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Incremental Kernel Learning for Active Image Retrieval

without Global Dictionaries

P.H. Gosselin∗,a, F. Preciosoa, S. Philipp-Foligueta

aETIS, CNRS, ENSEA, Univ Cergy-Pontoise, F-95000 Cergy-Pontoise

Abstract

In content-based image retrieval context, a classic strategy consists in
computing off-line a dictionary of visual features. This visual dictionary is
then used to provide a new representation of the data which should ease any
task of classification or retrieval. This strategy, based on past research works
in text retrieval, is suitable for the context of batch learning, when a large
training set can be built either by using a strong prior knowledge of data se-
mantics (like for textual data) or with an expensive off-line pre-computation.
Such an approach has major drawbacks in the context of interactive retrieval,
where the user iteratively builds the training data set in a semi-supervised
approach by providing positive and negative annotations to the system in
the relevance feedback loop. The training set is thus built for each retrieval
session without any prior knowledge about the concepts of interest for this
session. We propose a completely different approach to build the dictionary
on-line from features extracted in relevant images. We design the corre-
sponding kernel function, which is learnt during the retrieval session. For
each new label, the kernel function is updated with a complexity linear with
respect to the size of the database. We propose an efficient active learning
strategy for the weakly supervised retrieval method developed in this pa-
per. Moreover this framework allows the combination of features of different
types. Experiments are carried out on standard databases, and show that a
small dictionary can be dynamically extracted from the features with better
performances than a global one.
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1. Introduction

Kernel-based methods for multimedia retrieval have shown their robust-
ness for many tasks, in shape recognition [37], image retrieval [14], or event
detection [29] for instance. Most methods first build a kernel function, usu-
ally from supervised data [5], then train a classifier such as Support Vector
Machines (SVM). This procedure is relevant in the context of batch learning,
when a large training set is provided. However, in the context of interactive
retrieval, building an initial kernel before any retrieval session is a difficult
task, since there is no initial training set. Indeed, in this specific context,
the training set is iteratively built through interactions with the user who
provides labels on unknown data. A classic strategy is to consider highly
discriminant kernel functions, such as thin Gaussian kernels, which give the
classifier the ability to shatter the database. The main drawback of such a
strategy is the weak generalization capacity of the retrieval system.

The other solution we want to explore in this paper is to build the kernel
function during the retrieval session and thus to adapt it to the current
training set.

The framework proposed in this paper is general, but we will give applica-
tions for global descriptions of data using histograms. We will give examples
of kernel designs for these histograms.

A common process when dealing with histograms is to first build a dic-
tionary of visual words on a training set, using clustering methods, such as
K-means [15] or randomized forests [28]. Each data in the database is then
represented by a histogram on this visual dictionary. Then, a kernel func-
tion, RBF or Fisher kernel, is considered. Such strategies proved to be very
powerful in a batch learning context, when a large training set is available
[20, 33, 34]. In [32], Perronnin first proposed to build two kinds of visual
dictionaries per category: one “universal” visual dictionary is build on the
whole database with a Gaussian mixture model (GMM) without any super-
vision, while the other one dedicated to the category uses labelled training
data to learn the GMM of that category. In [33], Perronnin et al. applied
Fisher kernel on visual words modeled with a combination of “universal”
and “categorical” GMMs, restricted to diagonal variance matrices for each
component of the mixture. Deriving a diagonal approximation of the Fisher
matrix of a GMM, they obtain a (2d+1)×k−1 dimensional vector represen-
tation of an image feature set, or d× k dimensional vector when considering
only the components associated with either the means or the variances of
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the GMM. In a very recent work [34], Perronnin et al. further improved
the Fisher kernel in several ways. Inspired by these works, [20] Jegou et
al. proposed a simpler approach in which a K-Means algorithm and a new
descriptor aggregation approximate the universal GMM. This last method is
a good approximation of Perronnin et al. sophisticated GMM models and
produces comparable results.

However, in our context of interactive retrieval, we have very few as-
sumptions both on the concepts the user is looking for and on the database
which is completely unknown at the beginning. Hence, using a single dic-
tionary computed for all concepts does not seem judicious, since concepts
themselves are unknown.

A solution could be to compute a new dictionary based on the features
from the images labelled by the user, at each feedback loop. One could, for
example, consider very recent work of Mairal et al. [26] which iteratively
builds a dictionary using on-line techniques in order to speed up the dic-
tionary computation. However, this method is not adapted to the active
learning context since all the histograms must be recomputed at each itera-
tion with the new dictionary, and thus there is no strategy for selecting the
optimal samples for annotation.

Another idea could be to incrementally design a kernel function directly
on training data from base kernels (seen as weak-learners), using the boost-
ing paradigm as in Crammer et al. approach [9]. However, as in the classic
boosting algorithm [38], in order to determine penalties and weights involved
in boosted kernel construction at each iteration, the current kernel has to be
evaluated on all previously labelled data from the training set. The compu-
tation time of this evaluation increases along the interactive learning process
and that is what we want to avoid.

