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PARTIAL NORMALIZATIONS OF

COXETER ARRANGEMENTS AND DISCRIMINANTS

MICHEL GRANGER, DAVID MOND, AND MATHIAS SCHULZE

To the memory of V.I. Arnol’d

Abstract. We study natural partial normalization spaces of Coxeter arrangements and discriminants
and relate their geometry to representation theory. The underlying ring structures arise from Dubrovin’s
Frobenius manifold structure which is lifted (without unit) to the space of the arrangement. We also

describe an independent approach to these structures via duality of maximal Cohen–Macaulay fractional
ideals. In the process, we find 3rd order differential relations for the basic invariants of the Coxeter
group. Finally, we show that our partial normalizations give rise to new free divisors.
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Introduction

V.I. Arnol’d was the first to identify the singularities of type A,D and E as the simple singularities
– those that are adjacent to only finitely many other types. He also uncovered the links between the
Coxeter groups of type Bn, Cn and F4 and boundary singularities, see [Arn79]. In the latter paper
his formulæ for generators of Der(− logD) parallels K. Saito’s definition of free divisors. Along with
Brieskorn, Dynkin, Gelfan’d, and Gabriel, Arnol’d revealed the ADE list as one of the central squares in
mathematical heaven, where representation theory, algebra, geometry and topology converge. As with
so many of Arnol’d’s contributions, his work on this topic has given rise to a huge range of further work
by others.

If f : X = (Cn, 0) → (C, 0) = S is a complex function singularity of type An, Dn, E6, E7 or E8, then
the discriminant D in the base B = (Cµ, 0) of a miniversal deformation F : X×B → S of f is isomorphic
to the discriminant of the Coxeter group of the same name. This is only the most superficial feature of
the profound link between singularity theory and the geometry of Coxeter groups which Arnol’d helped
to make clear.

Date: August 2, 2011.
1991 Mathematics Subject Classification. 20F55, 17B66, 13B22.
Key words and phrases. Coxeter group, logarithmic vector field, free divisor.
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The starting point of this paper is the fact, common to Coxeter groups and singularities, that a Saito
matrix K of the discriminant D is also the presentation of a ring. As D is a free divisor, the module of
logarithmic vector fields Der(− logD) has a basis consisting of µ vector fields, and K is the µ×µ-matrix
of its coefficients with respect to a basis for the module of all vector fields ΘB . On the singularity theory
side these two roles are well known. Let h be a defining equation for D. Then K appears in the exact
sequence

0 // O
µ
B

K
// ΘB

dh
// JD // 0

which defines Der(− logD) as the vector fields which preserve the ideal of D. If Σ ⊂ X ×B denotes the
relative critical locus defined by the relative Jacobian ideal J rel

F of F , and Σ0 = Σ ∩ V (F ), then K also
appears in the exact sequence

0 // Der(− logD)
K

// ΘB
dF

// OΣ0
// 0

in which dF maps a vector field η ∈ ΘB to the function dF (η̃) on Σ0, where η̃ is a lift of η to X × B.
As OΣ is free over OB of rank µ, we can make the identifications

OΣ
∼= O

µ
B
∼= ΘB ,

and reinterpret K as the matrix of the OB-linear operator induced on OΣ by multiplication by F , whose
cokernel is also, evidently, OΣ0 .

Coxeter groups of type ADE correspond to miniversal deformations of singularities of function germs
(Cn, 0) → (C, 0), and the groups of type Bk, Ck and F4 correspond in a similar way to boundary
singularities, for which a similar argument shows that the cokernel of K is naturally a ring.

Nevertheless, also for the remaining Coxeter groups G2, I2(p), H3 and H4, the cokernel of the Saito
matrix carries a natural ring structure. This can be seen in two ways. The first involves the Frobenius
structure constructed on the orbit space by Dubrovin in [Dub98], following K. Saito. Here a principal
ingredient is a fibre-wise multiplication on the tangent bundle, which coincides with the multiplication
coming from OΣ in the singularity case. We recall the necessary details of Dubrovin’s construction,
following C. Hertling’s account in [Her02], in Section 4.

The second route is purely algebraic, and does not require the machinery of the Frobenius structure.
Instead, it relies on embedding cokerK into the total ring of fractions Q(OD) and on the duality functor
−∨ = HomOD

(−,OD) on maximal Cohen–Macaulay fractional ideals, and harnesses the multiplication
of Q(OD). In order for this construction to work it is necessary and sufficient that the (µ− 1)× (µ− 1)
minors of K satisfy the so-called rank condition (rc), described in [Cat84] and later in [MP89], which we
recall in Section 1. Its significance lies in guaranteeing that

EndOD
(JD) →֒ HomOD

(JD,OD)

is surjective; the 2-periodicity of an OD-free resolution then allows the identification of coker(K) with
HomOD

(J,OD) and hence with the ring EndOD
(JD). This ring is naturally contained in Q(OD) with

composition of endomorphisms corresponding to multiplication.
It is in principle possible to prove that the rank condition holds for K by explicit calculation in OB ,

but calculations are easier if we begin in the space on which the Coxeter group acts, and then deduce
the result for K. We prove

Theorem. Let A be the reflection arrangement of a Coxeter group W in a vector space V , and let A
be a Saito matrix for A . Then At satisfies the rank condition, and, in consequence, coker(At) has a
natural ring structure.

Note that here it is the transpose of the Saito matrix whose cokernel is a ring. Saito matrices for
the discriminants of Coxeter groups are symmetric, so this issue does not arise there. In Section 3
we use invariant theory due originally to Solomon to reduce (rc) for At to a condition relating the
Gorenstein algebra structure of the fibre of p : V → V/W over 0, and its W -module structure as the
regular representation. This is a 3rd order partial differential condition on the basic invariants which we
call the Hessian rank condition (hrc). In Theorem 3.12, we prove it in all cases except for E6, E7 and
E8, where we conjecture it to be true.

In Section 4 we take the opposite route: beginning with the multiplicative structure on ΘB and
coker(K) coming from Dubrovin’s Frobenius structure, we endow both ΘV and coker(A) with a multi-
plication, and ΘV with a ΘB-module structure, whose crucial feature is that the derivative tp : ΘV →
ΘB ⊗OB

OV of p is ΘB-linear. From this, our (rc) follows in all cases. On ΘV , but not on coker(At),
this multiplication lacks a neutral element.
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The space Spec(coker(K)) is normal exactly in the ADE case; on the other hand Spec(coker(At)) is
normal only in the case of A1. We discuss the geometry of these two spaces, and their link with the
representation theory in Section 2.3.

In our final section we show that by adding to D a divisor which pulls back to the conductor of the
ring extension OD → coker(K), we obtain a new free divisor (Theorem 5.5). This was already shown
on the singularity side in [MS10]. The preimage in V of this free divisor is a free divisor containing the
reflection arrangement (Corollary 5.6).

Acknowledgments. We thank the “Mathematisches Forschungsinstitut Oberwolfach” for two two-week
“Research in Pairs” stays in 2010 and 2011.

1. Ring structures on cokernels of square matrices

1.1. Fractional ideals. Let R be a regular local or graded C-algebra with maximal ideal m, D = V (∆)
a divisor on X = SpecR, and set RD := R/R∆.

Definition 1.1. A fractional ideal (over RD) is a finitely generated RD-submodule of the total ring of
fractions Q(RD) which contains a non-zero-divisor.

Proposition 1.2 ([dJvS90, Prop. (1.7)]). The duality functor −∨ := HomRD
(−, RD) preserves the class

of fractional ideals, reverses inclusions, and is an involution on the class of maximal Cohen–Macaulay
fractional ideals.

Notation 1.3. Let Λ = (Λi
j) be an ℓ×ℓmatrix with entries in R and ∆ = detΛ 6= 0, and let (mi

j) = adΛt

be its transpose adjoint, that is, mi
j equals (−1)i+j times the minor determinant of Λ obtained by deleting

row i and column j. We denote by Λ′ the matrix obtained from Λ by deleting its last row.
Let F k(M) be the kth Fitting ideal of M = cokerΛ, that is, the ideal in R generated by the (ℓ −

k)× (ℓ− k) minors of Λ. By g1, . . . , gℓ we denote the images in M of the standard basis elements of Rℓ.
Write F k

D(M) = F k
RD

(M) = F k(M)RD.
By M being a ring, we will mean that it has a ring structure with respect to which RD, embedded

via r 7→ r · 1M , is a subring.

Note that by Cramer’s rule we have

(1.1) mi
jgk = mk

j gi.

In the following we recall the proof that when D is reduced then M is a fractional ideal. This requires
some preparation on zero divisors in RD.

Lemma 1.4. An element r ∈ R is zero in RD if r ∈ ∆Rp for all minimal primes p over ∆. In particular,
r is not a zero-divisor in RD if r 6∈ pRp for all such primes.

Proof. The ring RD is Cohen–Macaulay and hence unmixed, that is, all associated primes of RD are
minimal. �

Lemma 1.5. If D is reduced then F 1
D(M) contains a non-zero-divisor. In case M is a ring and gℓ = 1M ,

some linear combination Uℓ =
∑

j ujm
ℓ
j is not a zero-divisor in RD.

Proof. Let p define a prime divisor of D. By assumption Rp is regular and D reduced. So by Cohen’s

structure theorem, the completion of Rp is a formal power series ring R̂p = C[[t]] with t = ∆. Considering
Λ as a map from X to matrix space SpecC[Xi

j ], we can write ∆ = det ◦Λ, from which we obtain by the
chain rule

1 =
∂∆

∂t
=
∑

i,j

∂ det

∂Xi
j

◦ Λ ·
∂Λi

j

∂t
=
∑

i,j

mi
j

∂Λi
j

∂t

So there is an mi
j which is not in tC[[t]] = ∆̂Rp and hence not in ∆Rp. Then the claim follows from

Lemma 1.4 by taking a suitable linear combination of the mi
j . If M is a ring and gℓ = 1M , the latter

can be written using (1.1) as
∑

i,j

ui,jm
i
j =

∑

i,j

ui,jgim
ℓ
j =

∑

j

ujm
ℓ
j = Uℓ

where uj =
∑

i ui,jgi. �
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Lemma 1.6. Assume that D is reduced. Given u1, . . . , uℓ ∈ RD, let Uk =
∑

j ujm
k
j for k = 1, . . . , ℓ.

Suppose that for some k, Uk is not a zero divisor in RD. Then g1, . . . , gℓ have the same RD-relations as
U1, . . . , Uℓ and as the columns (mp

1, . . . ,m
p
ℓ ) of adΛ. If, moreover, M is a ring and gℓ is its multiplicative

neutral element, then Uℓ is not a zero divisor in RD.

Proof. Notice first the exactness of the 2-periodic sequence

(1.2) · · · // Rℓ
D

Λ
// Rℓ

D
adΛ

// Rℓ
D

Λ
// · · · .

Generically on D, Λ has rank ℓ− 1 by Lemmas 1.4 and 1.5, and hence adΛ has rank 1. It follows using
Lemma 1.4 that

∑
p αpUp = 0 in RD if and only if

∑
p αpm

p
j = 0 for all j. By the exactness of (1.2),

this is equivalent to (α1, . . . , αℓ)
t being in the column space of Λ, and thus to

∑
k αkgk = 0. This proves

the first claim.
Now if M is a ring and gℓ = 1M , then equation (1.1) yields Uk = gkUℓ. The second claim follows. �

Proposition 1.7. If D is reduced, then M is isomorphic to a fractional ideal between RD and Q(RD).

