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Asyn
hronous sliding blo
k mapsMarie-Pierre B�ealInstitut Gaspard Monge�Universit�e de Marne-la-Vall�ee Olivier CartonInstitut Gaspard Monge and CNRS�Universit�e de Marne-la-Vall�eeMay 23, 2000Abstra
tWe de�ne a notion of asyn
hronous sliding blo
k map that 
anbe realized by transdu
ers labeled in A� � B�. We show that, undersome 
onditions, it is possible to syn
hronize this transdu
er by statesplitting, in order to get a transdu
er whi
h de�nes the same slidingblo
k map and whi
h is labeled in A � Bk, where k is a 
onstant in-teger. In the 
ase of a transdu
er with a strongly 
onne
ted graph,the syn
hronization pro
ess 
an be 
onsidered as an implementationof an algorithm of Frougny and Sakarovit
h for syn
hronization of ra-tional relations of bounded delay. The algorithm 
an be applied inthe 
ase where the transdu
er has a 
onstant integer transmission rateon 
y
les and has a strongly 
onne
ted graph. It keeps the lo
ality ofthe input automaton of the transdu
er. We show that the size of thesliding window of the syn
hronous lo
al map grows linearly during thepro
ess, but that the size of the transdu
er is intrinsi
ally exponential.In the 
ase of non strongly 
onne
ted graphs, the algorithm of Frougnyand Sakarovit
h does not keep the lo
ality of the input automaton ofthe transdu
er. We give another algorithm to solve this 
ase withoutlosing the good dynami
 properties that guaranty the state splittingpro
ess.1 Introdu
tionWe de�ne a notion of asyn
hronous sliding blo
k map. The 
lassi
al notionof sliding blo
k map is the 
lass of maps from AZ to BZ, where A and B�5 boulevard Des
artes, Universit�e de Marne-la-Vall�ee, F-77454 Marne-la-Vall�ee Cedex2, Fran
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are �nite alphabets, whi
h are 
ontinuous and invariant by the shift trans-formation. The image of a bi-in�nite sequen
e 
an be obtained by shiftinga window of �xed length along the sequen
e. We extend this de�nition toasyn
hronous sliding blo
k maps. These maps still use a sliding window butmay output a variable number of symbols for ea
h input symbol. Thesemaps 
an be realized by automata labeled in A � B�, 
alled transdu
ers.Furthermore, the input automaton 
an be 
hosen lo
al, that is, it admits atmost one bi-in�nite path labeled by a given bi-in�nite word.We study here the problem of the syn
hronization of these transdu
ers,that is, the 
onstru
tion of a syn
hronous transdu
er de�ning the same map.A syn
hronous transdu
er is a transdu
er labeled in A � Bk, where k is apositive integer. A syn
hronization of an asyn
hronous sliding blo
k map isa syn
hronous sliding blo
k map whi
h de�nes the same map between orbitsof bi-in�nite sequen
es. The goal of the paper is to syn
hronize transdu
erswhile keeping the lo
al property of their input automaton.The question of the syn
hronization of transdu
ers goes ba
k to the paperof Elgot and Mezei [12℄ about rational relations realized by �nite automata,and to the result of Eilenberg and S
h�utzenberger [11℄ whi
h states that alength preserving rational relation of A��B� is a rational subset of (A�B)�,or, equivalently, is realized by a syn
hronous automaton (labeled in A�B).The proof of Eilenberg is e�e
tive but is done on regular expressions and notdire
tly on automata. In [13℄, Frougny and Sakarovit
h give an algorithmfor syn
hronization of relations with bounded length di�eren
e, the relationsbeing between �nite words or between one-sided in�nite words. This 
onsti-tutes another proof of the previous result. Their algorithm operates dire
tlyon the transdu
er that realizes the relation.Here we 
onsider bi-in�nite sequen
es re
ognized by automata that arewithout any initial or �nal states (or, more pre
isely, with all states bothinitial and �nal). A transdu
er is syn
hronizable if it has a 
onstant integertransmission rate on 
y
les.We show that the algorithm given in [13℄ for syn
hronization of trans-du
ers 
an be implemented with state splitting if the underlying graph ofthe automaton is strongly 
onne
ted. It is moreover possible to use onlyoutput state splitting, or to use only input state splitting. A state split-ting is a transformation of a graph whi
h is a an automorphism betweenthe symboli
 dynami
 subshifts de�ned by the graph before and after thetransformation. The notion of state splitting, appeared early in informa-tion theory, has been introdu
ed to symboli
 dynami
s by Williams. It hasbeen sin
e widely used, for example to solve some 
oding problems (see forinstan
e [17℄, [1℄ and [15℄). A state splitting keeps good properties of an2