In this paper we propose a general framework for interactive image re-
trieval with three main contributions. First we give a way to dynamically
build the dictionary from visual words extracted from labelled images. Sec-
ondly we incrementally build the kernel function from the visual words added
at each feedback step. The resulting kernel is the same as the one computed
from scratch, except that the computational complexity is linear with re-
spect to the size of the database. Thirdly, as this incremental kernel learning
method allows an efficient active learning strategy, we propose a function
which selects the images that contain the most interesting features. Section
2 gathers the works related to the three contributions, which are themselves
presented in section 3. In section 4 we present an application of the method
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using low-level features such as color or texture vectors. Finally, in sections
5 and 6, we present experimental results carried out on generalist databases.
These results show that the proposed method performs better than the clas-
sic one where a global dictionary is used, even if the global dictionary is
optimally tuned.

2. RELATED WORK

2.1. Iterative dictionary building

Our aim is to provide an algorithm able to build a single dictionary
adapted to active learning, that is to say, able to be the most generative
regarding the class the user wants to retrieve but also the most discrimina-
tive to all other possible classes. Furthermore, since we are considering active
learning framework, our dictionary learning has to be fast and compliant with
weakly-supervised context.

Dictionary learning algorithms received recently a lot of consideration
mainly due to the increase of dataset size in classification context. If the in-
terest is mainly focused on second-order iterative batch approaches for their
computational speed compared to first order gradient descent methods [23],
such methods cannot deal with very large training sets since the whole train-
ing set is required at each iteration to minimize the empirical risk (or more
usually a surrogate function of this risk) [2]. In [27], the authors introduce a
discriminative approach to supervised dictionary learning that effectively ex-
ploits the corresponding sparse signal decompositions in image classification
tasks, and propose an effective method for learning a shared dictionary. The
key idea is to learn simultaneously a single shared dictionary and models for
different signal classes in a mixed generative and discriminative formulation.

A recent approach [26] has been proposed to iteratively build a dictionary
by processing one element (or a small subset) of the training set at a time. As
mentioned by the authors: such online approach “is particularly important in
the context of image and video processing [35], where it is common to learn
dictionaries adapted to small patches, with training data that may include
several millions of these patches (roughly one per pixel and per frame)”.

However, Mairal et al. [26] approach suffers from excessive computational
cost regarding active learning requirements. Indeed, during the dictionary
update steps, the new dictionary Dt is computed by minimizing a surrogate
cost function of the empirical cost function (under some constraints) using
both the new annotated data xt and its decomposition αt over the dictionary
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Dt−1 obtained at the previous iteration. These dictionary update steps can be
speeded up using Dt−1 as a warm restart to compute Dt. However, classical
sparse coding steps require to compute the decomposition αi of xi over the
dictionary Di−1 and thus the minimization (computed by LARS algorithm)
on all possible α values in R

k:

αi , argmin
α∈Rk

1

2
‖xi − Di−1α‖2 + λ‖α‖1

where λ ∈ R is a regularization parameter.
Such computation is definitely not suitable to our context, where we

target quasi real-time response from the system. Both the dictionary update
and the sparse decomposition of the data over the dictionary have to be
real-time compliant.

2.2. Kernel learning

In this paper, we focus on kernel-based learning techniques. The main
motivation is that, once one has a kernel function, a lot of powerful learning
methods can be used. This is also a good framework for reasoning and
creating new methods. More specifically, we are interested in methods for
learning kernels.

A first class of methods related to this task is distance learning tech-
niques (which respects the triangle inequality), since kernels are easily built
from distances. Such methods have been proposed for learning Mahalanobis
distances:

d(x,x′)2 =
∑

r

(xr − x′
r)

⊤A(xr − x′
r) (1)

with x and x′ image indexes and A � 0 a positive semi-definite matrix, that
can be learnt using optimization [43, 11, 24] or boosting [17]. The method
in [11] is interesting for our context, since the algorithm seems to be able to
update matrix A for each new label. All values of matrix A are subject to
change, and thus all distance values between labelled and labelled/unlabelled
images must be recomputed.

A second class of methods learns a combination of kernel functions (a.k.a.
multiple kernel learning), for instance using optimization [22, 1, 21]. In most
cases, a linear combination of minor kernels is performed:

K(x,x′) =
∑

j

βjkj(x,x′) (2)
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Weights βj are computed according to the current labels, and to unla-
belled data for semi-supervised algorithms. In many cases, the computation
of weights βj can be performed with complexity at most linear with the
database size. All weights βj are subject to change, and all kernel values
between labelled and labelled/unlabelled images must be recomputed.

A third class of methods performs the learning of the Gram matrix Gij =
K(xi,xj), for instance using boosting [9] or optimization [1]. With such
methods, like the method we propose in section 3, we work on the row rj =
(Gij)i of the Gram matrix which corresponds to the labelled images or on an
approximation with eigen decomposition. That means that these methods
directly produce the kernel values we are interested in. The method in [9]
proposes a boosting algorithm for learning a linear combination of Gram
matrices. This method is interesting since it creates weak hypothesis on
the fly, during boosting rounds, which is similar to our aim of building a
dictionary (and hence new indexes) during retrieval. However, all boosting
rounds need to be run again at each feedback step.

