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Extensions of the method
of poles for code construction

MARIE-PIERRE BEAL*

Abstract

The method of poles is a method introduced by P. A. Franaszek
for constructing a rate 1 : 1 finite state code from k-ary data into
a constrained channel of finite type whose capacity is strictly greater
than log(k). The method is based on the computation of a set of
states called poles. To each pole is associated a set of paths going
from this pole to others. Each set verifies an entropy condition. The
code produced by the method of poles has a sliding block decoder if
each set of paths satisfies moreover an optimization condition based
on the sum of the path lengths of the set. In this paper we give a
new optimization condition which guarantees the sliding block window
decoding property and has a lower computational complexity than the
previous one. We also extend the method of poles to the more general
case of sofic constrained channels.

Index Terms: method of poles, sliding-block decoder, encoder, shift
of finite type, sofic system, strongly synchronizing state.

1 Introduction

We are interested in the problem of encoding digital data into a constrained
set of sequences. Typical applications are coding for storage systems or
transmission systems. For digital magnetic storage for instance, constraints
are run-length constraints on the sequences of bits stored. They are due
to physical limitations of the storage systems. The constraints that can be
modeled by a finite state machine are called rational constraints or sofic
constraints. The problem is then to encode a free source of data, usually
sequences of bits 0 and 1, into an available sequence, that is a sequence
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that can be read as the label of a path of the automaton that models the
constraints. With a fixed rate p : ¢ coding strategy, each block of p bits is
encoded in a block of ¢ bits, where p and ¢ are small integers. After changing
the alphabets, that is after recoding each source block of length p by one
letter and each constrained block of length ¢ by one letter, the coding (seen
with these new alphabets), is a 1 : 1 rate coding from an unconstrained
source into a constrained channel.

In this paper we will consider first the class of constraints of finite type
that we define as the constraints that can be recognized or represented by
a deterministic local (or definite) automaton. An automaton is composed
of a finite set of states and a finite set of edges. Fach edge is defined by
its origin state, end state, and a letter called its label. The automaton is
deterministic if there is at most one edge going out of a given state and
with a given label (the end state is then determined). The automaton is
deterministic and local if it has in addition the following property : there
is an integer m such that all equally labeled paths of length n end at the
same state. The final state depends then only on the label. The method of
poles is one method of channel coding for channels modeled by finite type
constraints. The method constructs a rate 1 : 1 encoder from arbitrary k-
ary data into a given finite type channel S with a topological entropy h(S),
also called the Shannon capacity of the channel, strictly greater than log(k).
The log is usually taken base 2. The algorithm starts with a finite local
automaton A representing the channel, and builds a transducer, that is a
finite automaton labeled by pairs of letters, whose input labeling is right
closing (or deterministic with a finite delay), and whose output labeling is
local. Since the input labeling is right closing, the encoding is sequential and
since the output labeling is local the decoder is a sliding-block decoder and
therefore propagates a symbol error in an encoded S-string by at most the
decoder window length. The decoding is sometimes called state independent
because the network of the decoder is then a purely combinatorial one. Final
automata reductions tend to minimize the size of the transducer and hence
the size of the decoding window. The construction of the output of the
transducer is based on the computation of a set of states called principal
states. It is possible to associate to each principal state a set of paths of the
automaton A. Tt consists in all paths going out of a given principal state and
ending at another one. All possible sets of paths satisfy a Kraft condition
on the lengths of the paths. For each principal state, the chosen set of paths
is one that minimizes the set length (that is the sum of the path lengths of
the set) among all possible sets. Finally the principal states that are not
reached by any path of any set are removed and the remainders are called



poles. This natural optimization condition is essential for the important
feature of state independent decoding.

The method of poles and the computation of the set of principal states
has been introduced by P. A. Franaszek in [14]. The above optimization
condition and the proof of its influence on the sliding-window property were
given in [8], (see also [9]). This method does not work in general in the case
of equality of capacities of the source and of the constrained channel [4]. A
different method, which allows also in the case of equality of capacities, has
been obtained in [1] (see also [24], [25]). Tt is called the state splitting method
or the ACH algorithm and involves state splittings of some states of the
representation of the channel. Many other methods based on state splitting
are described in [27] (see also [3], [6], [20]). These channel coding problems
are closely related with the mathematical theory of symbolic dynamics [25].
In the case of a channel of finite type whose Shannon capacity is strictly
greater than the capacity of the source, both methods lead in practice to
transducers that can have about the same complexity. By complexity, we
mean the size of the length of the window of the decoder and the size of the
encoder. In the case of equality of capacities, the state splitting method is
more powerful since the method of poles does not apply in general for these
channels.

