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Abstract

We define a notion of asynchronous sliding block map that can
be realized by transducers labeled in A* x B*. We show that, under
some conditions, it is possible to synchronize this transducer by state
splitting, in order to get a transducer which defines the same sliding
block map and which is labeled in A x B*, where k is a constant in-
teger. In the case of a transducer with a strongly connected graph,
the synchronization process can be considered as an implementation
of an algorithm of Frougny and Sakarovitch for synchronization of ra-
tional relations of bounded delay. The algorithm can be applied in
the case where the transducer has a constant integer transmission rate
on cycles and has a strongly connected graph. It keeps the locality of
the input automaton of the transducer. We show that the size of the
sliding window of the synchronous local map grows linearly during the
process, but that the size of the transducer is intrinsically exponential.
In the case of non strongly connected graphs, the algorithm of Frougny
and Sakarovitch does not keep the locality of the input automaton of
the transducer. We give another algorithm to solve this case without
losing the good dynamic properties that guaranty the state splitting
process.

1 Introduction

We define a notion of asynchronous sliding block map. The classical notion
of sliding block map is the class of maps from A” to B”, where A and B
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are finite alphabets, which are continuous and invariant by the shift trans-
formation. The image of a bi-infinite sequence can be obtained by shifting
a window of fixed length along the sequence. We extend this definition to
asynchronous sliding block maps. These maps still use a sliding window but
may output a variable number of symbols for each input symbol. These
maps can be realized by automata labeled in A x B*, called transducers.
Furthermore, the input automaton can be chosen local, that is, it admits at
most one bi-infinite path labeled by a given bi-infinite word.

We study here the problem of the synchronization of these transducers,
that is, the construction of a synchronous transducer defining the same map.
A synchronous transducer is a transducer labeled in A x B¥, where k is a
positive integer. A synchronization of an asynchronous sliding block map is
a synchronous sliding block map which defines the same map between orbits
of bi-infinite sequences. The goal of the paper is to synchronize transducers
while keeping the local property of their input automaton.

The question of the synchronization of transducers goes back to the paper
of Elgot and Mezei [12] about rational relations realized by finite automata,
and to the result of Eilenberg and Schiitzenberger [11] which states that a
length preserving rational relation of A* x B* is a rational subset of (A x B)*,
or, equivalently, is realized by a synchronous automaton (labeled in A x B).
The proof of Eilenberg is effective but is done on regular expressions and not
directly on automata. In [13], Frougny and Sakarovitch give an algorithm
for synchronization of relations with bounded length difference, the relations
being between finite words or between one-sided infinite words. This consti-
tutes another proof of the previous result. Their algorithm operates directly
on the transducer that realizes the relation.

Here we consider bi-infinite sequences recognized by automata that are
without any initial or final states (or, more precisely, with all states both
initial and final). A transducer is synchronizable if it has a constant integer
transmission rate on cycles.

We show that the algorithm given in [13] for synchronization of trans-
ducers can be implemented with state splitting if the underlying graph of
the automaton is strongly connected. It is moreover possible to use only
output state splitting, or to use only input state splitting. A state split-
ting is a transformation of a graph which is a an automorphism between
the symbolic dynamic subshifts defined by the graph before and after the
transformation. The notion of state splitting, appeared early in informa-
tion theory, has been introduced to symbolic dynamics by Williams. It has
been since widely used, for example to solve some coding problems (see for
instance [17], [1] and [15]). A state splitting keeps good properties of an



automaton like the property of being local. Thus, if the synchronization
is performed with state splitting and shifting letters of the ouput, it keeps
the locality of the input automaton of the transducer. State splitting and
shifting has already been used in coding theory to transform a transducer
which has an input with finite anticipation into a transducer that realizes
the same function on bi-infinite words and which has a deterministic input
(see for instance [18, p. 1720]). However, the two problems are different.

We give a detailed presentation of the synchronization algorithm. We
use the notion of balance of a state introduced in [13], which controls the
lookahead, i.e the number of symbols read in output (up to a division by a
constant k) minus the number of symbols read in input. In [13], the posi-
tive balances of states are decremented and the same treatment is applied
after reversing the roles of the input and output automata. We describe an
implementation of this algorithm which decrements the positive balances,
increments the negative ones and simultaneously removes the e-transitions.