Most of the kernel learning methods we presented in this section are able
to learn new parameters for kernel building in reasonable time for our context,
sometimes thanks to some modifications/approximations. Next to that an
update of distance/kernel values must be performed with complexity O(m×
n), with m the number of labelled images and n the number of images in the
database. To the best of our knowledge, there is no method to perform these
operations with a lower complexity. Furthermore, most of these methods do
not directly deal with dynamic indexes, and thus full re-computations are
required when indexes are changed, contrary to the method we propose in
section 3.

2.3. Active learning

Many strategies have been proposed to select the best image to be labelled
as positive or negative. They are usually described as “pessimistic” methods,
“optimistic” methods, or as a combination of both.

“Pessimistic” methods will not necessarily lead to the fastest increase of
performance at each feedback iteration, but they take a minimal risk. They
ensure that a minimal performance is reached after a given number of labels.
The most common technique of this class consists in selecting the documents
the closest to the classifier boundary [7]. This strategy is used for instance
with SVM [40], kNN [19] and boosting [25, 8], with extensions to deal with
multiple image selection [3, 18] and with multi-label learning [42, 44]. It
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has been proven that selecting the most uncertain images is asymptotically
the fastest strategy for dividing Version Space in the case of SVM [40] and
boosting [25]. This strategy is optimal if one can select a document on the
classifier boundary, but usually there is no document right on the boundary,
and the constraint is relaxed by choosing a document near the boundary.
The selection criterion can be the distance to the boundary [40], the en-
tropy/probability [19], or samples where several classifiers agree/disagree [6].
That means that the theoretical optimum is never reached, but this strategy
is still able to very well identify areas containing the most interesting docu-
ments to label, even if there are few labels (about 20–40) [40, 25]. Methods
have been proposed to deal with the case of very few labels (2 or more) [13].

“Optimistic” active learning methods can lead to the fastest increase of
performance, but they do not ensure that a minimal performance is reached
after a given number of labels. Criteria of selection can be the minimization
of expected classification error [36], the maximization of mutual information
about the labels of the unlabelled documents [16], or the maximization of
expected average precision [13]. The main drawback of these methods is
that an unexpected label can lead to no improvement. For instance, let
us consider the selection of an image that, once labelled as positive, would
enhance a lot the retrieval. If the user labels this image as positive, the
classification is much improved, whereas if it is labelled as negative, there
is no improvement. Since the efficiency of these methods depends on all
previous labels, the latter case may happen more frequently when there are
very few labels.

Considering advantages and drawbacks of these two classes of active learn-
ing methods, the combination of them is interesting [13]. Uncertainty-based
methods perform well when selecting the interesting areas of document space.
Hence, one can preselect the images the closest to the classifier boundary.
Selecting within these preselected images (thanks to an uncertainty criterion)
is subject to the inaccuracy of classifier boundary, especially with few labels.
Then, an optimistic strategy can be used to select within the preselected im-
ages. When using such a combination of strategies, highly promising images
can be selected, while ensuring a minimal improvement.

3. PROPOSED FRAMEWORK

In this section, we present the general framework to build a dictionary of
visual words and to learn a kernel function simultaneously during a retrieval
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(a) Classic learning scheme with a global dictionary
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(b) Proposed learning scheme with a dynamic dictionary

Figure 1: Learning schemes for interactive image retrieval.
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session.
In Fig. 1(a) we present a classic learning scheme for interactive retrieval.

It is composed of two main stages: off-line and on-line stages. The off-line
stage is performed once and only once before any retrieval session. During
this stage, features are first extracted from images (in the example, colours).
Then a dictionary of features is computed, generally using K-Means. Since
there is no label, the usual criterion for word computation is the distortion
(or equivalent), which aims at minimizing the difference between a feature
and its corresponding word. Then, features are projected onto the dictionary
in order to get indexes, such as histograms. The on-line stage is performed
each time a new retrieval session begins. Retrieval session is initialized with
some images of the category (in the example of Fig. 1, a single image of
bicycle), an the database is classified according to these first labels. Then
the active learner selects unlabelled images that, once labelled, will enhance
the most the classification of the database. The user labels these images,
which are added to the current training set. These steps are repeated until
the user is satisfied or tired.

In Fig. 1(b) we present the learning scheme we propose to use in this
paper. The main difference is that we move all the processes related to
the dictionary from the off-line stage to the on-line stage. Such a change
allows to perform the dictionary computation with the information brought
by user labels. Even if we have very few labels in the interactive retrieval,
this information can still slightly improve the relevance of the dictionary for
the currently searched category. Of course, as we focus on real time image
retrieval, full re-computation of indexes is not an acceptable solution. In our
case, we use kernels for classification, and hence we only compute what is
required to update the previous kernel to the new one.

3.1. Dynamic dictionary

In this section, we assume that each image i is represented by a set
Pi = {pri}r of features pri in feature space P. For instance, Pi can be the
set of the most representative color vectors of image i. These features are
precomputed for all images of the database, or computed on the fly for query
images outside the database.

The first aim of the method is to build dictionary DL = {p̂l}l∈[1,L] of
features p̂l, but with the constraint that they are features from images of
the database. We call words the features selected to enter the dictionary.
The first advantage of such a strategy is that all possible words (and latter
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minor kernels) are known before any retrieval session, and thus allow the use
of cache algorithms to save computational time.