The aim of the paper is to improve the method of poles for constraints
of finite type by choosing a better optimization condition. We also show
that the method can be extended to more general sofic constraints. These
two points can be merged and one can make the improved optimization
condition work in the sofic case.

The first improvement is a complexity improvement on the optimiza-
tion condition that ensures the state independent decoding property. The
method of poles computes sets of paths of length at most an integer M which
depends on the entropy of the constrained channel and of the geometry of
the automaton. Let us consider an n-state local automaton which represents
the constraints. Let us also assume that the Shannon capacity of the channel
is strictly greater than log(k). In most applications, the integer n is small.
The bound M of the length of the paths can asymptotically be k™ (see [4]
for instance) and is nevertheless not too big in practice. For each principal
state p, a set of paths is computed as a finite tree T}, of height M and whose
arity is the maximal outdegree of the graph representing the channel. An
algorithm for computing the set of principal states and of one possible tree
associated to each principal state, is given by Franaszek in [14]. Its time
complexity is exponential in M. A computational problem appears when
we have to apply the optimization condition given in [8]. Indeed, if ¢, is the



number of nodes of 7}, the search of an optimal tree for this minimization
condition requires to check all trees representing prefix sets of paths being
prefixes of paths of T,,. This computation is exponential in the sum of the
sizes t,. We present here a new optimization condition which allows us to
compute optimal trees in a linear time in the sum of the sizes t,. We prove
that the optimal trees obtained with this new optimization condition still
lead to a sliding-block window decoder.

In the second part of the paper, we show how to extend the method of
poles to sofic constraints that are no more of finite type. This is possible
after a preliminary transformation of the finite state machine that models
the constraints, in order to make the representation contain some special
states called strongly synchronizing states. We describe this transformation
than can be done with easy rounds of state splittings or also with a fibered
product of two automata. This preprocessing is very different and much
simpler than the ACH algorithm [1]. We then show that the method of
poles can be performed on this sofic representation and still builds a 1 : 1
encoder with sliding block decoder.

Another method to solve the case of sofic constraints has been described
by R. Karabed and B. Marcus in [21]. It is based on the state splitting
process of [1]. Compared to their method, our method does not allow us, in
general, to treat the case of equality of capacities for the class of almost of
finite type constraints (see [21]). But the method of poles for sofic shifts gives
a practical alternative to state splitting methods that are rather complicated
in the sofic case.

In Section 2 we give the primary definitions and we briefly recall the
method of poles. As it is used in Section 3, we describe the computation
of the set of principal states. The algorithm of construction of the trees
obtained with the new optimization condition is given in Section 3. We
prove here that we do not lose the state independent decoding property.
The extension of the method of poles to the case of sofic constraints is
described in Section 4. In this paper, we will sometimes describe algorithms
as programs written in a pseudo code. We adopt some conventions given in
(12, p. 4].

2 Definitions and background

Let A be an alphabet, that is, a finite set of symbols called letters.
A finite state automaton A = (Q, F) on the alphabet A is composed of
two finite sets: @, the set of states, and FE, the set of edges. The set of edges



is included in Q X A x Q. A finite path is a finite sequence of consecutive
edges ((¢i, @it1,9i+1))o<i<n, the word ajas ... a, being the label of the path.

A finite automaton is deterministic if and only if, whenever there are
two edges (p,a,q) and (p,a,r) then g = r.

