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PARTIAL NORMALIZATIONS OF1

COXETER ARRANGEMENTS AND DISCRIMINANTS2

MICHEL GRANGER, DAVID MOND, AND MATHIAS SCHULZE3

To the memory of V.I. Arnol’d

Abstract. We study natural partial normalization spaces of Coxeter arrangements and discriminants
and relate their geometry to representation theory. The underlying ring structures arise from Dubrovin’s
Frobenius manifold structure which is lifted (without unit) to the space of the arrangement. We also
describe an independent approach to these structures via duality of maximal Cohen–Macaulay fractional
ideals. In the process, we find 3rd order differential relations for the basic invariants of the Coxeter
group. Finally, we show that our partial normalizations give rise to new free divisors.
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Introduction21

V.I. Arnol’d was the first to identify the singularities of type ADE, that is Aℓ, Dℓ, E6, E7 or E8, as22

the simple singularities – those that are adjacent to only finitely many other types. He also uncovered23

the links between the Coxeter groups of type Bℓ, Cℓ and F4 and boundary singularities, see [Arn79].24

In the latter paper his formulæ for generators of the module of logarithmic vector fields Der(− logD)25

along the discriminant D parallels K. Saito’s definition of free divisors. Along with Brieskorn, Dynkin,26

Gelfan’d, and Gabriel, Arnol’d revealed the ADE list as one of the central piazzas in mathematical27

heaven, where representation theory, algebra, geometry and topology converge. As with so many of28

Arnol’d’s contributions, his work on this topic has given rise to a huge range of further work by others.29

Let f : X = (Cn, 0) → (C, 0) = S be a complex function singularity of type ADE and let F : X×B → S30

be a miniversal deformation of f with base B = (Cµ, 0). Writing fu := F (−, u), the discriminant D ⊂ B31

is the set of parameter values u ∈ B such that f−1
u (0) is singular. It is isomorphic to the discriminant32

of the Coxeter group W of the same name. Here the discriminant is the set of exceptional orbits in33

the orbit space V/W . This is only the most superficial feature of the profound link between singularity34

theory and the geometry of Coxeter groups which Arnol’d helped to make clear.35
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The starting point of this paper is the fact, common to Coxeter groups and singularities, that D is36

a free divisor (see e.g. [Her02, §4.3]) with a symmetric Saito matrix K whose cokernel is a ring in the37

singularity case. By definition the Saito matrix K is the µ× µ-matrix whose columns are the coefficient38

vectors of a basis of Der(− logD) with respect to a basis of the module DerB := DerC(OB) of vector39

fields on B.40

On the singularity theory side these two roles are well known. Let h be a defining equation for D.
Then K appears in the exact sequence

0 // O
µ
B

K
// DerB

dh
// JD // 0

which defines Der(− logD) as the vector fields which preserve the ideal of D. Let π : Σ → B denote
the restriction of the projection X × B → B. If Σ ⊂ X × B is the relative critical locus defined by the
Jacobian ideal J rel

F of F relative to B, and Σ0 := Σ ∩ V (F ) so that D = π(Σ0), then K also appears in
the exact sequence

(0.1) 0 // O
µ
B

K
// DerB

dF
// π∗OΣ0

// 0

in which dF maps a vector field η ∈ DerB to the function dF (η̃) on Σ0, where η̃ is a lift of η to X ×B,
and π : Σ → B is the restriction of the projection X × B → B. As π∗OΣ is free over OB of rank µ, we
can make the identifications

π∗OΣ
∼= O

µ
B
∼= DerB,

and reinterpret K as the matrix of the OB-linear operator induced on π∗OΣ by multiplication by F ,41

whose cokernel is also, evidently, π∗OΣ0 .42

Similar to the case of ADE singularities and corresponding Coxeter groups, Coxeter groups of type43

Bk and F4 are linked with boundary singularities, for which a similar argument shows that the cokernel44

of K is naturally a ring. Also for these and the remaining Coxeter groups I2(k), H3 and H4, the cokernel45

of K carries a natural ring structure. The simplest way to see this involves the Frobenius structure46

constructed on the orbit space by Dubrovin in [Dub98], following K. Saito. Here the key ingredient is47

a fiber-wise multiplication on the tangent bundle, which coincides with the multiplication coming from48

OΣ in the ADE singularity case. We recall the necessary details of Dubrovin’s construction, following49

C. Hertling’s account in [Her02], in Section 2, in preparation for the proof of our main result. This states50

that also the cokernel of a transposed Saito matrix for the reflection arrangement of a Coxeter group51

carries a natural ring structure.52

Theorem 0.1.53

(1) Let A be the reflection arrangement of a Coxeter group W acting on the vector space V ∼= Cℓ, let54

p1, . . . , pℓ be generators of the ring of W -invariant polynomials, homogeneous in each irreducible55

component of V , and let J be the Jacobian matrix of the map (p1, . . . , pℓ), which is a transposed56

Saito matrix for A . Then cokerJ has a natural structure of C[V ]-algebra.57

(2) Denoting Spec cokerJ by Ã , we have58

(i) Ã is finite and birational over A (and thus lies between A and its normalization).59

(ii) For x ∈ A , let Wx be the stabilizer of x in W and let X be the flat of A containing60

x. There is a natural bijection between the geometric fiber of Ã over x and the set of61

irreducible summands in the representation of Wx on V/X.62

(iii) Under the bijection of (2ii), smooth points of Ã correspond to representations of type A1.63

Example 0.2.64

(1) In the case of A2, the arrangement A consists of three concurrent coplanar lines. In this case Ã65

is isomorphic to the union of the three coordinate axes in 3-space, for this is the only connected curve66

singularity regular and birational over A but not isomorphic to it. More generally, in the case of Aℓ,67

with

(
ℓ+ 1
2

)
reflecting hyperplanes, Ã is isomorphic to the codimension-2 subspace arrangement in68

(ℓ+ 1)-space consisting of the (ℓ− 1)-planes Li,j := {xi = xj = 0} for 1 ≤ i < j ≤ ℓ+ 1. The projection69

x 7→ x − x♯, where x♯ is x averaged by the action of the symmetric group Sℓ permuting coordinates,70

gives an Sℓ-equivariant map of Ã to the standard arrangement A ⊂ {
∑ℓ+1

i=1 xi = 0}, sending Li,j71

isomorphically to {xi = xj}. We return to this example, and prove these assertions, in Subsection 4.5.72

(2) Figure 1 shows a 2-dimensional section of the hyperplane arrangement A for A3, on the left, and,73

on the right, a topologically accurate view of the preimage of this section in Ã .74
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Figure 1. A and Ã for the Coxeter group A3
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The planes {xi1 = xi2} and {xi3 = xi4} meet orthogonally if i1, i2, i3 and i4 are all different, and the75

reflections in these planes commute; it follows that at a point x in the stratum {xi1 = xi2 6= xi3 = xi4},76

the representation is of type A1 ⊕ A1 and by (2ii) of Theorem 0.1 above, the fiber of Ã over x consists77

of two points. In each of these pictures there are four nodes of valency three. In the left hand picture,78

each lies in a 1-dimensional stratum in Ã where the local representation is of type A2, so that locally A79

consists of three planes in 3-space, meeting along a common line. The preimage of this stratum in Ã is80

a line, along which Ã is locally isomorphic to the union of the three planes 〈e1, e4〉, 〈e2, e4〉 and 〈e3, e4〉81

in 4-space.82

It would be interesting to find explicit embeddings of the space Ã in the remaining cases.83

To prove the theorem, beginning with the multiplicative structure on DerB and coker(K) coming from84

Dubrovin’s Frobenius structure, we endow both DerV and cokerJ with a multiplication, and DerV with85

a DerB-module structure, whose crucial feature is that the derivative tp : DerV → DerB ⊗OB
OV of p is86

DerB-linear. On DerV , but not on cokerJ , this multiplication lacks a neutral element.87

Nevertheless, the first evidence for the theorem was found by an entirely different route not involv-88

ing Dubrovin’s Frobenius structure. This was based on the fact that the cokernel of the linear map89

Sℓ
Λ

// Sℓ defined by a square matrix Λ has a natural S-algebra structure if and only if the so-called90

rank condition (rc) holds. This is a purely algebraic condition on the adjugate matrix of Λ, which can91

be checked by explicit calculation. We explain this in general in Section 3.92

In Section 4, we then specialize to the case where Λ is the Jacobian matrix J of the basic invariants93

of a Coxeter group A , or the Saito matrix of the discriminant D of a Coxeter group. The space D̃ =94

Spec cokerK is normal (indeed smooth) exactly in the ADE-case; on the other hand Ã = Spec cokerJ95

is normal only in the case of A1. We discuss the geometry of these two spaces, and their link with96

the representation theory. In particular we compare them with the normalizations of D and A in97

Subsection 4.4.98

In Section 5, our earlier approach to the main theorem lead to an interesting problem on Coxeter99

groups. The algebra of the fiber over 0 of the projection p : V → V/W carries two structures: that of a100

zero-dimensional Gorenstein algebra and that of the regular W -representation. It is not clear how these101

two structures are related: which irreducible components of the same W -isomorphism type admit an102

isomorphism induced by the algebra structure? The following consequence of Theorem 0.1, whose proof103

is completed by Proposition 5.7, answers this question in a special case.104

Corollary 0.3. Let W be an irreducible Coxeter group in GL(V ) with homogeneous basic invariants
p1, . . . , pℓ, ordered by increasing degree, and let F be the ideal in C[V ] generated by p1, . . . , pℓ. Then for
each j = 1, . . . , ℓ, there exists an ℓ× ℓ-matrix Aj with entries in C[V ] such that

(
∂pℓ
∂x1

, . . . ,
∂pℓ
∂xℓ

)
=

(
∂pj
∂x1

, . . . ,
∂pj
∂xℓ

)
Aj mod F · (C[V ])ℓ.