At the beginning of a retrieval session, the dictionary D0 is empty. Then,
at each feedback step, we add to the dictionary features from images labelled
as positive. They are added as soon as they are different from the ones
already in the dictionary. As we will see with experiments, positive labelled
images seem to contain most of the interesting features.

We denote gD(p) a feature selection function which returns 1 if feature p

can be added to dictionary D, and 0 otherwise. Examples of such functions
are presented in section 4.

3.2. Incremental kernel learning

For each new word p̂l, we build a minor kernel function kp̂l
(Pi, Pj), which

is the similarity between image i and image j relatively to p̂l. We sum all
these minor kernels to get the kernel according to current dictionary DL:

KL(Pi, Pj) =
L
∑

l=1

kp̂l
(Pi, Pj) (3)

with L the number of words in dictionary DL.
The incremental computation of this kernel is straightforward:

KL+1(Pi, Pj) = KL(Pi, Pj) + kp̂L+1
(Pi, Pj) (4)

If P is the space of feature sets, minor kernels kp̂l
(Pi, Pj) are computed

using evaluation function ep̂l
: P → R defined for feature p̂l and similarity

function δ by :
kp̂l

(Pi, Pj) = δ(ep̂l
(Pi), ep̂l

(Pj)) (5)

The simplest evaluation function ep̂l
equals 1 if p̂l is in Pi and 0 otherwise.

This formula can be used for dictionary of visual words, where one only
checks whether keyword p̂l belongs to image Pi. In the case where an image
is represented by a set of colours, ep̂l

(Pi) can return the number of pixels
whose color is close to p̂l.

The similarity function δ compares the evaluation of images i and j re-
garding feature p̂l. This function must be chosen so that the expansion of
function KL in Eq. (3) is a kernel function. Thus function ep̂l

does not need
to satisfy any mathematical property to lead to a kernel function.
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3.3. Active learning strategy

In this section, we present a method to perform active learning within
our kernel learning framework. We denote by y = (yi)i the label vector, with
yi ∈ {−1, 0, 1} the label of image i (1 for relevant images, -1 for irrelevant
images, and 0 when there is no label).

Active learning aims at selecting the unlabelled images which, once la-
belled by the user and thus added to the training set, will improve at most
the classifier. This can be expressed as the minimization of a function a(i)
over unlabelled images :

i⋆ = argmin
{i|yi=0}

a(i) (6)

i⋆ is the index of the selected image. A common active learning function
selects the images the closest to the classifier boundary. When the classifier
is SVM, a(i) can be the distance of image i to the separating hyperplane. In
this case, we have the SV Mactive method proposed by Tong [40].

Because of the inaccuracy of the classifier boundary with very few labels,
we apply a correction using the method in [13]. Then, we preselect the 100
images the closest to this corrected boundary. The selection within these 100
images uses the following active learning method.

For each feature p in unlabelled images, we compute the kernel target
alignment between the labels and the kernel kp (cf. Eq. (5)). This criterion,
proposed by Cristianini [10], is a measure of similarity between a kernel and
a set of labels. The higher the alignment is, the higher the kernel kp ”fits”
the category represented by the labels y:

Ay(kp) =
〈kp,yy⊤〉

√

〈kp, kp〉〈yy⊤,yy⊤〉
(7)

with 〈., .〉 the dot product.
Since labels do not change during active learning selection, the active

selection function can be written as:

a(t) = argmin
p ∈ Pt

gD(p) = 1

∑

i

∑

j yiyjδ (ep(Pi), ep(Pj))
√

∑

i

∑

j δ (ep(Pi), ep(Pj))
(8)

with gD(p) a feature selection function which returns 1 if feature p can
be added to dictionary D, and 0 otherwise (see section 4.1).
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3.4. Bound the dictionary

In order to save memory, we propose a method to bound the size of the
dictionary. The main idea is to compute the kernel target alignment for
each word p̂l of the dictionary, and only to use the words that maximize the
alignment.

Considering the kernel target alignment computation time, since we have
very few labels, their re-computation is not a problem. For enabling a word,
the update is the same as before (cf. Eq. (4)). For disabling a word p̂l, the
update is the following:

KL+1(Pi, Pj) = KL(Pi, Pj) − kp̂L+1
(Pi, Pj) (9)

At the end of the section 5.2.2 we present experiments which evaluate the
performance according to the maximum number of words in the dictionary.

4. APPLICATION

In this section, we present an application of the method for dynamic
histograms.

4.1. Dynamic Histograms

In this application, descriptors are vectors, such as colour or texture. The
aim of this application is to iteratively build the kernel function on histograms
during the retrieval.

With classic histogram-based features, a dictionary is built for the
whole database, before any retrieval session. This is performed using some
parametrization, for instance the number of words in the dictionary. As we
will show in experiments, performance for each retrieval session depends on
this parametrization. With the method we proposed in section 3.1, we get
rid of global dictionaries.

