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Extensions of the methodof poles for 
ode 
onstru
tionMarie-Pierre B�eal�Abstra
tThe method of poles is a method introdu
ed by P. A. Franaszekfor 
onstru
ting a rate 1 : 1 �nite state 
ode from k-ary data intoa 
onstrained 
hannel of �nite type whose 
apa
ity is stri
tly greaterthan log(k). The method is based on the 
omputation of a set ofstates 
alled poles. To ea
h pole is asso
iated a set of paths goingfrom this pole to others. Ea
h set veri�es an entropy 
ondition. The
ode produ
ed by the method of poles has a sliding blo
k de
oder ifea
h set of paths satis�es moreover an optimization 
ondition basedon the sum of the path lengths of the set. In this paper we give anew optimization 
ondition whi
h guarantees the sliding blo
k windowde
oding property and has a lower 
omputational 
omplexity than theprevious one. We also extend the method of poles to the more general
ase of so�
 
onstrained 
hannels.Index Terms: method of poles, sliding-blo
k de
oder, en
oder, shiftof �nite type, so�
 system, strongly syn
hronizing state.1 Introdu
tionWe are interested in the problem of en
oding digital data into a 
onstrainedset of sequen
es. Typi
al appli
ations are 
oding for storage systems ortransmission systems. For digital magneti
 storage for instan
e, 
onstraintsare run-length 
onstraints on the sequen
es of bits stored. They are dueto physi
al limitations of the storage systems. The 
onstraints that 
an bemodeled by a �nite state ma
hine are 
alled rational 
onstraints or so�

onstraints. The problem is then to en
ode a free sour
e of data, usuallysequen
es of bits 0 and 1, into an available sequen
e, that is a sequen
e�Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee, 77454 Marne-la-Vall�ee Cedex2, Fran
e. http://www-igm.univ-mlv.fr/~beal.1



that 
an be read as the label of a path of the automaton that models the
onstraints. With a �xed rate p : q 
oding strategy, ea
h blo
k of p bits isen
oded in a blo
k of q bits, where p and q are small integers. After 
hangingthe alphabets, that is after re
oding ea
h sour
e blo
k of length p by oneletter and ea
h 
onstrained blo
k of length q by one letter, the 
oding (seenwith these new alphabets), is a 1 : 1 rate 
oding from an un
onstrainedsour
e into a 
onstrained 
hannel.In this paper we will 
onsider �rst the 
lass of 
onstraints of �nite typethat we de�ne as the 
onstraints that 
an be re
ognized or represented bya deterministi
 lo
al (or de�nite) automaton. An automaton is 
omposedof a �nite set of states and a �nite set of edges. Ea
h edge is de�ned byits origin state, end state, and a letter 
alled its label. The automaton isdeterministi
 if there is at most one edge going out of a given state andwith a given label (the end state is then determined). The automaton isdeterministi
 and lo
al if it has in addition the following property : thereis an integer n su
h that all equally labeled paths of length n end at thesame state. The �nal state depends then only on the label. The method ofpoles is one method of 
hannel 
oding for 
hannels modeled by �nite type
onstraints. The method 
onstru
ts a rate 1 : 1 en
oder from arbitrary k-ary data into a given �nite type 
hannel S with a topologi
al entropy h(S),also 
alled the Shannon 
apa
ity of the 
hannel, stri
tly greater than log(k).The log is usually taken base 2. The algorithm starts with a �nite lo
alautomaton A representing the 
hannel, and builds a transdu
er, that is a�nite automaton labeled by pairs of letters, whose input labeling is right
losing (or deterministi
 with a �nite delay), and whose output labeling islo
al. Sin
e the input labeling is right 
losing, the en
oding is sequential andsin
e the output labeling is lo
al the de
oder is a sliding-blo
k de
oder andtherefore propagates a symbol error in an en
oded S-string by at most thede
oder window length. The de
oding is sometimes 
alled state independentbe
ause the network of the de
oder is then a purely 
ombinatorial one. Finalautomata redu
tions tend to minimize the size of the transdu
er and hen
ethe size of the de
oding window. The 
onstru
tion of the output of thetransdu
er is based on the 
omputation of a set of states 
alled prin
ipalstates. It is possible to asso
iate to ea
h prin
ipal state a set of paths of theautomaton A. It 
onsists in all paths going out of a given prin
ipal state andending at another one. All possible sets of paths satisfy a Kraft 
onditionon the lengths of the paths. For ea
h prin
ipal state, the 
hosen set of pathsis one that minimizes the set length (that is the sum of the path lengths ofthe set) among all possible sets. Finally the prin
ipal states that are notrea
hed by any path of any set are removed and the remainders are 
alled2