We show that the size of the sliding window grows linearly during the
process. This in one of the main interest of the algorithm. However, we give
an example of an asynchronous map realized by a transducer such that any
synchronized transducer with a local input automaton that realizes it has an
exponential number of states. The synchronization is therefore intrinsically
exponential in the number of states.

In the last section, we extend the result to the more general case of trans-
ducers with non strongly connected graphs. The algorithm of Sakarovitch
and Frougny [13] is not adequate to our purpose since it does not guarantee
the locality of the input of the transducer. This makes the recovering of the
synchronous map, defined by the way of a sliding block window, much more
difficult. We present another algorithm which keeps the locality of the input
of the transducer but needs a stronger synchronization hypothesis.

A short version of this paper has been published in [6].

2 Asynchronous maps and transducers

2.1 Asynchronous and synchronous sliding block maps

Let A be an alphabet. A bi-infinite word of A” is a bi-infinite sequence
(a;)icz of letters of A. The space A% is endowed with the usual product
topology. This topology can be defined by the distance d given by

0 if a; = b; for any 1 € Z
d((ai)iez; (bi)iez) = {2_min{i lai by}

otherwise.



The shift o is the continuous bijection from A” to A” defined by

o((ai)iez) = (ait1)icz-

The orbit of a word z € A” is the set {¢"(z) | n € Z}. Two words are in the
same orbit if they differ only in some shifting of the indices. Thus, an orbit
may be seen as a bi-infinite word without explicit indexing. The set of all
orbits is denoted by “A“. An element of “A% is also called a word. In the
sequel, we identify a word with its orbit but in order to avoid ambiguity, we
refer to a word of A% or to a word of “A“.

We now come to the definition of sliding block maps also called local
maps in the literature. We first recall the classical definition of sliding block
maps from A” to B”. Then we give the definition of asynchronous and
synchronous sliding block maps from “A“ to “B“. We finally explain the
connections between these definitions.

A function f from A” to B” is a sliding block map if there are integers
m, a, (m is the memory and a is the anticipation), and a function f : A’ = B,
where | = m + a, such that for all z € A”, the image y = f(z) of z is the
bi-infinite word of B% defined by vy, = f(:vn,(m,l) +Tpag) for all n € Z.
Thus the letter y, only depends on the finite block =y, _(y,_1) - Zna of .
The integer [ = m + a is called the size of the so called sliding window. A
sliding block map f commutes with the shift, i.e., satisfies foo = g o f.
Actually, a function from A% to BZ is a sliding block map if and only if it
is continuous and commutes with the shift.

-
variable length

Figure 1: Asynchronous sliding block map

A function f from “A“ to “BY is a asynchronous sliding block map if
there are an integer [ and a function f : A’ — B* such that the image of
a word z of “A“ is the concatenation of the finite words f(:vn_(l_l) )
for all n € Z (see Figure 1). The integer [ is also called the size of the
sliding window. The function f is called a k-synchronous sliding block map
if the function f is actually uniform, that is a function from A to B¥ (see



length &

Figure 2: A k-synchronous sliding block map

Figure 2) for some fixed integer k. It is synchronous if it is k-synchronous
for some integer k.

Both definitions are very similar but in the case of maps from A” to B,
the image of a block by f is always a letter while it can be an arbitrary
word in the case of functions from “A“ to “B“. If f is a sliding block map
from A” to B” where B = C* for some integer k, it naturally induces a
synchronous sliding block map from “A“ to “C“. This function maps a
word z to the word obtained by concatenating the blocks of length k& of the
image of x by f. This function, which is also called f, is a k-synchronous
sliding block map. Conversely, if f is a k-synchronous sliding block map
from “A¥ to “C%, it also defines a sliding block map from A% to BZ where
B = C*. In the sequel, we only consider asynchronous sliding block maps
from “A%¥ to “B“ and we simply call them sliding block maps.

If f is a sliding block map from “A% to “BY, there may exist two dif-
ferent functions f and f’ from A! and A to B* such that the image of a
word z of “A“ is the concatenation of the finite words f(xn,(l,l) e Zyp) Or
f'(Zn—@ -1y Ty). In particular, one function, say f', may be uniform from
A" to B* while the other, f, may not be uniform.