In all cases except for E6, E7 and E8, we give an explicit formula for the matrices Aj in Corollary 0.3:105

they are Hessians of basic invariants. This statement is a 3rd order partial differential condition on106

the basic invariants which we call the Hessian rank condition (Hrc). Besides the missing proof for the107

E-types, which would lead to a self contained algebraic proof of Theorem 0.1, it would be interesting to108

know whether (Hrc) is a new condition or can be explained in the framework of Frobenius manifolds.109

In our final Section 6, we show that by adding to D a divisor which pulls back to the conductor of110

the ring extension OD → cokerK, we obtain a new free divisor (Theorem 6.5). This was already shown111
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on the singularity side in [MS10]. The preimage in V of this free divisor is a free divisor containing the112

reflection arrangement (Corollary 6.6).113

Acknowledgments. We thank the “Mathematisches Forschungsinstitut Oberwolfach” for two two-week114

“Research in Pairs” stays in 2010 and 2011. The authors are grateful to the referee for forceful, detailed115

and helpful comments on an earlier version.116

1. Review of Coxeter groups117

For more details on the material reviewed in this section, we refer to the book of Humphreys [Hum90].118

Let VR be an ℓ-dimensional R-vector space and let V = VR ⊗R C. Consider a finite group W ⊂ GL(V )119

generated by reflections defined over R. Any such representation W decomposes into a direct sum of120

irreducible representations, and W is irreducible if and only if the corresponding root system is. The121

irreducible isomorphism types are Aℓ, Bℓ, Dℓ, E6, E7, E8, F4, G2 = I2(6), H3, H4, and I2(k).122

The group W acts naturally on the symmetric algebra S := C[V ] by the contragredient action, and we
denote by R := SW the corresponding graded ring of invariants. By a choice of linear basis, we identify
S with C[x1, . . . , xℓ]. The natural inclusion R ⊂ S turns S into a finite R-module of rank #W . The
averaging operator

(1.1) #: S → R, g 7→ g# :=
1

#W

∑

w∈W

gw

defines a section of this inclusion.123

By Chevalley’s theorem ([Hum90, Thm. 3.5]), R is a polynomial algebra R = C[p1, . . . , pℓ] where
p1, . . . , pℓ are homogeneous W -invariant polynomials in S. We set

(1.2) deg pi = mi + 1 = wi

and assume that m1 ≤ · · · ≤ mℓ. Then the degrees wi, or the exponents mi, are uniquely determined
and

(1.3)

ℓ∑

i=1

mi = #A

where A is the arrangement of reflection hyperplanes of W ([Hum90, Thm. 3.9]).124

We make this more precise in the case W is irreducible. Then the eigenvalues of any Coxeter element
are exp(2πimi

h ) where h is the Coxeter number ([Hum90, Thm. 3.19]). Moreover,

1 = m1 < m2 ≤ · · · ≤ mℓ−1 < mℓ = h− 1,(1.4)

mi +mℓ−i+1 = h.(1.5)

In particular, this implies that
∑ℓ

i=1 mi =
ℓh
2 . For m1 = 1, the W -invariant 2-form p1 is unique up to a

constant factor. By a choice of a positive multiple of p1, it determines a unique W -invariant Euclidean
inner product (·, ·) on VR, which turns W into a subgroup of O(VR) and serves to identify VR and V ∗

R
.

With respect to dual bases of VR and V ∗
R

we notice that the two corresponding inner products have
mutually inverse matrices. At the level of V ∗, we denote by

Γ := ((xi, xj)) = ((dxi, dxj))

the (symmetric) matrix of (·, ·) with respect to coordinates x1, . . . , xℓ. In suitable coordinates

(1.6) p1 =

ℓ∑

i=1

x2
i , (x, y) =

ℓ∑

i=1

xiyi, Γ = (δi,j).

We refer to such coordinates as standard coordinates. In case W is reducible, we have the above situation125

on each of the irreducible summands separately.126

Geometrically the finiteness of S over R means that the map

(1.7) V = SpecS
p

// SpecR = V/W

is finite of degree #W . We identify the reflection arrangement A of W with its underlying variety127 ⋃
H∈A

H . Let ∆ be a reduced defining equation for A , and denote by D = p(A ) the discriminant. An128

anti-invariant ofW is a relative invariant f ∈ S with associated character det−1, that is, wf = det−1(w)f129

for all w ∈ W . The following crucial fact due to Solomon [Sol63, §3, Lem.] (see also ([Hum90, Prop.130

3.13(b)]) implies that ∆2 is a reduced defining equation for D.131
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Theorem 1.1 (Solomon). R∆ is the set of all anti-invariants. �132

A second fundamental fact, due to K. Saito [Sai93, §3], is the following133

Theorem 1.2 (Saito). For irreducible W , ∆2 is a monic polynomial in pℓ of degree ℓ, that is,

∆2 =

ℓ∑

k=0

aℓ−k(p1, . . . , pℓ−1)p
k
ℓ , with a0 = 1. �

We denote by DerS and DerR the modules of vector fields on V = SpecS and V/W = SpecR
respectively. The group W acts naturally on DerS . Terao [Ter83] showed that each θ ∈ Der(− logD)
has a unique lifting p−1(θ) to V and that the set of lifted vector fields is

p−1 Der(− logD) = (DerS)
W , p∗ Der(− logD) = (DerS)

W ⊗R S = Der(− logA ),

and both A and D are free divisors. This can be seen as follows: We denote by

(1.8) J := (∂xj
(pi))

the Jacobian matrix of p in (1.7) with respect to the coordinates x1, . . . , xℓ and p1, . . . , pℓ. Via the
identification of the 1-form dpi with a vector field ηi such that (dpi, v) = 〈ηi, v〉,

dpi =

ℓ∑

j=1

∂xj
(pi)dxj ↔ ηi =

ℓ∑

j=1

〈ηi, dxj〉∂xj
=

ℓ∑

j=1

(dpi, dxj)∂xj
(1.9)

=

ℓ∑

k,j=1

∂xk
(pi)(dxk, dxj)∂xj

=

ℓ∑

k,j=1

∂xk
(pi)(xk, xj)∂xj

,

the basic invariants define invariant vector fields η1, . . . , ηℓ ∈ (DerS)
W , which must then be in Der(− logA ).

By (1.9), their Saito matrix reads

(1.10) (ηj(xi)) = ΓJ t

Now detJ is an anti-invariant because J is the differential of the invariant map p = (p1, . . . , pℓ). Hence,
detJ ∈ C∗∆ by Theorem 1.1, (1.3), and the algebraic independence of the pi. By scaling p, we can
therefore assume that

(1.11) detJ = ∆.

Saito’s criterion ([Sai80, ]) then shows that A is free with basis η1, . . . , ηℓ. Applying the tangent map tp
(see (2.3)) gives vector fields δ1, . . . , δℓ ∈ DerR such that δj ◦ p = tp(ηj) with (symmetric) Saito matrix

(1.12) K = (Ki
j) := (δj(pi)) = JΓJ t

with det(JΓJ t) ∈ C∗∆2. At generic points of A , p is a fold map and hence

(1.13) δ1, . . . , δℓ ∈ Der(− logD).

Again Saito’s criterion shows that D is a free divisor with basis δ1, . . . , δℓ. In standard coordinates as in134

(1.6), this proves135

Lemma 1.3. D admits a symmetric Saito matrix K = JJ t.136

If W is irreducible then, in standard coordinates as in (1.6),

(1.14) χw :=
1

2
δ1 =

ℓ∑

i=1

wipi∂pi
.

We shall refer to the grading defined by this semisimple operator as the w-grading. In particular, δk is137

w-homogeneous of degree wk − w1. If W is reducible, we have a homogeneity such as (1.14) for each138

irreducible summand.139

Throughout the paper we will abbreviate

SA := S/S∆, RD := R/R∆2.
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2. F-manifold-structures140

In this section we prove Theorem 0.1. We will make use of the Frobenius manifold structure on141

V/W , constructed by Dubrovin in [Dub98]. However our main reference for background on Frobenius142

manifolds (including this result) is the book of Hertling [Her02]. In fact the only aspects of the Frobenius143

structure we use are the existence of an integrable structure of commutative associative C-algebras on144

the fibers of the tangent bundle; a manifold with this structure is called by Hertling and Manin an145

F-manifold. This notion is much simpler than that of Frobenius manifold, omitting as it does all of the146

metric properties, and the connections, which make the definition of Frobenius manifold so complicated.147

Following Hertling, we use local analytic methods, and in particular local analytic coordinate changes,148

in order to make use of normal forms. Such analytic methods will be justified in Remark 2.5, and we149

pass to the analytic category without changing our notation.150

The following account summarizes parts of [Her02, Ch. 2]. For any n-dimensional F-manifold M , the
multiplication on TM is encoded by an n-dimensional subvariety of T ∗M , the analytic spectrum L, as
follows: for each point p ∈ M , points in T ∗

pM determine C-linear maps TpM → C; among these, a finite
number are C- algebra homomorphisms. These finitely many points in each fiber of T ∗M piece together
to form L. Thus the composite

(2.1) DerM → π∗OT∗M → π∗OL

is an isomorphism of C-algebras ([Her02, Thm. 2.3]).151

The multiplication ◦ in TM satisfies the integrability property

LieX◦Y (◦) = X ◦ LieY (◦) + Y ◦ LieX(◦).

Provided the multiplication is generically semi-simple, as is the case for the structure constructed by152

Dubrovin and Hertling, this implies that L is Lagrangian ([Her02, Theorem 3.2]). This in turn means153

that the restriction to L of the canonical action form α on T ∗M is closed and therefore exact. A154

generating function for L is any function F ∈ OL such that dF = α|L. A generating function determines155

an Euler field E on M , namely a vector field mapped to F by the isomorphism (2.1). The discriminant156

of M is defined by any of the following equivalent characterizations:157

(1) D = π(F−1(0)),158

(2) D is the set of points x ∈ M where the endomorphism E◦ : TxM → TxM is not invertible.159

Similarly, the module Der(− logD) may be viewed as either160

(1) the set of vector fields whose image under the isomorphism (2.1) vanishes on F−1(0), or equiva-161

lently as162

(2) the image in DerM of multiplication by E.163

This yields the well-known164

Lemma 2.1. The cokernel R̃D = cokerK of the Saito matrix K of D acquires an R-algebra structure165

as quotient of the Frobenius manifold multiplication in DerR.166

Proof. The matrix of multiplication by E with respect to the basis ∂x1
, . . . , ∂xℓ

of DerR is K. Thus

(2.2) 0 // Rℓ

∼=

��

K
// Rℓ

∼=

��

// R̃D

∼=

��

// 0

0 // DerR
E◦

// DerR // DerR /DerR(− logD) // 0

is a presentation of DerR /E ◦DerR = DerR /DerR(− logD), which is itself isomorphic to π∗OF−1(0). �167

We will denote Spec R̃D by D̃.168

Recall from (1.8) that J : Sℓ → Sℓ is the matrix of the morphism

(2.3) tp : DerS → p∗ DerR = DerR ⊗RS, tp(

n∑

j=1

ηj∂xj
) =

n∑

i=1

n∑

j=1

ηj∂xj
(pi)∂pi

,

defined by left composition (of vector fields as sections of TV ) with dp. The following diagram, in which
the vertical arrows are bundle projections, helps to keep track of these morphisms. Sections of p∗DerR
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are maps from bottom left to top right making the lower triangle in the diagram commute.

(2.4) TV
dp

//

��

T (V/W )

��

V p
// V/W

Both tp : DerS → p∗DerR and and ωp : DerR → p∗ DerR, defined by right composition with p, are
familiar in singularity theory. By definition,

(2.5) χ ∈ DerR lifts to η ∈ DerS ⇐⇒ tp(η) = ωp(χ).

Using Lemma 1.3, (2.2), and the obvious identifications, there is a commutative diagram of S-modules

(2.6) J∆

0 // DerS
tp

//

OOOO

DerR ⊗RS // S̃A
// 0

0 // Rℓ ⊗R S

Jt

OO

K⊗1
// DerR ⊗RS //

=

OO

R̃D ⊗R S //

OOOO

0

.