automaton like the property of being lo
al. Thus, if the syn
hronizationis performed with state splitting and shifting letters of the ouput, it keepsthe lo
ality of the input automaton of the transdu
er. State splitting andshifting has already been used in 
oding theory to transform a transdu
erwhi
h has an input with �nite anti
ipation into a transdu
er that realizesthe same fun
tion on bi-in�nite words and whi
h has a deterministi
 input(see for instan
e [18, p. 1720℄). However, the two problems are di�erent.We give a detailed presentation of the syn
hronization algorithm. Weuse the notion of balan
e of a state introdu
ed in [13℄, whi
h 
ontrols thelookahead, i.e the number of symbols read in output (up to a division by a
onstant k) minus the number of symbols read in input. In [13℄, the posi-tive balan
es of states are de
remented and the same treatment is appliedafter reversing the roles of the input and output automata. We des
ribe animplementation of this algorithm whi
h de
rements the positive balan
es,in
rements the negative ones and simultaneously removes the "-transitions.We show that the size of the sliding window grows linearly during thepro
ess. This in one of the main interest of the algorithm. However, we givean example of an asyn
hronous map realized by a transdu
er su
h that anysyn
hronized transdu
er with a lo
al input automaton that realizes it has anexponential number of states. The syn
hronization is therefore intrinsi
allyexponential in the number of states.In the last se
tion, we extend the result to the more general 
ase of trans-du
ers with non strongly 
onne
ted graphs. The algorithm of Sakarovit
hand Frougny [13℄ is not adequate to our purpose sin
e it does not guaranteethe lo
ality of the input of the transdu
er. This makes the re
overing of thesyn
hronous map, de�ned by the way of a sliding blo
k window, mu
h morediÆ
ult. We present another algorithm whi
h keeps the lo
ality of the inputof the transdu
er but needs a stronger syn
hronization hypothesis.A short version of this paper has been published in [6℄.2 Asyn
hronous maps and transdu
ers2.1 Asyn
hronous and syn
hronous sliding blo
k mapsLet A be an alphabet. A bi-in�nite word of AZ is a bi-in�nite sequen
e(ai)i2Z of letters of A. The spa
e AZ is endowed with the usual produ
ttopology. This topology 
an be de�ned by the distan
e d given byd�(ai)i2Z; (bi)i2Z� = (0 if ai = bi for any i 2 Z2�minfjij jai 6=big otherwise:3



The shift � is the 
ontinuous bije
tion from AZ to AZ de�ned by�((ai)i2Z) = (ai+1)i2Z:The orbit of a word x 2 AZ is the set f�n(x) j n 2 Zg. Two words are in thesame orbit if they di�er only in some shifting of the indi
es. Thus, an orbitmay be seen as a bi-in�nite word without expli
it indexing. The set of allorbits is denoted by !A!. An element of !A! is also 
alled a word. In thesequel, we identify a word with its orbit but in order to avoid ambiguity, werefer to a word of AZ or to a word of !A!.We now 
ome to the de�nition of sliding blo
k maps also 
alled lo
almaps in the literature. We �rst re
all the 
lassi
al de�nition of sliding blo
kmaps from AZ to BZ. Then we give the de�nition of asyn
hronous andsyn
hronous sliding blo
k maps from !A! to !B!. We �nally explain the
onne
tions between these de�nitions.A fun
tion f from AZ to BZ is a sliding blo
k map if there are integersm;a, (m is the memory and a is the anti
ipation), and a fun
tion �f : Al ! B,where l = m + a, su
h that for all x 2 AZ, the image y = f(x) of x is thebi-in�nite word of BZ de�ned by yn = �f(xn�(m�1) � � � xn+a) for all n 2 Z.Thus the letter yn only depends on the �nite blo
k xn�(m�1) � � � xn+a of x.The integer l = m + a is 
alled the size of the so 
alled sliding window. Asliding blo
k map f 
ommutes with the shift, i.e., satis�es f Æ � = � Æ f .A
tually, a fun
tion from AZ to BZ is a sliding blo
k map if and only if itis 
ontinuous and 
ommutes with the shift.xf(x) l
variable length f

Figure 1: Asyn
hronous sliding blo
k mapA fun
tion f from !A! to !B! is a asyn
hronous sliding blo
k map ifthere are an integer l and a fun
tion �f : Al ! B� su
h that the image ofa word x of !A! is the 
on
atenation of the �nite words �f(xn�(l�1) � � � xn)for all n 2 Z (see Figure 1). The integer l is also 
alled the size of thesliding window. The fun
tion f is 
alled a k-syn
hronous sliding blo
k mapif the fun
tion �f is a
tually uniform, that is a fun
tion from Al to Bk (see4