The purpose of this paper is to explain how to find a uniform function
f' which yields the same function f, when the asynchronous sliding block
map f has suitable properties and is described by a function f which is not
uniform.

2.2 Transducers

In this section we consider automata labeled in A* x B*. Automata con-
sidered in the literature are often labeled in A x B* instead of A* x B* but
most of the results that we present here does not require this assumption.
The empty word is denoted by e.



A transducer T = (V,E) is a finite state machine with V as set of
vertices, and E as set of edges labeled in A* x B*. Each edge (p, (u,v),q)
is labeled by a pair of words (u,v) whose first component is the input while
the second is the output. The sum |u| + |v| is the size of the transition. The
size |T| of a transducer T is the sum of the sizes of its transitions.

Such a transducer defines a relation from “A% to ¥ B¥ made of all pairs
(x,y) such that (x,y) is the label of a bi-infinite path of the transducer.

We always assume that transducers are e-free, that is, have no (g,¢)-
labeled edges. Classical algorithms from automata theory are known to
remove the (¢, €)-labeled edges without changing the relation defined by the
transducer [2].

An automaton without any e-transition is said to be (m,a)-local, where
m and a are integers, iff two finite paths of length n = m 4+ a and with the

same label: ((pi,ai,pit1))o<i<n—1 and ((p}, ai,piyq))o<i<n-1 satisfy p, =
pl,. An automaton is said to be local if it is (m,a)-local for some m and
a. This property is equivalent to the property of the existence of at most
one bi-infinite path labeled by a given bi-infinite word. An automaton with
e-transitions is said to be local if there is at most one bi-infinite path labeled
by a given bi-infinite word.

The input automaton of the transducer is the automaton obtained by
removing the second component of the edge label. The relation defined by a
transducer may not be a function. This is however always true if the input
automaton is a local automaton.

Each asynchronous sliding block map from “A“ to “B“ can be defined
by a transducer 7 labeled in A x B*. Let f be an asynchronous sliding block
defined as above and let [ be the size of its sliding window. Let m and a be
non-negative integers such that m +a =1 — 1. We define V' as the set A=
The edges of T are

(@1 ... Gmta) am“‘f(almamﬁal)) (a2 ...amtaa)-

The input automaton of this transducer is a De Bruin graph which is in
general not deterministic. It is deterministic whenever ¢ = 0. It is an
(m, a)-local automaton. This transducer realizes the function f.

For any asynchronous sliding block map, it is moreover possible to choose
m =1—1 and a = 0 in the definition of the transducer 7. In this case, the
input automaton of 7 is a deterministic automaton.

Let k be a positive integer. A k-synchronous transducer is a transducer
labeled in A x B¥. On each edge, the number of output labels is k times
the number of input ones: it has a constant transmission rate on each edge



equal to the integer k. By the previous construction of the transducer T,
a k-synchronous sliding block map from “A“ to “B“ can be defined by a
k-synchronous transducer.

We have considered maps defined on “A¥. Sometimes, maps are defined
on the set of orbits of a subshift of finite type S of A%. A subshift of finite
type is a subset of A% which can be characterized by a finite number of
forbidden finite blocks. It is a closed subset of A% invariant by the shift 0. A
subshift of finite type can be recognized by a local automaton. A canonical
example of subshift of finite type is the set of bi-infinite paths of a finite
automaton. It is included in E”, where the alphabet F is the set of edges of
the automaton. Equivalently, it is also the set of labels of bi-infinite paths
of a finite automaton in which edges have distinct labels.

If f is an asynchronous sliding block map from S to “B%“, it can be
defined by an asynchronous transducer whose input automaton is a local
automaton recognizing S.

Conversely any asynchronous transducer labeled in A x B* with a local
input automaton defines an asynchronous sliding block map. If the input
automaton is (m, a)-local, one can define it with a sliding window of length
m + a + 1. If the transducer is k-synchronous, it defines a k-synchronous
sliding block map from “A“ to “B“.

[ala]] |[alD]|
Feo==00l
[ola]] |[210]|

Figure 3: Asynchronous transducer and map

Example 1 Let A = {a,b} and B = {z,y,2,t}. An example of an asyn-
chronous sliding block map from “A% to “ B¥ realized by the asynchronous
transducer of Figure 3.