Both rows here are exact: the upper row defines S̃A , and the lower row is the tensor product with the169

flat R-module S of the short exact sequence defining R̃D. Now R̃D ⊗R S, as a tensor product of rings,170

has a natural ring structure; to show that S̃A is a ring, it will be enough to show171

Lemma 2.2. The image of tp is an ideal of DerR ⊗RS.172

We prove Lemma 2.2 by showing that the Frobenius multiplication in DerR lifts to a p∗DerR-module173

structure on DerS , and that tp : DerS → DerR ⊗RS is DerR-linear.174

Proposition 2.3.175

(1) The Frobenius multiplication in DerR can be lifted to DerS, though without multiplicative unit.176

(2) The same procedure makes DerS into a DerR-module.177

(3) The map tp in (2.3) is DerR-linear, with respect to the structure in (2) and Frobenius multipli-178

cation induced on DerR ⊗RS.179

Proof. By (2.5), for a multiplication in DerS , (1) means that

(2.7) tp(η1 ◦ η2) = ωp(χ1 ◦ χ2)

where ηi ∈ DerS is a lift of χi ∈ DerR for i = 1, 2. Similarly, the scalar multiplication for (2) must satisfy

(2.8) tp(χ · η) = ωp(χ ◦ ξ)

where χ ∈ DerR and η ∈ DerS is a lift of ξ ∈ DerR.180

Locally, at a point v ∈ V \A , p, tp and ωp are isomorphisms, so there is nothing to prove. Now suppose
v ∈ H is a generic point on a reflecting hyperplane H ∈ A , with p(v) outside the bifurcation set B. In a
neighborhood of p(v) in V/W , we may take canonical coordinates u1, . . . , uℓ (cf. [Her02, 2.12.(ii)]). These
are characterized by the property that the vector fields ei := ∂ui

, i = 1, . . . , ℓ satisfy ei ◦ ej = δi,j · ei.
By [Her02, Cor. 4.6], the tangent space Tp(v)D is spanned by ℓ− 1 of these idempotent vector fields, and
the remaining idempotent, which we label e1, is normal to it. The map pv : (V, v) → (V/W, p(v)) has
multiplicity 2, critical set H and set of critical values D, from which it follows that dvp : TvH → Tp(v)D
is an isomorphism. Since we have fixed our coordinate system on (V/W, p), we are free to choose only
the coordinates on (V, v). Define xi = ui ◦ p for i = 2, . . . , ℓ. To extend these to a coordinate system on
(V, v), we may take as x1 any function whose derivative at v is linearly independent of dvx2, . . . , dvxℓ.
This means we may take as x1 any defining equation of the critical set (the hyperplane H) of p at v.
With respect to these coordinates, p takes the form

(2.9) pv(x1, . . . , xℓ) = (f(x1, . . . , xℓ), x2, . . . , xℓ).

As pv has critical set {x1 = 0} and discriminant {u1 = 0}, both f and ∂x1
(f) vanish along {x1 = 0}.

Thus f(x) = x2
1g(x) for some g ∈ OV,v. Since p has multiplicity 2 at v, g(0) 6= 0. Now replace the
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coordinate x1 by x1g(x)
1/2. With respect to these new coordinates, which we still call x1, . . . , xℓ, pv

becomes a standard fold:

pv(x1, . . . , xℓ) = (x2
1, x2, . . . , xℓ).

We can now explicitly calculate the multiplication in DerS , locally at v:
{
tpv(x1∂x1

) = ωpv(2u1∂u1
),

tpv(∂xi
) = ωpv(∂ui

), for i = 2, . . . , ℓ.

So (2.7) implies

tpv((x1∂x1
) ◦ (x1∂x1

)) = ωpv((2u1∂u1
) ◦ (2u1∂u1

))

= ωpv(4u
2
1∂u1

) = ωpv(2u1(2u1∂u1
)) = tpv((2x

2
1)x1∂x1

),

and hence x1∂x1
◦ x1∂x1

= 2x3
1∂x1

. So in order that (2.7) should hold, we are forced to define

∂xi
◦ ∂xj

=

{
2x1∂x1

, for i = j = 1,

δi,j · ∂xi
, otherwise.

Since the multiplication in DerV is uniquely defined by (2.7) outside codimension 2, it extends to V by181

Hartog’s Extension Theorem. This proves (1); (2) is obtained by an analogous argument using (2.8).182

Finally, (3) follows from (2.5) and (2.8) on V \ A , and therefore holds everywhere. �183

Proof of Lemma 2.2. Let ξ ∈ DerS , g ∈ S and η ∈ DerR. By Proposition 2.3.(3) and the evident
S-linearity of the lifted Frobenius multiplication,

(η ⊗R g) · tp(ξ) = tp(η ◦ gξ).

�184

We have proved the following result, which implies (1) of Theorem 0.1.185

Theorem 2.4. The cokernel S̃A = cokerJ of the transposed Saito matrix of A is an SA -algebra. �186

Remark 2.5. Even though our proof uses complex analytic methods, such as canonical coordinates in the187

proof of Proposition 2.3, the conclusion is valid over any field over which the basic invariants are defined.188

We show this in Section 3 below by proving that the fact that cokerJ is an S-algebra is equivalent to a189

condition on ideal membership, the so-called rank condition (rc).190

We end this section by clarifying the relationship between S̃A and R̃D⊗RSA . In general they are not
isomorphic, and the space Spec S̃A is not the fiber product Spec(R̃D×DA ). For R̃D⊗RSA is the cokernel

of 1⊗∆: R̃D ⊗R S → R̃D ⊗R S, and using the epimorphism DerR ⊗RS ։ R̃D ⊗R S we find that there
is an epimorphism DerR ⊗RS ։ R̃D ⊗R SA , whose kernel is equal to DerR ⊗RS∆+Der(− logD)⊗R S.
Both summands here are contained in the image of tp : DerS → DerR ⊗RS, the first by Cramer’s rule
and the second because every vector field η ∈ Der(− logD) is liftable via p. Thus S̃A is a quotient of

R̃D ⊗R SA . The kernel N of the projection R̃D ⊗ SA → S̃A is the quotient

N := tp(DerS)/
(
Der(− logD)⊗R S +DerR ⊗RS∆

)
.

At a generic point x ∈ A this vanishes: here p is a fold map, right-left-equivalent to

(x1, . . . , xℓ) 7→ (x1, . . . , xℓ−1, x
2
ℓ )

and an easy local calculation shows that in this case Nx = 0. However, if p has multiplicity > 2 at x
then Nx 6= 0. For example at an A2 point, p is right-left equivalent to

(x1, . . . , xℓ) 7→ (x2
1 + x1x2 + x2

2, x1x2(x1 + x2), x3, . . . , xℓ);

tp(DerS) is generated by ∂p3
, . . . , ∂pℓ

together with

(2x1 + x2)∂p1
+ (2x1x2 + x2

2)∂p2
, (x1 + 2x2)∂p1

+ (x2
1 + 2x1x2)∂p2

,

while the coefficients of ∂p1
in the generators of Der(− logD)⊗R S +DerR ⊗RS∆ are at least quadratic191

in x1, . . . , xℓ. In fact, assuming Lemma 2.2, we have192

Theorem 2.6. Ã = (D̃ ×D A )red193
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Proof. S̃A = coker tp, with tp as in (2.6), is a maximal Cohen–Macaulay SA -module of rank 1. This194

means that at a smooth point of A , S̃A is isomorphic to SA , and is thus reduced. As S̃A is finite over195

SA , its depth over itself (assuming it is a ring) is equal to its depth over SA . Since it is therefore a196

Cohen–Macaulay ring, generic reducedness implies reducedness. �197

For later use we note that by [MP89, Cor. 3.15], we have198

Theorem 2.7. Ã is Cohen–Macaulay and D̃ is Gorenstein. �199

3. Algebra structures on cokernels of square matrices200

3.1. Rank condition. In this subsection we recall a condition on the rows of the adjugate of a square201

matrix over a ring R, which is equivalent to that matrix presenting an R-algebra, at least in the local202

and local graded cases. It is the key to proving Corollary 0.3 in the Introduction.203

Let R be an ℓ-dimensional (graded) local Cohen–Macaulay ring with maximal (graded) ideal m. In204

the graded local case, we assume that all R-modules are graded and all R-linear maps are homogeneous.205

Let A be an ℓ× ℓ-matrix over R with transpose Λ := At. We consider both A and Λ as R-linear maps206

Rℓ → Rℓ. Assume that ∆ := detA is a reduced non-zero-divisor and set D = V (∆). By Cramer’s rule207

∆ annihilates M := cokerA which is hence a module over RD := R/R∆. For any ideal I ⊆ R, we denote208

by ID := RDI its image in RD. By QD := Q(RD), we denote the total ring of fractions of RD.209

The k-th Fitting ideal of M over R, Fk(M), is the ideal of R generated by the (ℓ− k)× (ℓ− k)-minors210

of A. It is an invariant of M , and independent of the presentation A. We denote by mi
j the generator of211

F1(M) obtained from A by deleting row i and column j. Note that Fk
D(M) is the k’th Fitting ideal of212

M over RD. For properties of Fitting ideals, see e.g. [Eis95, Ch. 20].213

Definition 3.1. We say that the rank condition (rc) holds for A if gradeF1(M) ≥ 2 and F1(M) is equal214

to the ideal of maximal minors of the matrix obtained from A by deleting one of its rows, possibly after215

left multiplication of A by some invertible matrix over R.216

Note that (rc) implies that F1
D(M) is a maximal Cohen–Macaulay RD-module, by the Hilbert–Burch217

theorem.218

It turns out that (rc) depends only on the module M = cokerA, and not on the choice of presentation219

A. This is a consequence of the following two theorems, which also make clear the reason for our interest220

in the condition (rc).221

Theorem 3.2 ([MP89, Thm. 3.4]). If M is an RD-algebra then (rc) holds for A. �222

The proof in [MP89] shows that if M is an RD-algebra by e,m2, . . . ,mℓ, where e is the multiplicative223

identity of M , and A is a presentation of M with respect to these generators, then F1(M) is equal to224

the ideal of maximal minors of A with its first row deleted.225

The converse theorem also holds. A proof, due to de Jong and van Straten, can be found in [MP89,226

Prop. 3.14]. We will use some of the notions introduced there, however, and so we give a sketch, based227

on the accounts there and in [dJvS90].228

Recall that a fractional ideal U (over RD) is a finitely generated RD-submodule of QD which contains
a non-zero-divisor and that

(3.1) HomRD
(U, V ) = [V : QD

U ]

is a fractional ideal, for any two fractional ideals U and V . We shall use this identification implicitly. In
particular, the duality functor

(−)∨ := HomRD
(−, RD)

preserves fractional ideals. It is inclusion reversing and a duality on maximal Cohen–Macaulay fractional229

ideals (see [dJvS90, Prop. 1.7]).230

Theorem 3.3. If (rc) holds for A then M is a fractional ideal generated by ϕ1, . . . , ϕℓ ∈ QD where

(3.2) ϕim
ℓ
j = mi

j , i, j = 1, . . . , ℓ,

and an RD-subalgebra of QD isomorphic to EndRD
(F1

D(M)).231

Proof. Using (rc) for A, Lemma 3.4 (below) yields a presentation

(3.3) 0 // Rℓ
Λ

// Rℓ
(mℓ

1
,...,mℓ

ℓ)
// F 1

D(M) // 0 .
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In particular, F1
D(M) is a maximal Cohen–Macaulay RD-module of rank 1, and therefore can be viewed

as a fractional ideal. As F1
D(M) is contained in RD, F1

D(M)∨ is a fractional ideal containing RD.
Dualizing (3.3) with respect to RD gives the exact sequence

0 // F 1
D(M)∨ // Rℓ

D
A

// Rℓ
D .