f(x)x length k
l f

Figure 2: A k-syn
hronous sliding blo
k mapFigure 2) for some �xed integer k. It is syn
hronous if it is k-syn
hronousfor some integer k.Both de�nitions are very similar but in the 
ase of maps from AZ to BZ,the image of a blo
k by �f is always a letter while it 
an be an arbitraryword in the 
ase of fun
tions from !A! to !B!. If f is a sliding blo
k mapfrom AZ to BZ where B = Ck for some integer k, it naturally indu
es asyn
hronous sliding blo
k map from !A! to !C!. This fun
tion maps aword x to the word obtained by 
on
atenating the blo
ks of length k of theimage of x by f . This fun
tion, whi
h is also 
alled f , is a k-syn
hronoussliding blo
k map. Conversely, if f is a k-syn
hronous sliding blo
k mapfrom !A! to !C!, it also de�nes a sliding blo
k map from AZ to BZ whereB = Ck. In the sequel, we only 
onsider asyn
hronous sliding blo
k mapsfrom !A! to !B! and we simply 
all them sliding blo
k maps.If f is a sliding blo
k map from !A! to !B!, there may exist two dif-ferent fun
tions �f and �f 0 from Al and Al0 to B� su
h that the image of aword x of !A! is the 
on
atenation of the �nite words �f(xn�(l�1) � � � xn) or�f 0(xn�(l0�1) � � � xn). In parti
ular, one fun
tion, say �f 0, may be uniform fromAl0 to Bk while the other, �f , may not be uniform.The purpose of this paper is to explain how to �nd a uniform fun
tion�f 0 whi
h yields the same fun
tion f , when the asyn
hronous sliding blo
kmap f has suitable properties and is des
ribed by a fun
tion �f whi
h is notuniform.2.2 Transdu
ersIn this se
tion we 
onsider automata labeled in A� � B�. Automata 
on-sidered in the literature are often labeled in A�B� instead of A� �B� butmost of the results that we present here does not require this assumption.The empty word is denoted by ". 5



A transdu
er T = (V;E) is a �nite state ma
hine with V as set ofverti
es, and E as set of edges labeled in A� � B�. Ea
h edge (p; (u; v); q)is labeled by a pair of words (u; v) whose �rst 
omponent is the input whilethe se
ond is the output. The sum juj+ jvj is the size of the transition. Thesize jT j of a transdu
er T is the sum of the sizes of its transitions.Su
h a transdu
er de�nes a relation from !A! to !B! made of all pairs(x; y) su
h that (x; y) is the label of a bi-in�nite path of the transdu
er.We always assume that transdu
ers are "-free, that is, have no ("; ")-labeled edges. Classi
al algorithms from automata theory are known toremove the ("; ")-labeled edges without 
hanging the relation de�ned by thetransdu
er [2℄.An automaton without any "-transition is said to be (m;a)-lo
al, wherem and a are integers, i� two �nite paths of length n = m+ a and with thesame label: ((pi; ai; pi+1))0�i�n�1 and ((p0i; ai; p0i+1))0�i�n�1 satisfy pm =p0m. An automaton is said to be lo
al if it is (m;a)-lo
al for some m anda. This property is equivalent to the property of the existen
e of at mostone bi-in�nite path labeled by a given bi-in�nite word. An automaton with"-transitions is said to be lo
al if there is at most one bi-in�nite path labeledby a given bi-in�nite word.The input automaton of the transdu
er is the automaton obtained byremoving the se
ond 
omponent of the edge label. The relation de�ned by atransdu
er may not be a fun
tion. This is however always true if the inputautomaton is a lo
al automaton.Ea
h asyn
hronous sliding blo
k map from !A! to !B! 
an be de�nedby a transdu
er T labeled in A�B�. Let f be an asyn
hronous sliding blo
kde�ned as above and let l be the size of its sliding window. Let m and a benon-negative integers su
h that m+ a = l� 1. We de�ne V as the set Al�1.The edges of T are(a1 : : : am+a) am+1j �f(a1 :::am+aal)�������������! (a2 : : : am+aal):The input automaton of this transdu
er is a De Bruin graph whi
h is ingeneral not deterministi
. It is deterministi
 whenever a = 0. It is an(m;a)-lo
al automaton. This transdu
er realizes the fun
tion f .For any asyn
hronous sliding blo
k map, it is moreover possible to 
hoosem = l � 1 and a = 0 in the de�nition of the transdu
er T . In this 
ase, theinput automaton of T is a deterministi
 automaton.Let k be a positive integer. A k-syn
hronous transdu
er is a transdu
erlabeled in A � Bk. On ea
h edge, the number of output labels is k timesthe number of input ones: it has a 
onstant transmission rate on ea
h edge6



equal to the integer k. By the previous 
onstru
tion of the transdu
er T ,a k-syn
hronous sliding blo
k map from !A! to !B! 
an be de�ned by ak-syn
hronous transdu
er.We have 
onsidered maps de�ned on !A!. Sometimes, maps are de�nedon the set of orbits of a subshift of �nite type S of AZ. A subshift of �nitetype is a subset of AZ whi
h 
an be 
hara
terized by a �nite number offorbidden �nite blo
ks. It is a 
losed subset of AZ invariant by the shift �. Asubshift of �nite type 
an be re
ognized by a lo
al automaton. A 
anoni
alexample of subshift of �nite type is the set of bi-in�nite paths of a �niteautomaton. It is in
luded in EZ, where the alphabet E is the set of edges ofthe automaton. Equivalently, it is also the set of labels of bi-in�nite pathsof a �nite automaton in whi
h edges have distin
t labels.If f is an asyn
hronous sliding blo
k map from S to !B!, it 
an bede�ned by an asyn
hronous transdu
er whose input automaton is a lo
alautomaton re
ognizing S.Conversely any asyn
hronous transdu
er labeled in A�B� with a lo
alinput automaton de�nes an asyn
hronous sliding blo
k map. If the inputautomaton is (m;a)-lo
al, one 
an de�ne it with a sliding window of lengthm + a + 1. If the transdu
er is k-syn
hronous, it de�nes a k-syn
hronoussliding blo
k map from !A! to !B!.a bajxx bjzajtt bjy a a?xy a b?zb a?tt b b?yFigure 3: Asyn
hronous transdu
er and mapExample 1 Let A = fa; bg and B = fx; y; z; tg. An example of an asyn-
hronous sliding blo
k map from !A! to !B! realized by the asyn
hronoustransdu
er of Figure 3.Example 2 Let A = fa; bg and B = fx; y; z; tg. An example of a 2-syn
hronous sliding blo
k map from !A! to !B! realized by the 2-syn
hronoustransdu
er of Figure 4.
7