Example 2 Let A = {a,b} and B = {z,y,2z,t}. An example of a 2-
synchronous sliding block map from “A% to “ B“ realized by the 2-synchronous
transducer of Figure 4.
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Figure 4: Synchronous transducer and map

3 Synchronization of transitive transducers

In this section, we consider transitive transducers, that is transducers whose
graphs are strongly connected. If the input automaton of the transducer is
a local automaton, it recognizes a transitive shift of finite type. We describe
an algorithm which synchronizes transducers with a constant transmission
rate on cycles. The property of having a constant transmission rate on
cycles is hence a sufficient condition. Tt is not always a necessary condition
since any transducer labelled in A* x b* can be synchronized. We conjecture
that the condition is a necessary condition if the function realized by the
transducer is not constant.

This algorithms uses state splitting and thus keeps the local property of
the input automaton. Non-transitive transducers are considered in Section 4.

3.1 Transmission rate

Let T be a transducer. We define the transmission rate of a path labeled
by (u,v) as the ratio |v|/|u|. Recall that a cycle is a path beginning at and
ending in a same state. A transducer has a constant transmission rate on
cycles if all cycles have the same transmission rate. This property can be
checked on simple cycles only. A transducer has a constant transmission rate
on confluent paths if for any states p and ¢, all paths beginning at p and
ending in ¢ have the same transmission rate (depending on p and ¢). If the
transducer is transitive, a constant transmission rate on cycles is equivalent
to a constant transmission rate on confluent paths.

We first give an algorithm to check if a transitive transducer has a con-
stant integer transmission rate on confluent paths (or on cycles). This can
be done by a depth first search. A first exploration can be done to find
a cycle and get then an integer k£ candidate to be the constant transmis-
sion rate. We begin the exploration of the graph at some state i. We
define a function balance from V to Z. This function associates with any
state ¢ an integer balance(q) such that for any states p and ¢, the difference



balance(q) — balance(p) is equal to |v| — k|u| for any path from p to ¢ la-
beled (u,v). Since the graph is strongly connected, this property defines the
function balance up to an additive constant. The balances are completely
defined if we fixed balance(i) = 0.

During the exploration of the graph, we can compute for each state ¢ an
integer balance(q) as follows:

e balance(i) is equal to 0

e balance(q) is equal to |v| — k|u| for any path from i to ¢ labeled by
(u,v).

Here is the algorithm to compute the balances of the states. The main

procedure BALANCE sets the value of balance(i) and the recursive function

VisIT performs the depth first search. The boolean constant-rate initialized

to TRUE indicates at the end if the transducer has a constant rate on cycles.

BALANCE
begin
constant-rate:= TRUE;
for all states ¢ do visited[g]:= FALSE;
balance[i] := 0;
VisiT(s) ;
end

VIisIT(p)
begin
visited[p] := TRUE;
for each edge (p, (u,v),q) do
if visited[q] = FALSE then
begin
balance[q] := balance[p] + |v| — k|u|;
VisiT(q) ;
end
else if balance[q] # balance[p] + |v| — k|u| then
constant-rate := FALSE;
end

The value of the balance is not important. Only the difference of two values
is independent of the exploration order. If the transducer has n states and
output labels of edges of length at most L, the difference of balances of any
two states is bounded by Ln.



3.2 Description of the algorithm

We now describe the algorithm which synchronizes transitive transducers
with a constant transmission rate on cycle. This algorithm uses state split-
ting that we now define. We first define the operation of output state splitting
in a automaton 7 = (V, E). Let ¢ be a vertex of 7 and let O (resp. I) be the
set of edges going out of ¢ (resp. coming in q). Let O = O'+0" be a partition
of O. The operation of output state splitting relative to the partition (O’, O")
transforms 7 into the graph 7' = (V', E') where V' = (V \ {¢}) U{d',¢"}
is obtained from V by splitting state g into two states ¢ and ¢”, and where
E' is defined as follows.

e all edges of F that are not incident to ¢ are left unchanged.
e we give to both ¢’ and ¢” copies of the input edges of q.

e we distribute the output edges of ¢ between ¢’ and ¢” according to
the partition of O into O’ and O”. We denote U’ and U” the sets of
output edges of ¢’ and ¢” respectively: U' = {(¢',z,p) | (¢,z,p) € O’}
and U" = {(¢",z,p) | (¢,z,p) € O"}, (see Figure 5).