Proof. Let p1, . . . , pr be the minimal primes over ∆. By left and right-multiplication of Λ by invertible
matrices (i.e. choosing a new set of generators of M , and a new set of generators for the relations among
these generators), one can arrange that mℓ

ℓ 6∈ pk for any k. By Lemma 1.4, this element is then a non-zero
divisor in RD. To see this, fix k and j and consider the set

{(α1, . . . , αℓ) ∈ C
ℓ |
∑

i

αim
i
j ∈ pk}.

By Lemma 1.5, this set is algebraic and not equal to Cℓ for some j(k). As C is infinite, there exist
(α1, . . . , αℓ) ∈ Cℓ such that for each k = 1, . . . , r, there is a j(k) such that

∑

i

αim
i
j(k) 6∈ pk.

Left-multiply adΛt by some P ∈ GLℓ(C) with last row (α1, . . . , αℓ) (this corresponds to left-multiplying
Λ by a unit times (P−1)t). Now mℓ

j(k) 6∈ pkRpk
for any k. The sets

{(β1, . . . , βℓ) ∈ C
ℓ |
∑

j

βjmℓ
j ∈ pk}

depending on k are then once again algebraic and not equal to Cℓ. Thus there exists (β1, . . . , βℓ) such
that

∑
j β

jmℓ
j 6∈ pk for all k = 1, . . . , r. As before, right-multiply adΛt by Q ∈ GLℓ(C) with last column

(β1, . . . , βℓ). Now mℓ
ℓ is not a zero divisor in RD.

By Lemma 1.6, M embeds into Q(RD) by sending gk to mk
ℓ /m

ℓ
ℓ for k = 1, . . . , ℓ. Since gℓ is sent to

1RD
, the image of M contains a non zero divisor, and thus M is a fractional ideal as claimed. �

1.2. Rank condition.

Definition 1.8. We say that the rank condition (rc) holds for Λ if, possibly after left multiplication
by some invertible matrix over R, the ideal F 1(M) is generated by the maximal minors of the matrix
obtained from Λ by deleting one of its rows, and grade(F 1(M)) ≥ 2.

Note (rc) implies that F 1
D(M) is a maximal Cohen–Macaulay OD-module, by the Hilbert–Burch

theorem.

Proposition 1.9. (rc) is a property of M .

Proof. Let P be an invertible ℓ× ℓ matrix with entries in R. Then

(ad(ΛP ))t = (adΛ)t(adP )t,

so if all entries in (adΛ)t are linear combinations of the entries in the last row then the same is true for
ad(ΛP )t. Thus if (rc) holds for Λ then it holds for ΛP .

By linear algebra in C = R/m, left and right multiplication by invertible matrices brings Λ to the form(
Λ0 0
0 Ir

)
where Ir is the r × r identity matrix and all entries of Λ0 lie in m. Evidently (rc) holds for

Λ if and only if it holds for Λ0. So given a second square presentation matrix Λ′ of M , we may assume
that both Λ and Λ′ have entries in m and are hence minimal presentations. Then by Nakayama’s lemma
Λ and Λ′ have the same size, and there are invertible ℓ × ℓ matrices P and Q such that Λ′ = PΛQ. It
follows that (rc) holds for Λ if and only if it holds for Λ′. �
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As the proof of Proposition 1.7 makes clear, many different embeddings of M →֒ Q(RD) are possible.
In case M has a multiplicative structure making it into a ring, there is no reason why any of these
embeddings should be a multiplicative homomorphism. Nevertheless if Λ satisfies (rc), there is an
embedding which achieves just this. We shall need the following

Lemma 1.10 ([dJvS90, Prop. 1.10]). Assume that the ideal I ⊂ R generated by the maximal minors of
Λ′ has codimension 2. Then the ideal ID = IRD has free resolution of the form

(1.3) 0 // Rℓ
Λt

// Rℓ
(mℓ

1
,...,mℓ

ℓ)
// ID // 0 .

Proof. Consider the following diagram:

(1.4) 0 // Rℓ−1
Λ′t

//
� _

��

Rℓ
(mℓ

1
,...,mℓ

ℓ)
// I //

����

0

0 // Rℓ
Λt

// Rℓ
(mℓ

1
,...,mℓ

ℓ)
// ID // 0

The upper row is exact by the Hilbert-Burch theorem; the lower row is evidently a complex, and exact
except perhaps in the center. But expanding ∆ = detΛ by its last row, shows that ∆ ∈ I, and thus
generates the kernel of the projection I ։ ID. So the lower sequence in (1.4) is exact in the middle
too. �

The following theorem show that, provided D is reduced, (rc) is equivalent to M being is a ring.

Theorem 1.11 ([MP89, Thm. 3.4, Prop. 3.14], [dJvS90, Lem. 1.6, Cor. 1.11.(iii), Thm. 1.12]). Assume
that D is reduced. Then (rc) for M implies that F 1

D(M) is a maximal Cohen–Macaulay fractional ideal
with dual

F 1
D(M)∨ ∼= EndRD

(F 1
D(M)) ∼= M.

In particular, composition of endomorphisms defines a multiplication in M making M into a subring of
Q(RD). Conversely, (rc) holds if M is a ring.

Proof. Suppose that F 1(M) is generated by the maximal minors of Λ′. Then Lemma 1.10 yields a
presentation

(1.5) 0 // Rℓ
Λt

// Rℓ
(mℓ

1
,...,mℓ

ℓ)
// F 1

D(M) // 0 .

In particular, F 1
D(M) is a maximal Cohen–Macaulay RD-module. It is a fractional ideal contained in

RD by Lemma 1.5, and hence F 1
D(M)∨ is a fractional ideal containing RD by Proposition 1.2.

Dualizing (1.5) with respect to RD gives the exact sequence

0 // F 1
D(M)∨ // Rℓ

D
Λ

// Rℓ
D

so F 1
D(M)∨ ∼= kerRD

Λ ∼= cokerRD
Λ = M by exactness of (1.2). However kerRD

Λ = imRD
adΛ, again

by exactness of (1.2). Thus F 1
D(M)∨ is generated by the homomorphisms ϕ1, . . . , ϕℓ, where

(1.6) ϕi(m
ℓ
j) = mi

j , j = 1, . . . , ℓ.

All of these homomorphisms in fact map into F 1
D(M), so F 1

D(M)∨ ∼= EndRD
(F 1

D(M)). So M is a ring
as claimed. For the converse statement we refer to [MP89, Thm. 3.4]. �

1.3. Rings associated to free divisors. We shall now assume thatD = V (∆) is an Euler homogeneous
free divisor in X = (Cℓ, 0) with Saito matrix A. Then we have an exact sequence

(1.7) 0 // Rℓ
A

// Rℓ
(∆1,...,∆ℓ)

// RD
// RD/JD // 0 ,

where ∆j := ∂∆/∂xj for j = 1, . . . , ℓ, and JD := RDJ∆ is the Jacobian ideal of D. Note that ∆ ∈ J∆
by the Euler relation. By adding multiples of the Euler vector field χ = δ1 to the remaining members
δ2, . . . , δℓ of a Saito basis of D, we may assume that these annihilate ∆. We shall assume that A is
obtained from such a basis, and denote by A′ the submatrix of coefficients of δ2, . . . , δℓ. We say that D
satisfies (rc) if (rc) holds for Λ = At. In this case, we write

R̃D := M = cokerΛ ⊂ Q(RD)

for the ring of Theorem 1.11.
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Remark 1.12. Free divisors arising as the discriminant of reflection arrangements (see Section 2.1 below),
or as the discriminant in the base of a versal deformation of an isolated singularity of a holomorphic
function, admit a symmetric Saito matrix. In such a case, M ∼= JD by (1.7).

Lemma 1.13. We have m1
j =

∆j

deg∆ for j = 1, . . . , ℓ.

Proof. By Cramer’s rule the logarithmic 1-form ω = ω1 := 1
∆

∑
j m

1
jdxj satisfies

〈ω, δj〉 =

{
1 if j = 1,

0 if j = 2, . . . , ℓ,

as does ω = 1
deg∆

d∆
∆ . �

It is well known that for any algebraic or analytic space D satisfying Serre’s condition S2, the frac-
tional ideal EndRD

(J∨
D) is naturally contained in the integral closure of RD in Q(RD), and the inclusion

RD →֒ EndRD
(J∨

D) gives a partial normalization (see for example [Vas98, Ch. 2, §2; Ch. 6, §2]. Grauert
and Remmert showed in [GR71] (see also [GR84, Ch. 6, §5]) that for analytic spaces, RD = EndRD

(J∨
D)

precisely at the normal points of D, and the analogous result for algebraic spaces was shown by Vascon-
celos in [Vas91].

Proposition 1.14. If the free divisor D satisfies (rc) then R̃D
∼= EndRD

(JD) ∼= EndRD
(J∨

D).

Proof. The presentation (1.5) of F 1
D(M) coincides with that of JD in (1.7); it follows that as RD-modules

the two ideals are isomorphic. Hence, by Theorem 1.11,

R̃D = EndRD
(F 1

D(M)) ∼= EndRD
(JD).

Since D is free, JD is maximal Cohen–Macaulay, and then reflexive by [dJvS90, Prop. (1.7) iii)]. So
dualizing induces an isomorphism EndRD

(JD) ∼= EndRD
(J∨

D). �

Remark 1.15. The map ϕ1 ∈ EndRD
(F 1

D(M)) described in the proof of Theorem 1.11 gives an explicit

isomorphism F 1
D(M) ∼= JD. Indeed, ϕ1(m

ℓ
j) =

∆j

deg∆ by Lemma 1.13.

However the example of the discriminant of the reflection group B3 shows that, even under the hy-
potheses of Proposition 1.14, it is not necessarily the case that the other generators ϕi of EndRD

(F 1
D(M)),

i = 2, . . . , ℓ defined in (1.6) are isomorphisms onto their image.
A Saito matrix for the discriminant D of B3 is given by

A :=




x −4x2 + 18y −xy + 27z
2y xy + 27z −2y2 + 18xz
3z 6xz 6yz


 = Λt.

One checks that (rc) holds for D. Indeed, the ideal of maximal minors of Λ with its third row deleted,
〈
x2y − 4y2 + 3xz, x2z − 3yz, xyz − 9z2

〉
,

is equal to F 1(M). On the other hand deleting the second row from Λ gives the ideal
〈
x2z − 3yz, xyz − 9z2

〉
.

Evidently the two ideals are not isomorphic as RD-modules.

In contrast, for irreducible free divisors we have

Proposition 1.16. Assume that in addition to the hypotheses of Proposition 1.14, D is irreducible and
is not isomorphic to the Cartesian product of a smooth space with a variety of dimension < ℓ− 1. Then
each of the maps ϕi in (1.6) is an isomorphism onto its image. Let Ii denote the ideal of maximal minors
of Λ with its ith row deleted. Then, for each i = 1, . . . , ℓ, R/Ii = RD/IiRD is a Cohen–Macaulay ring
with support DSing.

Proof. Because ∆ ∈ Ii, the (ℓ − 1)-dimensional components of V (Ii) are among the components of
D. Since ∆ is irreducible, the only component possible is D itself. But then because D is reduced,
we would have Ii ⊂ 〈∆〉. This is absurd, for by hypothesis all entries of Λ lie in the maximal ideal,
and ∆ =

∑
j Λ

i
jm

i
j . Thus V (Ii) is purely ℓ − 2-dimensional. From this the result now follows by

Lemma 1.10. �

Our Propositions 1.14 and 1.16 are closely related to [Vas98, Prop. 6.15]:
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Proposition 1.17. Suppose that that RD/JD is Cohen–Macaulay of codimension 2 (this is equivalent
to D being a free divisor). Then

(1.8) JD ·HomRD
(JD, RD) = F 1

D(M).