Before any retrieval session, we extract and quantize the descriptors
within an image using K-Means with Euclidean distance d. In the follow-
ing experiments, we keep 64 descriptors per image. Then, we build for each
image i a set Pi of features pri with:

pri = (fri, hri, θri) (10)

where fri is the center of cluster r computed by K-Means, hri the number
of vectors in cluster r, and θri the distance of fri to the closest cluster center
r′ 6= r.
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These image feature sets Pi = {pri}i are computed off-line.
During the on-line retrieval, if D denotes the current dictionary, we only

add features from images labelled as relevant if they are not similar to any
feature of D. To consider two features p and p̂ as similar, we check if
thresholds θ and θ̂ are close enough and if descriptors f and f̂ are close enough
according to these thresholds. In this case, the feature selection function gD

is:

gD(p) =

{

1 if ∀p̂l = (̂fl, ĥl, θ̂l) ∈ D,
|θ̂l−θ|

θ̂l+θ
> 0.8 or d(̂fl, f) > θ̂l

0 otherwise
(11)

Such a feature selection function can add clusters with similar centers
but with different sizes, since parameter θ can be seen as the size of the
hypersphere around the cluster center. That means that, for instance, a first
center can focus on a very specific blue color, while another one focuses on
all blue hues. Then, if the user is looking for a car with a very specific blue
color, the first cluster is the most interesting. In another case, if the user is
looking for blue skies, the second cluster is the most interesting.

Evaluation value ep̂l
(Pi) of each image Pi according to the new word p̂l

first aims at checking if one of the descriptors of image i is close to word p̂l.
In this case, ep̂l

returns the number of descriptors of Pi close to p̂l :

ep̂l
(Pi) =

{

hr⋆i if d(̂fl, fr⋆i) ≤ θ̂l

0 otherwise
(12)

with r⋆ = argminr d(̂fl, fri).
In the example of color histograms, gW (p) equals 1 if color f is far enough

to each color already in D, and xi = (ep̂l
(Pi))l is similar to the histogram of

image i regarding dictionary D.

4.2. Incremental kernel

We present in this section two similarities δ (cf. Eq. (5)) that respectively
lead to a triangular and a Gaussian kernel (cf. Eq. (3)).

4.2.1. Triangular χ1 incremental kernel

If the evaluation function always returns positive values, the following
function δ can be used, with (x, y) ∈ R

2:

δχ1(x, y) = −
|x − y|

x + y
(13)

14



This function is very interesting since it is invariant to scale:

∀α > 0, δχ1(αx, αy) = δχ1(x, y)

Thus, the method is invariant to the magnitudes of evaluation function
values. For instance, even if a first evaluation function ep̂l

, corresponding
to a first feature p̂l, returns values around 10−5 and another one ep̂k

, corre-
sponding to feature p̂k, returns values around 105, both feature spaces still
have the same weight in kernel KL.

This function leads to a triangular kernel with χ1 distance:

KL(Pi, Pj) =
L
∑

l=1

kp̂l
(Pi, Pj)

= −
∑

δχ1(ep̂l
(Pi), ep̂l

(Pj))

= −dχ1(xi,xj)

with dχ1 the χ1 distance between two vectors, and xi = (ep̂l
(Pi))l.

4.2.2. Gaussian L2 incremental kernel

The method can also be used to incrementally build a Gaussian L2 kernel,
using the following function δ, with (x, y) ∈ R

2:

δL2(x, y) = −
1

2σ2
(x − y)2 (14)

If we compute the exponential value of kernel KL(Pi, Pj), we get a Gaus-
sian L2 kernel:

K ′
L(Pi, Pj) = exp (KL(Pi, Pj))

= exp

(

∑

l

δL2(ep̂l
(Pi), ep̂l

(Pj))

)

= exp

(

−
1

2σ2
dL2(xi,xj)

)

with dL2 the L2 distance, and xi = (ep̂l
(Pi))l.
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Algorithm 1 Evaluation protocol for one category

Given: category C, training set A, test set T , number of feedbacks F , number
of labels per feedback s

For each image c of C ∩ A do

• Create a new retrieval session with no labels

• Initialization:

– Label c as positive

– I⋆
0 = s closest images to c in A

– Label images of I⋆
0 ∩ C as positive, otherwise as negative

• For f from 1 to F do

– Train a new classifier using current labels

– Sort images of T using the classifier

– Compute Precision/Recall curve pr(f, c) on T

– I⋆
f = s images selected in A using active learning

– Label images of I⋆
f ∩ C as positive, otherwise as negative

Output: Average Precision/Recall curves PR(f) = average
c

(

pr(f, c)
)

5. EXPERIMENTS ON INTERACTIVE RETRIEVAL

5.1. Evaluation Protocol

We set up an evaluation protocol to estimate the average performance
one can expect when starting an interactive retrieval session with a random
image. This is performed by the simulation of retrieval sessions for each
category, where the user labels the images selected by the active learning
technique. A Precision/Recall curve is computed at each feedback step, and
then averaged over all retrieval sessions for the same category. Then, the
average quality of the ranking is computed with the usual criterion of Aver-
age Precision, which is used for example in TRECVID evaluation campaign
[30]. At last, in order to have a global quality measure of our system, we
compute the Mean Average Precision (MAP) on all categories. Labelling is
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only performed on the train set, and performance is computed on the test
set. Details of the evaluation protocol are shown in Algorithm 1.

Figure 2: Images from VOC 2006 database.

5.2. Results on VOC2006

We carried out experiments on the VOC 2006 database [12] which con-
tains images belonging to 10 categories. It is split into 1,277 train images
and 2,686 test images. Images from this database are shown in Fig. 2. Let
us note that we do not follow any of the PASCAL evaluation protocols since
we are interested in interactive image retrieval.