Ol ‘g U’
O” @ U//

Before After
Figure 5: Output state splitting

The operation of input state splitting is obtained by reversing the roles
played by input and output edges. It is well-known that if an automa-
ton is (m,a)-local, it is (m,a + 1)-local after an output state splitting and
(m—+1,a)-local after an input state splitting. A deterministic (resp. codeter-
ministic) automaton remains deterministic (resp. codeterministic) after an
output (resp. input) splitting. The definitions can be generalized to define
a multiple state splitting, when a state is split into more than two states
according to a partition which has more than two parts.

We do input (resp. output) state splittings of states ¢ of a transducer T
only if the input (resp. output) edges of ¢ have a non empty output labeling.
An input state splitting of a state ¢ is admissible if it is done according to
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a partition which is finer than the partition of the input edges defined by
the last letter of their output label. An output state splitting of a state ¢
is admissible if it is done according to a partition which is finer than the
partition of the output edges defined by the first letter of their output label.
Unless otherwise stated, we do admissible input (resp. output) state splitting
corresponding to the partition defined by the last letter of the output label
of input edges (resp. of the first letter of the output label of the output
edges).

Examples of these two operations are described in Figure 6, where a, b
and c are letters of B and u, u', v, v', w, w', r, ', t and ' are finite words
of B*. The state g is labeled by its balance p, which remains unchanged
after the transformation.

tlat’

u|u r|br!

v|v w|cw'

Before After
Figure 6: An admissible output state splitting

We now define another operation on a transducer 7. In order to syn-
chronize the transducer, we are going to decrement or increment the balance

of some states.
t|at’ tit'a

ulu r|ar’ ulu'a r|r!

v|v’ w|aw' vlv'a wlw

Before After

Figure 7: Incrementation of a state
We first describe the operations called incrementation and decrementa-

tion in the case where all edges of the transducer are labeled by AT x B*.
The general case is a bit more technical and it will described just after.

11



These two operations are local operations leaving the graph and the input
labels unchanged. An incrementation of a state of balance p can be done
if and only if all the output labels of its output edges begin with the same
first letter. This letter is removed and put as last letter of the output label
of the input edges. The balance is incremented by 1. The decrementation
is defined similarly. The incrementation is illustrated in Figure 7. In the
figure, the states are labeled with their balance.

Before

Figure 8: An e-free incrementation

We now describe the incrementation in the case where some edges may
be input labeled by €. We have supposed that the transducer is e-free but
some (g, ¢)-labeled edges may appear in an incrementation made as described
above. This can happen if an output edge is labeled by (¢, a). So, we describe
a modified version which keeps the e-free property of the transducer.

If an edge (q, (¢,¢),¢") appears in the incrementation of state ¢, it is re-
moved and replaced by edges (¢”, (u,v), ¢"), for each input edge (¢”, (u,v), q)
of ¢q. If the input automaton is local before the incrementation, it is still
local after it. An e-free incrementation is illustrated in Figure 8, where g is
a letter of B and u, v/, v, v, w, w', t and ¢’ are finite words of B*.

We now describe the synchronization algorithm by state splitting for
a transitive transducer labeled in A* x B*, and with a constant integer
transmission rate k on cycles. A description of the input and output data
is the following.

e INPUT:
A transitive asynchronous transducer 7 labeled in A* x B* with a
constant transmission rate k on cycles which defines an asynchronous
sliding block map f from “A“ to “B%“.

e OUTPUT:
A transitive synchronous transducer 7' labeled in A x B¥. The trans-
ducer 7' defines the same function f, which is k-synchronous. If the

12



input automaton of 7 is local, the input automaton of 7’ is also local.

The transducer 7' is obtained by state splitting. Furthermore, it is
possible to do only output (resp. input) state splitting. Then, if the input
automaton of 7 is deterministic (resp. codeterministic) and local, the input
automaton of 7" is also deterministic (resp. codeterministic) and local.

We denote DECREMENT(g) and INCREMENT(q) the procedures corre-
sponding to the operations described above, applied to state ¢. We denote by

INPUT-SPLIT(q; q1, G2, - - - ,qr) and OUTPUT-SPLIT(q; q1, G2, - - - ,qy) the corre-
sponding procedures applied to a state ¢, split into states q1,q2,... ,qr. The
synchronization algorithm is the following.