Here both ideals JD and HomRD
(JD, RD) are viewed as fractional ideals in Q(RD).

The left hand side of (1.8) is the so-called trace ideal of J∆; it is the set

{ϕ(g) | ϕ ∈ HomRD
(J∆, RD), g ∈ J∆}.

Buchweitz, Ebeling and Graf von Bothmer give a criterion under which, for a free divisor D appearing
as the discriminant in the base-space of a versal deformation of a singularity, the ring EndRD

(JD)
coincides with the normalization R̄D of RD:

Proposition 1.18 ([BEGvB09, Thm. 2.5, Rmk. 2.6]). If D ⊂ S is the discriminant in the smooth base-
space of a versal deformation f : X → S and the module of f -liftable vector fields in DerS is free, then
provided codimS f(XSing) ≥ 2, this module coincides with Der(− logD). If in fact codimS f(XSing) ≥ 3,
then EndRD

(J∆) = R̄D.

2. Ring structures associated with Coxeter groups

2.1. Review of Coxeter groups. For more details on the material reviewed in this section, we refer
to the book of Humphreys [Hum90]. Let VR be an ℓ-dimensional R-vector space and let V = VR ⊗R C.
Consider a finite group W ⊂ GL(V ) generated by reflections defined over R, that is, W arises from
W ⊂ GL(VR) by extension of scalars. Any such representation W decomposes into a direct sum of
irreducible representations, and W is irreducible if and only if the corresponding root system is so. The
irreducible isomorphism types are Ak, Bk, Dk, E6, E7, E8, F4, G2, H3, H4, and I2(k).

The group W acts naturally on the symmetric algebra S := C[V ] by the contragredient action, and
we denote by R := SW the corresponding graded ring of invariants. By a choice of linear basis, we
identify S = C[x1, . . . , xℓ]. The natural inclusion R ⊂ S turns S into a finite R-module of rank #W .
The averaging operator

(2.1) #: S → R, g 7→ g# :=
1

#W

∑

w∈W

gw

defines a section of this inclusion.
By Chevalley’s theorem ([Hum90, Thm. 3.5]), R is a polynomial algebra R = C[p1, . . . , pℓ] where

(2.2) p1, . . . , pℓ ∈ R

are homogeneous W -invariant polynomials. We set

(2.3) deg pi = mi + 1 = wi

and assume that m1 ≤ · · · ≤ mℓ. Then the degrees wi, or the exponents mi, are uniquely determined
and

(2.4)

ℓ∑

i=1

mi = #A

where A is the arrangement of reflection hyperplanes of W ([Hum90, Thm. 3.9]).
We make this more precise in the case W is irreducible. Then the eigenvalues of any Coxeter element

are exp(2πimi

h ) where h is the Coxeter number ([Hum90, Thm. 3.19]). Moreover,

1 = m1 < m2 ≤ · · · ≤ mℓ−1 < mℓ = h− 1,(2.5)

mi +mℓ−i+1 = h.(2.6)

In particular, this implies that
∑ℓ

i=1 mi =
ℓh
2 . For m1 = 1, the W -invariant 2-form p1 is unique up to a

constant factor. By a choice of sign, it determines a unique W -invariant Euclidean inner product (·, ·)
on V , which turns W into a subgroup of O(V ) and serves to identify V and V ∗. With respect to dual
bases of V and V ∗ we notice that the two corresponding inner products have mutually inverse matrices.
At the level of V ∗, we denote by

Γ := ((xi, xj)) = ((dxi, dxj))
7



the (symmetric) matrix of (·, ·) with respect to coordinates x1, . . . , xℓ. In suitable coordinates

(2.7) p1 =

ℓ∑

i=1

x2
i , (x, y) =

ℓ∑

i=1

xiyi, Γ = (δi,j).

We refer to such coordinates as standard coordinates. In case W is reducible, we have the above situation
on each of the irreducible summands separately.

2.2. Reflection arrangement and discriminant. Geometrically the finiteness of S over R means
that the map

(2.8) V = SpecS
p

// SpecR = V/W

is finite of degree #W . We identify the reflection arrangement A of W with its underlying variety
⋃

A =⋃
H∈A

H. Let ∆ be a reduced defining equation for A , and denote by D = p(A ) the discriminant. An

anti-invariant of W is a relative invariant f ∈ S with associated character det−1, that is, wf = det−1(w)f
for all w ∈ W . The following crucial fact due to Solomon [Sol63, §3, Lem.] (see also ([Hum90, Prop.
3.13(b)]) implies that ∆2 is a reduced defining equation for D.

Theorem 2.1 (Solomon). R∆ is the set of all anti-invariants. �

A second fundamental fact, due to K. Saito [Sai93, §3], is the following

Theorem 2.2 (Saito). For irreducible W , ∆2 is a monic polynomial in pℓ of degree ℓ, that is,

∆2 =

ℓ∑

k=0

aℓ−k(p1, . . . , pℓ−1)p
k
ℓ , with a0 = 1. �

We denote by DerS and DerR the modules of vector fields on V = SpecS and V/W = SpecR
respectively. The group W acts naturally on DerS . Terao [Ter83] showed that each θ ∈ Der(− logD)
has a unique lifting p−1(θ) to V and that the set of lifted vector fields is

p−1 Der(− logD) = (DerS)
W , p∗ Der(− logD) = (DerS)

W ⊗R S = Der(− logA ),

and both A and D are free divisors. This can be seen as follows: We denote by

(2.9) J := (∂xj
(pi))

the Jacobian matrix of p in (2.8) with respect to the coordinates x1, . . . , xℓ and p1, . . . , pℓ. Via the
identification of the 1-form dpi with a vector field ηi such that (dpi, v) = 〈ηi, v〉,

dpi =

ℓ∑

j=1

∂xj
(pi)dxj ↔ ηi =

ℓ∑

j=1

〈ηi, dxj〉∂xj
=

ℓ∑

j=1

(dpi, dxj)∂xj
(2.10)

=

ℓ∑

k,j=1

∂xk
(pi)(dxk, dxj)∂xj

=

ℓ∑

k,j=1

∂xk
(pi)(xk, xj)∂xj

,

the basic invariants define invariant vector fields η1, . . . , ηℓ ∈ (DerS)
W , which must then be in Der(− logA ).

By (2.10), their Saito matrix reads

(2.11) (ηj(xi)) = ΓJ t

Now det J is an anti-invariant because J is the differential of the invariant map p = (p1, . . . , pℓ). Hence,
det J ∈ C∗∆ by Theorem 2.1, (2.4), and the algebraic independence of the pi. By modifying ∆, we can
therefore assume that

(2.12) det J = ∆.

Saito’s criterion ([Sai80, ]) then shows that A is free with basis η1, . . . , ηℓ. Applying the tangent map tp
gives vector fields δ1, . . . , δℓ ∈ DerR such that δj ◦ p = tp(ηj) with (symmetric) Saito matrix

(2.13) K = (Ki
j) := (δj(pi)) = JΓJ t

with det(JΓJ t) ∈ C∗∆2. At generic points of A , p is a fold map and hence

(2.14) δ1, . . . , δℓ ∈ Der(− logD).

Again Saito’s criterion shows that D is a free divisor with basis δ1, . . . , δℓ. In standard coordinates as in
(2.7), this proves

8



Lemma 2.3. D admits a symmetric Saito matrix K = JJ t.

If W is irreducible then, in standard coordinates as in (2.7),

(2.15) χw :=
1

2
δ1 =

ℓ∑

i=1

wipi∂pi
.

We shall refer to the grading and degrees defined by this semisimple operator as w-grading and w-degrees.
In particular, δk is w-homogeneous of degree wk −w1. If W is reducible, we have a homogeneity such as
(2.15) for each irreducible summand.

2.3. Rank conditions and associated rings. From now on we work in standard coordinates as in
(2.7). Let us abbreviate

SA := S/S∆, RD := R/R∆2.

Denote by J∆ ⊂ S and J∆2 ⊂ R the Jacobian ideals of ∆ and ∆2 respectively, and define the Jacobian
ideals

JA := J∆SA , JD := J∆2RD

of A and of D respectively. Consider the corresponding 1st Fitting ideals

(2.16) IA := F1
S(JA ), ĨA := F1

SA
(JA ) = IA · SA , ID := F1

R(JD), ĨD := F1
RD

(JD) = ID ·RD.

By (2.7), (2.11) and (2.13), we have exact sequences

0 // Sℓ
Jt

// Sℓ // JA
// 0 ,(2.17)

0 // Rℓ
K=JJt

// Rℓ // JD // 0 .

The above Fitting ideals IA and ID are generated by the sub-maximal minors of J and K respectively.
Being Saito matrices, J t and K have rank ℓ − 1 at smooth points of A and D respectively. Therefore
IA and ID are ideals of grade 2 and ĨA and ĨD are ideals of grade 1.

Stronger versions of the rank condition (rc) from Definition 1.8 turn out to hold for A and D (see
Theorem 2.12).

Lemma 2.4. For irreducible W , the rank condition (rc) holds for A if and only if IA is generated by
its homogeneous part of minimal degree

∑
i<ℓ mi =

hℓ
2 − h+ 1.

Proof. By (2.5), the part of IA of minimal degree is generated by the ℓth row of ad(J t), corresponding to
the vector field ηℓ of highest degree. From this “if” follows immediately. The converse is less obvious, and
we use a theorem of Solomon ([Sol64, Thm. 2, Cor. (2a)]) that the minors of J are linearly independent
over C. From this it follows that if IA is generated by ℓ minors, then these must be the minors of lowest
degree. �

Definition 2.5. For irreducible W , we refer to the condition defined in Lemma 2.4 as the graded rank
condition (grc) for A . Analogously, we say that the (grc) holds for D if ID is generated by the ℓth row
of ad(K), corresponding to the vector field δℓ of highest w-degree. For reducible W , we define (grc) for
both A and D by requiring it, as just defined, for each irreducible summand.

Evidently (grc) implies (rc) for D. In dimension ℓ = 2, (grc) holds trivially for A and D: IA and ID
are the graded maximal ideals of SA and RD, due to the presence in each case of an Euler vector field.
We shall look at this case in more detail in Section 2.6.

Proposition 2.6. For ℓ = 2, (grc) holds for A and D. In particular, this covers the case where W is
a direct sum of types A2, B2 = C2, G2 = I2(6), or I2(k). �

The remaining types will be studied explicitly in Section 3. By [MP89, Prop. 3.14], (rc) for A or D
yields exact sequences

0 // Sℓ
Jt

// Sℓ // ĨA
// 0 ,(2.18)

0 // Rℓ
K

// Rℓ // ĨD
// 0 ,

and the cokernels of the dual maps J ∈ EndS(S
ℓ), Kt = K ∈ EndR(R

ℓ) identify naturally with

(2.19) S̃A = EndSA
(ĨA ), R̃D = EndRD

(ĨD)
9



respectively. In particular, these cokernels carry natural ring structures, and we set

(2.20) Ã := Spec S̃A , D̃ := Spec R̃D.

Example 2.7. Let A be the reflection arrangement for W of type A1×· · ·×A1, that is a normal crossing
divisor defined by ∆ = x1 · · ·xℓ. Then

J = J t =




x1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 xℓ




.

Obviously (grc) holds true for A , and

ĨA = 〈x2 · · ·xℓ, . . . , x1 · · · x̂i · · ·xℓ, . . . , x1 · · ·xℓ−1〉 ⊂ SA = S/Sx1 · · ·xℓ.

One easily verifies that

S̃A = EndSA
(ĨA ) ∼= C[x2, . . . , xℓ]⊕ · · · ⊕ C[x1, . . . , x̂i, . . . , xℓ]⊕ · · · ⊕ C[x1, . . . , xℓ−1].

