
Computing the pre�x of an automatonMarie-Pierre B�ealInstitut Gaspard Monge�Universit�e de Marne-la-Vall�ee Olivier CartonInstitut Gaspard Monge�Universit�e de Marne-la-Vall�eeMarh 7, 2001AbstratWe present an algorithm for omputing the pre�x of an automaton.Automata onsidered are non-deterministi, labelled on words, and anhave "-transitions. The pre�x automaton of an automaton A has thefollowing harateristi properties. It has the same graph as A. Eahaepting path has the same label as in A. For eah state q, the longestommon pre�x of the labels of all paths going from q to an initial or�nal state is empty. The interest of the omputation of the pre�x of anautomaton is that it is the �rst step of the minimization of sequentialtransduers.The algorithm that we desribe has the same worst ase time omplex-ity as another algorithm due to Mohri but our algorithm allows automatathat have empty labelled yles. If we denote by P (q) the longest ommonpre�x of labels of paths going from q to an initial or �nal state, it operatesin time O((P + 1)� jEj) where P is the maximal length of all P (q).1 IntrodutionTransduers are �nite state mahines whose transitions or edges are labelledby a pair made of an input word and an output word. They are widely usedin pratie to model various things like lexial analyzers in language proessing[14℄, operations in numeration systems [11℄ or also enoding or deoding shemesfor hannels [2℄. As a transduer has input and output labels, and even if theselabels are letters, there is in general no minimal equivalent objet like for simple�nite state automata. It is very often required that the transduer has letters asinput labels and has moreover a deterministi input automaton. It is then alledsequential. Used as an enoder, this means that the output odeword is obtainedsequentially from the input data. Transduers whih are not sequential, butwhih realize sequential funtions, an be �rst determinized (see for instane [4℄�Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee, 5 boulevard Desartes, 77454Marne-la-Vall�ee Cedex 2, Frane. http://www-igm.univ-mlv.fr/~fbeal,artong1

or [3℄). In the ase of sequential transduers, there exists a minimal equivalentsequential transduer, even if the output labels are variable length words.A haraterization of minimal sequential transduers was �rst given in [7℄. Aproedure to produe a minimal sequential transduer is there indiated. It is inpartiular shown in [7℄ that the minimal sequential transduer is obtained in twosteps. The �rst one is the omputation of the pre�x automaton of the outputautomaton of the transduer. The seond step is a lassial minimization of thetransduer obtained at the end of the �rst step, seen as an ordinary �nite stateautomaton. The pre�x of an automaton an be interpreted as an automatonwith the same underlying graph, same behaviour but produes its output assoon as possible. Its name omes from the fat that for any state q, the longestommon pre�x P (q) of labels of paths going from q to an initial or �nal state isempty.The �rst algorithm of omputation of the pre�x of an automaton appears in[12℄ and [13℄. The onstrution is there alled a quasi-determinization. It hasbeen notied by Mohri that the �rst step of the minimization of sequential trans-duers is independent from the notion of transduers. The quasi-determinizationis an algorithm that works on �nite state automata. It keeps the graph of an au-tomaton and hanges only the labels of the edges. Roughly speaking, it pushesthe labels of the edges from the �nal states towards the initial states as muh aspossible. The algorithm of Mohri has a time omplexity O((P +1)�jEj), whereE is the set of edges and P the maximum of the lengths of P (q) for all states q.We assume here that the number of states jQj is less than the number of edges.Another algorithm for omputing the pre�x of automaton has been presentedin [5℄ and [6℄. The approah of this algorithm is really di�erent from ours. It isbased on the onstrution of the suÆx tree of a tree and its time omplexity isO(jQj+ jEj+S log jAj), where A is the alphabet and S is the sum of the lengthsof the labels of all edges of the automaton. Breslauer's algorithm an thus bebetter when there is a small number of edges and Mohri's algorithm is better inthe other ase. In pratie, S an be very large and P an be very small. Thismakes the algorithms of Mohri and ours almost linear. A omparison of the twoomplexities is given in [13℄.Our algorith uses the same priniple of pushing letters through states asMohri's algorithm does. Main restrition to Mohri's algorithm is that it doesnot work when the automaton ontains a yle of empty label (the system ofequations given in [13, Lemma 2 p. 182℄ does not admits a unique solution inthis ase). Some step in Mohri's algorithm requires that the automaton has noempty labelled yle. However, if the starting automaton does not have any suhyle, this property is kept along the proess. The algorithm is therefore orretin this ase. This restrition is not really important for appliations sine thetransduers used in pratie, like in language proessing, have no empty labelledyles in output.In this paper, we present another algorithm of omputation of the pre�xof an automaton whih has the same worst ase time omplexity as Mohri'salgorithm, O((P + 1) � jEj), and that works for all automata. The existeneof empty labelled yles aounts for most of the diÆulty in the oming algo-2