There is also a 2-periodic exact sequence

· · · // Rℓ
D

A
// Rℓ

D
adA

// Rℓ
D

A
// · · · .

Therefore,

F1
D(M)∨ ∼= kerRD

A ∼=

{
cokerRD

A = M,

imRD
adA = F1

D(M).

and hence F1
D(M)∨ ∼= EndRD

(F1
D(M)). From this all the statements follow. �232

In Subsection 4.2 we identify the generators in Theorem 3.3 in the case that D is the reflection233

arrangement or discriminant of an irreducible Coxeter group.234

Lemma 3.4 ([dJvS90, Prop. 1.10]). Suppose that the ideal I (generated by the maximal minors of the
matrix A with one row deleted) has grade 2. Then there is a free resolution

�(3.4) 0 // Rℓ
Λ

// Rℓ
(mℓ

1
,...,mℓ

ℓ)
// ID // 0 .

We can now make good the promise we made in Remark 2.5: that Theorem 2.4 is valid over any field
over which the basic invariants p1 . . . , pℓ are defined. From Theorems 2.4 and 3.2 it follows that (rc)
holds for cokerA: for each i, j ∈ {1, . . . , ℓ}, the equation

(3.5) mi
j = C1m

ℓ
1 + · · ·+ Cℓm

ℓ
ℓ

in unknown functions C1, . . . , Cℓ has a solution in which the Ci are germs of complex analytic functions235

at 0.236

Let K be a subfield of C containing the coefficients of the basic invariants pj , so that the coefficients237

of the polynomials mi
j all lie in K. We claim that (3.5) has solutions Ci ∈ K[V ]. From this claim, the238

existence of the S-algebra structure on cokerA follows by Theorem 3.3.239

To prove the claim, first note that since the mi
j are all homogeneous, each Ci can be replaced by its

graded part of degree Di −Dℓ (see (4.6)). Let K[V ]d ⊂ K[V ] be the vector space of all polynomials of
degree d. The map

A :
(
K[V ]Di−Dℓ

)ℓ
→ K[V ]Di

, A(C1, . . . , Cℓ) =

ℓ∑

j=1

Cjm
ℓ
j,

is K-linear. Therefore the solvability of (3.5) in K[V ] reduces to a simple theorem of linear algebra,
which can be rephrased more abstractly as follows: Let A : Km → Kn be a K-linear map, and suppose
K ⊂ L is a field extension. Then

im(A⊗K 1L) ∩K
n = im(A).

We leave the proof of this to the reader.240

3.2. Rings associated to free divisors. In this subsection we make some general observations about
the algebra presented by the transpose of a Saito matrix of a free divisor. Let D = V (∆) be a free divisor
in (Cℓ, 0) with Saito matrix A. Then we have an exact sequence

(3.6) 0 // Rℓ
A

// Rℓ
(∆1,...,∆ℓ)

// RD
// RD/JD // 0 ,

where ∆j := ∂∆/∂xj for j = 1, . . . , ℓ, and JD := RDJ∆ is the Jacobian ideal of D. Now assume also
that D is Euler homogeneous. By adding multiples of the Euler vector field χ = δ1 to the remaining
members δ2, . . . , δℓ of a Saito basis of D, we may assume that these annihilate ∆. We shall assume that
A is obtained from such a basis. We say that D satisfies (rc) if (rc) holds for Λ = At. In this case, we
write

R̃D := M = cokerΛ ⊂ QD

for the ring of Theorem 3.3.241
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It is well known that for any algebraic or analytic space D satisfying Serre’s condition S2, the frac-242

tional ideal EndRD
(J∨

D) is naturally contained in the integral closure of RD in QD, and the inclusion243

RD →֒ EndRD
(J∨

D) gives a partial normalization (see for example [Vas98, Ch. 2, §2; Ch. 6, §2]. Grauert244

and Remmert showed in [GR71] (see also [GR84, Ch. 6, §5]) that for analytic spaces, RD = EndRD
(J∨

D)245

precisely at the normal points of D, and the analogous result for algebraic spaces was shown by Vascon-246

celos in [Vas91].247

Proposition 3.5. If the free divisor D satisfies (rc) then R̃D
∼= EndRD

(JD) ∼= EndRD
(J∨

D).248

Proof. First, recall the well known fact that for j = 1, . . . , ℓ, equality

(3.7) m1
j =

∆j

deg∆
.

which follows from the fact that by Cramer’s rule the logarithmic 1-form ω1 := 1
∆

∑ℓ
j=1 m

1
jdxj satisfies

〈ω1, δj〉 =

{
1 if j = 1,

0 if j = 2, . . . , ℓ,

as does 1
deg∆

d∆
∆ .249

Next, Lemma 3.4 yields a presentation

0 // Rℓ
A

// Rℓ
(mℓ

1
,...,mℓ

ℓ)
// F 1

D(M) // 0 .

This coincides with that of JD in (3.6); it follows that as RD-modules, F1
D(M) and JD are isomorphic.

Hence, by Theorem 3.3,

R̃D = EndRD
(F1

D(M)) ∼= EndRD
(JD).

Since D is free, JD is maximal Cohen–Macaulay, and then reflexive by [dJvS90, Prop. (1.7) iii)]. So250

dualizing induces an isomorphism EndRD
(JD) ∼= EndRD

(J∨
D). �251

Remark 3.6. The map ϕ1 ∈ EndRD
(F1

D(M)) described in the proof of Theorem 3.3 gives an explicit252

isomorphism F1
D(M) ∼= JD. Indeed, ϕ1(m

ℓ
j) =

∆j

deg∆ by Lemma 3.7.253

However the following example, of the discriminant of the reflection group B3, shows that, even254

under the hypotheses of Proposition 3.5, it is not necessarily the case that the other generators ϕi of255

EndRD
(F1

D(M)), i = 2, . . . , ℓ, defined in (3.2) are isomorphisms onto their image.256

A Saito matrix for the discriminant D of B3 is given by

A :=




x −4x2 + 18y −xy + 27z
2y xy + 27z −2y2 + 18xz
3z 6xz 6yz


 = Λt.

Because this satisfies (rc),

ĨD =
〈
x2y − 4y2 + 3xz, x2z − 3yz, xyz − 9z2

〉
,

is equal to the ideal of maximal minors of Λ with its third column deleted. On the other hand the ideal
of maximal minors of A with its second column deleted is

〈
x2z − 3yz, xyz − 9z2

〉
.

Evidently the two ideals are not isomorphic as RD-modules.257

In contrast, for irreducible free divisors we have258

Proposition 3.7. Assume that in addition to the hypotheses of Proposition 3.5, D is irreducible and is259

not isomorphic to the Cartesian product of a smooth space with a variety of dimension < ℓ − 1. Then260

each of the maps ϕi in (3.2) is an isomorphism onto its image. Let Ii denote the ideal of maximal minors261

of A with its i’th row deleted. Then, for each i = 1, . . . , ℓ, R/Ii = RD/IiRD is a Cohen–Macaulay ring262

with support DSing.263

Proof. Because ∆ ∈ Ii, the (ℓ − 1)-dimensional components of V (Ii) are among the components of264

D. Since ∆ is irreducible, the only component possible is D itself. But then because D is reduced,265

we would have Ii ⊂ 〈∆〉. This is absurd, for by hypothesis all entries of A lie in the maximal ideal,266

and ∆ =
∑ℓ

j=1 A
i
jm

i
j . Thus V (Ii) is purely ℓ − 2-dimensional. From this the result now follows by267

Lemma 3.4. �268
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Our Propositions 3.5 and 3.7 are closely related to [Vas98, Prop. 6.15]:269

Proposition 3.8. If D is a free divisor, then

(3.8) JD ·HomRD
(JD, RD) = F1

D(M).

Here both ideals JD and HomRD
(JD, RD) are viewed as fractional ideals in QD. �270

The left hand side of (3.8) is the so-called trace ideal of JD; it is the set

{ϕ(g) | ϕ ∈ HomRD
(JD, RD), g ∈ JD}.

Buchweitz, Ebeling and Graf von Bothmer give a criterion under which, for a free divisor D appearing271

as the discriminant in the base-space of a versal deformation of a singularity, the ring EndRD
(JD)272

coincides with the normalization R̄D of RD:273

Proposition 3.9 ([BEGvB09, Thm. 2.5, Rmk. 2.6]). If D ⊂ S is the discriminant in the smooth base-274

space of a versal deformation f : X → S and the module of f -liftable vector fields in DerS is free, then275

provided codimS f(XSing) ≥ 2, this module coincides with Der(− logD). If in fact codimS f(XSing) ≥ 3,276

then EndRD
(JD) = R̄D.277

4. Ring structures associated with Coxeter groups278

4.1. Rank conditions and associated rings. We return to the situation of Section 1. From now on
we work in standard coordinates as in (1.6). Denote by J∆ ⊂ S and J∆2 ⊂ R the Jacobian ideals of ∆
and ∆2 respectively, and define the Jacobian ideals

JA := J∆SA , JD := J∆2RD

of A and of D respectively. Consider the corresponding 1st Fitting ideals

(4.1) IA := F1
S(JA ), ĨA := F1

SA
(JA ) = IA · SA , ID := F1

R(JD), ĨD := F1
RD

(JD) = ID · RD.

By (1.6), (1.10) and (1.12), we have exact sequences

0 // Sℓ
Jt

// Sℓ // JA
// 0 ,(4.2)

0 // Rℓ
K=JJt

// Rℓ // JD // 0 .

The above Fitting ideals IA and ID are generated by the sub-maximal minors of J and K respectively.279

Being Saito matrices, J t and K have rank ℓ − 1 at smooth points of A and D respectively. Therefore280

IA and ID are ideals of grade 2 and ĨA and ĨD are ideals of grade 1.281

A more precise version of the rank condition (rc) from Definition 3.1 holds for A and D:282

Lemma 4.1. For irreducible W , IA is generated by the maximal minors of the matrix obtained from J283

by omitting its ℓ’th row. This is its homogeneous part of minimal degree
∑

i<ℓ mi =
hℓ
2 − h+ 1.284

Proof. By a theorem of Solomon [Sol64, Thm. 2, Cor. (2a)] the minors of J are linearly independent over285

C. As IA is generated by ℓ minors, these must then be the minors of lowest degree. �286

Definition 4.2. For irreducible W , we refer to the condition defined in Lemma 4.1 as the graded rank287

condition (grc) for A . Analogously, we say that the (grc) holds for D if ID is generated by the entries288

in the ℓ’th row of ad(K), once again the maximal minors of the matrix obtained by omitting from K289

the highest weight vector field δℓ. For reducible W , we define (grc) for both A and D by requiring it,290

as just defined, for each irreducible summand.291

In dimension ℓ = 2, (grc) holds trivially for A and D: IA and ID are the graded maximal ideals of292

SA and RD, due to the presence in each case of an Euler vector field. We shall look at this case in more293

detail in Subsection 4.4.294

By Lemma 3.4, (rc) for A and D yields exact sequences

0 // Sℓ
Jt

// Sℓ // ĨA
// 0 ,(4.3)

0 // Rℓ
K

// Rℓ // ĨD
// 0 .