a bajxx bjztajtt bjyy a a?xy a b?ztb a?tt b b?yyFigure 4: Syn
hronous transdu
er and map3 Syn
hronization of transitive transdu
ersIn this se
tion, we 
onsider transitive transdu
ers, that is transdu
ers whosegraphs are strongly 
onne
ted. If the input automaton of the transdu
er isa lo
al automaton, it re
ognizes a transitive shift of �nite type. We des
ribean algorithm whi
h syn
hronizes transdu
ers with a 
onstant transmissionrate on 
y
les. The property of having a 
onstant transmission rate on
y
les is hen
e a suÆ
ient 
ondition. It is not always a ne
essary 
onditionsin
e any transdu
er labelled in A�� b� 
an be syn
hronized. We 
onje
turethat the 
ondition is a ne
essary 
ondition if the fun
tion realized by thetransdu
er is not 
onstant.This algorithms uses state splitting and thus keeps the lo
al property ofthe input automaton. Non-transitive transdu
ers are 
onsidered in Se
tion 4.3.1 Transmission rateLet T be a transdu
er. We de�ne the transmission rate of a path labeledby (u; v) as the ratio jvj=juj. Re
all that a 
y
le is a path beginning at andending in a same state. A transdu
er has a 
onstant transmission rate on
y
les if all 
y
les have the same transmission rate. This property 
an be
he
ked on simple 
y
les only. A transdu
er has a 
onstant transmission rateon 
on
uent paths if for any states p and q, all paths beginning at p andending in q have the same transmission rate (depending on p and q). If thetransdu
er is transitive, a 
onstant transmission rate on 
y
les is equivalentto a 
onstant transmission rate on 
on
uent paths.We �rst give an algorithm to 
he
k if a transitive transdu
er has a 
on-stant integer transmission rate on 
on
uent paths (or on 
y
les). This 
anbe done by a depth �rst sear
h. A �rst exploration 
an be done to �nda 
y
le and get then an integer k 
andidate to be the 
onstant transmis-sion rate. We begin the exploration of the graph at some state i. Wede�ne a fun
tion balan
e from V to Z. This fun
tion asso
iates with anystate q an integer balan
e(q) su
h that for any states p and q, the di�eren
e8



balan
e(q) � balan
e(p) is equal to jvj � kjuj for any path from p to q la-beled (u; v). Sin
e the graph is strongly 
onne
ted, this property de�nes thefun
tion balan
e up to an additive 
onstant. The balan
es are 
ompletelyde�ned if we �xed balan
e(i) = 0.During the exploration of the graph, we 
an 
ompute for ea
h state q aninteger balan
e(q) as follows:� balan
e(i) is equal to 0� balan
e(q) is equal to jvj � kjuj for any path from i to q labeled by(u; v).Here is the algorithm to 
ompute the balan
es of the states. The mainpro
edure Balan
e sets the value of balan
e(i) and the re
ursive fun
tionVisit performs the depth �rst sear
h. The boolean 
onstant-rate initializedto True indi
ates at the end if the transdu
er has a 
onstant rate on 
y
les.Balan
ebegin
onstant-rate:= True ;for all states q do visited[q℄:= False ;balan
e[i℄ := 0 ;Visit(i) ;endVisit(p)beginvisited[p℄ := True ;for ea
h edge (p; (u; v); q) doif visited[q℄ = False thenbeginbalan
e[q℄ := balan
e[p℄ + jvj � kjuj ;Visit(q) ;endelse if balan
e[q℄ 6= balan
e[p℄ + jvj � kjuj then
onstant-rate := False ;endThe value of the balan
e is not important. Only the di�eren
e of two valuesis independent of the exploration order. If the transdu
er has n states andoutput labels of edges of length at most L, the di�eren
e of balan
es of anytwo states is bounded by Ln. 9



3.2 Des
ription of the algorithmWe now des
ribe the algorithm whi
h syn
hronizes transitive transdu
erswith a 
onstant transmission rate on 
y
le. This algorithm uses state split-ting that we now de�ne. We �rst de�ne the operation of output state splittingin a automaton T = (V;E). Let q be a vertex of T and let O (resp. I) be theset of edges going out of q (resp. 
oming in q). Let O = O0+O00 be a partitionof O. The operation of output state splitting relative to the partition (O0; O00)transforms T into the graph T 0 = (V 0; E0) where V 0 = (V n fqg) [ fq0; q00gis obtained from V by splitting state q into two states q0 and q00, and whereE0 is de�ned as follows.� all edges of E that are not in
ident to q are left un
hanged.� we give to both q0 and q00 
opies of the input edges of q.� we distribute the output edges of q between q0 and q00 a

ording tothe partition of O into O0 and O00. We denote U 0 and U 00 the sets ofoutput edges of q0 and q00 respe
tively: U 0 = f(q0; x; p) j (q; x; p) 2 O0gand U 00 = f(q00; x; p) j (q; x; p) 2 O00g, (see Figure 5).
q 6?O0