So Ã = Spec S̃A is the normalization of A in this example.

Generalizing this example we have

Lemma 2.8. The assignments W 7→ S̃A and W 7→ R̃D commute with direct sums (of representa-
tions/rings).

Proof. Assume that W = W ′⊕W ′′, and use the analogous notation to refer to the above defined objects
with W replaced by W ′ and W ′′ respectively. Then S = S′ ⊗C S′′, J is a block matrix with blocks J ′

and J ′′, ∆ = ∆′∆′′, hence IA = IA ′∆′′ + IA ′′∆′ and therefore

ĨA
∼= ĨA ′ ⊗C S′′ ⊕ S′ ⊗C ĨA ′′

by the following Lemma 2.9. Applying EndSA
yields

S̃A = S̃A ′ ⊗C S′′ ⊕ S′ ⊗C S̃A ′′ .

This proves the claim for A ; an analogous proof works for D. �

Lemma 2.9. Let f ∈ K[x] = K[x1, . . . , xr] ⊃ I, g ∈ K[y] = K[y1, . . . , ys] ⊃ J , and K[x, y] =
K[x1, . . . , xr, y1, . . . , ys]. Then

(Ig + Jf)(K[x, y]/〈fg〉) ∼= I(K[x]/〈f〉)⊗K K[y]⊕K[x]⊗K J(K[y]/〈g〉),

[Pg +Qf ] ↔ [P ]⊕ [Q].

Proof. One easily verifies that the given correspondence is well-defined in both directions. �

2.4. Relation between rings for A and D. Let us assume now that W is irreducible, and that (rc)
holds for A . Then, by [MP89, Prop. 3.14], the rings in (2.19) can be described more explicitly as follows.
We denote by

(2.21) (mi
j) := ad(J t), (M i

j) := ad(K) = ad(J t) ad(J)

the adjoint matrices of J t and K respectively, and set

(2.22) Dk = deg(mk
j ) =

∑

i

mi −mk,

which is independent of j. Then

(2.23) S̃A = 〈h1, . . . , hℓ〉SA
= SA [h1, . . . , hℓ−1]

where hi ∈ S̃A is (well-)defined by

(2.24) hi(m
ℓ
j) = mi

j for all j = 1, . . . , ℓ.

By (2.23) there is a multiplication table λk
i,j ∈ S such that

(2.25) hihj =
ℓ∑

k=1

λk
i,jhk.
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Since the grade of IA is 1 and (rc) holds, there is a suitable linear combination of the mℓ
j which is a

non-zero divisor in SA . So we can consider hi ∈ Q(SA ), where Q stands for the total ring of fractions,
and then write in Q(SA ):

(2.26) him
ℓ
j = mi

j .

Proposition 2.10. If W is irreducible then

hi =
∂pi

(∆2)

∂pℓ
(∆2)

∈ Q(SA )W .

Proof. First, differentiate ∆2 ∈ R,

2∆d∆ = d(∆2) =

ℓ∑

k=1

∂pk
(∆2)dpk

considered as an equality in Ω1
S . Then wedging with dp1 ∧ · · · ∧ d̂pi ∧ · · · ∧ dpℓ−1 gives

(−1)i∂pi
(∆2)dp1 ∧ · · · ∧ dpℓ−1 ≡ (−1)ℓ∂pℓ

(∆2)dp1 ∧ · · · ∧ d̂pi ∧ · · · ∧ dpℓ mod S∆.

Taking coefficients with respect to dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxℓ yields

∂pi
(∆2)mℓ

j ≡ ∂pℓ
(∆2)mi

j mod S∆, j = 1, . . . , ℓ.

By Theorem 2.2, ∂pℓ
(∆2) is a non-zero divisor in SA , and it follows that (2.26) holds with ∂pi

(∆2)/∂pℓ
(∆2)

in place of hi. The proposition follows. �

Proposition 2.11. The (graded) rank condition for A implies the graded rank condition for D.

Proof. We may assume that W is irreducible; by Lemma 2.4, we may further assume that (grc) holds
for A . Computing in SA using (2.21) and (2.25) and (grc) for A ,

(2.27) M i
j =

∑

r

mi
rm

j
r = hihj

∑

r

(mℓ
r)

2 =
∑

k,r

λk
i,jhk(m

ℓ
r)

2 =
∑

k,r

λk
i,jm

k
rm

ℓ
r =

∑

k

λk
i,jM

ℓ
k,

and hence

M i
j =

∑

k

λk
i,jM

ℓ
k + q∆

for some q ∈ S. Applying the averaging operator then gives

(2.28) M i
j = (M i

j)
# =

∑

k

(λk
i,j)

#M ℓ
k + (q∆)#.

By (2.1), we have

(2.29) (q∆)# =
1

|W |

∑

w∈W

qw∆w =
∆

|W |

∑

w∈W

det(w)−1qw,

using the anti-invariance of ∆. Because this is invariant, 1
|W |

∑
w∈W det(w)−1qw must be anti-invariant

and therefore an R-multiple of ∆ by Theorem 2.1. Then (q∆)# ∈ R∆2 by (2.29) and it follows from
(2.28) that

M i
j ≡

∑

k

(λk
i,j)

#M ℓ
k mod R∆2

and hence ID = I ′D + R∆2 where I ′D =
〈
M ℓ

1 , . . . ,M
ℓ
ℓ

〉
. But by (2.12), ∆2 ∈ I ′D and hence ID = I ′D as

claimed. �

Theorem 2.12. The graded rank condition holds true for all Coxeter arrangements and their discrimi-
nants.

Proof. For W irreducible of non-E-type, this follows from Propositions 2.6 and 2.11, and the discussion
in Section 3. In case W is of E-type, we invoke Theorem 1.11 and Theorem 4.5 from Section 4 combined
with [Bri71, Slo80] and [MP89]. �

By [MP89, Cor. 3.15], we therefore have

Theorem 2.13. Ã is Cohen–Macaulay and D̃ is Gorenstein. �
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Using Theorem 2.1, one verifies that the averaging operator (2.1) induces a commutative diagram of
R-modules

Q(RD)
� � // Q(SA )

#
// Q(SA )W Q(RD)∼=

oo

R̃D
� � //____

?�

OO

S̃A

#
//_____

?�

OO

S̃W
A

?�

OO

R̃D∼=
oo_ _ _ _ _

� ?

OO

RD

?�

OO

� � // SA

#
//

?�

OO

(SA )W
?�

OO

RD

?�

OO

∼=
oo

where the dashed maps results from the following

Proposition 2.14. For gi ∈ R̃D defined like hi ∈ S̃A in (2.24), we have

(2.30) hi = gi =
M i

ℓ

M ℓ
ℓ

∈ Q(RD),

and hence

(2.31) R̃D = 〈g1, . . . , gℓ〉RD
= RD[g1, . . . , gℓ−1] = (S̃A )W .

Proof. As in (2.27), we compute in SA that

M i
j =

∑

r

mi
rm

j
r = hi

∑

r

mℓ
rm

j
r = hiM

ℓ
j .

By [MP89, Thm. 3.4], M ℓ
ℓ defines the conductor of RD → R̃D and is therefore a non-zero divisor. Then

[MP89, Thm. 3.14] yields (2.30) and (2.31) follows. �

2.5. Local trivialization. The integral varieties of Der(− logA ) and Der(− logD) form Saito’s loga-
rithmic stratification defined in [Sai80, §3], which we denote by L(A ) and L(D) respectively. We shall

locally trivialize Ã and D̃ along logarithmic strata with slices of the same type, with W replaced by the
subgroup fixing the strata. In case of Ã the trivialization is algebraic, in case of D̃, we need to work in
the analytic category.

We begin with the discussion of Ã . The logarithmic stratification L(A ) coincides, up to taking the
closure of strata, with the intersection lattice of A . It is a geometric lattice (ordered by reverse inclusion)
whose rank function is given by the codimension in V . By Lk(A ) ⊂ L(A ), we denote the collection of
all rank k elements.

Definition 2.15. For X ∈ L(A ), denote by WX the subgroup of W generated by reflections with
reflecting hyperplanes in the localization AX := {H ∈ A | X ⊂ H} of A along X ∈ L(A ), and by ∆X

the reduced defining equation of AX . We denote also by IX the defining ideal of X in SA .

By [Hum90, Thm. 1.12 (d)], WX is the group fixing X point-wise, that is

WX =
⋂

x∈X

Wx.

For x ∈ V , let X(x) be the stratum X ∈ L(A ) with x ∈ X. It follows that

WX(x) = Wx

is the isotropy group of x.

Proposition 2.16. Let X ∈ L(A ) and Y = p(X) ∈ L(D). Then (S̃A )IX = (S̃AX
)IX = S̃AX/X⊗CC(X).

In particular, (S̃A )XIX = S̃AX/X where X is considered as a translation group.

Proof. Fix X ∈ L(A ) and let Y be an orthogonal complement. By ∆X ∈ C[Y ] we denote the defining
equation of AX . Then, by the product rule,

(JA )IX = J∆(SIX/SIX∆) = J∆X
(SIX/SIX∆X) = (JAX

)IX .

Localizing a presentation, such as (2.17), at IX , therefore shows that

(IA )IX = (F1
S(JA ))IX = F1

SIX
((JA )IX )

= F1
SIX

((JAX
)IX ) = (F1

S(JAX
))IX = (IAX

)IX .
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Then we have also (ĨA )IX = (ĨAX
)IX and finally,

(S̃A )IX = (EndSA
(IA ))IX = EndSIX

((IA )IX )

= EndSIX
((IAX

)IX ) = (EndSAX
(IAX

))IX = (S̃AX
)IX .

This proves the first equality; the second follows since SIX = C[Y ]⊗C C(X). �

Corollary 2.17. The assignment A 7→ S̃A is a local functor. �

We now turn our attention to D̃. The following result holds for any free divisor, and our proof is not
specific to our situation.

Proposition 2.18. The ideals IA and ID are stable under Der(− logA ) and Der(− logD) respectively.

In particular, the latter act naturally on S̃A and R̃D respectively.

Proof. Let ω1, . . . , ωℓ ∈ Ω1(logD) be the dual basis of (2.14). From

R ∋ dωj(δk, δr) = dωj

(
δk,
∑

i

Ki
r∂pi

)
=
∑

i

Ki
rdωj(δk, ∂pi

),

(2.12) and Cramer’s rule, we conclude that

ID ∋ dωj(δk,∆
2∂pi

) = δk
〈
∆2ωj , ∂pi

〉
−∆2∂pi

〈ωj , δk〉 −
〈
ωj , [δk,∆

2∂pi
]
〉

= δk(M
i
j) +

〈
∆2ωj , [∂pi

, δk]−
δk(∆

2)

∆2
∂pi

〉

≡ δk(M
i
j) mod ID.

This proves the claim for D; the same argument works for A and any free divisor. �

Remark 2.19. There is a transcendental argument which shows that for any divisor D, free or not,
Der(− logD) preserves the ideal Ik(D) of k× k minors of the matrix of coefficients of a set of generators
of Der(− logD). It is simply that each of these ideals is invariant under biholomorphic automorphisms
of D, since they are Fitting ideals of the Jacobian ideal JD. The integral flow of any vector field
ζ ∈ Der(− logD) preserves D, and hence Ik(D), from which it follows that ζ · Ik(D) ⊂ Ik(D).