rithm. The time omplexity is independent of the size of the alphabet. Thealgorithm onsists in dereasing by 1 the value P at eah step. We present ouralgorithm for sequential transduers but it an be diretly extended to the aseof subsequential transduers (see [7℄ or [4℄ for the de�nition of a subsequentialtransduer).In Setion 2, we reall some basi de�nitions from automata theory and wede�ne the pre�x automaton of an automaton. The omputation algorithm ofthe pre�x of an automaton is presented in Setion 3. The omplexity is analyzedin Setion 4. In that setion some data strutures are desribed whih an beused to get the right time omplexity of the algorithm.2 Pre�x of an automaton and appliationsIn the sequel, A denotes a �nite alphabet and " is the empty word. A word uis a pre�x of a word v if there is a word w suh that v = uw. The word w isdenoted by u�1v. The longest ommon pre�x of a set of words is the longestword whih is pre�x of all words of the set.An automaton over A� is omposed of a set Q of states, a set E � Q�A��Qof edges and two sets I; F � Q of initial and �nal states. An edge e = (p; u; q)from p to q is denoted by p u�! q, the word u being the label of the edge. Theautomaton is �nite if Q and E are �nite. A path is a possibly empty sequene ofonseutive edges. Its label is the onatenation of the labels of the onseutiveedges. An automaton is often denoted by A = (Q;E; I; F). An aepting pathis a path from an initial state to a �nal state. The language or set of wordsreognized (or aepted) by an automaton is the set of labels of aepting paths.An automaton is deterministi if it is labelled by letters of a �nite alphabet A,if it has one initial state and if for eah state p and eah letter a in A, there isat most one edge p a�! q for some q.We now de�ne the pre�x automaton of a given automaton A. This pre�xautomaton has the same graph as A, but the labels of the edges are hanged.However the labels of the aepting paths remain unhanged and the pre�xautomaton reognizes the same words. Furthermore, for any state q of thepre�x automaton the longest ommon pre�x of the labels of all paths goingfrom q to an initial or �nal state is empty.Let A = (Q;E; I; F) be a �nite non-deterministi automaton labelled bywords. We assume that the automaton is trim, that is, any state belongs to anaepting path. For eah state q, we denote by PA(q), or just P (q), the longestommon pre�x of the labels of all paths going from q to an initial or �nal state.Remark that P (q) = " if q is initial or �nal.The pre�x automaton of A is the automaton A0 = (Q;E0; I; F) de�ned asfollows. E0 = fq P (q)�1uP (r)��������! r j q u�! r is an edge of Ag:One may easily hek that if q u�! r is an edge of A, then the word P (q) is3

by de�nition a pre�x of the word uP (r) and the previous de�nition is thusonsistent.Note that a path labelled by w from q to r in A beomes a path labelled byP (q)�1wP (r) from q to r in the pre�x automaton. If this path is aepting, qis initial and r is �nal and thus P (q) and P (r) are both empty. Then the labelof the path in the pre�x automaton is the same as in A. The label of a yleof A is onjugated to its label in the pre�x automaton. In partiular the emptylabelled yles of the pre�x automaton are the same as the ones of A.By onstrution the longest ommon pre�x of the labels of all paths goingfrom q to an initial or �nal state is empty in the pre�x automaton.Our de�nition of the pre�x automaton allows edges oming in an initialstate. In most ases, there is none and for eah non-initial state q, P (q) is thelongest ommon pre�x of the labels of all paths going from q to a �nal state.The words P (q) are the longest words suh that P (q) = " if q is initial or�nal and suh that P (q) is a pre�x of uP (r) for any edge q u�! r. Indeed, if afuntion P 0 maps any state q to a word suh that these two onditions are met,then P 0(q) is a pre�x of P (q) for any state q.
1 2