The cokernels of the dual maps J ∈ EndS(S
ℓ), Kt = K ∈ EndR(R

ℓ) are the algebras

(4.4) S̃A = EndSA
(ĨA ), R̃D = EndRD

(ĨD),

of Theorem 2.4 and of Lemma 2.1, respectively. Recall that we write Ã = Spec S̃A and D̃ = Spec R̃D.295
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Example 4.3. Let A be the reflection arrangement for W of type A1 × · · · ×A1. In suitable coordinates
this is a normal crossing divisor defined by ∆ = x1 · · ·xℓ. Then J = J t = diag(x1, . . . , xℓ) and

S̃A = coker J = C[x2, . . . , xℓ]⊕ C[x1, x3, . . . , xℓ]⊕ · · · ⊕ C[x1, . . . , xℓ−1].

Generalizing this example we have296

Lemma 4.4. The assignments W 7→ S̃A and W 7→ R̃D commute with direct sums (of representa-297

tions/rings).298

Proof. Assume that W = W ′⊕W ′′, and use the analogous notation to refer to the above defined objects
with W replaced by W ′ and W ′′ respectively. Then S = S′ ⊗C S′′, J is a block matrix with blocks J ′

and J ′′, ∆ = ∆′∆′′, hence IA = IA ′∆′′ + IA ′′∆′ and therefore

ĨA
∼= ĨA ′ ⊗C S′′ ⊕ S′ ⊗C ĨA ′′

by the following Lemma 4.5. Applying EndSA
yields

S̃A = S̃A ′ ⊗C S′′ ⊕ S′ ⊗C S̃A ′′ .

This proves the claim for A ; an analogous proof works for D. �299

Lemma 4.5. Let f ∈ K[x] = K[x1, . . . , xr] ⊃ I, g ∈ K[y] = K[y1, . . . , ys] ⊃ J , and K[x, y] =
K[x1, . . . , xr, y1, . . . , ys]. Then

(Ig + Jf)(K[x, y]/〈fg〉) ∼= I(K[x]/〈f〉)⊗K K[y]⊕K[x]⊗K J(K[y]/〈g〉),

[Pg +Qf ] ↔ [P ]⊕ [Q].

Proof. One easily verifies that the given correspondence is well-defined in both directions. �300

4.2. Relation of rings for A and D. Let us assume now that W is irreducible. Then the algebras
S̃A and R̃D can be described more explicitly as follows. We denote by

(4.5) (mi
j) := ad(J t), (M i

j) := ad(K) = ad(J t) ad(J)

the adjoint matrices of J t and K respectively, and set

(4.6) Dk = deg(mk
j ) =

ℓ∑

i=1

mi −mk.

Abbreviating hi := ϕA
i ∈ QA and gi := ϕD

i ∈ QD for i = 1, . . . , ℓ, Theorem 3.3 reads

him
ℓ
j = mi

j , giM
ℓ
j = M i

j , i, j = 1, . . . , ℓ,(4.7)

S̃A = 〈h1, . . . , hℓ〉SA
= SA [h1, . . . , hℓ−1], R̃D = 〈g1, . . . , gℓ〉RD

= RD[g1, . . . , gℓ−1].(4.8)

Proposition 4.6. If W is irreducible then

hi =
∂pi

(∆2)

∂pℓ
(∆2)

∈ QW
A .

Proof. First, differentiate ∆2 ∈ R,

2∆d∆ = d(∆2) =

ℓ∑

k=1

∂pk
(∆2)dpk

considered as an equality in Ω1
S . Then wedging with dp1 ∧ · · · ∧ d̂pi ∧ · · · ∧ dpℓ−1 gives

(−1)i−1∂pi
(∆2)dp1 ∧ · · · ∧ dpℓ−1 + (−1)ℓ−1∂pℓ

(∆2)dp1 ∧ · · · ∧ d̂pi ∧ · · · ∧ dpℓ ≡ 0 mod S∆.

Taking coefficients with respect to dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxℓ yields

∂pi
(∆2)mℓ

j ≡ ∂pℓ
(∆2)mi

j mod S∆, j = 1, . . . , ℓ.

By Theorem 1.2, ∂pℓ
(∆2) is a non-zero-divisor in SA , and the claim follows from (4.7). �301
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Using Theorem 1.1, one verifies that the averaging operator (1.1) induces a commutative diagram of
R-modules

QD
� � // QA

#
// QW

A
QD∼=

oo

R̃D
� � //___

?�

OO

S̃A

#
//____

?�

OO

S̃W
A

?�

OO

R̃D∼=
oo_ _ _ _

� ?

OO

RD

?�

OO

� � // SA

#
//

?�

OO

(SA )W
?�

OO

RD

?�

OO

∼=
oo

where the dashed maps result from the following proposition.302

Proposition 4.7. We have

(4.9) hi = gi =
M i

ℓ

M ℓ
ℓ

∈ QD,

and hence

(4.10) R̃D = (S̃A )W .

Proof. Using (4.5) we have M i
ℓ =

∑
r m

i
rm

ℓ
r. By (4.7), this is equal to hi

∑
r m

ℓ
rm

ℓ
r and therefore to303

hiM
ℓ
ℓ . By [MP89, Thm. 3.4], M ℓ

ℓ generates the conductor of RD →֒ R̃D and is therefore not a zero-divisor304

on RD or SA . Therefore, hi = M i
ℓ/M

ℓ
ℓ = gi by (4.7) and (4.10) follows using (4.8). �305

4.3. Local trivialization. The integral varieties of Der(− logA ) and Der(− logD) form Saito’s loga-306

rithmic stratification defined in [Sai80, §3], which we denote by L(A ) and L(D) respectively. We shall307

locally trivialize Ã and D̃ along logarithmic strata with slices of the same type, with W replaced by308

the subgroup fixing the strata. In the case of Ã the trivialization is algebraic, while in the case of D̃ we309

need to work in the analytic category.310

We begin with the discussion of Ã . The logarithmic stratification L(A ) coincides, up to taking the311

closure of strata, with the intersection lattice of A . It is a geometric lattice (ordered by reverse inclusion)312

whose rank function is given by the codimension in V . By Lk(A ) ⊂ L(A ), we denote the collection of313

all rank k elements.314

Definition 4.8. For X ∈ L(A ), denote by WX the subgroup of W generated by reflections with315

reflecting hyperplanes in the localization AX := {H ∈ A | X ⊂ H} of A along X ∈ L(A ), and by ∆X316

the reduced defining equation of AX . We denote also by IX the defining ideal of X in SA .317

By [Hum90, Thm. 1.12 (d)], WX is the group fixing X point-wise, that is

WX =
⋂

x∈X

Wx.

For x ∈ V , let X(x) be the stratum X ∈ L(A ) with x ∈ X . It follows that

WX(x) = Wx

is the isotropy group of x.318

Proposition 4.9. If X ∈ L(A ) then (S̃A )IX = (S̃AX
)IX = S̃AX/X ⊗C C(X). In particular, S̃AX/X =319

(S̃A )XIX where the upper index “X” means X considered as a translation group.320

Proof. Fix X ∈ L(A ) and let Y be its orthogonal complement. By ∆X ∈ C[Y ] we denote the defining
equation of AX . Then, by the product rule,

(JA )IX = J∆(SIX/SIX∆) = J∆X
(SIX /SIX∆X) = (JAX

)IX .

Localizing a presentation, such as (4.2), at IX , therefore shows that

(IA )IX = (F1
S(JA ))IX = F1

SIX
((JA )IX )

= F1
SIX

((JAX
)IX ) = (F1

S(JAX
))IX = (IAX

)IX .
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Then we have also (ĨA )IX = (ĨAX
)IX and finally,

(S̃A )IX = (EndSA
(IA ))IX = EndSIX

((IA )IX )

= EndSIX
((IAX

)IX ) = (EndSAX
(IAX

))IX = (S̃AX
)IX .

This proves the first equality; the second follows since SIX = C[Y ]⊗C C(X). �321

Corollary 4.10. The assignment A 7→ S̃A is a local functor. �322

We now turn our attention to D̃. The following result holds for any free divisor, and our proof is not323

specific to our situation.324

Proposition 4.11. The ideals IA and ID are stable under Der(− logA ) and Der(− logD) respectively.325

In particular, the latter act naturally on S̃A and R̃D respectively.326

Proof. Let ω1, . . . , ωℓ ∈ Ω1(logD) be the dual basis of (1.13). From

R ∋ dωj(δk, δr) = dωj

(
δk,

ℓ∑

i=1

Ki
r∂pi

)
=

ℓ∑

i=1

Ki
rdωj(δk, ∂pi

),

(1.11) and Cramer’s rule, we conclude that

ID ∋ dωj(δk,∆
2∂pi

) = δk
〈
∆2ωj , ∂pi

〉
−∆2∂pi

〈ωj , δk〉 −
〈
ωj, [δk,∆

2∂pi
]
〉

= δk(M
i
j) +

〈
∆2ωj , [∂pi

, δk]−
δk(∆

2)

∆2
∂pi

〉

≡ δk(M
i
j) mod ID.

This proves the claim for D; the same argument works for A and any free divisor. �327

Remark 4.12. There is a transcendental argument which shows that for any divisor D, free or not,328

Der(− logD) preserves the ideal Ik(D) of k× k minors of the matrix of coefficients of a set of generators329

of Der(− logD). It is simply that each of these ideals is invariant under biholomorphic automorphisms330

of D, since they are Fitting ideals of the Jacobian ideal JD. The integral flow of any vector field331

ζ ∈ Der(− logD) preserves D, and hence Ik(D), from which it follows that ζ · Ik(D) ⊂ Ik(D).332

We can improve on Proposition 4.9 in the analytic category. Let x ∈ X ∈ L(A ) and y = p(x) ∈
p(X) = Y . By [Orl89, §2], Y ∈ L(D) and p : X → Y is a covering. By finiteness of W , there is a
(Euclidean) WX -stable neighborhood of x, in which the W -orbits are exactly the WX -orbits. Note that
WX commutes with the translation group X . This gives

px = pWX ,x × p|X : Vx = (V/X)x ×Xx → ((V/X)/WX)y × Yy.