A finite automaton is local if there are three nonnegative integers n, m, a
with m+a = n such that whenever two finite paths ((¢;, @it1, ¢i+1))o<i<n and
(¢, @it 1,9;41))o<i<n have the same label w = aiay...a,, then ¢ = q,.
The integer m is for memory and a for anticipation. If A is moreover deter-
ministic, it is possible to have a null anticipation, or, equivalently, to take
m = n. Local automata are also called definite automata [28]. An automa-
ton is said to be irreducible if its graph is strongly connected. A constraint
channel S is said to be recognized or represented by the automaton A if it
is the set of labels of bi-infinite paths of the automaton. Such a constrained
channel is called a sofic channel. If it can be represented by a local automa-
ton, the constraint or the channel is said of finite type. It is characterized by
a finite set of finite blocks avoided by any bi-infinite sequence of the chan-
nel. This set is called a set of forbidden words for the channel. It is possible
to represent the channel by an automaton which is both deterministic and
local.

A word w of length m + a, where m and a are nonnegative integers,
is said to be (m,a)-synchronizing if there is a state p such that each path
(@, Git1,Gi+1)0<i<m+a labeled by w satisfies ¢, = p. We say in this case
that w synchronizes onto the state p. A word w is said to be synchronizing
if it is (m, a)-synchronizing for some m and a.

We introduce the notion of strongly synchronizing states that will be
useful in the last section to extend the method of poles to sofic constraints.
For each state p and each nonnegative integers m, a, we define the set E],()m’a)
of finite words uv, where u is the label of a path ending at p, and v the label
of a path starting at p. A state p of an automaton A is said to be (m,a)-
strongly synchronizing, where m and a are nonnegative integers, if for any
state ¢ distinct from p,

E]()m,a) n E‘gm,a) — @

A state p is said to be strongly synchronizing if it is (m,a)-strongly syn-
chronizing for some m and a. A state p of an automaton A is thus strongly
synchronizing if and only there are not two distinct equally labeled bi-infinite
paths such that the first one goes through a state p at some index, and the
second one goes through a state ¢ # p at the same index. This property is
computable in a polynomial time in the number of states of A (see [9] page
72).



Example. All states of a local automaton are strongly synchronizing.

We are going to encode a free k-ary source into the constraint chan-
nel S represented by an irreducible, deterministic and local automaton. We
assume that the topological entropy, or the Shannon capacity, h(S) of S
satisfies h(S) > log(k). The entropy is computed as the log of the spectral
radius of the adjacency matrix of the graph of the automaton A. It is de-
fined as the limit of 1/n log(card(A™ N S,,), where S, is the set of blocks of
length n that can appear as a subblock of a bi-infinite sequence of S.

The first step in the method of poles consists in finding a subset P of
states of Q) called principal states, such that there exists a positive integer M
(as small as possible) such that one can associate to each principal state p
a finite prefix set Z, of finite paths that satisfy the following properties

1. each path of 7, is a path of A that begins at state p;
2. each path of Z, ends at some state of P;
3. the length of each path of Z, is less than or equal to M;

4. the set Z, satisfies the Kraft inequality

1
ZWZL

2€EZp
where [(z) denotes the length of the path z.

We recall that a set of path is a prefix set! if no path is the strict beginning
of another one. A maximal subset of @) satisfying these above conditions is
unique and is called the set of principal states of the automaton.

It is shown in [8] that if A(S) > log(k), then, for a sufficiently large
integer M, such a nonempty set P of principal states always exists. The
search begins with M =1,2,--- | (M is incremented by 1 at each step when
the previous one has failed). Once a nonempty set P of principal states of
A is found, the maximal size M of the lengths of the paths of any possible
set Z) is fixed.

Franaszek’s algorithm gives then, for each principal state p of P, a prefix
set of paths Z, satisfying the above conditions, which first maximizes the

sum 1
> IOk

2€Zp

'also called a prefix free set.



and, in addition to this maximization condition, minimizes what we call the
length [(Z,) of Z, defined by

(Zy) =) U(2). (1)

2€EZp

We can here remark that the last minimization condition is a local mini-
mization condition in the sense that it does not imply that a chosen set Z,
has a minimal length among all sets that satisfy conditions 1 to 4.

We describe below Franaszek’s algorithm in a pseudo code. The compu-
tation of the set of principal states can be performed as follows

COMPUTATION OF THE SET OF PRINCIPAL STATES

begin
P < @ //where @ is the set of states of A
while (P # () and there is a state p € P with Sp(p) < 1)
do P+ P —{p}

end,

where Sp(p) is the maximum of the sums

1
Zma

2€Zp

for all possible choices of prefix sets Z, of paths satisfying conditions 1 to 4.