3 4ba "" aaaFigure 1: An automaton A.
1 2

3 4baa "" a"Figure 2: The pre�x automaton of A.Example 1 Consider the automaton A pitured in Figure 1 where the initialstate is 1 and the �nal state is 4. The pre�x automaton of A is pitured inFigure 2. 4

The main appliation of the pre�x of an automaton is minimization of se-quential and subsequential transduers. A transduer is de�ned as an automa-ton, exept that the labels of the edges are pairs made of an input word andan output word. A transduer labelled in A � B� is sequential if its input au-tomaton is deterministi. It has been proved [7℄, [8, p. 95℄, see also [12℄ and[13℄, that among the sequential transduers omputing a given funtion, thereis a minimal one whih an be obtained from any sequential transduer om-puting the funtion. This minimization is performed in two steps. The �rststep is the omputation of the pre�x automaton of the output automaton ofthe transduer. The seond step is a minimization of the resulting transduer,onsidered as a �nite automaton.We refer to [12℄ for examples of minimization of sequential transduers.3 Computation of the pre�x of an automatonIn this setion, we desribe an algorithm whih omputes the pre�x of an au-tomaton. The automaton A = (Q;E; I; T) is a non-deterministi automatonwhose edges are labelled by words over a �nite alphabet A. The labels an bethe empty word and yles with empty labels are allowed.We �rst desribe the priniple of the algorithm. If q is a state of A, we reallthat P (q) denotes the longest ommon pre�x of the labels of all paths goingfrom q to an initial or �nal state. We denote by p(q) the �rst letter of P (q) ifP (q) 6= ", and " if P (q) = ".We denote by PA the maximum of the lengths of all P (q) for all states q.If PA > 0, we onstrut from the automaton A = (Q;E; I; T) an automa-ton A0 = (Q;E0; I; T) whose edges are de�ned as follows:E0 = fq p(q)�1up(r)��������! r j q u�! r is an edge of Ag:It reognizes the same language as A and satis�es PA0 = PA � 1. By iteratingthis proess, we get the pre�x automaton.We now explain the omputation of the automaton A0. We all "-edgeany edge whose label is ". Let A" be the sub-automaton of A obtained bykeeping only the "-edges. We �rst ompute the strongly onneted omponentsof A". This an be performed by depth-�rst explorations of A" [9℄. The stronglyonneted omponents are stored in an array indexed by Q. For eah stateq we denote by [q℄ a state that represents the strongly onneted omponentof q. The all to Strongly-Conneted-Components(A") in the pseudo odebelow will refer to this proedure that omputes the array .Note that all states q in a same strongly onneted omponent of A" havesame P (q) and thus same p(q).The onstrution of A0 is then done with two depth-�rst explorations, �rstan exploration of A", seond, an exploration of A.The �rst exploration omputes p(q) for eah state q of A". This symbol,either a letter or ", is stored in the ell letter[q℄ of an array letter. As p(q)5