Since our definition of R̃D in (4.1) and (4.4) is compatible with passing to the analytic category, we333

obtain the following analytic localization statement.334

Proposition 4.13. Let x ∈ X ∈ L(A ) and y = p(x) ∈ p(X) = Y ∈ L(D), and denote by DY the335

discriminant of WX on V/X. Then there is an isomorphism of analytic germs D̃y
∼= D̃Y,y × Yy. �336

Remark 4.14. Saito [Sai80, (3.6)] showed that one can always analytically trivialize the logarithmic337

stratification along logarithmic strata as we do in Proposition 4.13.338

Corollary 4.15. Ã is (algebraically) and D̃ (analytically) constant over logarithmic strata. �339

By [Hum90, §1.8], W acts simply transitively on the (simple) root systems and on the Weyl chambers.340

Choosing a simple root system defining a Weyl chamber of which X = X(x) is a face, shows that the341

Dynkin diagram of any isotropy group Wx = WX is obtained by dropping from the Dynkin diagram of342

W the roots which are not orthogonal to X . By [Hum90, Prop. 2.2], the connected components of the343

resulting Dynkin diagram are in bijection with the irreducible factors of Wx. This discussion combined344

with Propositions 4.9 and 4.13 proves345

Theorem 4.16. Let X ∈ L(A ) and let Y = p(X). Let W1, . . . ,Wr be the irreducible Coxeter groups
whose Dynkin diagrams are the connected components of the sub-diagram of the Dynkin diagram of W
formed by the vertices corresponding to simple roots orthogonal to X. Let A1, . . . ,Ar and D1, . . . , Dr be
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their reflection arrangements and discriminants, and let ℓi be the dimension of the standard representa-
tion of Wi. Then the algebraic localization of A along X, and the analytic localization of D̃ along Y ,
are isomorphic, respectively, to the disjoint unions

r⊔

i=1

Ãi × C
ℓ−ℓi and

r⊔

i=1

D̃i × C
ℓ−ℓi . �

4.4. Relation with the normalization. We denote the normalizations of A and D by Ā and D̄346

respectively.347

Proposition 4.17. We have SA ⊆ S̃A ⊆ S̄A and RD ⊆ R̃D ⊆ R̄D.348

Proof. This follows from the finiteness and birationality of S̃A and R̃D over SA and RD, see (4.8), (4.7),349

(4.10), (4.9). �350

In the following, we describe the cases of equality in Proposition 4.17.351

We begin with the case ℓ = 2 of plane curves for irreducible W . By (1.14) and for degree reasons, this
case reduces to

K =

(
2p1 hp2
hp2 Q

)
, Q = apr1 + bps1p2, r = h− 1,

h

2
− 1 = s,(4.11)

∆2 = |K| = 2p1Q− h2p22 = 2aph1 + 2bp
h/2
1 p2 − h2p22.(4.12)

In particular, b = 0 if h is odd. Note that there are no further restrictions imposed on a and b by the
requirement

(4.13) δ2(∆
2) ∈ R∆2

for δ2 from (1.12). Indeed, 〈δ1, δ2〉R is a Lie algebra, since [δ1, δ2] = (h − 2)δ2 by homogeneity. For352

generic (a, b), ∆2 in (4.12) is reduced, and hence (4.13) holds true by [Sai80, Lem. 1.9]. By continuity,353

it holds then also for special values of (a, b).354

Proposition 4.18. For ℓ = 2, irreducible W , and odd h ≥ 5, D̃ 6= D̄.355

Proof. In this case,

(4.14) K =

(
2p1 hp2
hp2 apr1

)

and (4.12) specializes to

∆2 = |K| = 2apr+1
1 − h2p22 ≡ ph1 − p22.

The normalization of D is given by p1 = t2 and p2 = th, and hence g1 = p2

p1
= th−2 by (4.9) and (4.14).

Then (4.10) becomes

R̃D = RD[g1] = C[t2, th−2] ( C[t] = R̄D. �

Using Theorem 4.16 and Lemma 4.4 we find356

Corollary 4.19. If W contains any irreducible summand of type H3, H4, or I2(k) for odd k, then357

D̃ 6= D̄.358

Proof. ForW of type I2(k), we have h = k and the claim follows from Proposition 4.18. For theHk-types,359

the statement follows from Theorem 4.16 and the adjacency chain H4 → H3 → I2(5). �360

We write C0 = S/m where m is the graded maximal ideal in S. Then Ã0 = Spec(S̃A ⊗S C0) is the361

fiber of Ã over 0 ∈ V .362

Lemma 4.20. The group W acts trivially on the fiber Ã0 of Ã over 0 ∈ V , which contains exactly as363

many geometric points as the number of irreducible summands of W .364

Proof. By (4.8), S̃A ⊗S C0
∼= C[h1, . . . , hℓ−1] and by Proposition 4.7 the hi are W -invariants. This365

implies the first claim. For the second statement, we may assume that W is irreducible by Lemma 4.4.366

Then (1.4), (4.5), and (4.7) imply that hi has w-degree wℓ − wi. So C[h1, . . . , hℓ−1] is positively graded367

and hence Ã is a cone. As it is also finite over 0 ∈ V due to (4.8), it must be a single geometric point368

as claimed. �369
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We write Cx = S/mx and Cy = R/my where mx and my are the maximal ideals of S at x and of R at370

y. Then Ãx = Spec(S̃A ⊗S Cx) and D̃y = Spec(R̃D ⊗R Cy) are the fibers of Ã over x and of D̃ over y371

respectively. Combining Propositions 4.9 and 4.13, (4.8), Proposition 4.7, and Lemma 4.20, we find372

Proposition 4.21. The fibers Ãx and D̃y, y = p(x), coincide, that is,

S̃A ⊗S Cx = R̃D ⊗R Cy.

They are trivial Wx-modules containing exactly as many geometric points as the number of irreducible373

summands of Wx.374

We can now refine Proposition 4.17 for A .375

Corollary 4.22.376

(1) A = Ã exactly if A contains only one plane (or W has type A1).377

(2) Ã = Ā exactly if A is Boolean (or W has type A1 × · · · ×A1).378

Proof.379

(1) If #A > 1, pick x with X(x) = X ∈ L2(A ) 6= ∅. Then WX is of type A1 × A1. So by380

Proposition 4.21, Ã has two points over x. The converse is Example 4.3 for ℓ = 1.381

(2) Again one implication is Example 4.3. If A is not Boolean, then W has an non-A1 type irreducible382

summand. By Lemma 4.20, its reflection hyperplanes do not separate in Ã .383

�384

The analogue of Corollary 4.22 for D is less trivial.385

Theorem 4.23. D̃ = D̄ exactly if all irreducible summands of W are of ADE-type. In this case, D̃ is386

smooth.387

Proof. If W is of type ADE, then by [Bri71, Slo80] V/W can be identified with the base space of a388

versal deformation of a singularity of the same type. Then by (0.1) D̃ = Σ0 is a smooth space and hence389

D̃ = D̄. If W is reducible, with all irreducible summands of type ADE, then by Proposition 4.4 D̃ is390

the disjoint union of the spaces corresponding to the summands.391

Conversely, consider an irreducible W not of type ADE and not covered by Corollary 4.19, that is,392

of type Bℓ, Cℓ, F4, or I2(k) with k even. Then there are at least two W -orbits in A , D is reducible,393

and D̄ has at least two connected components. On the other hand D̃ is connected, by Lemma 4.20 and394

Proposition 4.21. Thus D̃ 6= D̄. By Proposition 4.4 this conclusion applies to reducible W also. �395

4.5. Example 0.2 revisited. In Example 0.2 we asserted that in the case of Aℓ, the space Ã is396

isomorphic to the union of the coordinate (ℓ− 1)-planes in Cℓ+1. We now prove this. Let us denote this397

union by Lℓ, and denote by s and t the natural projections Lℓ → A and Ã → A . Recall that a space398

X is weakly normal if every continuous function which is holomorphic on the smooth part of X is in fact399

holomorphic on all of X .400

Lemma 4.24. The space Lℓ is Cohen–Macaulay and weakly normal.401

Proof. Cohen–Macaulayness is well known, and follows from the Hilbert–Burch theorem: the ideal Iℓ of402

functions vanishing on Lℓ is 〈x2 · · ·xℓ+1, x1x3 · · ·xℓ+1, . . . , x1 · · ·xℓ〉, and it is easy to obtain this as the403

ideal of maximal minors of an ℓ× (ℓ + 1) matrix. For weak normality, we use induction on ℓ: the space404

L2 is the union of the coordinate axes in 3-space, and weak normality can easily be checked here. Now405

suppose ℓ ≥ 3 and that the statement is true for Lj with j < ℓ, and let f be a continuous function on406

Lℓ, holomorphic on the regular part. In a neighborhood of each point x ∈ Lℓ r {0}, Lℓ is isomorphic to407

a product Lj × Cℓ−j for some j < ℓ. It follows from the induction hypothesis that Lℓ is weakly normal408

at these points, and therefore f is holomorphic at x. Since Lℓ is Cohen–Macaulay, Hartogs’s Theorem409

holds and therefore f is holomorphic also at 0. �410

Proposition 4.25. In the case of the reflection arrangement for Aℓ, the space Ã is isomorphic to Lℓ.411

Proof. The key step is to show that the combinatorial structure of Lℓ and Ã is the same. For then by412

the universal property of weak normality, there exists an analytic map π : (Lℓ, 0) → (Ã , 0) such that413

s = t ◦ π. This map is a homeomorphism, and therefore has a (topological) inverse. To see that the414

inverse is analytic, it is enough, once again by Hartogs’s Theorem, to prove it so outside codimension415

2. It is clearly so over regular points of A , since here the projections Ã → A and Lℓ → A are both416

bianalytic. The codimension-1 singularities of A are of type A1 + A1 (a normal crossing of 2 branches,417
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with reducible representation) and A2. Over points of the first kind, both Ã and Lℓ are regular, and so418

π−1 is analytic. Over points of the second kind, the computation carried out in Example 0.2 shows that419

π is an isomorphism.420

To see that the combinatorial structure is the same, recall that s(x) = x−x♯. Let a = (a1, . . . , aℓ+1) ∈
A . Then

s−1(a) = {x ∈ Lℓ | x = a+ λ(1, . . . , 1) for some λ ∈ C}.

Now a + λ(1, . . . , 1) ∈ Li,j if and only if λ = −ai = −aj. Thus a has a preimage for each value λ421

such that two or more of the coordinates ai take the value −λ. Thus, preimages are in bijection with422

equivalence classes I ⊂ {1, . . . , ℓ + 1} under the equivalence relation i ∼ j if xi = xj . This is the same423

equivalence relation which determines the decomposition of the isotropy group of x in W into a direct424

product of indecomposable factors. By part (2ii) of Theorem 0.1, the set of equivalence classes is in425

natural bijection with the geometric fiber of Ã over x. �426

It would be interesting to know if the space Ã is weakly normal for other Coxeter arrangements.427

5. Dual and Hessian rank conditions428

Let F = S · mR be the ideal of all positive-degree W -invariants. We can identify S/F with a direct
summand T of the W -module S, and setting Sα = T · pα, we have

(5.1) S =
⊕

α∈Nℓ

Sα ⊃
⊕

06=α∈Nℓ

Sα = F

as a direct sum of W -modules, where p = p1, . . . , pℓ. Chevalley [Che55] showed that T is the regular
W -representation (see also [Sol64, p. 278]). Consider the W -modules of exterior powers

Ep =

p∧
V ∗.

