. It is
based on the construction of the suffix tree of a tree and its time complexity is
O(|Q|+|E|+ Slog|A|), where A is the alphabet and S is the sum of the lengths
of the labels of all edges of the automaton. Breslauer’s algorithm can thus be
better when there is a small number of edges and Mohri’s algorithm is better in
the other case. In practice, S can be very large and P can be very small. This
makes the algorithms of Mohri and ours almost linear. A comparison of the two
complexities is given in [13].

Our algorith uses the same principle of pushing letters through states as
Mohri’s algorithm does. Main restriction to Mohri’s algorithm is that it does
not work when the automaton contains a cycle of empty label (the system of
equations given in [13, Lemma 2 p. 182] does not admits a unique solution in
this case). Some step in Mohri’s algorithm requires that the automaton has no
empty labelled cycle. However, if the starting automaton does not have any such
cycle, this property is kept along the process. The algorithm is therefore correct
in this case. This restriction is not really important for applications since the
transducers used in practice, like in language processing, have no empty labelled
cycles in output.

In this paper, we present another algorithm of computation of the prefix
of an automaton which has the same worst case time complexity as Mohri’s
algorithm, O((P + 1) x |E|), and that works for all automata. The existence
of empty labelled cycles accounts for most of the difficulty in the coming algo-

rithm. The time complexity is independent of the size of the alphabet. The
algorithm consists in decreasing by 1 the value P at each step. We present our
algorithm for sequential transducers but it can be directly extended to the case
of subsequential transducers (see [7] or [4] for the definition of a subsequential
transducer).

In Section 2, we recall some basic definitions from automata theory and we
define the prefix automaton of an automaton. The computation algorithm of
the prefix of an automaton is presented in Section 3. The complexity is analyzed
in Section 4. In that section some data structures are described which can be
used to get the right time complexity of the algorithm.

2 Prefix of an automaton and applications

In the sequel, A denotes a finite alphabet and ¢ is the empty word. A word u
is a prefiz of a word v if there is a word w such that v = uw. The word w is
denoted by u~'v. The longest common prefiz of a set of words is the longest
word which is prefix of all words of the set.

An automaton over A* is composed of a set) of states, aset E C QX A* xQ
of edges and two sets I, F C @ of initial and final states. An edge e = (p,u,q)
from p to ¢ is denoted by p % ¢, the word u being the label of the edge. The
automaton is finite if () and F are finite. A path is a possibly empty sequence of
consecutive edges. Its label is the concatenation of the labels of the consecutive
edges. An automaton is often denoted by A = (Q, E,I,F). An accepting path
is a path from an initial state to a final state. The language or set of words
recognized (or accepted) by an automaton is the set of labels of accepting paths.
An automaton is deterministic if it is labelled by letters of a finite alphabet A,
if it has one initial state and if for each state p and each letter a in A, there is
at most one edge p % ¢ for some g.

We now define the prefix automaton of a given automaton A. This prefix
automaton has the same graph as A, but the labels of the edges are changed.
However the labels of the accepting paths remain unchanged and the prefix
automaton recognizes the same words. Furthermore, for any state ¢ of the
prefix automaton the longest common prefix of the labels of all paths going
from ¢ to an initial or final state is empty.

Let A = (Q,E,I,F) be a finite non-deterministic automaton labelled by
words. We assume that the automaton is ¢rim, that is, any state belongs to an
accepting path. For each state ¢, we denote by P4(q), or just P(q), the longest
common prefix of the labels of all paths going from ¢ to an initial or final state.
Remark that P(q) = € if ¢ is initial or final.

The prefix automaton of A is the automaton A’ = (Q, E', I, F) defined as
follows.

E'Z{QM)Hqi)risanedgeofA}.

One may easily check that if ¢ % r is an edge of A, then the word P(q) is

by definition a prefix of the word uP(r) and the previous definition is thus
consistent.

Note that a path labelled by w from ¢ to r in A becomes a path labelled by
P(q)"'wP(r) from ¢ to r in the prefix automaton. If this path is accepting, ¢
is initial and r is final and thus P(g) and P(r) are both empty. Then the label
of the path in the prefix automaton is the same as in A. The label of a cycle
of A is conjugated to its label in the prefix automaton. In particular the empty
labelled cycles of the prefix automaton are the same as the ones of A.