is ommon to all states q in a same strongly onneted omponent of A", weompute it only for the states [q℄.At the beginning of the omputation, all ells letter[q℄ are set to the defaultvalue > whih stands for unde�ned. During the omputation, these values arehanged into symbols of A [f"g. Let X be the set A [f";>g. We de�ne apartial order on the set X as follows. For eah a 2 A," < a < >:Note that eah subset of X has an inf in X suh that, for all x 2 X , all a; b 2 Awith a 6= b, inf("; x) = ";inf(>; x) = x;inf(a; b) = ":We also assume that an array loal indexed by Q gives, for eah state q, either" if q is �nal or initial, or inf(S) where S is the set of letters that appear asthe �rst letter of a non-empty label of an edge going out of q. Note that ifthere is no edge with a non-empty label going out of q, loal[q℄ is equal to >.The array loal is initialized by the proedure Init-Table and updated withthe proedures Update-Table-Head and Update-Table-Tail that we shalldesribe later.For eah state q in Q, the value of letter[[q℄℄ is �rst set to the inf of loal[r℄,for all states r in the same strongly onneted omponent of A" as q. This isdone by the proedure Init-Letter. During the exploration of the automatonA", if q has a suessor r suh that letter[[r℄℄ < letter[[q℄℄, then letter[[q℄℄ ishanged in inf(loal[q℄; letter[[q℄℄). We laim that the ell of index q of the arrayletter ontains p(q) at the end of this exploration. This exploration is done bythe funtion Find-Letter. It returns a boolean whih is true if there is at leastone state q with p(q) non-empty.We give below a pseudo ode for the proedures Init-Letter, Find-Letterand Find-Letter-Visit. We follow the depth-�rst searh presentation of [9℄.Init-Letter(set of states Q)for eah state q 2 Q doletter[[q℄℄ >for eah state q 2 Q doletter[[q℄℄ inf(loal[q℄; letter[[q℄℄)Find-Letter(automaton A" = (Q;E"; I; F))bool falsefor eah state q 2 Q doolor[q℄ whitefor eah state q 2 Q doif olor[q℄ = white thenFind-Letter-Visit(A"; q)return bool 6

Find-Letter-Visit(automaton A" = (Q;E"; I; F), state q)olor[q℄ blakfor eah edge (q; "; r) doif olor[r℄ = white thenFind-Letter-Visit(A"; r)letter[[q℄℄ inf(letter[[q℄℄; letter[[r℄℄)if letter[[q℄℄ 6= " thenbool trueWe now prove the orretness of our algorithm.Proposition 2 Funtion Find-Letter omputes p(q) for eah state q.Proof. For eah state q, \letter[[q℄℄ � p(q)" is an invariant of the funtion Find-Letter. Indeed, one has loal[r℄ � p(q), for eah state r in the same stronglyonneted omponent as q. This implies that \letter[[q℄℄ � p(q)" is an invariantof the funtion Init-Letter(Q). Moreover, if there is an edge (q; "; r) and ifletter[[r℄℄ � p(r), we get letter[[r℄℄ � p(r) � p(q). Then \letter[[q℄℄ � p(q)" isinvariant during Find-Letter-Visit(A" ; q).We now show that if there is an edge (q; "; r) between two states q and r, wehave letter[[q℄℄ � letter[[r℄℄ at the end of Find-Letter(A"). This fat is trivialif q and r belong to the same strongly onneted omponent of A". If not, theend of the exploration of state r is before the end of the exploration of q. Thenthe line 5 of Find-Letter-Visit(A"; q) implies that letter[[q℄℄ � letter[[r℄℄.Let us assume there is a (possibly empty) path from q to a state r whihhas an empty label and an edge going out of r labelled with au, where u is aword. Then letter[[q℄℄ � a at the end of Find-Letter-Visit(A"; q). Indeed,at the end of Find-Letter-Visit(A"; q), we have letter[[r℄℄ � a, and then alsoletter[[q℄℄ � letter[[r℄℄ � a.Let us assume that p(q) is a letter a in A. Then there is a (possibly empty)path from q to a state r whih has an empty label and an edge going out of rlabelled with au, where u is a word. As a onsequene letter[[q℄℄ � a and thenletter[[q℄℄ = p(q). Let us now assume that p(q) is the empty word. Then thereis either a (possibly empty) path from q to a state r whih has an empty labeland an edge going out of r labelled with au, where u is a word, and there isa (possibly empty) path from q to a state r0 whih has an empty label and anedge going out of r0 labelled with bu, where u is a word, with b 6= a. In this aseletter[[q℄℄ � inf(a; b) = ", and then letter[[q℄℄ = p(q). Or there is a (possiblyempty) path from q to a state r whih has an empty label and with r �nal orinitial. Again letter[[q℄℄ � letter[[r℄℄ = ". Finally, letter[[q℄℄ = p(q) for eah q.� The seond depth-�rst exploration is an exploration of the automaton A. Itupdates the labels of A in order to derease the length of P (q) for eah state qsuh that p(q) is non-empty. For eah edge (q; u; r), where u is a �nite word, thefollowing two operations are performed. The letter (or empty word) p([r℄) isadded at the end of u. Then the �rst letter (or empty word) p([q℄) is removed7