?6O00Before
q0q00

6?U 0
?6U 00AfterFigure 5: Output state splittingThe operation of input state splitting is obtained by reversing the rolesplayed by input and output edges. It is well-known that if an automa-ton is (m;a)-lo
al, it is (m;a + 1)-lo
al after an output state splitting and(m+1; a)-lo
al after an input state splitting. A deterministi
 (resp. 
odeter-ministi
) automaton remains deterministi
 (resp. 
odeterministi
) after anoutput (resp. input) splitting. The de�nitions 
an be generalized to de�nea multiple state splitting, when a state is split into more than two statesa

ording to a partition whi
h has more than two parts.We do input (resp. output) state splittings of states q of a transdu
er Tonly if the input (resp. output) edges of q have a non empty output labeling.An input state splitting of a state q is admissible if it is done a

ording to10



a partition whi
h is �ner than the partition of the input edges de�ned bythe last letter of their output label. An output state splitting of a state qis admissible if it is done a

ording to a partition whi
h is �ner than thepartition of the output edges de�ned by the �rst letter of their output label.Unless otherwise stated, we do admissible input (resp. output) state splitting
orresponding to the partition de�ned by the last letter of the output labelof input edges (resp. of the �rst letter of the output label of the outputedges).Examples of these two operations are des
ribed in Figure 6, where a, band 
 are letters of B and u, u0, v, v0, w, w0, r, r0, t and t0 are �nite wordsof B�. The state q is labeled by its balan
e p, whi
h remains un
hangedafter the transformation.
puju0vjv0 tjat0 rjbr0wj
w0Before

ppp
uju0uju0uju0vjv0 vjv0vjv0

rjbr0
wj
w0

tjat0 tjat0tjat0AfterFigure 6: An admissible output state splittingWe now de�ne another operation on a transdu
er T . In order to syn-
hronize the transdu
er, we are going to de
rement or in
rement the balan
eof some states. ptjat0uju0vjv0 rjar0wjaw0Before p+1tjt0auju0avjv0a rjr0wjw0AfterFigure 7: In
rementation of a stateWe �rst des
ribe the operations 
alled in
rementation and de
rementa-tion in the 
ase where all edges of the transdu
er are labeled by A+ � B�.The general 
ase is a bit more te
hni
al and it will des
ribed just after.11



These two operations are lo
al operations leaving the graph and the inputlabels un
hanged. An in
rementation of a state of balan
e p 
an be doneif and only if all the output labels of its output edges begin with the same�rst letter. This letter is removed and put as last letter of the output labelof the input edges. The balan
e is in
remented by 1. The de
rementationis de�ned similarly. The in
rementation is illustrated in Figure 7. In the�gure, the states are labeled with their balan
e.
ptjat0uju0vjv0 "jawjaw0Before p+1tjt0auju0avjv0a tjt0a wjw0

uju0a
vjv0aAfterFigure 8: An "-free in
rementationWe now des
ribe the in
rementation in the 
ase where some edges maybe input labeled by ". We have supposed that the transdu
er is "-free butsome ("; ")-labeled edges may appear in an in
rementation made as des
ribedabove. This 
an happen if an output edge is labeled by ("; a). So, we des
ribea modi�ed version whi
h keeps the "-free property of the transdu
er.If an edge (q; ("; "); q0) appears in the in
rementation of state q, it is re-moved and repla
ed by edges (q00; (u; v); q0), for ea
h input edge (q00; (u; v); q)of q. If the input automaton is lo
al before the in
rementation, it is stilllo
al after it. An "-free in
rementation is illustrated in Figure 8, where a isa letter of B and u, u0, v, v0, w, w0, t and t0 are �nite words of B�.We now des
ribe the syn
hronization algorithm by state splitting fora transitive transdu
er labeled in A� � B�, and with a 
onstant integertransmission rate k on 
y
les. A des
ription of the input and output datais the following.� Input:A transitive asyn
hronous transdu
er T labeled in A� � B� with a
onstant transmission rate k on 
y
les whi
h de�nes an asyn
hronoussliding blo
k map f from !A! to !B!.� Output:A transitive syn
hronous transdu
er T 0 labeled in A�Bk. The trans-du
er T 0 de�nes the same fun
tion f , whi
h is k-syn
hronous. If the12