By construction the longest common prefix of the labels of all paths going
from ¢ to an initial or final state is empty in the prefix automaton.

Our definition of the prefix automaton allows edges coming in an initial
state. In most cases, there is none and for each non-initial state ¢, P(q) is the
longest common prefix of the labels of all paths going from ¢ to a final state.

The words P(gq) are the longest words such that P(q) = ¢ if ¢ is initial or
final and such that P(q) is a prefix of uP(r) for any edge ¢ — . Indeed, if a
function P’ maps any state ¢ to a word such that these two conditions are met,
then P’(q) is a prefix of P(q) for any state g.

Figure 2: The prefix automaton of A.

ExaMmPLE 1 Consider the automaton A pictured in Figure 1 where the initial
state is 1 and the final state is 4. The prefix automaton of A is pictured in
Figure 2.

The main application of the prefix of an automaton is minimization of se-
quential and subsequential transducers. A transducer is defined as an automa-
ton, except that the labels of the edges are pairs made of an input word and
an output word. A transducer labelled in A x B* is sequential if its input au-
tomaton is deterministic. It has been proved [7], [8, p. 95], see also [12] and
[13], that among the sequential transducers computing a given function, there
is a minimal one which can be obtained from any sequential transducer com-
puting the function. This minimization is performed in two steps. The first
step is the computation of the prefix automaton of the output automaton of
the transducer. The second step is a minimization of the resulting transducer,
considered as a finite automaton.

We refer to [12] for examples of minimization of sequential transducers.

3 Computation of the prefix of an automaton

In this section, we describe an algorithm which computes the prefix of an au-
tomaton. The automaton A = (@, E,I,T) is a non-deterministic automaton
whose edges are labelled by words over a finite alphabet A. The labels can be
the empty word and cycles with empty labels are allowed.

We first describe the principle of the algorithm. If ¢ is a state of A, we recall
that P(q) denotes the longest common prefix of the labels of all paths going
from ¢ to an initial or final state. We denote by p(q) the first letter of P(q) if
P(q) #¢€,and € if P(q) =e¢.

We denote by P4 the maximum of the lengths of all P(q) for all states q.

If P4 > 0, we construct from the automaton A = (Q, E,I,T) an automa-
ton A" = (Q, E',I,T) whose edges are defined as follows:

-1
E' ={q o) (), | ¢ = ris an edge of A}.

It recognizes the same language as A and satisfies P4 = P4 — 1. By iterating

this process, we get the prefix automaton.

We now explain the computation of the automaton A'. We call e-edge
any edge whose label is €. Let A. be the sub-automaton of .4 obtained by
keeping only the e-edges. We first compute the strongly connected components
of A.. This can be performed by depth-first explorations of A, [9]. The strongly
connected components are stored in an array ¢ indexed by (). For each state
g we denote by c[g] a state that represents the strongly connected component
of ¢. The call to STRONGLY-CONNECTED-COMPONENTS(A,) in the pseudo code
below will refer to this procedure that computes the array c.

Note that all states ¢ in a same strongly connected component of A. have
same P(q) and thus same p(q).

The construction of A’ is then done with two depth-first explorations, first
an exploration of A., second, an exploration of A.

The first exploration computes p(q) for each state ¢ of A.. This symbol,
either a letter or g, is stored in the cell letter]q] of an array letter. As p(q)

is common to all states ¢ in a same strongly connected component of A., we
compute it only for the states ¢[q].

At the beginning of the computation, all cells letter[q] are set to the default
value T which stands for undefined. During the computation, these values are
changed into symbols of AU {e}. Let X be the set AU {e,T}. We define a
partial order on the set X as follows. For each a € A,

e<a<T.

Note that each subset of X has an inf in X such that, forallz € X, all a,b € A
with a # b,

inf(e,z) = ¢,
inf(T,z) = =z,
inf(a,b) = €.

We also assume that an array local indexed by @ gives, for each state ¢, either
¢ if ¢ is final or initial, or inf(S) where S is the set of letters that appear as
the first letter of a non-empty label of an edge going out of ¢q. Note that if
there is no edge with a non-empty label going out of ¢, local[q] is equal to T.
The array local is initialized by the procedure INIT-TABLE and updated with
the procedures UPDATE-TABLE-HEAD and UPDATE-TABLE-TAIL that we shall
describe later.