Solomon [Sol64, Thm. 2 and footnote (2)] showed that the isotypic components of S/F of type E1
∼= V ∗

and Eℓ−1
∼= V ⊗ detV are the direct sums of the projections to S/F of the W -modules

Jj = 〈∂xk
(pj) | k = 1, . . . , ℓ〉

C
,(5.2)

M j =
〈
mj

k | k = 1, . . . , ℓ
〉
C

, j = 1, . . . , ℓ,

respectively. We may and will assume that Jj ⊂ T and M j ⊂ T . By (1.2) and (4.6), Dj is the429

homogeneous degree of M j, while mj is the homogeneous degree of Jj .430

Let us recall the construction from the proof of [Sol64, Thm. 2]: We denote by I(−) the W -invariant
part. By [Sol63], the space of W -invariant differential forms on V is

I(S ⊗ Ep) =
∑

i1<···<ip

R · dpi1 ∧ · · · ∧ dpip .

Solomon [Sol64, p. 282] considers the case where W is the Weyl group of a Lie group acting on V ;
then the Killing form induces a self-duality Ep

∼= E∗
p . We are only interested in the cases p = 1 and

p = ℓ − 1, where both irreducibility and self-duality of Ep are trivial1. The self-duality of Ep induces a
W -isomorphism S/F ⊗ Ep

∼= HomC(Ep, S/F ) and hence an isomorphism

(5.3) I(S/F ⊗ Ep) ∼= HomW (Ep, S/F ).

The image of dpi in HomW (Ep, S/F ) has image J i, and the image of dp1 ∧ · · · ∧ d̂pi ∧ · · · ∧dpℓ has image431

M i.432

Using (5.1),

(5.4)

ℓ⊕

j=1

⊕

α∈Nℓ

M jpα and

ℓ⊕

j=1

⊕

06=α∈Nℓ

M jpα

are the isotypic components of type Eℓ−1 of S and F respectively. In particular, we have the following433

Lemma 5.1. The isotypic component of F of type Eℓ−1 lies in F · IA . �434

1E1
∼= V ∗ is self-dual due to the W -invariant form p2 on V , and hence irreducible, since V is irreducible. Because

det(V )⊗2 ∼= C is the trivial representation, Eℓ−1
∼= E∗

1
⊗Eℓ

∼= V ⊗det(V ) is self-dual. For the same reason and irreducibility

of V , I(V ⊗ det(V )⊗ (V ⊗ det(V ))∗) = I(V ⊗ V ∗) = 1, and hence Eℓ−1 is irreducible.
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It follows that (grc) can be checked modulo F .435

Definition 5.2. We say that the graded rank condition mod F holds for A if M j ⊂ M ℓ + F for all436

j = 1, . . . , ℓ− 1.437

Lemma 5.3. The graded rank condition mod F is equivalent to the graded rank condition for A .438

Proof. Consider the maps of W -modules

(5.5) φ∗ : HomC(M
j ,M ℓ ⊗C SDj−Dℓ

)
µ∗

// HomC(M
j , SDj

)
π∗

// HomC(M
j , TDj

)

induced by the composition of W -linear maps φ = π ◦ µ, where

µ : S ⊗C S → S and π : S ։ S/F = T

are the product in S and the canonical projection to T . By hypothesis, there is a C-linear map α ∈
HomC(M

j ,M ℓ⊗CSDj−Dℓ
) such that φ∗(α) ∈ HomC(M

j ,M j) is the identity map. Now averaging yields

γ = α# ∈ HomW (M j ,M ℓ ⊗C SDj−Dℓ
), φ∗(γ) = idMj .

Using Lemma 5.1, we find that

µ∗(γ)− idMj ∈ HomW (M j , F ) = HomW (M j , F · IA ).

This proves that
IA ⊂ S ·M ℓ + F · IA ,

and hence IA = S ·M ℓ by Nakayama’s lemma. �439

By Solomon’s result mentioned above, the W -equivariant Gorenstein pairing on S/F induces a non-
degenerate pairing of the isotypic components of type E1 and Eℓ−1 into the unique irreducible summand
of type Eℓ

∼= det(V ),
ℓ⊕

i=1

J i ⊗
ℓ⊕

j=1

M j → C ·∆.

Since the element
ℓ∑

i=1

∂xi
(pj)⊗mj

i ∈ Jj ⊗M j

maps to ∆ = detJ by Laplace expansion of the determinant along the j’th row, we obtain induced
non-degenerate pairings

(5.6) Jj ⊗M j → C ·∆, j = 1, . . . , ℓ.

For j < k, we have

HomW (Jj , Jk) ∼= EndW (E1) ∼= EndW (E∗
ℓ−1 ⊗ Eℓ)(5.7)

∼= EndW (E∗
ℓ−1)

∼= HomW (Mk,M j),

where µ∗(α) ∈ HomW (Jj , Jk) induced by α ∈ HomW (Jj , Jj ⊗ Smk−mj
) corresponds to µ∗(β) ∈440

HomW (Mk,M j) induced by β = αt ∈ HomW (Mk,Mk ⊗ SDj−Dk
). Note here that mk −mj = Dj −Dk441

by (4.6). Because of the non-degenerate W -pairing (5.6), µ∗(α) is an isomorphism exactly if µ∗(β) is an442

isomorphism.443

Definition 5.4. We say that the dual (graded) rank condition (drc) holds for A if Jℓ ⊂ S · Jj + F for444

all j = 1, . . . , ℓ− 1.445

Remark 5.5. The definition of (drc) is given as an equality in S/F because in general Jℓ 6⊂ S ·Jj , though446

the inclusion holds trivially for j = 1.447

Lemma 5.6. The graded rank condition mod F is equivalent to the dual rank condition for A .448

Proof. We show that (grc) mod F implies (drc). The opposite implication is proved in just the same449

way. Fix j ∈ {1, . . . , ℓ − 1}. By (grc) mod F , there is a β ∈ HomC(M
j ,M ℓ ⊗ SDj−Dℓ

) inducing the450

identity map idMj = π∗µ∗(β) ∈ HomC(M
j ,M j). By averaging, we can turn β into a W -homomorphism.451

The homomorphism µ∗(β) is non-zero modulo F and (5.7) yields a corresponding dual map µ∗(α) ∈452

HomW (Jj , SDℓ
) induced by α := βt ∈ HomW (Jℓ, Jj ⊗ Smℓ−mj

). This shows that (drc) holds. �453

By Lemma 5.3, we deduce the following equivalence that combined with Theorems 2.4 and 3.3 and454

Lemma 4.1 proves Corollary 0.3.455
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Proposition 5.7. The dual graded rank condition is equivalent to the (graded) rank condition for A . �456

The following property refines (grc) by a statement about the S-coefficients of Jj in the condition in
Definition 5.4. By [OS88, (2.14) Lem.], the Hessian

Hess(p) : DerS → Ω1
S , Hess(p)(δ) :=

ℓ∑

i=1

δ(∂xi
(p))dxi,

is W -equivariant for p ∈ R. Note that Hess(p1) is a W -isomorphism which induces our identification of
dpi with a vector field ηi in (1.9). By abuse of notation, we identify

Hess(p) = Hess(p) ◦Hess(p1)
−1 ∈ EndW (Ω1

S)

for p ∈ R. Using Ω1
S = S ⊗ E1 and passing to the quotient by F , Hess(p) then induces an element of

EndW (S/F ⊗ E1) and hence of EndW (I(S/F ⊗ E1)). By (5.3), Hess(p) thus induces a map

~(p) ∈ EndW (HomW (E1, S/F ))

which operates on W -submodules of type V ∗ by passing to the image in HomW (E1, S/F ).457

Definition 5.8. We say that the Hessian (dual graded) ring condition (Hrc) holds for A if, for any j,458

there is an i, such that mi+mj = wℓ and Hess(pi)(ηj) 6∈ FΩ1
S . In case m1, . . . ,mℓ are pairwise different,459

this means that Hess(pi)(ηℓ−i+1) 6∈ FΩ1
S .460

Lemma 5.9. The Hessian rank condition implies the dual ring condition for A .461

Proof. (Hrc) means that ~(pi)(J
j) ⊂ (S/F )mℓ

is non-zero. By W -equivariance of ~(pi), the latter is then462

a non-trivial W -submodule of (S/F )mℓ
of type E1. Then it must coincide with Jℓ, which is the only463

such W -module in this degree by (1.4). �464

Theorem 5.10. The Hessian rank condition holds for A if W is not of type E6, E7, or E8.465

Proof. It is clear that Hess(pi)(η1) = dpi, so (Hrc) holds trivially in dimension ℓ = 2. For the A-466

and B-types, it is an easy exercise to verify (Hrc) using [Hum90, §3.12]. In case of F4, H3 and H4,467

Macaulay2 [GS] calculations, based on the formulæ for basic invariants given by Mehta [Meh88], show468

that (Hrc) holds for A .469

Let us now prove (Hrc) for W of type Dℓ. By [Hum90, §3.12], the basic invariants can be chosen as
the power sums

pk =
1

2k
(x2k

1 + · · ·+ x2k
ℓ ), k = 1, . . . , ℓ− 1,

together with pℓ = x1 · · ·xℓ. Note the change of notation turning pℓ−1 into the highest degree invariant.
It is easy to check that D(pi) ◦Hess(pℓ−i) ≡ D(pℓ−1) mod C

∗ for i = 1, . . . , ℓ− 2. We now replace pℓ−1

by the invariant polynomial

p̂ℓ−1(x1, . . . , xℓ) = D(pℓ) ·D(pℓ) =
ℓ∑

j=1

x2
1 · · · x̂

2
j · · ·x

2
ℓ ∈ R

of the same degree. We claim that pℓ−1 ≡ p̂ℓ−1 mod F 2 + C∗. In the evident equality

2 ·D(pℓ) ◦Hess(pℓ) = D(p̂ℓ−1)

we can then replace p̂ℓ−1 by pℓ−1 modulo F , completing the proof of (Hrc).470

In order to verify the claim, let ρ be a primitive 2(ℓ−1)’th root of unity and set a = (ρ, ρ2, . . . , ρℓ−1, 0).471

Then all of our basic invariants except for pℓ−1 vanish at a, while p̂ℓ−1(a) 6= 0 6= pℓ−1(a). Since472

deg p̂ℓ−1 = deg pℓ−1 > deg pi for all i 6= ℓ− 1 by (1.4), the claim follows. �473

Computing limitations oblige us to leave open the following conjecture.474

Conjecture 5.11. The Hessian rank condition holds for A if W is of type E6, E7, or E8.475
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6. Free and adjoint divisors476

In [MS10] a new class of free divisors was constructed using the recipe “discriminant + adjoint”. If477

D is the discriminant in the base of a miniversal deformation of a weighted homogeneous hypersurface478

singularity (subject to some numerical conditions on the weights) and D′ is an adjoint divisor, in the479

sense that the pull-back of D′ to the normalization Σ0 of D is the conductor of the ring extension480

OD → OΣ0 , then D + D′ is a free divisor ([MS10, Thm. 1.3]). The singularities to which this applies481

include those of type ADE. In this section we point out that essentially the same construction works482

for the other Coxeter groups. We have to replace the normalization D̄ by the space D̃ of Lemma 2.1483

(though recall that D̄ = D̃ for Coxeter groups of type ADE), and take, as D′, a divisor pulling back484

to the conductor of the ring extension OD →֒ OD̃. The construction lifts to the representation space V ,485

giving a new free divisor strictly containing the reflection arrangement.486

We keep the notations from Section 1 and work in standard coordinates as in (1.6).487

Lemma 6.1. With a suitable choice of basic invariants p1, . . . , pℓ, the linear part K̄ of the Saito matrix
K = JJ t of D from (4.2) is symmetric of the form

(6.1) K̄ =




w1p1 w2p2 · · · · · · wℓ−1pℓ−1 wℓpℓ
w2p2 ⋆ · · · ⋆ αℓ−1pℓ 0
...