input automaton of T is lo
al, the input automaton of T 0 is also lo
al.The transdu
er T 0 is obtained by state splitting. Furthermore, it ispossible to do only output (resp. input) state splitting. Then, if the inputautomaton of T is deterministi
 (resp. 
odeterministi
) and lo
al, the inputautomaton of T 0 is also deterministi
 (resp. 
odeterministi
) and lo
al.We denote de
rement(q) and in
rement(q) the pro
edures 
orre-sponding to the operations des
ribed above, applied to state q. We denote byinput-split(q; q1; q2; : : : ; qr) and output-split(q; q1; q2; : : : ; qr) the 
orre-sponding pro
edures applied to a state q, split into states q1; q2; : : : ; qr. Thesyn
hronization algorithm is the following.Syn
hronize(T )beginfor i := L downto 1 dofor ea
h state q of balan
e i or �i doif balan
e(q) < 0 thenbeginoutput-split(q; q1; q2; : : : ; qr) ;for all qj (1 � j � r) do in
rement(qj) ;endelse if balan
e(q) > 0 thenbegininput-split(q; q1; q2; : : : ; qr) ;for all qj (1 � j � r) do de
rement(qj) ;endendThe soundness of the algorithm is based on the following points:� First, and this is the key point of the algorithm, a state with a neg-ative balan
e, to be split and in
remented, does not have outgoingedges with an empty output label. In fa
t, su
h an edge would ar-rive in a state with a stri
tly lower balan
e. This is not possible sin
estates with lower balan
e are treated �rst. The same is true (mutatismutandis) for states with positive balan
es.� Se
ond, de
rementations (resp. in
rementations) of states q or q1; q2; : : : ; qrare applied after an eventual admissible output (resp. input) statesplitting, and they 
an a
tually be done. The transdu
er is syn
hro-nized when all balan
es are equal (to zero).13



Remark 3 It is possible to syn
hronize the transdu
er by doing only out-put (or only input) state splittings. To do only output state splittings forexample, we begin with a positive distribution of balan
es.Remark 4 For ea
h value of i of the outer loop, all states with balan
esequal to i (resp. �i) are split and de
remented (resp. in
remented). A
tu-ally all the splittings of these states are independent and 
an therefore beperformed simultaneously. Su
h a step is 
alled a round of state splitting(see [18, p. 1693℄). This also holds for in
rementations and de
rementa-tions. When in
rementations and de
rementations are done simultaneously,the beginning and the end of the output labels 
an be modi�ed in parallelsin
e there is no 
on
urrent write.3.3 Evaluation of the 
omplexityIn this se
tion, we study the 
omplexity of the pro
edure Syn
hronizewhen the input automaton of the transdu
er is lo
al. We �rst show thatthe size of the sliding window grows linearly. However, we exhibit examplesshowing that there is an exponential growth of the number of states.This result 
an be 
ompared to that obtained by Ashley in [4℄ (see also[3℄) where he introdu
es a new 
onstru
tion of �nite-state en
oders for input
onstrained 
hannels that guarantees an en
oder with a window length thatis linear in the number n of states of the smallest graph representing the
onstraint. His 
onstru
tion gives a spe
i�
ation of t rounds of state splittingto be performed on the graph, where t is linear in n, even if the number ofstates of the en
oder is exponential. The same situation appears here: even ifthe number of states of the transdu
er that we get has an exponential numberof states, it is possible to do a number of rounds of state splitting whi
h isbounded by the maximal di�eren
e between the balan
es of the states. Thisresult is interesting sin
e the size of the window of the syn
hronized mapthat we get depends on the number of rounds of state-splitting that areperformed, and not on the number of states of the transdu
er.Let T be an asyn
hronous transdu
er whose input automaton is lo
al.Re
all that jT j is the sum of the sizes of the transitions of T . Let n be thenumber of states of T . Let f be the asyn
hronous map from !A! to !B!de�ned by the transdu
er and let l be the size of its sliding window. Itis known that l = O(n2) (see for example [5℄). Let T 0 be the syn
hronizedtransdu
er. LetM be the maximal di�eren
e between the balan
es of states.Proposition 5 The size of the window of the syn
hronized map obtained isbounded by M + l. 14



We point out that if the transdu
er T is labeled in A � B� and thelengths of the output labels are bounded by K, the integer M is boundedby Kn. Indeed, the rate k is less than K, and for ea
h edge (p; (a; v); q),the di�eren
e between the balan
es of p and q is less than jvj � k � K. Inthe 
ase where the sizes of the transitions are not bounded, the maximaldi�eren
e between the balan
es of any two states is bounded by the sum ofthe sizes of the transitions of a simple path in T , whi
h is himself upperbounded by jT j. This shows that the size of the window grows linearlyin jT j.Proof Let M+ be the maximum of positive balan
es of T , and M� themaximum of the absolute values of negative balan
es. Thus, the integer Mis equal to M++M�. If the input automaton of T is (m;a)-lo
al, the inputautomaton of T 0 is (m+M+; a+M�)-lo
al. Indeed, a single round of outputstate splitting in
reases the anti
ipation of a lo
al automaton by at most oneand a single round of input state splitting in
reases the memory of a lo
alautomaton by at most one. The size of the window of the syn
hronized mapis then bounded by M+ +M� + l =M + l. �The following example shows that the number of states of the transdu
ergrows exponentially when it is syn
hronized. It a
tually proves that thisblow up is intrinsi
 to the syn
hronization. This does not depend of thealgorithm used to 
onstru
t the transdu
er.Proposition 6 There are n-state syn
hronizable transdu
ers with a lo
alinput su
h that any syn
hronized transdu
er with a lo
al input that de�nesthe same map from !A! to !B! has an exponential number of states.: : :: : :3 nn+222n1 n+1ajabjb 
j" 
j" 
j" 
j" 
j" djdejef jfff jfff jfff jfff jff Figure 9: Transdu
er TProof Let A be the alphabet fa; b; 
; d; e; fg and let us 
onsider the trans-du
er T of Figure 9. This transdu
er has 2n states and is syn
hronizablewith rate 1. Let T 0 be any syn
hronized (or letter-to-letter) transdu
er witha lo
al input automaton that de�nes the same map as T from !A! to !A!.15