For each state ¢ in @, the value of letter{c[q]] is first set to the inf of local[r],
for all states r in the same strongly connected component of A. as ¢. This is
done by the procedure INIT-LETTER. During the exploration of the automaton
A., if ¢ has a successor r such that letter|c[r]] < letter[c[q]], then letter{c[q]] is
changed in inf(locallg], letter[c[q]]). We claim that the cell of index ¢ of the array
letter contains p(q) at the end of this exploration. This exploration is done by
the function FIND-LETTER. It returns a boolean which is true if there is at least
one state ¢ with p(q) non-empty.

We give below a pseudo code for the procedures INIT-LETTER, FIND-LETTER
and FIND-LETTER-VISIT. We follow the depth-first search presentation of [9].

INIT-LETTER(set of states @)
for each state ¢ €) do
letter|c[q]] «+ T
for each state ¢ € Q do
letter]c[q]] < inf(locallq], letter]c[q]])

FIND-LETTER(automaton A. = (Q, E., I, F))
bool < FALSE
for each state ¢ € () do
color[q] < WHITE
for each state ¢ € @ do
if color[q] = WHITE then
FIND-LETTER-VISIT(A., q)
return bool

FIND-LETTER-VISIT (automaton A. = (Q, E., I, F'), state q)
color]q] < BLACK
for each edge (¢,e,r) do
if color[r] = WHITE then
FIND-LETTER-VISIT(A,)
letter]c|q]] < inf(letter|c[q]], letter|c[r]])
if letter{c[q]] # € then
bool <~ TRUE

We now prove the correctness of our algorithm.

PROPOSITION 2 Function FIND-LETTER computes p(q) for each state q.

Proof. For each state g, “letter{c[q]] > p(q)” is an invariant of the function FIND-
LETTER. Indeed, one has locallr] > p(q), for each state r in the same strongly
connected component as ¢g. This implies that “letter|{c[q]] > p(q)” is an invariant
of the function INIT-LETTER(Q). Moreover, if there is an edge (q,e,r) and if
letter]c[r]] > p(r), we get letter|c[r]] > p(r) > p(q). Then “letter|c[q]] > p(q)” is
invariant during FIND-LETTER-VISIT(A:, q).

We now show that if there is an edge (g, ¢,7) between two states g and r, we
have letter|c[q]] < letter|c[r]] at the end of FIND-LETTER(.A.). This fact is trivial
if ¢ and r belong to the same strongly connected component of A.. If not, the
end of the exploration of state r is before the end of the exploration of q. Then
the line 5 of FIND-LETTER-VISIT(A,, ¢) implies that letter|c[q]] < letter{c[r]].

Let us assume there is a (possibly empty) path from ¢ to a state r which
has an empty label and an edge going out of r labelled with au, where u is a
word. Then letter{c[q]] < a at the end of FIND-LETTER-VISIT(A, ¢). Indeed,
at the end of FIND-LETTER-VISIT(A, q), we have letter[c[r]] < a, and then also
letter{c[q]] < letter[c[r]] < a.

Let us assume that p(q) is a letter a in A. Then there is a (possibly empty)
path from ¢ to a state r which has an empty label and an edge going out of r
labelled with au, where u is a word. As a consequence letter|c[q]] < a and then
letter]c[q]] = p(q). Let us now assume that p(q) is the empty word. Then there
is either a (possibly empty) path from ¢ to a state r which has an empty label
and an edge going out of r labelled with au, where u is a word, and there is
a (possibly empty) path from ¢ to a state ' which has an empty label and an
edge going out of ' labelled with bu, where u is a word, with b # a. In this case
letter[c[q]] < inf(a,b) = €, and then letter{c[q]] = p(q). Or there is a (possibly
empty) path from ¢ to a state which has an empty label and with r final or
initial. Again letter{c[q]] < letter|c[r]] = e. Finally, letter{c[q]] = p(q) for each q.
O