We compared two histogram-based methods, one using global dictionar-
ies, and the other one using our dynamically built histogram. In both cases
we used L⋆a⋆b⋆ colours, textures from quaternion wavelets [4], and SVM to
classify the database according to the current labels. Results per category
are presented in Table 1 for 10 feedback steps, and results according to each
feedback step are presented in Figure 3.

5.2.1. Global dictionary

The first method precomputes a global dictionary with a fixed number
of color and texture clusters. We use dictionary sizes of 16, 32, 64, 96, 128,
160, 192, 224 and 256, and consider all combinations of two features with
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different dictionary sizes. The kernel function is a triangular kernel with χ1

distance:

Kχ1(x,y) = −
∑

r

|xr − yr|

xr + yr

The active learning method is the one of [14]. This is an enhancement of
Tong’s SVMactive method[40], a reference strategy for interactive retrieval.
These two papers compare several interactive retrieval methods and show
the large increment brought by active learning strategies.

We display three of the 81 combinations of dictionaries in Table 1 : 64
colours/64 textures, 256 colours/256 textures, and 64 colors/160 textures.
The last one is the combination which gives the best overall MAP among the
81 combinations. Performance can be very different from one parametrization
to another, for instance for the “bicycle” category, it goes from 32% to 46%.
This shows that the performance is highly dependent on the parametrization
of the global dictionaries.

Fig. 4 shows the average precision for several combinations of dictionary
sizes. One can see that results are not regular according to dictionary sizes.
This is due to the learning of dictionary: even if we use a K-Means algorithm
which gives almost stable dictionaries [31], they are still subject to some
variations. However, one can see that there is emerging combinations. Let
us note that this behaviour is the same for all categories.

5.2.2. Dynamic Histograms

The second method is the one we proposed in section 4.1 with a triangular
kernel with χ1 distance (cf. Eq. 13). Results are shown in the fourth column
of Table 1. With this method, no parametrization is needed. On average,
our method performs better than the method with global dictionaries, even if
global dictionaries are perfectly tuned. That means that, whatever the cross
validation performed to optimally tune global dictionaries, performance is
better with our dynamic dictionaries.

Let us note that our method is less effective for two categories (“cow”and
“sheep”). This can be explained by the fact that these categories can be
retrieved with few features (color and texture of grass for instance). That
also shows that the method builds discriminative kernels, which is consistent
with interactive retrieval, where the user expects to retrieve the images he
labelled as positive. That means that the method takes little risk, and selects
the features which increase at most the similarity between positive labels and
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decrease as much as possible the similarity between negative labels. Since
only few labels are available for training, in special cases such as “cow”and
“sheep”the method does not detect generic features which are relevant for a
large category.

We also carried out experiments to evaluate the performance of dynamic
dictionaries when their sizes are bounded. The results are shown in Table 2.
We tried several maximal numbers of words : 16, 32, 64, 96, and 128. Let
us notice that, without bounding, the size of each dictionary goes up to 200
with 51 labels. Results are almost stable for bounding values higher than 96
words, and even with few words, we still have good performance.

Fig. 5 shows the average computational time of each feedback step using
dynamic dictionaries, when running the system on a single core of an Intel
Core 2 Duo with 2GB of memory. The first feedback step is the longest to
compute, since all visual words are new, and their evaluation and kernel val-
ues need to be computed. For the next feedback steps, only the evaluation
and kernel values for the new visual words are computed, the previous values
being stored into memory. In order to store these values up to the available
memory, we use classic caching algorithms. In order to get average compu-
tation time for a single search, we empty caches at the beginning of each
retrieval session during these experiments. In the other case, where caches
are shared among users, the average time for one feedback step is around 10
milliseconds, the same computational time as for static dictionaries.
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Dictionary sizes
Category 64/64 256/256 64/160 Dynamic
bicycle 43 45 44 48

bus 48 57 56 64

car 65 69 70 79

cat 28 28 30 31

cow 47 35 40 41
dog 22 23 23 25

horse 22 24 23 25

motorbike 46 55 50 61

person 33 35 34 37

sheep 48 38 48 36
all 40 41 42 45

Table 1: Average Precision(%) on the test set of VOC2006 database. Initialization with 1
image, 10 feedbacks, 5 labels per feedback. Except for the last column, results are shown
for global dictionaries. The two numbers in column heads (for instance ’160/64’) are the
sizes of the color and texture dictionaries. The last column shows results using the method
proposed in this paper, where dictionaries are built during the retrieval.
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Figure 3: Mean Average Precision(%) on the test set of VOC2006 database, according
to each feedback step. Initialization with 1 image, 10 feedbacks, 5 labels per feedback.
“Dynamic” refers to the proposed method, “Static X/Y” refers to a global dictionary with
“X” color and “Y” texture words.
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Figure 4: Average Precision on the test set of VOC 2006 database. Each square is the
result for a combination of two dictionaries. A lighter square means a better performance
than a darker one.