We can make stronger statement in the analytic category. Let x ∈ X ∈ L(A ) and y = p(x) ∈
p(X) = Y . By [Orl89, §2], Y ∈ L(D) and p : X → Y is a covering. By finiteness of W , there is a
(Euclidean) WX -stable neighborhood of x, in which the W -orbits are exactly the WX -orbits. Note that
WX commutes with the translation group X. This gives

px = pWX ,x × p|X : Vx = (V/X)x ×Xx → ((V/X)/WX)y × Yy.

Since our definition of R̃D in (2.16) and (2.19) is compatible with passing to the analytic category, we
obtain the following analytic localization statement.

Proposition 2.20. Let x ∈ X ∈ L(A ) and y = p(x) ∈ p(X) = Y ∈ L(D), and denote by DY the

discriminant of WX on V/X. Then there is an equality of analytic germs D̃y = D̃Y,y × Yy. �

Remark 2.21. Saito [Sai80, (3.6)] showed that one can always analytically trivialize the logarithmic
stratification along logarithmic strata as we do in Proposition 2.20.

Corollary 2.22. Ã is (algebraically) and D̃ (analytically) constant along logarithmic strata. �

By [Hum90, §1.8], W acts simply transitively on the (simple) root systems and on the Weyl chambers.
Choosing a simple root system defining a Weyl chamber for which X = X(x) is a face, shows that the
Dynkin diagram of any isotropy group Wx = WX is obtained by dropping from the Dynkin diagram of
W the roots which are not orthogonal to X. By [Hum90, Prop. 2.2], the resulting Dynkin diagram being
disconnected means that W is locally reducible at x. This discussion combined with Propositions 2.16
and 2.20 proves

Theorem 2.23. Up to smooth factors, the algebraic localizations of Ã , or analytic localizations of D̃,
are disjoint unions of spaces of the same type associated to reflection groups whose Dynkin diagrams are
the sub-diagrams of the Dynkin diagram of W . �

For two irreducible types T and T ′ of W , we call T ′ adjacent to T and write T → T ′ if the Dynkin
diagram of T ′ is contained in that of T .
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2.6. Relation with the normalization. We shall denote the normalizations of A and D by Ā and
D̄ respectively.

Proposition 2.24. We have SA ⊆ S̃A ⊆ S̄A and RD ⊆ R̃D ⊆ R̄D.

Proof. This follows from the finiteness of S̃A and R̃D over SA and RD, see (2.23), (2.26), (2.31),
(2.30). �

In the following, we describe the cases of equality in Proposition 2.24. We begin with the case ℓ = 2
of plane curves for irreducible W . By (2.15) and for degree reasons, this case reduces to

K =

(
2p1 hp2
hp2 Q

)
, Q = apr1 + bps1p2, r = h− 1,

h

2
− 1 = s,(2.32)

∆2 = |K| = 2p1Q− h2p22 = 2aph1 + 2bp
h/2
1 p2 − h2p22.(2.33)

In particular, b = 0 if h is odd. Note that there are no further restrictions imposed on a and b by the
requirement

(2.34) δ2(∆
2) ∈ R∆2

for δ2 from (2.13). Indeed, 〈δ1, δ2〉R is a Lie algebra, since [δ1, δ2] = (h − 2)δ2 by homogeneity. For
generic (a, b), ∆2 in (2.33) is reduced, and hence (2.34) holds true by [Sai80, Lem. 1.9]. By continuity,
it holds then also for special values of (a, b).

In Section 2.6, we shall need the following

Proposition 2.25. For ℓ = 2, irreducible W , and odd h ≥ 5, D̃ 6= D̄.

Proof. In this case,

(2.35) K =

(
2p1 hp2
hp2 apr1

)

and (2.33) specializes to

∆2 = |K| = 2apr+1
1 − h2p22 ≡ ph1 − p22.

The normalization of D is given by p1 = t2 and p2 = th, and hence g1 = p2

p1

= th−2 by (2.30) and (2.35).

Then (2.31) becomes

R̃D = RD[g1] = C[t2, th−2] ( C[t] = R̄D.

�

Using Theorem 2.23 and Lemma 2.8 we find

Corollary 2.26. If W contains any irreducible summand of type H3, H4, or I2(k) for odd k, then

D̃ 6= D̄.

Proof. ForW of type I2(k), we have h = k and the claim follows from Proposition 2.25. For theHk-types,
the statement follows from Theorem 2.23 and the adjacency chain H4 → H3 → I2(5). �

We denote C = S/m where m is the graded maximal ideal in S. Then Ã0 = Spec(S̃A ⊗S C) is the

fiber of Ã over 0 ∈ V .

Lemma 2.27. The group W acts trivially on the fiber Ã0 of Ã over 0 ∈ V , which contains exactly as
many geometric points as the number of irreducible summands of W .

Proof. By (2.23), S̃A ⊗SC
∼= C[h1, . . . , hℓ−1] and by (2.30) the hi are W -invariants. This implies the first

claim. For the second statement, we may assume that W is irreducible by Lemma 2.8. Then (2.5), (2.21),

and (2.26) imply that hi has w-degree wℓ − wi. So C[h1, . . . , hℓ−1] is positively graded and hence Ã is
a cone. As it is also finite over 0 ∈ V due to (2.23), it must be a single geometric point as claimed. �

We denote Cx = S/mx and Cy = R/my where mx and my are the maximal ideals of x and y

respectively. Then Ãx = Spec(S̃A ⊗S Cx) and D̃y = Spec(R̃D ⊗R Cy) are the fibers of Ã over x and of

D̃ over y respectively. Combining Propositions 2.16 and 2.20, (2.23), Proposition 2.14, and Lemma 2.27,
we find
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Proposition 2.28. The fibers Ãx and D̃y, y = p(x), coincide, that is,

S̃A ⊗S Cx = R̃D ⊗R Cy.

They are trivial Wx-modules containing exactly as many geometric points as the number of irreducible
summands of Wx.

We can now refine Proposition 2.24 for A .

Corollary 2.29.

(1) A = Ã exactly if A contains only one plane (or W has type A1).

(2) Ã = Ā exactly if A is Boolean (or W has type A1 × · · · ×A1).

Proof.
(1) If #A > 1, pick x with X(x) = X ∈ L2(A ) 6= ∅. Then WX is of type A1 × A1. So by

Proposition 2.28, Ã has two points over x. The converse is Example 2.7 for ℓ = 1.
(2) Again one implication is Example 2.7. If A is not Boolean, then W has an non-A1 type irreducible

summand. By Lemma 2.27, its reflection hyperplanes do not separate in Ã .
�

The analogue of Corollary 2.29 for D is less trivial. From [Bri71, Slo80] and [MP89] we conclude the
following using Lemma 2.8.

Theorem 2.30. If all irreducible summands of W are of ADE-type, then D̃ = D̄ is smooth. �

The following criterion shows that the conclusion of Theorem 2.30 fails for other types.

Proposition 2.31. If the Dynkin diagram of W contains that of an irreducible type T whose root system
Φ is not simply laced, then D̃ 6= D̄.

Proof. By Theorem 2.23, there is a point x ∈ V such that Wx is of type T , and Proposition 2.20 reduces
the claim to the case where W is (irreducible) of type T . The assumption on T implies that there are at
least two W -orbits in Φ, and hence in A . Thus, D is reducible and Proposition 2.28 yields the claim. �

Using Lemma 2.8 we obtain

Corollary 2.32. If W contains any irreducible summands of type Bk, Ck, F4, G2 = I2(6), or I2(k) with

k even, then R̃D ( R̄D.

Combining Corollary 2.26, Theorem 2.30, and Corollary 2.32, proves

Theorem 2.33. D̃ = D̄ exactly if all irreducible summands of W are of ADE-type. In this case, D̃ is
smooth. �

3. Dual and Hessian rank conditions

Let F = S · mR be the ideal of all positive-degree W -invariants. We can identify S/F as a direct
summand T of the W -module S, and setting Sα = Tpα, we have

(3.1) S =
⊕

α∈Nℓ

Sα ⊃
⊕

0 6=α∈Nℓ

Sα = F

as a direct sum of W -modules, where p = p1, . . . , pℓ. Chevalley [Che55] showed that T is the regular
W -representation (see also [Sol64, p. 278]). Consider the W -modules of exterior powers

Ep =

p∧
V ∗.

Solomon [Sol64, Thm. 2 and footnote (2)] showed that the W -modules

Jj = 〈∂xk
(pj) | k = 1, . . . , ℓ〉

C
,(3.2)

M j =
〈
mj

k | k = 1, . . . , ℓ
〉
C

, j = 1, . . . , ℓ,

project onto the irreducible summands of the isotypic component of S/F of type E1
∼= V ∗ and Eℓ−1

∼=
V ⊗ detV respectively. We may and will assume that Jj ⊂ T and M j ⊂ T . By (2.22), Dj is the
homogeneous degree of M j , while mj is the homogeneous degree of Jj .
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Let us recall the construction from the proof of [Sol64, Thm. 2]: We denote by I(−) the W -invariant
part. By [Sol63], the space of W -invariant differential forms on V is

I(S ⊗ Ep) =
∑

i1<···<ip

R · dpi1 ∧ · · · ∧ dpip .

Solomon [Sol64, p. 282] considers the case where W is the Weyl group of a Lie group acting on V ;
then the Killing form induces a self-duality Ep

∼= E∗
p . We are only interested in the cases p = 1 and

p = ℓ − 1, where both irreducibility and self-duality of Ep are trivial1. The self-duality of Ep induces a
W -isomorphism S/F ⊗ Ep

∼= HomC(Ep, S/F ) and hence an isomorphism

(3.3) I(S/F ⊗ Ep) ∼= HomW (Ep, S/F ).

The image of dpi in HomW (Ep, S/F ) has image J i, and the image of dp1 ∧ · · · ∧ d̂pi ∧ · · · ∧ dpℓ has image
M i.

Using (3.1),

(3.4)

ℓ⊕

j=1

⊕

α∈Nℓ

M jpα and

ℓ⊕

j=1

⊕

0 6=α∈Nℓ

M jpα

are the isotypic components of type Eℓ−1 of S and F respectively. In particular, we have the following

Lemma 3.1. The isotypic component of F of type Eℓ−1 lies in F · IA . �

It follows that (grc) can be checked modulo F :

Lemma 3.2. If M j ⊂ S ·M ℓ + F for all j = 1, . . . , ℓ− 1 then the graded rank condition holds for A .

Proof. Consider the maps of W -modules

(3.5) φ∗ : HomC(M
j ,M ℓ ⊗C SDj−Dℓ

)
µ∗

// HomC(M
j , SDj

)
π∗

// HomC(M
j , TDj

)

induced by the composition of W -linear maps φ = π ◦ µ, where

µ : S ⊗C S → S and π : S ։ S/F = T

are the product in S and the canonical projection to T . By hypothesis, there is a C-linear map α ∈
HomC(M

j ,M ℓ⊗CSDj−Dℓ
) such that φ∗(α) ∈ HomC(M

j ,M j) is the identity map. Now averaging yields

γ = α# ∈ HomW (M j ,M ℓ ⊗C SDj−Dℓ
), φ∗(γ) = idMj .

Using Lemma 3.1, we find that

µ∗(γ)− idMj ∈ HomW (M j , F ) = HomW (M j , F · IA ).

This proves that

IA ⊂ S ·M ℓ + F · IA ,

and hence IA = S ·M ℓ by Nakayama’s lemma. �

By Solomon’s result mentioned above, the W -equivariant Gorenstein pairing on S/F induces a non-
degenerate pairing of the isotypic components of type E1 and Eℓ−1 into the unique irreducible summand
of type Eℓ,

ℓ⊕

i=1

J i ⊗
ℓ⊕

j=1

M j → C∆.