We now describe the computation of the predicate {Sp(p) < 1} for a
state p in P. Recall that M is a fixed integer that bounds the lengths of the
paths considered. We first build a tree T' of height M whose nodes represent
the paths in A of length less than or equal to M starting at p. The nodes
of T are labeled by states of A4 and we denote by r the root labeled by p. If
n is a node, its height is the length of the path from the root to the node.
Each node at height at most M — 1 labeled by a state ¢ admits a son labeled
by s for each edge (q,a,s) in A. This completely defines a tree that is a
covering tree starting at p and of height M, of the automaton A. The size
of the tree is its number of nodes.

We assign a boolean mark to each node of the tree T. A node is marked or
unmarked. It is marked if its label belongs to set P and unmarked otherwise.
We then associate to each node a rational value. The value of a node n is
denoted by v(n) in the pseudo code below. The computations necessary to
calculate v are linear in the size ¢ of the tree. They are performed bottom-up
from the leaves to the root of T



COMPUTATION OF {Sp(p) > 1}
begin
if (n is a leaf)
then if (n is marked) then v(n) < 1 else v(n) + 0
else //n is not a leaf
if (n is marked and distinct from the root)

then v(n) < max(1,)] @)

s sons of n

else v(n) < vls)

ssons of n [k
end

It is easy to verify that {Sp(p) > 1} if and only if v(r) > 1. We point
out that this computation depends on the current set P and can thus be
performed several times for a same state p during the search of the principal
states. Once the set of principal states is obtained, the same algorithm
can be slightly modified to produce the Franaszek’s sets of paths Z, of
Equation (1). We more precisely compute, from the covering tree T' of A
starting at p and of height M, a tree whose set of paths from the root to
the leaves is Z,,.

COMPUTATION OF THE FRANASZEK TREE OF THE STATE p
begin
if (n is a leaf)

then if (n is marked) then v(n) < 1 else v(n) < 0

else begin //n is not a leaf

let v = Zs sons of n @
if (n is marked and distinct from the root)
then if (v <1)
then v(n) < 1 and cut all branches under the node n
else v(n) + v and cut the link between n and each of
its sons s such that v(s) =0
else v(n) < v and cut the link between n and each of its sons s
such that v(s) =0
end
end

In the sequel, we denote by T}, the final tree associated to each principal
state p computed by the above algorithm. We refer to it as the Franaszek
tree associated to the principal state p, or also as the principal tree associated
to p.



Example. We give below an example of computation of the set of principal
states and of the trees T}, where p is a principal state. We consider the local
automaton of Figure 1 which represents a constrained channel of entropy
greater than log(2). We choose k = 2 and compute the set of principal states
for a maximal path length M equal to 1. The search fails by computing an
empty set. We try again with M = 2. The set of states P is initialized
to {1,2,3}. The marked nodes are circled and the values of the function v
are given in the squares beside each node of the tree.

First step We have P = {1,2,3}. We
check if {Sp(3) > 1}. The computa-
tion of v is done on the tree of Figure
2 whose root is denoted by r. We get

v(r) = 3/4 and we remove state 3 from

the set P. Figure 2: First step.



Second step We have P = {1,2}.
We check if {Sp(2) > 1}. The compu-
tation of v is done on the tree of Fig-
ure 3. We again get v(r) = 3/4 and
we remove state 2 from the set P. In

3
this computation, some branches have
been cut during the process. This is @
symbolized by a dashed line. Figure 3: Second step.

Third step We have P = {1}. We
check {Sp(1) > 1}. The computation
of v is done on the tree of Figure 4. We
now get v(r) = 1 and then Sp(1) =
1. The set of principal states is {1}.
Some branches have been cut during
the process. This is symbolized by a

dashed line. We obtain the Franaszek @ @ @

tree T7. Figure 4: Third step.

To each tree T}, where p is a principal state, is associated in a natural
way a set of paths Z, satisfying the conditions 1 to 4 defined as the set of
paths of the tree going from the root to a leaf. Each such path corresponds
to a path in A. Since condition 4 is satisfied, that is,

1
2w 2t
2€Zp

it is possible to extract from Z, a subset ZI’, such that the above Kraft
inequality becomes a Kraft equality

1
Z K 1
2€Zp

In order to minimize the number of notations, we still call this new set Z,.
We moreover assume, by possibly removing some unuseful states in P, that

10



the following condition is satisfied: for each pair of principal states p,p’,
there is a concatenation of paths of |J,.p Z, going from p to p'.