The second depth-first exploration is an exploration of the automaton A. It
updates the labels of A in order to decrease the length of P(q) for each state ¢
such that p(¢) is non-empty. For each edge (¢, u,r), where u is a finite word, the
following two operations are performed. The letter (or empty word) p(c[r]) is
added at the end of u. Then the first letter (or empty word) p(c[q]) is removed

from the beginning of u. Note that these two operations are possible. If u is
nonempty, then p(c[q]) is the first letter of u and if u = € then p(c[q]) = p(c[r])
or p(c[q]) = e. These operations change the labels of the edges of the automaton
A and thus also the values of the array local. Lines 3 and 5 of MOVE-LETTER-
VIisIT change the labels of the edge e in A. Since an edge with empty label
can become an edge with a non-empty label and conversely, the edge of A.
are also updated there. The values of the array local are updated with two
procedures UPDATE-TABLE-HEAD and UPDATE-TABLE-TAIL described later.
The exploration is done during the run of procedure MOVE-LETTER whose
pseudo code is given below.

MoVE-LETTER(automaton A = (Q, E, I, F))
for each state ¢ € @ do
color[q] < WHITE
for each state g € () do
if color[g] = WHITE then
MOVE-LETTER-VISIT(A, q)

MoOVE-LETTER-VIsiT(automaton A = (Q, E, I, F)), state q)

color{q] < BLACK

for each edge e = (q,u,r) where u is a (possibly empty) word do
append letter[c[r]] at the end of the label of e in A and update A.
UPDATE-TABLE-TAIL(e, letter{c[r]])
remove letter[c[q]] from the head of the label of e in A and update 4.
UPDATE-TABLE-HEAD(e, letter[c[q]])
if color[r] = WHITEthen

MOVE-LETTER-VISIT(A,)

PROPOSITION 3 Function transforms the automaton A in an automaton A’
whose edges are:
r ¢ pla) tup(r) u .
E'={¢g ————— r | q— 7 is an edge of A}.
Therefore, the function MOVE-LETTER changes the label w of any path from q
to r into p(q) " wp(r).

Proof. This follows directly from the construction. [

PROPOSITION 4 Function MOVE-LETTER transforms the automaton A in an
automaton A" which has the same graph as A, keeps the labels of accepting paths
and satisfies Py = Py — 1.

Proof. Let w be the label of a path from an initial state ¢ to a final state ¢ in
A. The label of the same path obtained at the end of MOVE-LETTER in A’ is
p(i) " twp(t) = w. Thus the labels of accepting paths are unchanged. Moreover,
for each state ¢ one has P4 (q) = pa(q)~'Pa(q). It follows that Py = P4 — 1
it Py >1. 0

We now give a pseudo code of the procedure MAKE-PREFIX which is the
main procedure of the algorithm.

MAKE-PREFIX (automaton A = (Q, E, I, F))
INTT-TABLE(A)
STRONGLY-CONNECTED-COMPONENTS (A,)
repeat

INIT-LETTER(Q)
bool + FIND-LETTER(A.)
if bool then
MOVE-LETTER(A)
until bool = FALSE

The result of the computation of the automaton A pictured in Figure 1 is
the automaton pictured in Figure 2. The automaton A4 is such that P4 = e.
Note that this automaton has an empty labelled cycle.

REMARK 5 The two procedures FIND-LETTER and FIND-LETTER-VISIT can be
performed on the directed acyclic graph obtained as the quotient of A. by the
relation of being in a same strongly connected component. This graph can be
much smaller than A, itself. Tt can be computed by the procedure STRONGLY-
CONNECTED-COMPONENTS.

REMARK 6 By proposition 3, the label of a cycle is changed into one of its con-
jugate by the function MOVE-LETTER. Therefore, the strongly connected com-
ponents of A. are unchanged during the iteration of function MAKE-PREFIX.

4 Data structures and complexity

In order to analyze the complexity of our algorithm, we briefly discuss a possible
implementation of structures required in the construction.

A classical way for implementing the automaton A is to use |@| adjacency
lists that represent the edges. We may assume that we have two adjacency lists
for each state q. The first one represents the edges of empty label going out of
g, that is the edges that also belong to 4.. The second one represents the edges
of non-empty label going out of q.

In order to compute, for each state g, local(q) in a constant time, we maintain
an array L indexed by @ defined as follows:

e [[q] is the list of pairs (a,n) with a € A,n > 0 € N, such that ¢ has at
least one outgoing edge labelled by a word whose first letter is a and such
that n is the positive number of edges going out of ¢ and whose first letter
is a.