Since the element
ℓ∑

i=1

∂xi
(pj)⊗mj

i ∈ Jj ⊗M j

maps to ∆ = det J by Laplace expansion of the determinant along the jth row, we obtain induced
non-degenerate pairings

(3.6) Jj ⊗M j → C∆, j = 1, . . . , ℓ.

1E1
∼= V ∗ is self-dual due to the W -invariant form p2 on V , and hence irreducible, since V is irreducible. Because

det(V )⊗2 ∼= C is the trivial representation, Eℓ−1
∼= E∗

1
⊗Eℓ

∼= V ⊗det(V ) is self-dual. For the same reason and irreducibility

of V , I(V ⊗ det(V )⊗ (V ⊗ det(V ))∗) = I(V ⊗ V ∗) = 1, and hence Eℓ−1 is irreducible.

16



For j < k, we have

HomW (Jj , Jk) ∼= EndW (E1) ∼= EndW (E∗
ℓ−1 ⊗ Eℓ)(3.7)

∼= EndW (E∗
ℓ−1)

∼= HomW (Mk,M j),

where µ∗(α) ∈ HomW (Jj , Jk) induced by α ∈ HomW (Jj , Jj ⊗ Smk−mj
) corresponds to µ∗(β) ∈

HomW (Mk,M j) induced by β = αt ∈ HomW (Mk,Mk ⊗ SDj−Dk
). Because of the non-degenerate

W -pairing (3.6), µ∗(α) is an isomorphism exactly if µ∗(β) is one.

Definition 3.3. We say that the dual (graded) rank condition (drc) holds for A if Jℓ ⊂ S · Jj + F for
all j = 1, . . . , ℓ− 1.

Remark 3.4. The definition of (drc) is given as an equality in S/F because in general Jℓ 6⊂ S ·Jj , though
the inclusion holds trivially for j = 1. Nakayama’s Lemma does not imply this stronger inclusion because
unlike (grc), (drc) does not assert an inclusion of R-modules.

Now combining the preceding arguments with Lemma 3.2 proves the following

Lemma 3.5. The dual and graded rank conditions are equivalent for A .

Proof. By the symmetry of (3.7), both implications can be proved in the same way; we show that (drc)
implies (grc) for A : Fix j ∈ {1, . . . , ℓ − 1}. By (drc) for A , we have an α ∈ HomC(J

ℓ, Jj ⊗ Smℓ−mj
)

inducing the identity map idJℓ = π∗µ∗(α) ∈ HomC(J
ℓ, Jℓ). Applying the construction from the proof of

Lemma 3.2, we can turn α into a W -homomorphism. The homomorphism µ∗(α) is non zero modulo F
and (3.7) yields a corresponding dual map µ∗(α

t) ∈ HomW (M j , SDj
) induced by αt ∈ HomW (M j ,M ℓ⊗

SDj−Dℓ
). Thus, (grc) holds for A by Lemma 3.2. �

The following property refines (grc) by a statement about the S-coefficients of Jj in the condition in
Definition 3.3. By [OS88, (2.14) Lem.], the Hessian

Hess(p) : DerS → Ω1
S , Hess(p)(δ) =

ℓ∑

i=1

δ(∂xi
(p))dxi,

is W -equivariant for p ∈ R. Note that Hess(p1) is a W -isomorphism which induces our identification of
dpi with a vector field ηi in (2.10). By abuse of notation, we identify

Hess(p) = Hess(p) ◦Hess(p1)
−1 ∈ EndW (Ω1

S)

for p ∈ R. Using Ω1
S = S ⊗ E1 and passing to the quotient by F , Hess(p) then induces an element of

EndW (S/F ⊗ E1) and hence of EndW (I(S/F ⊗ E1)). By (3.3), Hess(p) thus induces a map

~(p) ∈ EndW (HomW (E1, S/F ))

which operates on W -submodules of type V ∗ by passing to the image in HomW (E1, S/F ).

Definition 3.6. We say that the Hessian (dual graded) ring condition (Hrc) holds for A if, for any j,
there is an i, such that mi+mj = wℓ and Hess(pi)(ηj) 6∈ FΩ1

S . In case m1, . . . ,mℓ are pairwise different,
this means that Hess(pi)(ηℓ−i+1) 6∈ FΩ1

S .

It is clear that Hess(pi)(η1) = dpi, so (Hrc) holds trivially in dimension ℓ = 2.

Lemma 3.7. The Hessian rank condition implies the dual ring condition for A .

Proof. (Hrc) means that ~(pi)(Jj) ⊂ (S/F )mℓ
is non-zero. By W -equivariance of ~(pi), the latter is then

a non-trivial W -submodule of (S/F )mℓ
of type E1. Then it must coincide with Jℓ, which is the only

such W -module in this degree by (2.5). �

Consider the symmetric group W acting on V ′ = Cℓ+1 by permuting coordinates x0, . . . , xℓ. Then
the subspace V of V ′ defined by p1 can be identified with V = V ′/L, where L is the line centralized by
W , and W is of type Aℓ on V ; it is generated by the orthogonal reflections along the hyperplanes of the
reflection arrangement A defined by

∆ =
∏

0≤i<j≤ℓ

(xi − xj).

Proposition 3.8. The Hessian rank condition holds for A if W is of type Aℓ.
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Proof. By [Hum90, §3.12], the basic invariants for W on V ′ can be chosen as power sums

pk =
1

k
(xk

0 + · · ·+ xk
ℓ ), k = 1 . . . ℓ.

So (Hrc) holds on V ′ “on the nose”, in the sense that Hess(pi)(pℓ−i+1) = Jℓ in S and not only in S/F .
Indeed, we have the matrix equality

D(pℓ−i+1) ◦Hess(pi) = (i− 1) ·D(pℓ).

This equality is obviously invariant under orthogonal coordinate changes. Therefore (Hrc) holds also on
V . �

In the case W is of type Bℓ, W is generated by the orthogonal reflections along the hyperplanes of
the reflection arrangement A defined by

∆ = x1 · · ·xℓ

∏

1≤i<j≤ℓ

(x2
i − x2

j ).

Proposition 3.9. The Hessian rank condition holds for A if W is of type Bℓ.

Proof. By [Hum90, §3.12], the basic invariants can be chosen as the power sums

pk =
1

2k
(x2k

1 + · · ·+ x2k
ℓ ), k = 1, . . . , ℓ.

So (Hrc) holds again by the argument of Proposition 3.8. �

In the case W is of type Dℓ, W is generated by the orthogonal reflections in the hyperplanes of the
reflection arrangement A defined by

∆ = x1 · · ·xℓ

∏

1≤i<j≤ℓ

(xi ± xj)

It is a subgroup of the reflection group of type Bℓ.

Proposition 3.10. The Hessian rank condition holds for A if W is of type Dℓ.

Proof. By [Hum90, §3.12], the basic invariants can be chosen as the power sums

pk =
1

2k
(x2k

1 + · · ·+ x2k
ℓ ), k = 1, . . . , ℓ− 1,

together with pℓ = x1 · · ·xℓ. Note that here our notation has changed slightly, and the highest weight
invariant is now pℓ−1 rather than pℓ. It is easy to check that for i = 1, . . . , ℓ − 2, D(pi) ◦ Hess(pℓ−i) ≡
D(pℓ−1) mod C∗. Now consider the (evidently invariant) polynomial

p̂ℓ−1(x1, . . . , xℓ) = D(pℓ) ·D(pℓ) =

ℓ∑

j=1

x2
1 · · · x̂

2
j · · ·x

2
ℓ ∈ R,

whose degree is equal to that of pℓ−1. We claim that pℓ−1 ≡ p̂ℓ−1 mod F 2 + C∗. The evident equality

D(pℓ) ◦Hess(pℓ) =
1

2
D(p̂ℓ−1)

then implies that a similar equality holds, modulo F , with pℓ−1 in place of p̂ℓ−1, completing the proof
of (Hrc).

It remains only to verify the claim. Let ρ be a primitive 2(ℓ − 1)th root of unity and set a =
(ρ, ρ2, . . . , ρℓ−1, 0). Then all of our basic invariants except for pℓ−1 vanish at a, while p̂ℓ−1(a) 6= 0 6=
pℓ−1(a). Since p̂ℓ−1 is an invariant of the same degree as pℓ−1 (and this degree is greater than the degrees
of the other basic invariants), the claim follows. �

Proposition 3.11. The Hessian rank condition holds for A if W is of type F4, H3 or H4.

Proof. In these cases, Macaulay2 [GS] calculations shows that (Hrc) holds for A . Our calculations are
based on the formulæ for the basic invariants from [Meh88]. �

Theorem 3.12. The Hessian rank condition holds for A if W is not of type E6, E7, or E8.

Conjecture 3.13. The Hessian rank condition holds for A if W is of type E6, E7, or E8.
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4. F-manifolds

In this section we prove that (rc) holds for D and A for all Coxeter groups. We will make use of
the Frobenius manifold structure on V/W , constructed by Dubrovin in [Dub98]. However our main
reference for background on Frobenius manifolds (including this result) is the book of Hertling [Her02].
In fact the only aspects of the Frobenius structure we use are the existence of an integrable structure of
commutative associative C-algebras on the fibers of the tangent bundle; a manifold with this structure
is called by Hertling and Manin an F-manifold. The usage of such analytic methods will be justified in
Remark 4.6, and we pass to the analytic category without changing our notation.

For any n-dimensional F-manifold M , the multiplication on TM is encoded by an n-dimensional
subvariety of T ∗M , the analytic spectrum L, as follows: for each point p ∈ M , points in T ∗

pM determine
C-linear maps TpM → C; among these, a finite number are C- algebra homomorphisms. These finitely
many points in each fiber of T ∗M piece together to form L. Thus the composite

(4.1) DerM → π∗OT∗M → π∗OL

is an isomorphism of rings. The multiplication ◦ in TM satisfies the integrability property

LieX◦Y (◦) = X ◦ LieY (◦) + Y ◦ LieX(◦).

Provided the multiplication is generically semi-simple, as is the case for the structure constructed by
Dubrovin and Hertling, this implies that L is Lagrangian. This in turn means that the restriction to L
of the canonical action form α on T ∗M is closed and therefore exact. A generating function for L is any
function F ∈ OL such that dF = α|L. A generating function determines an Euler field E on M , namely
a vector field mapped to F by the isomorphism (4.1). The discriminant of M is defined by any of the
following equivalent characterizations:

(1) D = π(F−1(0)),
(2) D is the set of points x ∈ M where the endomorphism E◦ : TxM → TxM is not invertible.

Similarly, the module Der(− logD) may be viewed as either

(1) the set of vector fields whose image under the isomorphism (4.1) vanishes on F−1(0), or equiva-
lently as

(2) the image in DerM of multiplication by E.

This yields

Lemma 4.1. The cokernel R̃D = cokerK of the Saito matrix K of D acquires a ring structure as
quotient of the Frobenius manifold multiplication in DerR.