Now a transducer 7, used to encode and decode, can be constructed as
follows. For each principal state p, we choose a prefix code X, on a k-letter
alphabet, that has the same length distribution as Z,. We choose a length-
preserving bijection p, from Z, to X,. We define a state p, called a pole,
for each principal state p. For each path z in Z,, the transducer has a path
2 of length [(2) from state p to state ;5’, where p' is the terminal state of the
path in A. One can imagine [(z) — 1 dummy states of 7 strung along the
path 2. To the path 2 is assigned as input label py,(2), and as output label,
the label of the path z in A.

As shown in [9, p. 172], this process does not ensure that the output
automaton of the transducer is a local automaton, and therefore that the
decoding is sliding block. This is based upon the fact that the sets Z,, have
to satisfy a length optimization condition different from the condition of
Equation (1), in order to get the state independent decoding property.

3 A new optimization condition in the method of
poles

In [8] is given a length optimization condition that ensures that the trans-
ducer has a local output, and then a sliding block window decoder. The
condition is to choose, among all possible sets Z, of paths satisfying con-
ditions 1 to 4, a set that minimizes the sum of the path lengths. This
optimization condition is a global optimization condition compared to the
local one described in the definition of Franaszek’s sets Z, (see the remark
below the definition of the sets Z, in the second section). This requires a
search of all prefix sets of paths satisfying conditions 1 to 4, the paths being
prefixes of paths of the Franaszek tree T}, obtained in the previous section.
If we denote by t, the size of the tree T}, that is the number of nodes of T,
this exhaustive search has an exponential time cost in %,.

In this section, we give a new optimization condition that can be com-
puted from the Franaszek trees in a linear time.

We call subtree of a tree T the part of T formed by a node of T with all
its descendants. We call principal subtree of a Franaszek tree T a subtree of
T whose root is not a leaf of T and is labeled by a principal state.

We now give a family of new optimization conditions. We assume that
the principal subtrees are preordered with a preorder, denoted by ord, which
satisfies the following condition:

11



e if A and B are two distinct principal subtrees of a Franaszek tree,

A is a strict subtree of B = ord(A) < ord(B). (2)

We choose, for each principal state p, a principal subtree of any Franaszek
tree, which is rooted by a node labeled by p, and minimizes the preorder ord.
We denote it by B,. We point out that the trees (B)),cp satisfy the Kraft
inequality condition since they are principal subtrees of some tree Tj,. This is
due to the fact that each node labeled by a principal state of a Franaszek tree
has a final value v, computed during the computation of the Franaszek trees,
which is greater than or equal to 1. This property is equivalent to the fact
that the principal subtree satisfies the Kraft inequality. A final extraction
consists in removing some branches of the principal subtrees (B,),cp to get
finally sets of paths which satisfy the Kraft equality. The transducer used
to encode and decode is built from the new sets Z, as explained in Section
2. It has a strongly connected graph.

The following proposition states that the important property of state
independent decoding is guaranteed.

Proposition 1 The output labeling of the transducer constructed from the
trees (Bp)pep is a local automaton.

Proof : We prove that the transducer constructed from the trees (Bp)pcp
that we get before the final extraction has a local output. Since this au-
tomaton is obtained from the final pruned trees (B,),cp by removing some
paths from it, it will prove the result.

Recall that an irreducible automaton is local if and only if it does not
admit two distinct equally labeled cycles. Let us thus consider two distinct
equally labeled cycles of the output automaton of the transducer 7, denoted
by ((pi,@it1,pit1)o<i<n and ((p}, ait1,P})o<icn. The addition on the set
of indices {0,1,...,n — 1} of the cycles, has to be understood modulus n.
We first consider the case where there is an index 4 such that p; and p} are
both poles of the transducer. The two cycles of the output of 7 project onto
two cycles of the automaton A and the two poles p; and p project onto two
principal states. Since the principal states of A are strongly synchronizing,
the two projected principal states are equal, and then the poles p; and p)
also. It follows that the two cycles of 7 are also equal, by construction of
the transducer.