from the beginning of u. Note that these two operations are possible. If u isnonempty, then p([q℄) is the �rst letter of u and if u = " then p([q℄) = p([r℄)or p([q℄) = ". These operations hange the labels of the edges of the automatonA and thus also the values of the array loal. Lines 3 and 5 of Move-Letter-Visit hange the labels of the edge e in A. Sine an edge with empty labelan beome an edge with a non-empty label and onversely, the edge of A"are also updated there. The values of the array loal are updated with twoproedures Update-Table-head and Update-Table-Tail desribed later.The exploration is done during the run of proedure Move-Letter whosepseudo ode is given below.Move-Letter(automaton A = (Q;E; I; F))for eah state q 2 Q doolor[q℄ whitefor eah state q 2 Q doif olor[q℄ = white thenMove-Letter-Visit(A; q)Move-Letter-Visit(automaton A = (Q;E; I; F)), state q)olor[q℄ blakfor eah edge e = (q; u; r) where u is a (possibly empty) word doappend letter[[r℄℄ at the end of the label of e in A and update A"Update-Table-Tail(e; letter[[r℄℄)remove letter[[q℄℄ from the head of the label of e in A and update A"Update-Table-Head(e; letter[[q℄℄)if olor[r℄ = whitethenMove-Letter-Visit(A; r)Proposition 3 Funtion transforms the automaton A in an automaton A0whose edges are:E0 =fq p(q)�1up(r)��������! r j q u�! r is an edge of Ag:Therefore, the funtion Move-Letter hanges the label w of any path from qto r into p(q)�1wp(r).Proof. This follows diretly from the onstrution. �Proposition 4 Funtion Move-Letter transforms the automaton A in anautomaton A0 whih has the same graph as A, keeps the labels of aepting pathsand satis�es PA0 = PA � 1.Proof. Let w be the label of a path from an initial state i to a �nal state t inA. The label of the same path obtained at the end of Move-Letter in A0 isp(i)�1wp(t) = w. Thus the labels of aepting paths are unhanged. Moreover,for eah state q one has PA0(q) = pA(q)�1PA(q). It follows that PA0 = PA � 1if PA � 1. � 8

We now give a pseudo ode of the proedure Make-Prefix whih is themain proedure of the algorithm.Make-Prefix(automaton A = (Q;E; I; F))Init-Table(A)Strongly-Conneted-Components(A")repeatInit-Letter(Q)bool Find-Letter(A")if bool thenMove-Letter(A)until bool = falseThe result of the omputation of the automaton A pitured in Figure 1 isthe automaton pitured in Figure 2. The automaton A is suh that PA = ".Note that this automaton has an empty labelled yle.Remark 5 The two proedures Find-Letter and Find-Letter-Visit an beperformed on the direted ayli graph obtained as the quotient of A" by therelation of being in a same strongly onneted omponent. This graph an bemuh smaller than A" itself. It an be omputed by the proedure Strongly-Conneted-Components.Remark 6 By proposition 3, the label of a yle is hanged into one of its on-jugate by the funtion Move-Letter. Therefore, the strongly onneted om-ponents of A" are unhanged during the iteration of funtion Make-Prefix.4 Data strutures and omplexityIn order to analyze the omplexity of our algorithm, we briey disuss a possibleimplementation of strutures required in the onstrution.A lassial way for implementing the automaton A is to use jQj adjaenylists that represent the edges. We may assume that we have two adjaeny listsfor eah state q. The �rst one represents the edges of empty label going out ofq, that is the edges that also belong to A". The seond one represents the edgesof non-empty label going out of q.In order to ompute, for eah state q, loal(q) in a onstant time, we maintainan array L indexed by Q de�ned as follows:� L[q℄ is the list of pairs (a; n) with a 2 A; n > 0 2 N, suh that q has atleast one outgoing edge labelled by a word whose �rst letter is a and suhthat n is the positive number of edges going out of q and whose �rst letteris a. 9