Proof. The matrix of multiplication by E with respect to the basis ∂x1
, . . . , ∂xℓ

of DerR is K. Thus

(4.2) 0 // Rℓ

∼=

��

K
// Rℓ

∼=

��

// R̃D

∼=

��

// 0

0 // DerR
E◦

// DerR // DerR /DerR(− logD) // 0

is a presentation of DerR /E ◦DerR = DerR /DerR(− logD), which is itself isomorphic to π∗OF−1(0). �

Recall from (2.9) that J : Sℓ → Sℓ is the matrix of the morphism

(4.3) tp : DerS → p∗ DerR = DerR ⊗RS, tp(

n∑

j=1

ηj∂xj
) =

n∑

i=1

n∑

j=1

ηj∂xj
(pi)∂pi

,

defined by left composition (of vector fields as sections of TV ) with dp. Both tp and ωp : DerR → p∗ DerR,
defined by right composition with p, are familiar in singularity theory. By definition, we have

(4.4) χ ∈ DerR has lift η ∈ DerS ⇐⇒ tp(η) = ωp(χ).
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Using Lemma 2.3, (4.2), and the obvious identifications, there is a commutative diagram of S-modules

(4.5) 0

J∆

OO

0 0

0 // DerS
tp

//

OO

DerR ⊗RS //

OO

S̃A
//

OO

0

0 // Rℓ ⊗R S

Jt

OO

K⊗1
// DerR ⊗RS //

=

OO

R̃D ⊗R S //

OO

0

0

OO

0

OO

L

OO

0

OO

in which L is simply defined as a kernel. Both rows here are exact: the upper row defines S̃A , and the
lower row is the tensor product with the flat R-module S of the short exact sequence defining R̃D. Now
R̃D ⊗R S, as a tensor product of rings, has a natural ring structure; to show that S̃A is a ring, it will be
enough to show that L is an ideal of R̃D ⊗R S. Although, by the Snake Lemma, L ∼= J∆ and is thus an
S-submodule of R̃D ⊗R S, this is not enough for our purposes here. Nevertheless

Lemma 4.2. L is an ideal of R̃D ⊗R S.

The proof of Lemma 4.2 requires some preparations. Before beginning these, we clarify the relationship
between S̃A and R̃D ⊗R SA . In general they are not isomorphic, and the space Spec S̃A is not the fiber
product Spec(R̃D ×D A ). For R̃D ⊗R SA is the cokernel of 1 ⊗ ∆: R̃D ⊗R S → R̃D ⊗R S, and using

the epimorphism DerR ⊗RS ։ R̃D ⊗R S we find that there is an epimorphism DerR ⊗RS ։ R̃D ⊗R SA ,
whose kernel is equal to DerR ⊗RS∆ + Der(− logD) ⊗R S. Both summands here are contained in the
image of tp : DerS → DerR ⊗RS, the first by Cramer’s rule and the second because every vector field
η ∈ Der(− logD) is liftable via p. Thus S̃A is a quotient of R̃D ⊗R SA . The kernel of the projection

R̃D ⊗ SA → S̃A is the quotient

ker := tp(DerS)/
(
Der(− logD)⊗R S +DerR ⊗RS∆

)
.

At a generic point x ∈ A this vanishes: here p is a fold map, right-left-equivalent to

(x1, . . . , xℓ) 7→ (x1, . . . , xℓ−1, x
2
ℓ)

and an easy local calculation shows that in this case kerx = 0. However, if p has multiplicity > 2 at x
then kerx 6= 0. For example at an A2 point, p is right-left equivalent to

(x1, . . . , xℓ) 7→ (x2
1 + x1x2 + x2

2, x1x2(x1 + x2), x3, . . . , xℓ);

tp(DerS) is generated by ∂p3
, . . . , ∂pℓ

together with

(2x1 + x2)∂p1
+ (2x1x2 + x2

2)∂p2
, (x1 + 2x2)∂p1

+ (x2
1 + 2x1x2)∂p2

,

while the coefficients of ∂p1
in the generators of Der(− logD)⊗R S +DerR ⊗RS∆ are at least quadratic

in x1, . . . , xℓ. In fact, assuming Lemma 4.2, we have

Theorem 4.3. Ã = (D̃ ×D A )red

Proof. S̃A = coker tp, with tp as in (4.5), is a maximal Cohen–Macaulay SA -module of rank 1. This

means that at a smooth point of A , S̃A is isomorphic to SA , and is thus reduced. As S̃A is finite over
SA , its depth over itself (assuming it is a ring) is equal to its depth over SA . Since it is therefore a
Cohen–Macaulay ring, generic reducedness implies reducedness. �

Now we prepare for the proof of Lemma 4.2.

Proposition 4.4.

(1) The Frobenius multiplication in DerR can be lifted to DerS, though without multiplicative unit.
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(2) The same procedure makes DerS into a DerR-module.
(3) The map tp in (4.3) is DerR-linear, with respect to the structure in (2) and Frobenius multipli-

cation induced on DerR ⊗RS.

Proof. By (4.4), for a multiplication in DerS , (1) means that

(4.6) tp(η1 ◦ η2) = ωp(χ1 ◦ χ2)

where ηi ∈ DerS is a lift of χi ∈ DerR for i = 1, 2. Similarly, the scalar multiplication for (2) must satisfy

(4.7) tp(χ · η) = ωp(χ ◦ ξ)

where χ ∈ DerR and η ∈ DerS is a lift of ξ ∈ DerR.
Locally, at a point v ∈ V \ A , p, tp and ωp are isomorphisms, so there is nothing to prove. Now

suppose v ∈ H is a generic point on a reflecting hyperplane H ∈ A , with p(v) outside the bifurcation set
B. Then in a neighborhood of p(v) in V/W , we may take canonical coordinates u1, . . . , uℓ (cf. [Her02,
2.12.(ii)]). These are characterized by the property that the vector fields ei := ∂ui

, i = 1, . . . , ℓ satisfy
ei ◦ ej = δi,j · ei. With respect to these coordinates D is a normal crossing divisor (cf. [Her02, 4.1]),
though D is smooth at p(v) by choice of v. By [Her02, Cor. 4.6], the tangent space Tp(v)D is spanned by
ℓ − 1 of these idempotent vector fields, and the remaining idempotent, which we label e1, is normal to
it. The map pv : (V, v) → (V/W, p(v)) has multiplicity 2, critical set H and set of critical values D, from
which it follows that dvp : TvH → Tp(v)D is an isomorphism. Since we have fixed our coordinate system
on (V/W, p), we are free to choose only the coordinates on (V, v). Define xi = ui ◦ p for i = 2, . . . , ℓ.
To extend these to a coordinate system on (V, v), we may take as x1 any function whose derivative at
v is linearly independent of dvx2, . . . , dvxℓ. This means we may take as x1 any defining equation of the
critical set (the hyperplane H) of p at v. With respect to these coordinates on (V, v) and (V/W, p(v)),
p takes the form

(4.8) pv(x1, . . . , xℓ) = (f(x1, . . . , xℓ), x2, . . . , xℓ).

As pv has critical set {x1 = 0} and discriminant {u1 = 0}, both f and ∂x1
(f) vanish along {x1 = 0}.

Thus f(x) = x2
1g(x) for some g ∈ OV,v. Since p has multiplicity 2 at v, g(0) 6= 0. Now replace the

coordinate x1 by x1g(x)
1/2. With respect to these new coordinates, which we still call x1, . . . , xℓ, pv

becomes a standard fold:

pv(x1, . . . , xℓ) = (x2
1, x2, . . . , xℓ).

We can now explicitly calculate the multiplication in DerS , locally at v:
{
tpv(x1∂x1

) = ωpv(2u1∂u1
),

tpv(∂xi
) = ωpv(∂ui

), for i = 2, . . . , ℓ.

So (4.6) implies

tpv((x1∂x1
) ◦ (x1∂x1

)) = ωpv((2u1∂u1
) ◦ (2u1∂u1

))

= ωpv(4u
2
1∂u1

) = ωpv(2u1(2u1∂u1
)) = tpv((2x

2
1)x1∂x1

),

and hence x1∂x1
◦ x1∂x1

= 2x3
1∂x1

. So in order that (4.6) should hold, we are forced to define

∂xi
◦ ∂xj

=

{
2x1∂x1

, for i = j = 1,

δi,j · ∂xi
, otherwise.

Since the multiplication in DerV is locally uniquely defined by (4.6) outside codimension 2, it extends
to V by Hartog’s Extension Theorem. This proves (1), and (2) is obtained by an analogous argument
using (4.7).

Finally, (3) follows from (4.4) and (4.7) on V \ A , and therefore holds everywhere. �

Proof of Lemma 4.2. Suppose that m :=
∑

i r̃i ⊗ si ∈ L. Lift it to
∑

i ξi ⊗ si ∈ DerR ⊗RS. As m ∈ L,
there exists some η ∈ DerS such that

(4.9)
∑

i

ξi ⊗ si = tp(η).

Clearly, for any s ∈ S, we have

(1⊗ s) · (
∑

i

ξi ⊗ si) =
∑

i

ri ⊗ (ssi) = tp(sη),
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and thus (1⊗ s) · (
∑

i ξi ⊗ si) ∈ L. To complete the proof that L is an ideal of R̃D ⊗R S, we must show

that, for any r̃ ∈ R̃D, we also have

(4.10) (r̃ ⊗ 1) · (
∑

i

r̃i ⊗ si) =
∑

i

(r̃r̃i)⊗ si ∈ L.

Lift r̃ ∈ R̃D to ξ ∈ DerR. By Lemma 4.1,
∑

i(r̃r̃i)⊗ si is the image of
∑

i(ξ ◦ ξi)⊗ si in R̃D ⊗R S, where
ξ ◦ ξi is the Frobenius product in DerR. But Proposition 4.4 applied to (4.9) yields

∑

i

(ξ ◦ ξi)⊗ si = tp(ξ · η)

which implies (4.10) using (4.5). �

We have proved

Theorem 4.5. The cokernel S̃A = coker J of the transposed Saito matrix J of A is a ring compatibly
with its structure as an S-module. �

Remark 4.6. Even though our proof uses complex analytic methods – for example, using canonical
coordinates in the proof of Proposition 4.4 – the conclusion is valid over any field over which the basic
invariants are defined. For the conclusion that coker J is a ring is equivalent to the condition (grc), which
is a condition on ideal membership. We have shown that for each i, j ∈ {1, . . . , ℓ}, the equation

(4.11) mi
j = C1m

ℓ
1 + · · ·+ Cℓm

ℓ
ℓ

in unknown functions C1, . . . , Cℓ has a solution in which the Ci are germs of complex analytic functions
at 0.

Let K be a subfield of C containing the coefficients of the basic invariants pj , so that the coefficients
of the polynomials mi

j all lie in K. We claim that (4.11) has solutions Ci ∈ K[V ]. To see this, first note

that since the mi
j are all homogeneous, each Ci can be replaced by its graded part of degree Di − Dℓ

(see (2.22)). Let K[V ]d ⊂ K[V ] be the vector space of all polynomials of degree d. The map

A :
(
K[V ]Di−Dℓ

)ℓ
→ K[V ]Di

, A(C1, . . . , Cℓ) =

ℓ∑

j=1

Cjm
ℓ
j ,

is K-linear. Therefore the solvability of (4.11) in K[V ] reduces to a simple theorem of linear algebra,
which can be rephrased more abstractly as follows: Let A : Km → Kn be a K-linear map, and suppose
K ⊂ L is a field extension. Then

im(A⊗K 1L) ∩K
n = im(A).

This is easy to see: suppose b ∈ Kn and we can solve

(4.12) Ax = b

for x ∈ Lm. Let (A|b) be the augmented matrix of the system of equations. Row operations over K on
the matrix (A|b), and column operations over K involving the columns of A alone, bring (A|b) to the
form

(4.13)

(
Is 0 b′

0 0 b′′

)

where s = rkA, b′ = (b′1, . . . , b
′
s)

t and b′′ = (b′′1 , . . . , b
′′
n−s)

t. There are now two cases. If s < n and
b′′ 6= 0 then (4.12) has no solution. If s = n or b′′ = 0 then a solution over K can be read off from
(4.13). So if (4.12) has a solution in Lm, we are in the second case and there is a solution in Km.