We can now assume that for each index i, p; and p) are not simultaneously
poles. Since each cycle of T goes through a pole, there is at least one index

12



i such that p; is a pole and p/ is not one. The two cycles of the transducer
project onto two cycles in A, one going through the projection of p;, the
other one going through the projection of p; at the same time. Since the
projection of p; is a principal state which is strongly synchronizing, the
projections of p; and p! are equal. We call it the projection of the pair
(pi, ;). Since we are only interested in the pairs (p;, pj) such that p; or pl
is a pole, we can assume, after renumbering, that all pairs are like this, two
states of consecutive indices being linked by a path of length at least one.
We divide these indices into two disjoint sets, one set A where p; is a pole
and one set A" where p’; is a pole. We restrict then our attention only to the
boundary set I consisting of all indices j such that

(jeAand (j+1) € A)or (j € A and (j + 1) € A).

Let us assume that the set 7 is {0,1,...,r—1} and that the addition on I is
modulus r. We consider then the circular sequence (e;)o<j<r of the projec-
tions of pairs of states (p;,p;) indexed by successive points of I modulus r
(see Figure 5 where the poles are circled).

Z
q ej+1 \Nj+1 eJ+2 i+
Figure 5: Paths encroaching upon each other

Let e; be one element of this sequence which is the projection of a
pair (p;,p}). Let us assume that p; is a pole (the case where p! is a pole
is symmetric). Then e;;; is the projection of a pair (py,p)) where pj and
pr+1 are poles. Let us denote by w; (resp. z; the path from p; to py (resp.
from py to pry1) in the first cycle. The projected path onto A of wjz;
belongs to the set of paths associated to the tree Be;. Since the states py
and pj. project onto the same principal state of A, the state e;y1, the tree
Be; has a proper principal subtree B rooted by eji;. By definition of the
optimized trees (B)p)ycp, we then have

ord(Be,,) < ord(B) < ord(Bg;).

€j4+1
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This implies that for each index j in I, ord(Be,,) < ord(B,;). It ends the
proof by a contradiction since the sequence (e;)o<;<r is finite. O

We now give some examples of possible preorders on principal subtrees
satisfying condition (2):

e the height of a tree.

e the length of a tree, that is the sum of the lengths of all paths going
from the root to each leaf.

For practical applications, we adopt this second preorder as optimization
condition. This new optimization condition can be stated as follows. We
compute and associate to each principal state p a principal subtree B,
rooted by a node labeled by p, which has a minimal length among all prin-
cipal subtrees of all Franaszek trees. This choice is due to two reasons.
First, the size of the encoding transducer depends on the length of the trees
(Bp)pep- The decoding window length is also bounded above by a function
of the size of this transducer. Second, the computation of the trees (B,),cp
is linear in the sum of the sizes of the Franaszek trees.

We precise below the computation of the trees (Bp),cp from the Franaszek
trees. A bottom up computation of these trees is possible as follows. We
first compute the lengths of all subtrees of the principal trees. This is easily
done by computing together for a node n the pair (I, z,) of the length I,, of
the subtree rooted by this node, and the number z,, of leaves of this subtree.
If n is itself a leaf, we have (I, z,) = (0,1). If n is a node which has s sons
denoted by 1,2,...,s, we have the following trivial equalities:

s
Tp = § Ly
=1
s

s
l, = Z(li-l-fbi):z;li-l-xn
i=

=1

Let us now denote by N the set of roots of all principal subtrees of all
Franaszek trees and by c¢(n) the label of a node n in N. We define B, as
the subtree rooted by n where n is a node of the forest (B)),cp such that

lp, =min{l, | p € N and ¢(n) = p}.

A bottom-up exploration of the forest (7},),cp allows simultaneous compu-
tations of pairs (I, z,) and of the forest (By),cp. Since each tree is explored
once, the time complexity of the computation is O(>_,cptp)-

14



Example. We consider the example of the channel of entropy greater than
log(2) pictured in Figure 6. The trees (7,),cp are given in Figure 7. The
set of principal states with M = 2 is P = {1,2,3,4}. The trees (By)pcp
obtained at the end of the computation have their root pointed in the figure.
The value [,, for a node n is given beside the node. The nodes are labeled
by their projection state onto the automaton of Figure 6 that represents the
channel. A final operation, made in order to get trees that satisfy the Kraft
equality, consists in removing some branches of the trees obtained at the
previous step. This is shown in Figure 8.