SYNCHRONIZE(T)

begin

for i := L downto 1 do
for each state ¢ of balance 7 or —i do
if balance(q) < 0 then

begin
OUTPUT-SPLIT(¢; G1,92, - - - »qr) ;
for all ¢; (1 <j <r) do INCREMENT(qg;) ;
end
else if balance(q) > 0 then
begin
INPUT-SPLIT(q; 41,92, - - - »qr) ;
for all ¢; (1 <j <r) do DECREMENT(g;);
end

end

The soundness of the algorithm is based on the following points:

e First, and this is the key point of the algorithm, a state with a neg-
ative balance, to be split and incremented, does not have outgoing
edges with an empty output label. In fact, such an edge would ar-
rive in a state with a strictly lower balance. This is not possible since
states with lower balance are treated first. The same is true (mutatis
mutandis) for states with positive balances.

e Second, decrementations (resp. incrementations) of states g or ¢1, go, . . .

are applied after an eventual admissible output (resp. input) state
splitting, and they can actually be done. The transducer is synchro-
nized when all balances are equal (to zero).

13



Remark 3 It is possible to synchronize the transducer by doing only out-
put (or only input) state splittings. To do only output state splittings for
example, we begin with a positive distribution of balances.

Remark 4 For each value of ¢ of the outer loop, all states with balances
equal to i (resp. —i) are split and decremented (resp. incremented). Actu-
ally all the splittings of these states are independent and can therefore be
performed simultaneously. Such a step is called a round of state splitting
(see [18, p. 1693]). This also holds for incrementations and decrementa-
tions. When incrementations and decrementations are done simultaneously,
the beginning and the end of the output labels can be modified in parallel
since there is no concurrent write.

3.3 Evaluation of the complexity

In this section, we study the complexity of the procedure SYNCHRONIZE
when the input automaton of the transducer is local. We first show that
the size of the sliding window grows linearly. However, we exhibit examples
showing that there is an exponential growth of the number of states.

This result can be compared to that obtained by Ashley in [4] (see also
[3]) where he introduces a new construction of finite-state encoders for input
constrained channels that guarantees an encoder with a window length that
is linear in the number n of states of the smallest graph representing the
constraint. His construction gives a specification of ¢ rounds of state splitting
to be performed on the graph, where ¢ is linear in n, even if the number of
states of the encoder is exponential. The same situation appears here: even if
the number of states of the transducer that we get has an exponential number
of states, it is possible to do a number of rounds of state splitting which is
bounded by the maximal difference between the balances of the states. This
result is interesting since the size of the window of the synchronized map
that we get depends on the number of rounds of state-splitting that are
performed, and not on the number of states of the transducer.

Let T be an asynchronous transducer whose input automaton is local.
Recall that |7 is the sum of the sizes of the transitions of 7. Let n be the
number of states of 7. Let f be the asynchronous map from “A“ to “BY“
defined by the transducer and let [ be the size of its sliding window. It
is known that [ = O(n?) (see for example [5]). Let 7' be the synchronized
transducer. Let M be the maximal difference between the balances of states.

Proposition 5 The size of the window of the synchronized map obtained is
bounded by M + 1.

14



We point out that if the transducer 7 is labeled in A x B* and the

lengths of the output labels are bounded by K, the integer M is bounded
by Kn. Indeed, the rate k is less than K, and for each edge (p, (a,v),q),
the difference between the balances of p and ¢ is less than |v| —k < K. In
the case where the sizes of the transitions are not bounded, the maximal
difference between the balances of any two states is bounded by the sum of
the sizes of the transitions of a simple path in 7, which is himself upper
bounded by |7|. This shows that the size of the window grows linearly
in |T].
Proof Let M+ be the maximum of positive balances of 7, and M~ the
maximum of the absolute values of negative balances. Thus, the integer M
is equal to M+ + M~. If the input automaton of 7 is (m, a)-local, the input
automaton of 7' is (m+M ™, a+ M ~)-local. Indeed, a single round of output
state splitting increases the anticipation of a local automaton by at most one
and a single round of input state splitting increases the memory of a local
automaton by at most one. The size of the window of the synchronized map
is then bounded by M+t + M~ +1= M +1. O

The following example shows that the number of states of the transducer
grows exponentially when it is synchronized. It actually proves that this
blow up is intrinsic to the synchronization. This does not depend of the
algorithm used to construct the transducer.