5. Free and adjoint divisors

In [MS10] a new class of free divisors was constructed using the recipe “discriminant + adjoint”. If
D is the discriminant in the base of a miniversal deformation of a weighted homogeneous hypersurface
singularity (subject to some numerical conditions on the weights) and D′ is an adjoint divisor, in the
sense that the pull-back of D′ to the normalization Σ0 of D is the conductor of the ring extension
OD → OΣ0 , then D + D′ is a free divisor ([MS10, Thm. 1.3]). The singularities to which this applies
include those of type ADE. In this section we point out that essentially the same construction works for
the other Coxeter groups. We have to replace the normalization by the space D̃ from (2.20), and take,
as D′, a divisor pulling back to the conductor of the ring extension OD →֒ OD̃. The construction lifts to
the representation space V , giving a new free divisor strictly containing the reflection arrangement.
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We keep the notations from Section 2.1 and work in standard coordinates as in (2.7).

Lemma 5.1. With a suitable choice of basic invariants in (2.2), the linear part of the Saito matrix
K = JJ t of D from (2.17) is symmetric of the form

(5.1) K̄ =




w1p1 w2p2 · · · · · · wℓ−1pℓ−1 wℓpℓ
w2p2 ⋆ · · · ⋆ αℓ−1pℓ 0
...

... . .
.

. .
.

. .
. ...

... ⋆ . .
. ...

wℓ−1pℓ−1 α2pℓ . .
. ...

wℓpℓ 0 · · · · · · · · · 0




where α2, . . . , αℓ−1 ∈ C∗ with αi = αℓ+1−i. Moreover the only entries in this matrix equal to non-zero
constant multiples of pℓ lie along the anti-diagonal.

Remark 5.2. This matrix shows the linearized convolution of the basic invariants p1, . . . , pℓ as described
in [Arn79]. In the light of the translator’s notes on pages 22 and 21 of [Arn79] it seems likely our
statement here was already known to Arnol’d and Givental.

Proof. The first row and column of (5.1) can be read from (2.15). It remains to show the triangular
form of K̄ and that the anti-diagonal entries, and only these, are non-zero constant multiples of pℓ. By
inspection, the degree of Ki

j is wi+wj −w1. By (2.3), (2.5) and (2.6), the degree of Ki
j with i+ j = ℓ+1

equals h = wℓ, and hence K̄i
j = αjpℓ for some αj ∈ C. Provided W is not of type D2k, the degrees

w1, . . . , wℓ of the basic invariants are pairwise distinct. It follows that:

• All Ki
j with i+ j > ℓ+ 1 have degree strictly between wℓ and 2wℓ and hence have a linear part

equal to zero. In particular, K̄ has the claimed triangular shape.
• All Ki

j with i+ j < ℓ+ 1 have degree less than wℓ, and hence do not involve pℓ.

But by (2.12), (2.13), and Theorem 2.2, detK = ∆2 is a monic polynomial of degree ℓ in pℓ. It follows
that α2 · · ·αℓ−2 6= 0. Finally the symmetry property αi = αℓ+1−i comes from the symmetry of K.

In the case ofD2k, the same argument shows that the pℓ-coefficient matrix of K̄ is a constant symmetric
anti-diagonal block matrix, where i and j are in the same block exactly if wi = wj . By the procedure in
the proof of [MS10, Lem. 3.6] it can be turned into a symmetric anti-diagonal matrix by linear algebra
on the basic invariants. �

Remark 5.3. By (2.5), the minor M ℓ
ℓ is not changed by the change of basic invariants in Proposition 5.1.

As in (2.21) and (2.16) using Theorem 2.12, we set, for K̄ as in (5.1),

(M̄ i
j) := ad(K̄), ĪD :=

〈
M̄ ℓ

1 , . . . , M̄
ℓ
ℓ

〉
.

Lemma 5.4. dM ℓ
ℓ (Der(− logD)) = ID.

Proof. The strategy is the same as in the proof of the analogous result in [MS10]. We replace δi by its
linear part δ̄i whose coefficients are in the ith row/column of K̄ in (5.1). Then it suffices to prove that
the inclusion

(5.2) dM̄ ℓ
ℓ (
〈
δ̄1, . . . , δ̄ℓ

〉
) ⊆ ĪD.

obtained from Proposition 2.18 is an equality. The polynomial expansion of the minor M̄ ℓ
ℓ−i+1 contains

the distinguished monomial pip
ℓ−2
ℓ with non-zero coefficient. This monomial does not appear in the

expansion of M̄ ℓ
j for j 6= i. In particular the expansion of M̄ ℓ

ℓ contains the monomial p1p
ℓ−2
ℓ , with

coefficient (−1)ℓ−2ιw1α, where ι is the sign of the order-reversing permutation of 1, . . . , ℓ − 1, and we
abbreviate

α := α2 · · ·αℓ−1.

We claim that dM̄ ℓ
ℓ (δ̄i) contains the monomial pip

ℓ−2
ℓ with non-zero coefficient, and no other of the

distinguished monomials. This shows that (5.2) is an equality and proves the lemma.

Contributions to the coefficient of pjp
ℓ−2
ℓ in the expansion of dM̄ ℓ

ℓ (δ̄i) arise as follows:

(1) By applying the derivation pj∂p1
to the monomial p1p

ℓ−2
ℓ . This happens only when i = j, and

in this case the resulting contribution to the coefficient of pjp
ℓ−2
ℓ is

δi,j(−1)ℓ−2ιwiw1α.
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(2) By applying the derivation pℓ∂pk
to the monomial pjpkp

ℓ−3
ℓ . This derivation appears in δ̄i only if

k = ℓ− i+1, and then with coefficient αi; also this monomial appears in M̄ ℓ
ℓ only if k = ℓ−j+1,

and hence i = j. If 2j = ℓ+ 1, the monomial pjpℓ−i+1p
ℓ−3
ℓ appears in the expansion of M̄ ℓ

ℓ with
coefficient

δi,j(−1)ℓ−1ιwjwℓ−j+1α/αj ,

otherwise, it appears twice with that coefficient. The resulting contribution to the coefficient of
pjp

ℓ−2
ℓ in dM̄ ℓ

ℓ (δ̄i) is

δi,j(−1)ℓ−1ιαwjwℓ−j+1

if 2j = ℓ+ 1, or twice this if 2j 6= ℓ+ 1.

Therefore pjp
ℓ−2
ℓ can appear in dM̄ ℓ

ℓ (δi) with non-zero coefficient only if i = j, and in this case the
coefficient is non-zero provided {

w1 6= wj , if 2j = ℓ+ 1,

w1 6= 2wℓ−j+1, if 2j 6= ℓ+ 1.

These conditions hold by (2.5). �

Theorem 5.5. Let D′ = {M ℓ
ℓ = 0}. Then D +D′ is a free divisor.

Proof. Here the proof is identical to the proof of the comparable result of [MS10, Prop. 3.10]. By

Lemma 5.4, there are vector fields δ̃1, . . . , δ̃ℓ ∈ Der(logD) such that

(5.3) dM ℓ
ℓ (δ̃i) = M ℓ

i .

We may take δ̃ℓ equal to a constant multiple of the Euler vector field δ1. Since δ1, . . . , δℓ is a basis of
Der(− logD), there exist Bi

j ∈ R such that δ̃i =
∑

j B
j
i δj . By the proof of Lemma 5.4, the matrix

B = (Bi
j) is invertible. Note that the Saito matrix of the basis δ̃1, . . . , δ̃ℓ is then KB. Let K ′ be obtained

from the matrix K by deleting its last column. The columns of K ′ give relations among the generators
M ℓ

1 , . . . ,M
ℓ
ℓ of ID, by Cramer’s rule.

For each relation
∑

i λiM
ℓ
i = 0, (5.3) gives
∑

i

λiδ̃i(M
ℓ
ℓ ) = dM ℓ

ℓ

(∑

i

λiδ̃i
)
=
∑

i

λiM
ℓ
i = 0,

so ∑

i

λiδ̃i ∈ Der(− logD) ∩Der(− logD′) = Der(− log(D +D′)).

Because δ̃ℓ is a scalar multiple of δ1, we also have δ̃ℓ ∈ Der(− log(D +D′)). Let K ′′ denote the matrix
formed by adjoining to K ′ the extra column (0, . . . , 0, 1)t. Thus the columns of the ℓ× ℓ matrix KBK ′′

are the coefficients of vector fields in Der(− log(D + D′)), and det(KBK ′′) ≡ ∆2M ℓ
ℓ mod C∗ where

∆2 = detK is a reduced equation for D. Now provided

(1) M ℓ
ℓ is reduced, and

(2) M ℓ
ℓ and ∆2 have no common factor,

it follows from Saito’s criterion that D + D′ is a free divisor, and the vector fields represented by the
columns of KBK ′′ form a free basis for Der(− log(D +D′)).

By [MP89, Cor. 3.15], M ℓ
ℓ generates (over R̃D) the conductor ideal of the map D̃ → D. It follows that

D ∩D′ = V (ID) = Sing(D) has codimension 2, and hence (2) holds. It suffices to check (1) at generic
points of Sing(D). Using Proposition 2.20, this reduces to checking (1) in the case ℓ = 2 discussed in
Section 2.6. But in this case M2

2 = 2p1 is reduced by (2.32). �

Corollary 5.6. A + p−1(D′) is a free divisor.

Proof. We continue with the notation of the proof of Theorem 5.5. Consider the vector fields represented
by the columns of J t(BK ′′) ◦ p. Since JJ tBK ′′ = KBK ′′, these vector fields are lifts to V of the vector
fields represented by the columns of KBK ′′; they are therefore logarithmic with respect to p−1(D′).
Since they are linear combinations of the columns of J t they are logarithmic with respect to A , and
thus with respect to A + p−1(D′).

By (2.12), det J = ∆ is a reduced equation of A . Since detK ′′ = ±M ℓ
ℓ is reduced and, along V (M ℓ

ℓ ),
p is generically a submersion (for the critical set of p is A , which meets V (M ℓ

ℓ ◦ p) only in codimension
2), det(K ′′ ◦ p) is a reduced equation for V (M ℓ

ℓ ◦ p). As detB ∈ C∗, det(J t(BK ′′) ◦ p) is therefore a
reduced equation for A + p−1(D′), and the corollary follows by Saito’s criterion. �
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Example 5.7. The reflection arrangement for An consists of the intersection of V := {
∑n+1

i=1 xi = 0} ⊂
Cn+1 with the union of the hyperplanes {xi = xj}. For A2, the composite equation M ℓ

ℓ ◦ p defining
p−1(D′) in Corollary 5.6 is equal, on V , to the second elementary symmetric function, σ2. For A3, this
becomes 8σ2σ4 − 9σ2

3 − 2σ3
2 .
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Université d’Angers, Département de Mathématiques, LAREMA, CNRS UMR no6093, 2 Bd Lavoisier, 49045

Angers, France

E-mail address: granger@univ-angers.fr

D. Mond, Mathematics Institute, University of Warwick, Coventry CV47AL, England

E-mail address: D.M.Q.Mond@warwick.ac.uk

M. Schulze, Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, United States

E-mail address: mschulze@math.okstate.edu

26


	Introduction
	Acknowledgments

	1. Ring structures on cokernels of square matrices
	1.1. Fractional ideals
	1.2. Rank condition
	1.3. Rings associated to free divisors

	2. Ring structures associated with Coxeter groups
	2.1. Review of Coxeter groups
	2.2. Reflection arrangement and discriminant
	2.3. Rank conditions and associated rings
	2.4. Relation between rings for A and D
	2.5. Local trivialization
	2.6. Relation with the normalization

	3. Dual and Hessian rank conditions
	4. F-manifolds
	5. Free and adjoint divisors
	References