Figure 6: Channel of entropy greater than log(2)

T1 T2 T3 T4 B4

Y Iy

e

Figure 7: Computation of the forest (By),cp

Here we can remark that we have B, = T, for at least one principal
state p, since otherwise, we could choose a smaller integer M that bounds
the path lengths during the computation of the principal states.
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Figure 8: Final extraction

4 Extension of the method of poles to sofic con-
straints

In this section, we extend the method of poles to the more general class of
constraints represented by a not necessarily local automaton. We consider
a transitive sofic channel S, that is, a channel that can be represented by an
irreducible automaton. If it is not the case, it is always possible to consider
a subset of the channel that has this property and the same capacity. We
also assume that the entropy of S is strictly greater than log(k), where & is a
positive integer. In order to extend the method, we will use state splittings
of states of the representation of the channel. We first give the definition of
the notion of state splitting, which comes from symbolic dynamics.

We define the operation of output state splitting in an automaton A =
(Q,E). Let g be a vertex of @) and let I (resp. O) be the set of edges
coming in ¢ (resp. going out of ¢). Let O = O’ + 0" be a partition of
O. The operation of (output) state splitting relative to (O', O") transforms
A into the automaton B = (Q', E') where Q' = (Q \ {¢}) U{q'} U {¢"} is
obtained from ) by splitting state ¢ into two states ¢’ and ¢”, and where E’
is defined as follows (see Figure 9 and 10)

1. All edges of F that are not incident to ¢ are left unchanged.
2. The states ¢ and ¢” have the same input edges as q.

3. The output edges of ¢ are distributed between ¢’ and ¢” according to
the partition of O into O’ and O”. We denote U’ and U” the sets of
output edges of ¢’ and ¢” respectively

U'={(d,z,p) | (¢g,z,p) € O'} and U" = {(¢", z,p) | (¢,2,p) € O"}.
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Figure 9. Automaton A Figure 10. Automaton B

The notion of input state splitting is defined similarly.
We now transform the automaton that represents the constraints into
another one that has at least one strongly synchronizing state.

Proposition 2 A transitive sofic channel admits a representation that has
at least one strongly synchronizing state.

Proof : It is known that a transitive sofic channel has a unique minimal
deterministic representation. This representation admits a synchronizing
word. It is called the minimal automaton in automata theory and the Fischer
cover in the symbolic dynamics theory (see for instance [10, p. 478], [23]
or [9]).

Let A be such a representation and let w be a (m, a)-synchronizing word
onto a state p. We associate to each state g the set E(gm’a) of pairs (u,v)
of finite words, where u is the label of a path ending at ¢, and v the label
of a path starting at q. The pairs (u,v) are also denoted by u - v. One
can remark that if v -v and v’ - v’ belongs to a set E(gm’a), then u - v' and
u' - v also. We now consider for each state ¢ the longest prefix z, (possibly

equal to the empty word) of all words v such that there is a word u with

U-v € E(gm’a). We choose a state r such that z, has a minimal length among
all (z4)qeq- If the length of z, is strictly less than the anticipation a, the set
E,(mm’a) contains two pairs u - z,bv and v’ - z,.cv’, where u,u’,v,v’" are words,
and b, ¢ distinct letters. If 2, is not the empty word, let d be its first letter.
We define the word z, by z. = dz,. We do an output state splitting of state
r by partitioning the outgoing edges of r in the ones ending at a state s such
that z,b is a prefix of z; and the other ones. If z, is the empty word, we do
an output state splitting of state r by partitioning the outgoing edges of r
in the ones labeled by b and the other ones. This state splitting process of
the automaton is iterated from the new automaton obtained. This process

(m,a)

always stops since if a state g is split in ¢; and g2, the cardinalities of Fy;
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and of E(g;n’a) are strictly less than the cardinality of E(gm’a). The automaton

computed at the last step is such that all words 2z, have a length equal to a.