We suppose that the input automaton of T 0 is (m;a)-lo
al. We 
anassume that m = a and that m is greater than n. For ea
h state q of T 0, wede�ne the set Eq as the set of pairs (ul; ur) or words of length m su
h thatulur labels a path going through state q after reading ul. Sin
e the inputautomaton is (m;m)-lo
al the sets Eq are pairwise disjoint. Furthermore, ifboth pairs (ul; ur) and (u0l; u0r) belong to Eq, both pairs (ul; u0r) and (u0l; ur)also belong to Eq.Let wl and w0l be two di�erent words of length n=4 over fa; bg and letwr and w0r be two di�erent words of length n=4 over fd; eg. Let us de�nethe words ul, ur, u0l and u0r of length m byul = am�3n=4wl
n=2 ur = 
n=2wrdm�3n=4u0l = am�3n=4w0l
n=2 u0r = 
n=2w0rdm�3n=4:We suppose that both pairs (ul; ur) and (u0l; u0r) belong to Eq for some state q.There are four paths 
1, 
2, 
3 and 
4 as shown in Figure 10 where vl, vr,q �q0q00� 
3� ��� d!jxrwrjvr d!jx0rwljvl 
n=2jtr
n=2jtlw0ljv0l 
n=2jt0r
n=2jt0l w0rjv0ra! jx0la! jxl
1
2 
4Figure 10: Paths 
1, 
2, 
3 and 
4v0l and v0r are �nite words of length n=4, tl, tr, t0l and t0r are �nite words oflength n=2, xl and x0l are left-in�nite words and xr and x0r are right-in�nitewords. Paths 
1 and 
2 end in q while paths 
3 and 
4 start at q. Sin
ethe respe
tive images by f of !awl
nwrd!, !aw0l
nw0rd!, !awl
nw0rd! and!aw0l
nwrd! are !awlwrd!, !aw0lw0rd!, !awlw0rd! and !aw0lwrd!, we get thefollowing equalities by 
onsidering the paths 
1
3, 
2
4, 
1
4 and 
2
3xlvltltrvrxr = !awlwrd!x0lv0lt0lt0rv0rx0r = !aw0lw0rd!xlvltlt0rv0rx0r = !awlw0rd!x0lv0lt0ltrvrxr = !aw0lwrd!:It follows that we have either:trvrxr = xwrd!t0rv0rx0r = xw0rd!;16



where x is a 
ommon suÆx to wl and w0l, or:xlvltl = !awlyx0lv0lt0l = !aw0ly:where y is a 
ommon pre�x to wr and w0r. Sin
e wr and w0r are di�erent andthe words wl and w0l are also di�erent, the words tr and t0r must be di�erent.This implies that the states q0 and q00 are also di�erent sin
e the automatonis unambiguous (or lossless).We �nish the proof with a variant of the pigeon hole prin
iple. Let usnow 
hoose N = 2n=4 distin
t words wl;1; vl;2; : : : wl;N of length n=4 overfa; bg and let N distin
t words wr;1; wr;2; : : : ; wr;N of length n=4 over fd; eg.Let 1 < � < 2. Let us assume that we have always less than �n=4 pairs(wl;i; wr;i) that belong to a same set Eq. Then the number of states of T 0is r > (2=�)(n=4), whi
h is exponential. Otherwise, there is a state q su
hthat Eq 
ontains at least �n=4 pairs (wl;i; wr;i). We have proved that thisimplies that the �n=4 states qvi are all distin
t. We �nd again an exponentialnumber of states. �3.4 Example
01 �1ajrt djzf jr 
jxybjuvwejtxyz 01 �1�1�1ajrt djzdjzdjzf jr 
jxy
jxy
jxy

bjuvw
ejtxyzFigure 11: Transdu
er T and the output state splittingWe give an example of syn
hronization. We 
onsider the transdu
er Tpi
tured in the left of Figure 11. In the �gure, ea
h symbol represents oneletter and states are labeled by their balan
e. This transdu
er is a 
andidateto be syn
hronized with k = 2. The state with balan
e �1 is output-splitinto three states (see the right of Figure 11). Then, ea
h of the three newstates are in
remented and their balan
e be
omes 0 (see left of Figure 12).Finally, the last state with balan
e 1 does not need to be split sin
e it only17