Proposition 6 There are n-state synchronizable transducers with a local
input such that any synchronized transducer with a local input that defines
the same map from YA“ to “B“ has an exponential number of states.

A il

Figure 9: Transducer T

Proof Let A be the alphabet {a,b,c,d,e, f} and let us consider the trans-
ducer T of Figure 9. This transducer has 2n states and is synchronizable
with rate 1. Let 7' be any synchronized (or letter-to-letter) transducer with
a local input automaton that defines the same map as 7 from “A% to “A%.
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We suppose that the input automaton of 77 is (m,a)-local. We can
assume that m = a and that m is greater than n. For each state g of 77, we
define the set E, as the set of pairs (u;,u,) or words of length m such that
uju, labels a path going through state ¢ after reading w;. Since the input
automaton is (m,m)-local the sets F, are pairwise disjoint. Furthermore, if
both pairs (u;,u,) and (uj, u..) belong to E,, both pairs (u,u,) and (u}, u,)
also belong to E,.

Let w; and w; be two different words of length n/4 over {a,b} and let
wy and w!. be two different words of length n/4 over {d,e}. Let us define
the words u;, u,, u; and . of length m by

uy = am—3n/4wlcn/2 Uy = Cn/2,wrdm—3n/4

u; — a}m—3n/4wgcn/2 u; — Cn/Qw;dm—3n/4_

We suppose that both pairs (u;, u,) and (uj, u;.) belong to E, for some state g.
There are four paths vy, 72, v3 and 4 as shown in Figure 10 where v;, v,,

a¥ |z wy|v; 2|t 2|ty wr vy d“ |z,
71 . . ~ ‘ q . 73
Y2 . . 7 N q’ ° Y4
a“|z] wi|v;] cn/? |t /2|t w) vl dv |z,

Figure 10: Paths 71, v2, v3 and 4

v; and ). are finite words of length n/4, #;, t,, t; and t]. are finite words of
length n/2, z; and z} are left-infinite words and z, and z]. are right-infinite
words. Paths v, and v, end in ¢ while paths vy3 and 4 start at ¢q. Since
the respective images by f of “aw;c"w,d”, “aw)c"w,.d¥, “aw;c"w,.d* and
“aw)c"w,d? are Yawjw,d”, “aww,.d’, Yaww,d” and “awjw,d”, we get the
following equalities by considering the paths v1vy3, y2v4, v174 and yoy3

Tvtityvez, = “aww,d?

ztithonz,. = “aww,d”

itz = “awpw,d?

zytit vz, = “awjw,d”.
It follows that we have either:

tyvpx, = zw,d”

P I qw
t,v.x, = xw,d”,
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where z is a common suffix to w; and wy}, or:

it = “awyy

Tty = Yaw)y.

where y is a common prefix to w, and w].. Since w, and w). are different and
the words w; and wg are also different, the words ¢, and ¢. must be different.
This implies that the states ¢’ and ¢” are also different since the automaton
is unambiguous (or lossless).

We finish the proof with a variant of the pigeon hole principle. Let us
now choose N = 2%/4 distinct words wy,1, 012, .- wy N of length n/4 over
{a,b} and let N distinct words wy. 1, wy2,... ,w, y of length n/4 over {d, e}.
Let 1 < XA < 2. Let us assume that we have always less than \"/* pairs
(wy,w,;) that belong to a same set E,. Then the number of states of 7"
is 7 > (2/A)(™Y | which is exponential. Otherwise, there is a state ¢ such
that F, contains at least A4 pairs (wy,i,wr;). We have proved that this
implies that the \"/* states qv; are all distinct. We find again an exponential
number of states. [J

3.4 Example

Figure 11: Transducer 7 and the output state splitting

We give an example of synchronization. We consider the transducer 7
pictured in the left of Figure 11. In the figure, each symbol represents one
letter and states are labeled by their balance. This transducer is a candidate
to be synchronized with k£ = 2. The state with balance —1 is output-split
into three states (see the right of Figure 11). Then, each of the three new
states are incremented and their balance becomes 0 (see left of Figure 12).
Finally, the last state with balance 1 does not need to be split since it only
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elry

Figure 12: Incrementation and decrementation

has one incoming edge. It is just decremented. The synchronized transducer
is pictured in the right of Figure 12). The input automaton is (0, 1)-local.
The 2-synchronous sliding block map f defined has a window of length 2.