We do the symmetrical operations with the longest suffixes y, of all
words u such that there is a word v with u-v € E(Sm’“). We use this time
input state splitting. The final automaton that we get is such that, for all

of its states g, the word y, has length m, and the word z, has length a.

This means that each set E(gm’a) of the final automaton is reduced to one
pair y, - z;. Since w is a synchronizing word of the initial automaton, y, is
the prefix of length m of w, and z, is its suffix of length a. This state is a
strongly synchronizing state of the final automaton. [J

We mention that another proof of the previous result can be obtained by
doing a direct (or fibered product) of the initial automaton that recognizes
the channel and a (m,a)-local universal De Bruin automaton, (we refer for
instance to [9] for this notion). In the above proof, the order chosen to treat
the past and the future can be changed. The sequences of input and output
state splittings can be merged. The interest of the state splitting way versus
the product of automata is that one can stops the process as soon as we
have obtained enough strongly synchronizing states.

Let S be a transitive sofic channel recognized by an automaton 4 with
an entropy h(S) > log(k). By the previous proposition we can assume that
A has a nonempty set of strongly synchronizing states. A set of principal
states for an integer M is obtained like in Section 3 by starting this time
the computation with a set P reduced to the strongly synchronizing states
only.

COMPUTATION OF THE SET OF PRINCIPAL STATES
begin
P < the set of strongly synchronizing states
while (P # () and there is a state ¢ with Sp(q) < 1)
do P + P — {q}.
end,
where Sp(g) is the maximum of the sums:

1
va

2EZy

for all possible choices of prefix sets Z, of paths satisfying conditions 1 to 4.

Since the set of strongly synchronizing states is not empty and since
the Shannon capacity of the channel is strictly greater that log(k), one can
prove like for constraints of finite type (see Section 2), that a nonempty set
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of principal states is found by increasing M if the search fails with an empty
set.

The construction of a coding and decoding transducer in then done ex-
actly like in the previous section. The proof that its output automaton is a
local automaton is the same. It is due to the strongly synchronizing property
of the principal states.

Example Let us consider the transitive sofic system recognized by the au-
tomaton A of Figure 11. Its entropy is strictly greater than log(2). This au-
tomaton is the minimal deterministic representation of the system. It admits
at least one synchronizing word: the word bb, which is (2, 0)-synchronizing.
It also has a strongly synchronizing state: the state 4, which is (2, 0)-strongly
synchronizing. In order to get as many strongly synchronizing states as pos-
sible, we do a sequence of input state splittings and get the automaton B of
Figure 12 where the set E],(,2’0) is represented inside each state p.

b c ¢ c
a a
b b

Figure 11: Automaton A

Figure 12: Automaton B
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The set of strongly synchronizing states of the automaton B is
S = {(1,bb), (4,bc), (2, ¢cb), (3, cc), (3,ac), (3,aa)},

where a state p is denoted here by its projection state onto A4 and the left

component of the unique pair of E],(F’O). A nonempty set of principal states
is obtained for M = 5. The set of poles is then

P = {(1,bb),(2,cb), (3,cc), (3,ac),(3,aa)}.
The labels of the paths Z, associated to each pole p are:

y = {c, bac, bbb, bbaa, bbce, babb, babac, bbabb}
y = {ac,bb, abb, baa, bee, abac, babb}

Zawy = {b,cc,aa}l
)y = Caee) = {bc}

Z(3,aa

Since the optimized trees associated to the poles (3,ac) and (3, cc) are the
same, one can merge these two poles in the transducer. The transducer ob-
tained has 4 poles and 41 states for the integer M = 5. A better transducer
can be obtained with an initial transformation of the automaton B of Fig-
ure 12. If the state (1, ab) is removed for instance, the channel represented
has an entropy which is still greater than log(2). The number of strongly
synchronizing states is then advantageously increased in

§ ={(1,bb), (4,bc), (2,cb), (3, cc), (3, ac), (3, aa), (2, ab)},
and the following set of poles is obtained with M = 2 only
P = {(L bb)7 (27 Cb)a (37 CC), (37 ac), (37 aa)a (27 a'b)}

With a final automata reduction (state merging), we get the very small
encoding transducer of Figure 13. Its sliding block decoding window length
is only 2.
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Figure 13: Encoding Transducer
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