01 000ajrt djzxdjzudjztf jr 
jyx
jyu
jyt
bjvw
ejxyz

00 000ajrt djzxdjzudjztf jzr 
jyx
jyu
jyt
bjvw

ejxyFigure 12: In
rementation and de
rementationhas one in
oming edge. It is just de
remented. The syn
hronized transdu
eris pi
tured in the right of Figure 12). The input automaton is (0; 1)-lo
al.The 2-syn
hronous sliding blo
k map f de�ned has a window of length 2.4 Syn
hronization of non-transitive transdu
ersWe �nally 
onsider the 
ase of transdu
ers labeled in A� � B� with a notne
essarily strongly 
onne
ted graph. An algorithm for syn
hronizing anon-transitive transitive transdu
er has already been given in [13℄. Thisalgorithm uses a step of dupli
ation of states whi
h is not a state splittingpro
ess and therefore does not keep the important property of lo
ality ofthe input automaton of the transdu
er. We des
ribe another algorithm thatsyn
hronizes a non-transitive transdu
er. This algorithm keeps the lo
alproperty of the input automaton but it needs a stronger hypothesis on thetransdu
er.We give a new 
ondition for a transdu
er to be syn
hronizable whilekeeping the lo
al property of the input automaton of the transdu
er. As inthe 
ase of transitive transdu
er, we �rst suppose that the transdu
er hasa 
onstant transmission rate k on 
y
les. However, this 
ondition is notsuÆ
ient for non-transitive transdu
ers.An undire
ted 
y
le of a transdu
er T is a 
y
le in T viewed as anundire
ted graph. In su
h a 
y
le, ea
h edge may be used in its usualdire
tion or in the other dire
tion.Let T be a transdu
er whi
h has a 
onstant transmission rate k. Withea
h undire
ted 
y
le 
 in the graph, we asso
iate an integer val(
) 
alledthe valuation of the 
y
le and 
omputed as follows. We �x some orientationfor the 
y
le 
 and the valuation of the 
y
le is equal to the sum of thevaluations of all edges of the 
y
le. The valuation of an edge (p; (u; v); q)18



is equal to jvj � kjuj if the orientation of the 
y
le 
oin
ides with those ofthe edge, and is equal to its opposite otherwise. The valuation of the 
y
ledepends on the orientation 
hosen for the 
y
le.It is well-known that the set of all undire
ted 
y
les of a graphs formsa ve
tor spa
e whose dimension is 
alled the 
y
lomati
 number of thegraph [8℄. Our valuation is then a linear form on this ve
tor spa
e.We suppose that the transdu
er T has a 
onstant transmission rate kon 
y
les. The transdu
er T is said to have a 
onstant transmission rate onundire
ted 
y
le if the following equality holds for any undire
ted 
y
le 
val(
) = 0:We �rst make some 
omments about this property. We �rst point outthat if the transdu
er T is 
onne
ted, it always has a 
onstant transmissionrate on undire
ted 
y
les if it already has a 
onstant transmission rate kon 
y
les. Indeed, if the graph is strongly 
onne
ted, ea
h undire
ted 
y
le
an be de
omposed as a sum of dire
ted 
y
les. Se
ond, it suÆ
es to 
he
kthis property on simple undire
ted 
y
les sin
e the valuation is a linear form.This 
an be done by a straightforward adaptation of the algorithmBalan
egiven in Se
tion 3.1. 0 1xjab yj

zjd tjefFigure 13: Transdu
er TLet 
 and 
0 are two paths from p to p0 respe
tively labeled by ujvand u0jv0. We 
an then 
onsider the undire
ted 
y
le 
~
0 where ~
0 is thepath 
0 in reverse dire
tion. If the transdu
er has a 
onstant transmissionrate on undire
ted 
y
les, one has jvj = jv0j. However, the 
onverse does nothold as shows the transdu
er pi
tured in Figure 13. This transdu
er has a
onstant transmission rate of 2 on 
y
les but it does not have a 
onstanttransmission rate on undire
ted 
y
les. It 
an be proved that the fun
tionrealized by this transdu
er 
annot be realized by a transdu
er whi
h is lo
aland syn
hronous.We 
laim that any transdu
er whi
h has a 
onstant transmission rateon undire
ted 
y
les 
an be syn
hronized using state splittings and in
re-mentations and de
rementations. We just sket
h the pro
edure. It shouldbe noti
ed that a 
onstant transmission rate on undire
ted 
y
les is neither19




hanged by a state splitting or by an in
rementation. Thus, the propertyremains true along the pro
edure. The pro
edure treats su

essively ea
h
onne
ted 
omponent of the transdu
er. A �rst 
onne
ted 
omponent issyn
hronized using the algorithm Syn
hronize given in Se
tion 3.2. Then,at ea
h step, a new 
onne
ted 
omponent is also syn
hronized in the sameway. However, it may happen that paths between the newly syn
hronized
onne
ted 
omponent and the already syn
hronized 
onne
ted 
omponentsdo not have a transmission rate equal to k. In that 
ase, all states of thetreated 
onne
ted 
omponent are split and in
remented as many times asneeded so that all paths have a transmission rate equal to k. The key pointto be noti
ed is that the property of having a 
onstant transmission rateon undire
ted 
y
les insures that all paths between the newly syn
hronized
onne
ted 
omponent and the old ones need the same number of in
remen-tations. When all 
onne
ted 
omponents have been treated that way, thetransdu
er is 
ompletely syn
hronized.A
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