We point out that the �rst omponent of an element of L[q℄ is a letter and neverontains ". Thus loal(q) is " if L[q℄ has more than one element or if q is initialor �nal. It is the letter a if L[q℄ ontains exatly one pair (a; n) and q is neitherinitial nor �nal. It is > otherwise.The operation performed in the lists are the insertion of a new letter, that isa pair (a; 1), the inrementation and derementation of the seond omponentof an element, and the deletion of a letter, that is of a pair (a; 1). We need allthese operations to be performed in a onstant time.We use a known tehnique whih allows us to get this time omplexity (seefor example [1℄ exerise 2.12 p. 71 and [10℄ exerise \Implantation de fontionspartielles" 1.14 Chapter 1). This tehnique is based on the use of array of sizejQj � jAj whih is not initialized.We assume that the lists L[q℄ are doubly linked and implemented with ur-sors. We denote by T an array of variable size. The ells of T are used to storethe elements of the lists L[q℄. Eah ell has several �elds: a �eld label whihontains the letter, a �eld number that ontains the number of edges going outof q whose �rst letter is label, a �eld state whih ontains the state q suh thatthe ell belongs to L[q℄, and �nally �elds next and prev that give the index ofthe next (respetively previous) element in the same list. The ell of index q ofthe array L is the index in T of the �rst element of L[q℄, if this list is non-empty.Another array U , indexed by Q�A, gives for eah pair (q; a) the index in Tof the ell of L[q℄ whose letter is a, if this letter is in L[q℄. This array allows usto aess an element of a list in a onstant time. The operations of insertion,deletion of an element in a list are then done in a onstant time. The operationsof inrementation and derementation of the �eld number of the ell of a givenlabel in a given list are also done in a onstant time. Indeed, to inrement the�eld number of the letter a in L[q℄, one inrements the �eld number of the ellof T indexed by U [q; a℄.The array T is initially empty and its size is 0. The size of T is inrementedwhen a new ell is needed in T . A ell that orresponds to an element of a listthat has just been removed is marked to be free. Thus the existene of a lettera in L[q℄ is obtained by heking whether U [q; a℄ is an index i in [1; size(T)℄,whether the ell T [i℄ is not marked free, and whether the �elds label and stateare respetively equal to a and q. This is performed in a onstant time.All the lists of suessors that represent the edges of the automaton A andA", and the arrays loal, L, T , U are updated when the label of an edge ishanged during the proess. The arrays L and loal are initialized by the proe-dure Init-Table. The arrays L, T , U and loal are updated by the proeduresUpdate-Table-Head and Update-Table-Tail.We give below a pseudo ode for the proedure Init-Table.Init-Table(automaton A = (Q;E; I; F))for eah q 2 Q doL[q℄ the empty listloal[q℄ >for eah q 2 Q do 10

for eah edge (q; au; r) where a is letter and u a word doif a is not in L[q℄ theninsert the pair (a; 1) in L[q℄else inrement the �eld number of the letter a in L[q℄if L[q℄ has more than one element or if q is initial or �nal thenloal[q℄ "else if L[q℄ is not empty thenloal[q℄ the unique letter of L[q℄We now desribe the updating of the tables and lists. An update is neededas soon as the label of an edge of A is hanged. Note that the labels of the edgesof the automata A and A" are hanged in a onstant time. Indeed, a label of anedge going out of a state q that beomes empty is removed from the list of edgesof non-empty labels going out of q, and added into the list of edges of emptylabels going out of q (and onversely). This is performed in a onstant time inline 3 and line 5 of Move-Letter-Visit. To update the arrays L, T , U andloal, we distinguish the two kinds of modi�ation of the labels of the edges. Aletter or the empty word an be added at the end of a label. The proedurealled to update is in this ase the proedure Update-table-Tail. A letteror the empty word an be removed from the head of the label. The proedurealled to update is in this ase the proedure Update-table-Head.Pseudo odes for Update-table-Tail and Update-table-Head are givenbelow.Update-table-Tail(edge e = (q; u; r), letter (or empty word) x)if u = " and x 6= " thenif x is not in L[q℄ theninsert the pair (x; 1) in L[q℄else inrement the �eld number of the letter x in L[q℄if L[q℄ has more than one element or if q is initial or �nal thenloal[q℄ "else loal[q℄ the unique letter of L[q℄Update-table-Head(edge e = (q; u; r), letter (or empty word) x)We have u = xu0, where u0 is a �nite word, whenever x 6= "if x 6= " thenderement the �eld number of the letter x in L[q℄if this �eld is equal to 0 thenremove the pair (x; 0) from L[q℄if u0 = bu00 where b is a letter of A thenif b is not in L[q℄ theninsert the pair (b; 1) in L[q℄else inrement the �eld number of the letter b in L[q℄if L[q℄ has more than one element or if q is initial or �nal thenloal[q℄ "else if L[q℄ has exatly one element thenloal[q℄ the unique letter of L[q℄11