4 Synchronization of non-transitive transducers

We finally consider the case of transducers labeled in A* x B* with a not
necessarily strongly connected graph. An algorithm for synchronizing a
non-transitive transitive transducer has already been given in [13]. This
algorithm uses a step of duplication of states which is not a state splitting
process and therefore does not keep the important property of locality of
the input automaton of the transducer. We describe another algorithm that
synchronizes a non-transitive transducer. This algorithm keeps the local
property of the input automaton but it needs a stronger hypothesis on the
transducer.

We give a new condition for a transducer to be synchronizable while
keeping the local property of the input automaton of the transducer. As in
the case of transitive transducer, we first suppose that the transducer has
a constant transmission rate k on cycles. However, this condition is not
sufficient for non-transitive transducers.

An wundirected cycle of a transducer T is a cycle in T viewed as an
undirected graph. In such a cycle, each edge may be used in its usual
direction or in the other direction.

Let T be a transducer which has a constant transmission rate k. With
each undirected cycle ¢ in the graph, we associate an integer val(c) called
the valuation of the cycle and computed as follows. We fix some orientation
for the cycle ¢ and the valuation of the cycle is equal to the sum of the
valuations of all edges of the cycle. The valuation of an edge (p, (u,v),q)
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is equal to |v| — k|u| if the orientation of the cycle coincides with those of
the edge, and is equal to its opposite otherwise. The valuation of the cycle
depends on the orientation chosen for the cycle.

It is well-known that the set of all undirected cycles of a graphs forms
a vector space whose dimension is called the cyclomatic number of the
graph [8]. Our valuation is then a linear form on this vector space.

We suppose that the transducer 7 has a constant transmission rate k
on cycles. The transducer 7T is said to have a constant transmission rate on
undirected cycle if the following equality holds for any undirected cycle ¢

val(c) = 0.

We first make some comments about this property. We first point out
that if the transducer 7 is connected, it always has a constant transmission
rate on undirected cycles if it already has a constant transmission rate k
on cycles. Indeed, if the graph is strongly connected, each undirected cycle
can be decomposed as a sum of directed cycles. Second, it suffices to check
this property on simple undirected cycles since the valuation is a linear form.
This can be done by a straightforward adaptation of the algorithm BALANCE
given in Section 3.1.

ylee
GO = WL

Figure 13: Transducer T

Let v and +' are two paths from p to p’ respectively labeled by u|v
and u'|[v'. We can then consider the undirected cycle vy’ where 4’ is the
path 4/ in reverse direction. If the transducer has a constant transmission
rate on undirected cycles, one has |v| = |v'|. However, the converse does not
hold as shows the transducer pictured in Figure 13. This transducer has a
constant transmission rate of 2 on cycles but it does not have a constant
transmission rate on undirected cycles. It can be proved that the function
realized by this transducer cannot be realized by a transducer which is local
and synchronous.

We claim that any transducer which has a constant transmission rate
on undirected cycles can be synchronized using state splittings and incre-
mentations and decrementations. We just sketch the procedure. It should
be noticed that a constant transmission rate on undirected cycles is neither
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changed by a state splitting or by an incrementation. Thus, the property
remains true along the procedure. The procedure treats successively each
connected component of the transducer. A first connected component is
synchronized using the algorithm SYNCHRONIZE given in Section 3.2. Then,
at each step, a new connected component is also synchronized in the same
way. However, it may happen that paths between the newly synchronized
connected component and the already synchronized connected components
do not have a transmission rate equal to k. In that case, all states of the
treated connected component are split and incremented as many times as
needed so that all paths have a transmission rate equal to k. The key point
to be noticed is that the property of having a constant transmission rate
on undirected cycles insures that all paths between the newly synchronized
connected component and the old ones need the same number of incremen-
tations. When all connected components have been treated that way, the
transducer is completely synchronized.
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