We point out that the first component of an element of L[q] is a letter and never
contains . Thus local(q) is € if L[g] has more than one element or if ¢ is initial
or final. It is the letter a if L[g] contains exactly one pair (a,n) and q is neither
initial nor final. It is T otherwise.

The operation performed in the lists are the insertion of a new letter, that is
a pair (a,1), the incrementation and decrementation of the second component
of an element, and the deletion of a letter, that is of a pair (a,1). We need all
these operations to be performed in a constant time.

We use a known technique which allows us to get this time complexity (see
for example [1] exercise 2.12 p. 71 and [10] exercise “Implantation de fonctions
partielles” 1.14 Chapter 1). This technique is based on the use of array of size
|@Q| % |A| which is not initialized.

We assume that the lists L[g] are doubly linked and implemented with cur-
sors. We denote by T an array of variable size. The cells of T" are used to store
the elements of the lists L[g]. Each cell has several fields: a field label which
contains the letter, a field number that contains the number of edges going out
of ¢ whose first letter is label, a field state which contains the state ¢ such that
the cell belongs to L[g], and finally fields next and prev that give the index of
the next (respectively previous) element in the same list. The cell of index ¢ of
the array L is the index in T of the first element of L[g], if this list is non-empty.

Another array U, indexed by @ x A, gives for each pair (¢, a) the index in T
of the cell of L[g] whose letter is a, if this letter is in L[g]. This array allows us
to access an element of a list in a constant time. The operations of insertion,
deletion of an element in a list are then done in a constant time. The operations
of incrementation and decrementation of the field number of the cell of a given
label in a given list are also done in a constant time. Indeed, to increment the
field number of the letter a in L[q], one increments the field number of the cell
of T indexed by Ulq, al.

The array T is initially empty and its size is 0. The size of T is incremented
when a new cell is needed in T'. A cell that corresponds to an element of a list
that has just been removed is marked to be free. Thus the existence of a letter
a in L[q] is obtained by checking whether Ulg,a] is an index ¢ in [1,size(T)],
whether the cell Ti] is not marked free, and whether the fields label and state
are respectively equal to a and ¢. This is performed in a constant time.

All the lists of successors that represent the edges of the automaton A and
A., and the arrays local, L, T', U are updated when the label of an edge is
changed during the process. The arrays L and local are initialized by the proce-
dure INIT-TABLE. The arrays L, T, U and local are updated by the procedures
UPDATE-TABLE-HEAD and UPDATE-TABLE-TAIL.

We give below a pseudo code for the procedure INIT-TABLE.

INIT-TABLE(automaton A = (Q, E, I, F))
for each ¢ € @ do
L|q] + the empty list
locallq] < T
for each ¢ € Q do

10

for each edge (g, au,r) where a is letter and u a word do
if a is not in L[g] then
insert the pair (a, 1) in L[q]
else increment the field number of the letter a in L[q]
if L[g] has more than one element or if ¢ is initial or final then
locallq] < ¢
else if L[g] is not empty then
locallq] < the unique letter of L[g]

We now describe the updating of the tables and lists. An update is needed
as soon as the label of an edge of A is changed. Note that the labels of the edges
of the automata A and A, are changed in a constant time. Indeed, a label of an
edge going out of a state ¢ that becomes empty is removed from the list of edges
of non-empty labels going out of ¢, and added into the list of edges of empty
labels going out of ¢ (and conversely). This is performed in a constant time in
line 3 and line 5 of MOVE-LETTER-VISIT. To update the arrays L, T, U and
local, we distinguish the two kinds of modification of the labels of the edges. A
letter or the empty word can be added at the end of a label. The procedure
called to update is in this case the procedure UPDATE-TABLE-TAIL. A letter
or the empty word can be removed from the head of the label. The procedure
called to update is in this case the procedure UPDATE-TABLE-HEAD.

Pseudo codes for UPDATE-TABLE-TAIL and UPDATE-TABLE-HEAD are given
below.