else loal[q℄ >We analyze now the omplexity of our algorithm. We denote by jSj theardinality of a set S. As the automaton is trim, jQj � jEj+1. We also denoteby jE"j the ardinality of the urrent automaton A". We always have jE"j � jEjbut the automaton A" may be muh smaller than A. We denote here by P themaximal length of the words P (q) for all states q.Proposition 7 Funtion Make-Prefix works in time O((P + 1)� jEj).Proof. Funtion Init-Table an be implemented to work in time O(jQj +jEj). Funtions Strongly-Conneted-Components and Find-Letter anbe implemented to work in time O(jQj+ jE"j). Funtion Init-Letter works intime O(jQj). As disussed above, funtion Update-Table works in time O(1).Funtion Move-Letter works in time O(jQj + jEj). Finally the loop inMake-Prefix is exeuted at most P+1 times. The omplexity of our algorithmis then O((jQj + jEj) � (P + 1) + (jQj + jE"j) � (P + 1)). Sine the automataonsidered are trim, jQj � jEj+1 and the omplexity is thus O((P +1)� jEj).� Let S be the sum of the lengths of the labels of all edges of the automaton.The spae omplexity of the algorithm is O((jQj � jAj) + jEj+ S).5 AknowledgementsWe thank Christian Cho�rut and Maxime Crohemore for useful disussions andomments. Christian Cho�rut pointed out to us the inauray of the algorithmof [13℄ in the partiular ase where the automaton has an empty labelled yle.We also thank the anonymous referees for their relevant remarks.Referenes[1℄ Aho, A. V., Hoproft, J. E., and Ullman, J. D. The Design andAnalysis of Computer Algorithms. Addison Wesley, 1974.[2℄ B�eal, M.-P. Codage Symbolique. Masson, 1993.[3℄ B�eal, M.-P., and Carton, O. Determinization of transduers over �niteand in�nite words. Teh. Rep. 99-12, I.G.M., Universit�e de Marne-la-Vall�ee,1999.[4℄ Berstel, J. Transdutions and Context-Free Languages. B.G. Teubner,1979.[5℄ Breslauer, D. The suÆx tree of a tree and minimizing sequential trans-duers. In CPM'96 (1996), vol. 1075 of Leture Notes in Computer Siene,Springer-Verlag, pp. 116{129. 12

[6℄ Breslauer, D. The suÆx tree of a tree and minimizing sequential trans-duers. Theoret. Comput. Si., 191 (1998), 131{144.[7℄ Choffrut, C. Contribution �a l'�etude de quelques familles remarquablesde fontions rationnelles. Th�ese d'�Etat, Universit�e Paris VII, 1978.[8℄ Choffrut, C. A generalization of Ginsburg and Rose's haraterization ofgsm mappings. In ICALP'79 (1979), vol. 71 of Leture Notes in ComputerSiene, Springer-Verlag, pp. 88{103.[9℄ Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introdution toAlgorithms. MIT Press, 1990.[10℄ Crohemore, M., Hanart, C., and Leroq, T. Algorithmique duTexte. Vuibert, 2000. to appear.[11℄ Frougny, C. Numeration systems. In Algebrai Combinatoris on Words,M. Lothaire, Ed. Cambridge, 2000. to appear.[12℄ Mohri, M. Minimization of sequential transduers. In CPM'94 (1994),M. Crohemore and D. Gus�eld, Eds., vol. 807 of Leture Notes in Com-puter Siene, Springer-Verlag, pp. 151{163.[13℄ Mohri, M. Minimization algorithms for sequential transduers. Theoret.Comput. Si., 234 (2000), 177{201.[14℄ Rohe, E., and Shabes, Y. Finite-State Language Proessing. MITPress, Cambridge, 1997, h. 7.

13