Max. number of words
Category 16 32 64 96 128 +∞
bicycle 38 41 46 47 47 48

bus 42 50 60 63 62 64

car 69 73 76 77 79 79

cat 25 28 28 30 30 31

cow 25 29 33 37 38 41

dog 22 22 24 24 25 25

horse 18 21 22 23 24 25

motorbike 45 53 57 58 60 61

person 31 33 34 36 36 37

sheep 29 33 35 35 36 36

All 34 38 41 43 44 45

Table 2: Average Precision(%) using the proposed method on the test set of VOC2006
database, according to the maximum number of words allowed in dynamic dictionaries.
For experiments corresponding to the last column, the average number of words in each
dictionary is between 150 and 200. Initialization with 1 image, 10 feedbacks, 5 labels per
feedback.
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Figure 5: Average computational time of each feedback step with dynamic histograms.
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airplane beaver bikes boat

Figure 6: Images from the Web.

5.3. Results on Images from the Web

We carried out experiments on the database presented in [39], which con-
tains images belonging to 18 categories. We only considered non-abstract
images labelled as “good” or “ok”, which leads to a total of 10610 images.
In comparison to VOC2006 images, most images have a poor quality (low
resolution and high compression). Some images from this database are pre-
sented in Fig. 6. The experimental protocol is the same as the one we used
for VOC2006, except that performance is measured on the train set (there is
no test and validation sets).

Results are presented in Table 3. Let us first remark that we have lower
results than with the previous database and the same features, certainly be-
cause of the poor quality of images. We first carried out experiments with
global dictionaries of color and textures. We considered all combinations of
one color dictionary and one texture dictionary with 64, 128, 256 and 512
words. The first column presents Average Precision using the worst combina-
tion, the second one a combination one may choose considering the database
size, and the third column the best combination. Again, we observed large
differences from one global dictionary tuning to another. It seems that a
small color dictionary and a large texture dictionary is the most suited tun-
ing for that database. The last column presents Average Precision using the
proposed method, which does not require any global dictionary tuning. As
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for VOC2006, the proposed method gives the best Mean Average Precision.

Dictionary sizes
Category 512/64 256/256 128/512 Dynamic
airplane 14 18 20 19
beaver 6 10 9 7
bikes 20 20 20 23

boat 18 23 25 30

camel 13 15 14 19

car 26 34 38 38

dolphin 17 20 23 20
elephant 12 15 16 17

giraffe 18 21 20 21
guitar 26 26 23 27

horse 14 15 15 17

kangaroo 8 8 9 7
motorbikes 13 16 18 19

penguin 8 10 11 10
shark 20 19 18 19
tiger 11 17 19 19

wristwatch 18 21 23 32

zebra 25 44 50 56

all 16 20 21 22

Table 3: Average Precision(%) on the database with images from the Web. Initialization
with 1 image, 10 feedbacks, 5 labels per feedback. Except for the last column, results are
shown for global dictionaries. The two numbers in column heads (for instance ’128/512’)
are the sizes of the color and textures dictionaries. The last column shows results using
the method proposed in this paper, where dictionaries are built during the retrieval.

24



Approach Unsupervised Supervised Supervised+Unsupervised
Features lab/qw(a) VLAD(b) lab/qw(c) lab/qw+vlad(d) GMMs(e)
bicycle 90 90 91 95 94

bus 95 95 96 97 98
car 93 94 95 96 97
cat 80 89 87 91 93
cow 82 92 92 93 94
dog 73 81 82 87 87

horse 84 87 86 92 92
motorbike 93 92 95 97 96

person 77 81 81 87 86
sheep 88 92 90 94 95

all 85 89 89 93 93

Table 4: Area under ROC Curve(%) on the test set of VOC2006 database. lab = L
⋆
a

⋆
b
⋆

colors, qw = quaternionic wavelet textures, VLAD = Vector of Locally Aggregated De-
scriptors with Harris-Laplace/rgSIFT.

6. EXPERIMENTS ON BATCH LEARNING

In this section, we present results for batch learning, where the goal is
to build classifiers for a set of categories thanks to a large training set. In
order to compute theses results, we followed the protocol named ”comp1”
in PASCAL Challenge for VOC 2006 [12]. Results are computed using the
Matlab code provided with the database, which measures performance using
the Area Under the ROC Curve (AUC). Results are displayed in Table 4 and
detailed in the next sections.

6.1. Unsupervised visual dictionary

We have first carried out experiments using a global visual dictionary
of colours and textures. This dictionary is created using K-means on the
training set. We have tested several dictionary sizes, and it appears that a
dictionary of 256 colours and 256 textures provides the best results, displayed
in column (a) of Table 4. We used a SVM classifier with C = 1 and a
Gaussian kernel with a χ1 distance and σ = 0.5. One classifier is trained
for each category. This method gets an average AUC of 85% and a MAP of
56%.

We have also carried out experiments using the state of the art approach:
Vectors of Locally Aggregated Descriptors (VLAD) [20], which is derived
from the method based on bag of features and Fisher Kernels proposed in
[33]. VLAD approach aggregates keypoint descriptors into a single vector in
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a more efficient way than bag of features. We have integrated this aggre-
gation scheme using keypoints detected with Harris-Laplace and described
with rgSIFT [41]. We have tested several dictionary sizes (from 8 to 64), and
it appears that a dictionary of 32 visual words provides the best results, dis-
played in the second column of Table 4. The training procedure is the same,
except that we used a Gaussian kernel with L2 distance better adapted to
VLAD descriptor. This method gets an average AUC of 89% and a MAP of
66% (column (b) of Table 4).