UPDATE-TABLE-TAIL(edge e = (q, u,r), letter (or empty word))
if w =¢ and z # € then

if x is not in L[q] then
insert the pair (z,1) in L[q]

else increment the field number of the letter x in L[g]

if L[q] has more than one element or if ¢ is initial or final then
locallg] < ¢

else local[g] + the unique letter of L[q]

UPDATE-TABLE-HEAD(edge e = (q,u,r), letter (or empty word))
We have u = zu’, where u' is a finite word, whenever x # ¢
if # ¢ then
decrement the field number of the letter = in L[q]
if this field is equal to 0 then
remove the pair (z,0) from L[g]
if u' = bu'" where b is a letter of A then
if b is not in L[g] then
insert the pair (b,1) in L[q]
else increment the field number of the letter b in L[q]
if L[q] has more than one element or if ¢ is initial or final then
locallg] < ¢
else if L[g] has exactly one element then
locallq] < the unique letter of L[g]

11

else locallq] + T

We analyze now the complexity of our algorithm. We denote by |S| the
cardinality of a set S. As the automaton is trim, |Q| < |E| + 1. We also denote
by |E.| the cardinality of the current automaton A.. We always have |E;| < |E|
but the automaton 4. may be much smaller than 4. We denote here by P the
maximal length of the words P(q) for all states q.

PROPOSITION 7 Function MAKE-PREFIX works in time O((P + 1) x |E|).

Proof. Function INIT-TABLE can be implemented to work in time O(|Q]| +
|E|). Functions STRONGLY-CONNECTED-COMPONENTS and FIND-LETTER can
be implemented to work in time O(|Q|+ |E-|). Function INIT-LETTER works in
time O(|@|). As discussed above, function UPDATE-TABLE works in time O(1).

Function MOVE-LETTER works in time O(|@| + |E|). Finally the loop in
MAKE-PREFIX is executed at most P+1 times. The complexity of our algorithm
is then O((|Q| + |E|) x (P + 1) + (|Q| + | E-|) x (P +1)). Since the automata
considered are trim, |@] < |E| + 1 and the complexity is thus O((P + 1) x |E|).
d

Let S be the sum of the lengths of the labels of all edges of the automaton.
The space complexity of the algorithm is O((|Q| x |A]) + |E| + S).

5 Acknowledgements

We thank Christian Choffrut and Maxime Crochemore for useful discussions and
comments. Christian Choffrut pointed out to us the inaccuracy of the algorithm
of [13] in the particular case where the automaton has an empty labelled cycle.
We also thank the anonymous referees for their relevant remarks.

References

[1] Aro, A. V., HopcrOFT, J. E., AND ULLMAN, J. D. The Design and
Analysis of Computer Algorithms. Addison Wesley, 1974.

[2] BEAL, M.-P. Codage Symbolique. Masson, 1993.

[3] BEAL, M.-P., AND CARTON, O. Determinization of transducers over finite
and infinite words. Tech. Rep. 99-12, I.G.M., Université de Marne-la-Vallée,
1999.

[4] BERSTEL, J. Transductions and Context-Free Languages. B.G. Teubner,
1979.

[5] BRESLAUER, D. The suffix tree of a tree and minimizing sequential trans-
ducers. In CPM’96 (1996), vol. 1075 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 116-129.

12

[6]

[7]

[13]

[14]

BRESLAUER, D. The suffix tree of a tree and minimizing sequential trans-
ducers. Theoret. Comput. Sei., 191 (1998), 131-144.

CHOFFRUT, C. Contribution a Uétude de quelques familles remarquables
de fonctions rationnelles. These d’Etat, Université Paris VII, 1978.

CHOFFRUT, C. A generalization of Ginsburg and Rose’s characterization of
gsm mappings. In ICALP’79 (1979), vol. 71 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 88-103.

CorMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. Introduction to
Algorithms. MIT Press, 1990.

CROCHEMORE, M., HANCART, C., AND LECROQ, T. Algorithmique du
Texte. Vuibert, 2000. to appear.

FrouaNy, C. Numeration systems. In Algebraic Combinatorics on Words,
M. Lothaire, Ed. Cambridge, 2000. to appear.

Mouri, M. Minimization of sequential transducers. In CPM’94 (1994),
M. Crochemore and D. Gusfield, Eds., vol. 807 of Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 151-163.

MoHnRrI, M. Minimization algorithms for sequential transducers. Theoret.
Comput. Sci., 234 (2000), 177-201.

ROCHE, E., AND SCHABES, Y. Finite-State Language Processing. MIT
Press, Cambridge, 1997, ch. 7.

13