... . .
.

. .
.

. .
. ...

... ⋆ . .
. ...

wℓ−1pℓ−1 α2pℓ . .
. ...

wℓpℓ 0 · · · · · · · · · 0




where α2, . . . , αℓ−1 ∈ C∗ with αi = αℓ+1−i. Moreover the only entries in this matrix equal to non-zero488

constant multiples of pℓ lie along the anti-diagonal.489

Remark 6.2. This matrix shows the linearized convolution of the basic invariants p1, . . . , pℓ as described490

in [Arn79].491

Proof. The first row and column of (6.1) can be read from (1.14). It remains to show the triangular492

form of K̄ and that the anti-diagonal entries, and only these, are non-zero constant multiples of pℓ. By493

inspection, the degree of Ki
j is wi+wj −w1. By (1.2), (1.4) and (1.5), the degree of Ki

j with i+ j = ℓ+1494

equals h = wℓ, and hence K̄i
j = αjpℓ for some αj ∈ C. Provided W is not of type D2k, the degrees495

w1, . . . , wℓ of the basic invariants are pairwise distinct. It follows that:496

• All Ki
j with i+ j > ℓ+ 1 have degree strictly between wℓ and 2wℓ and hence have a linear part497

equal to zero. In particular, K̄ has the claimed triangular shape.498

• All Ki
j with i+ j < ℓ+ 1 have degree less than wℓ, and hence do not involve pℓ.499

But by (1.11), (1.12), and Theorem 1.2, detK = ∆2 is a monic polynomial of degree ℓ in pℓ. It follows500

that α2 · · ·αℓ−2 6= 0. Finally the symmetry property αi = αℓ+1−i comes from the symmetry of K.501

In the case ofD2k, the same argument shows that the pℓ-coefficient matrix of K̄ is a constant symmetric502

anti-diagonal block matrix, where i and j are in the same block exactly if wi = wj . By the procedure in503

the proof of [MS10, Lem. 3.6] it can be turned into a symmetric anti-diagonal matrix by linear algebra504

on the basic invariants. �505

Remark 6.3. By (1.4), the minor M ℓ
ℓ is not changed by the change of basic invariants in Proposition 6.1.506

For K̄ as in (6.1), we set

(M̄ i
j) := ad(K̄), ĪD :=

〈
M̄ ℓ

1 , . . . , M̄
ℓ
ℓ

〉
.

Note that because (rc) holds, ĪD =
〈
M̄ i

j | 1 ≤ i, j ≤ ℓ
〉
.507

Lemma 6.4. dM ℓ
ℓ (Der(− logD)) = ID.508

Proof. The strategy is the same as in the proof of the analogous result in [MS10]. We replace δi by its
linear part δ̄i whose coefficients are in the i’th row/column of K̄ in (6.1). Then it suffices to prove that
the inclusion

(6.2) dM̄ ℓ
ℓ (
〈
δ̄1, . . . , δ̄ℓ

〉
) ⊆ ĪD.

obtained from Proposition 4.11 is an equality. The polynomial expansion of the minor M̄ ℓ
ℓ−i+1 contains509

the distinguished monomial pip
ℓ−2
ℓ with non-zero coefficient. This monomial does not appear in the510
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expansion of M̄ ℓ
j for j 6= i. In particular the expansion of M̄ ℓ

ℓ contains the monomial p1p
ℓ−2
ℓ , with511

coefficient (−1)ℓ−2ιw1α, where ι is the sign of the order-reversing permutation of 1, . . . , ℓ − 1, and512

α := α2 · · ·αℓ−1.513

We claim that dM̄ ℓ
ℓ (δ̄i) contains the monomial pip

ℓ−2
ℓ with non-zero coefficient, and no other of the514

distinguished monomials. This shows that (6.2) is an equality and proves the lemma.515

Contributions to the coefficient of pjp
ℓ−2
ℓ in the expansion of dM̄ ℓ

ℓ (δ̄i) arise as follows:516

(1) By applying the derivation pj∂p1
to the monomial p1p

ℓ−2
ℓ . This happens only when i = j, and

in this case the resulting contribution to the coefficient of pjp
ℓ−2
ℓ is

δi,j(−1)ℓ−2ιwiw1α.

(2) By applying the derivation pℓ∂pk
to the monomial pjpkp

ℓ−3
ℓ . This derivation appears in δ̄i only if

k = ℓ− i+1, and then with coefficient αi; also this monomial appears in M̄ ℓ
ℓ only if k = ℓ− j+1,

and hence i = j. If 2j = ℓ+1, the monomial pjpℓ−i+1p
ℓ−3
ℓ appears in the expansion of M̄ ℓ

ℓ with
coefficient

δi,j(−1)ℓ−1ιwjwℓ−j+1α/αj ,

otherwise, it appears twice with that coefficient. The resulting contribution to the coefficient of
pjp

ℓ−2
ℓ in dM̄ ℓ

ℓ (δ̄i) is

δi,j(−1)ℓ−1ιαwjwℓ−j+1

if 2j = ℓ+ 1, or twice this if 2j 6= ℓ+ 1.517

Therefore pjp
ℓ−2
ℓ can appear in dM̄ ℓ

ℓ (δi) with non-zero coefficient only if i = j, and in this case the
coefficient is non-zero provided {

w1 6= wj , if 2j = ℓ+ 1,

w1 6= 2wℓ−j+1, if 2j 6= ℓ+ 1.

These conditions hold by (1.4). �518

Theorem 6.5. Let D′ = {M ℓ
ℓ = 0}. Then D +D′ is a free divisor.519

Proof. Here the proof is identical to the proof of the comparable result of [MS10, Prop. 3.10]. By

Lemma 6.4, there are vector fields δ̃1, . . . , δ̃ℓ ∈ Der(logD) such that

(6.3) dM ℓ
ℓ (δ̃i) = M ℓ

i .

We may take δ̃ℓ equal to a constant multiple of the Euler vector field δ1. Since δ1, . . . , δℓ is a basis of520

Der(− logD), there exist Bi
j ∈ R such that δ̃i =

∑ℓ
j=1 B

j
i δj . By the proof of Lemma 6.4, the matrix521

B = (Bi
j) is invertible. Note that the Saito matrix of the basis δ̃1, . . . , δ̃ℓ is then KB. Let K ′ be obtained522

from the matrix K by deleting its last column. The columns of K ′ give relations among the generators523

M ℓ
1 , . . . ,M

ℓ
ℓ of ID, by Cramer’s rule.524

For each relation
∑ℓ

i=1 λiM
ℓ
i = 0, (6.3) gives

ℓ∑

i=1

λiδ̃i(M
ℓ
ℓ ) = dM ℓ

ℓ

( ℓ∑

i=1

λiδ̃i
)
=

ℓ∑

i=1

λiM
ℓ
i = 0,

so
ℓ∑

i=1

λiδ̃i ∈ Der(− logD) ∩Der(− logD′) = Der(− log(D +D′)).

Because δ̃ℓ is a scalar multiple of δ1, we also have δ̃ℓ ∈ Der(− log(D +D′)). Let K ′′ denote the matrix525

formed by adjoining to K ′ the extra column (0, . . . , 0, 1)t. Thus the columns of the ℓ× ℓ matrix KBK ′′
526

are the coefficients of vector fields in Der(− log(D + D′)), and det(KBK ′′) ≡ ∆2M ℓ
ℓ mod C∗ where527

∆2 = detK is a reduced equation for D. Now provided528

(1) M ℓ
ℓ is reduced, and529

(2) M ℓ
ℓ and ∆2 have no common factor,530

it follows from Saito’s criterion that D + D′ is a free divisor, and the vector fields represented by the531

columns of KBK ′′ form a free basis for Der(− log(D +D′)).532

By [MP89, Cor. 3.15], M ℓ
ℓ generates (over R̃D) the conductor ideal of the map D̃ → D. It follows that533

D ∩D′ = V (ID) = Sing(D) has codimension 2, and hence (2) holds. It suffices to check (1) at generic534

points of Sing(D). Using Proposition 4.13, this reduces to checking (1) in the case ℓ = 2 discussed in535

Section 4.4. But in this case M2
2 = 2p1 is reduced by (4.11). �536
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Corollary 6.6. A + p−1(D′) is a free divisor.537

Proof. We continue with the notation of the proof of Theorem 6.5. Consider the vector fields represented538

by the columns of J t(BK ′′) ◦ p. Since JJ tBK ′′ = KBK ′′, these vector fields are lifts to V of the vector539

fields represented by the columns of KBK ′′; they are therefore logarithmic with respect to p−1(D′).540

Since they are linear combinations of the columns of J t they are logarithmic with respect to A , and541

thus with respect to A + p−1(D′).542

By (1.11), detJ = ∆ is a reduced equation of A . Since detK ′′ = ±M ℓ
ℓ is reduced and, along V (M ℓ

ℓ ),543

p is generically a submersion (for the critical set of p is A , which meets V (M ℓ
ℓ ◦ p) only in codimension544

2), det(K ′′ ◦ p) is a reduced equation for V (M ℓ
ℓ ◦ p). As detB ∈ C∗, det(J t(BK ′′) ◦ p) is therefore a545

reduced equation for A + p−1(D′), and the corollary follows by Saito’s criterion. �546

Example 6.7. The reflection arrangement for An consists of the intersection of V := {
∑n+1

i=1 xi = 0} ⊂547

Cn+1 with the union of the hyperplanes {xi = xj}. For A2, the composite equation M ℓ
ℓ ◦ p defining548

p−1(D′) in Corollary 6.6 is equal, on V , to the second elementary symmetric function, σ2. For A3, this549

becomes 8σ2σ4 − 9σ2
3 − 2σ3

2 .550
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