From this first experiments, it seems that the color and texture features
are not as relevant as VLAD descriptor regarding classification of VOC 2006
data. In particular, the classifier using the global visual dictionary based
on VLAD significantly outperforms colour and texture visual dictionary de-
scription on dog, cat or cow categories.

6.2. Supervised visual dictionary

In order to clearly illustrates the power of our supervised dynamic dic-
tionary approach, we used it for batch learning and compared classification
results with the previous ones on global dictionaries. However, using our
method to build a visual dictionary while remaining in a classic batch learn-
ing context is not really relevant. Indeed, the dictionary is traditionally built
on all the features in the images labelled as positive, which would make our
incremental (dynamic) learning process useless. Furthermore, the evaluation
of the kernel target alignment requires O(n2) operations, with n the number
of labels. In the context of batch learning, where training sets usually contain
thousands of labels, these evaluations become intractable.

In order to circumvent these issues, we use our incremental method sim-
ulating retrieval sessions on the training sets, thus we build the visual dic-
tionary by creating new features in an interactive retrieval framework. The
idea is the following: if we store the classifier created at the end of a retrieval
session, we get a good function to evaluate the relevance of any image in the
neighborhood of the initial query image. Then, if we repeat such a process
for each image of a category, we can represent any image with a “semantic
descriptor” made of all the outputs from the classifiers of simulated retrieval
sessions. This semantic descriptor based on supervised features relies on a
category or a concept. A detailed presentation of this process is given in
Algorithm 2. At last, we train a SVM classifier on the semantic descriptor
corresponding to the category to retrieve.
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Results with this approach are displayed on the column (c) of Table 4.
This method achieves an average AUC of 89% and a MAP of 66%. If we
compare these results to the one of the global dictionary of colours and
textures, we can see the improvement of the learning process we propose,
since both methods use the same low-level features. Our new process is at
least as good as a global dictionary based on VLAD descriptor and even
outperforms this state of the art method on the critical dog, cat and cow
categories.

6.3. Combined supervised and unsupervised visual dictionaries

Finally, in order to compare somewhat fairly our approach to the current
best method on PASCAL Challenge [33], we have carried out experiments
using the concatenation of all our supervised features and the global dictio-
nary based on VLAD descriptors. This approach is an approximation of the
original method from Perronnin et al. [33] who creates a large vector for
each image: one part being related to a global (“universal” in [33]) visual
dictionary based on an unsupervised GMM trained on all data, and the other
part is related to a supervised (category) visual dictionary using Gaussian
Mixture Models trained on each category. Inspired by these works, [20] Je-
gou et al. proposed a simpler approach in which K-Means algorithm applied
to VLAD descriptors approximates the universal visual dictionary and gets
performance comparable to Perronnin et al. ones. We then concatenate the
global VLAD vectors to our supervised “semantic” descriptors. In order to
compare Perronnin et al. approach with our method, we have reported the
results of [33] in the column (e) of Table 4.

We have tuned the SVM and Gaussian kernel parameters following a two-
folds cross validation between train and validation sets. Results are shown
in the column (d) of Table 4. This method gets an average AUC of 93% and
a MAP of 74%.

Performance is about the same, and thus illustrates the ability of our
method to get very good results with less sophisticated image representations.
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Algorithm 2 Supervised feature creation for one category using an interac-
tive retrieval technique.

Given: category C, training set A, number of feedbacks F , number of labels
per feedback s

For each image c of C ∩ A do

• Create a new retrieval session with no labels

• Initialization:

– Label c as positive

– I⋆
0 = s closest images to c in A

– Label images of I⋆
0 ∩ C as positive, otherwise as negative

• For f from 1 to F do

– Train a new classifier fc using current labels

– I⋆
f = s images selected in A using active learning

– Label images of I⋆
f ∩ C as positive, otherwise as negative

Output: Supervised feature vectors for images (Ii)i : SC
i =

(

fc(Ii)
)

c∈C
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7. CONCLUSION

In this paper, we introduced a framework to learn a kernel function during
an interactive retrieval. This framework does not need any assumptions on
the features, since the main requirement is an evaluation function which
does not have to satisfy any special mathematical property. Furthermore,
this framework allows the combination of features of different types, through
evaluation functions adapted to each kind of feature (cf. Eq. (13)).

One application of this framework is the ability to build an optimal dic-
tionary during the retrieval, instead of the tiresome step of cross valida-
tion, usually performed to build a global dictionary (hopefully the best one).
Moreover, we showed on VOC 2006 database, that this automatically built
dictionary has better performances than the best global dictionary, while still
being compatible with an on-line use.

Another interest of our framework is that it dynamically builds the kernel
function as new words are added to the dictionary. We also introduced an
efficient active learning technique for this framework, based on the kernel
target alignment.

This framework can be used with more complex features, for instance
with keypoints or bags of features or even graphs, as long as an evaluation
function can be defined. We are also working on extensions of this framework
for long-term or collaborative learning, where the information given by past
users is used to optimize the whole retrieval system.
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