poles. This natural optimization 
ondition is essential for the importantfeature of state independent de
oding.The method of poles and the 
omputation of the set of prin
ipal stateshas been introdu
ed by P. A. Franaszek in [14℄. The above optimization
ondition and the proof of its in
uen
e on the sliding-window property weregiven in [8℄, (see also [9℄). This method does not work in general in the 
aseof equality of 
apa
ities of the sour
e and of the 
onstrained 
hannel [4℄. Adi�erent method, whi
h allows also in the 
ase of equality of 
apa
ities, hasbeen obtained in [1℄ (see also [24℄, [25℄). It is 
alled the state splitting methodor the ACH algorithm and involves state splittings of some states of therepresentation of the 
hannel. Many other methods based on state splittingare des
ribed in [27℄ (see also [3℄, [6℄, [20℄). These 
hannel 
oding problemsare 
losely related with the mathemati
al theory of symboli
 dynami
s [25℄.In the 
ase of a 
hannel of �nite type whose Shannon 
apa
ity is stri
tlygreater than the 
apa
ity of the sour
e, both methods lead in pra
ti
e totransdu
ers that 
an have about the same 
omplexity. By 
omplexity, wemean the size of the length of the window of the de
oder and the size of theen
oder. In the 
ase of equality of 
apa
ities, the state splitting method ismore powerful sin
e the method of poles does not apply in general for these
hannels.The aim of the paper is to improve the method of poles for 
onstraintsof �nite type by 
hoosing a better optimization 
ondition. We also showthat the method 
an be extended to more general so�
 
onstraints. Thesetwo points 
an be merged and one 
an make the improved optimization
ondition work in the so�
 
ase.The �rst improvement is a 
omplexity improvement on the optimiza-tion 
ondition that ensures the state independent de
oding property. Themethod of poles 
omputes sets of paths of length at most an integerM whi
hdepends on the entropy of the 
onstrained 
hannel and of the geometry ofthe automaton. Let us 
onsider an n-state lo
al automaton whi
h representsthe 
onstraints. Let us also assume that the Shannon 
apa
ity of the 
hannelis stri
tly greater than log(k). In most appli
ations, the integer n is small.The bound M of the length of the paths 
an asymptoti
ally be kn (see [4℄for instan
e) and is nevertheless not too big in pra
ti
e. For ea
h prin
ipalstate p, a set of paths is 
omputed as a �nite tree Tp of height M and whosearity is the maximal outdegree of the graph representing the 
hannel. Analgorithm for 
omputing the set of prin
ipal states and of one possible treeasso
iated to ea
h prin
ipal state, is given by Franaszek in [14℄. Its time
omplexity is exponential in M . A 
omputational problem appears whenwe have to apply the optimization 
ondition given in [8℄. Indeed, if tp is the3



number of nodes of Tp, the sear
h of an optimal tree for this minimization
ondition requires to 
he
k all trees representing pre�x sets of paths beingpre�xes of paths of Tp. This 
omputation is exponential in the sum of thesizes tp. We present here a new optimization 
ondition whi
h allows us to
ompute optimal trees in a linear time in the sum of the sizes tp. We provethat the optimal trees obtained with this new optimization 
ondition stilllead to a sliding-blo
k window de
oder.In the se
ond part of the paper, we show how to extend the method ofpoles to so�
 
onstraints that are no more of �nite type. This is possibleafter a preliminary transformation of the �nite state ma
hine that modelsthe 
onstraints, in order to make the representation 
ontain some spe
ialstates 
alled strongly syn
hronizing states. We des
ribe this transformationthan 
an be done with easy rounds of state splittings or also with a �beredprodu
t of two automata. This prepro
essing is very di�erent and mu
hsimpler than the ACH algorithm [1℄. We then show that the method ofpoles 
an be performed on this so�
 representation and still builds a 1 : 1en
oder with sliding blo
k de
oder.Another method to solve the 
ase of so�
 
onstraints has been des
ribedby R. Karabed and B. Mar
us in [21℄. It is based on the state splittingpro
ess of [1℄. Compared to their method, our method does not allow us, ingeneral, to treat the 
ase of equality of 
apa
ities for the 
lass of almost of�nite type 
onstraints (see [21℄). But the method of poles for so�
 shifts givesa pra
ti
al alternative to state splitting methods that are rather 
ompli
atedin the so�
 
ase.In Se
tion 2 we give the primary de�nitions and we brie
y re
all themethod of poles. As it is used in Se
tion 3, we des
ribe the 
omputationof the set of prin
ipal states. The algorithm of 
onstru
tion of the treesobtained with the new optimization 
ondition is given in Se
tion 3. Weprove here that we do not lose the state independent de
oding property.The extension of the method of poles to the 
ase of so�
 
onstraints isdes
ribed in Se
tion 4. In this paper, we will sometimes des
ribe algorithmsas programs written in a pseudo 
ode. We adopt some 
onventions given in[12, p. 4℄.2 De�nitions and ba
kgroundLet A be an alphabet, that is, a �nite set of symbols 
alled letters.A �nite state automaton A = (Q;E) on the alphabet A is 
omposed oftwo �nite sets: Q, the set of states, and E, the set of edges. The set of edges4



is in
luded in Q � A � Q. A �nite path is a �nite sequen
e of 
onse
utiveedges ((qi; ai+1; qi+1))0�i<n, the word a1a2 : : : an being the label of the path.A �nite automaton is deterministi
 if and only if, whenever there aretwo edges (p; a; q) and (p; a; r) then q = r.A �nite automaton is lo
al if there are three nonnegative integers n;m; awithm+a = n su
h that whenever two �nite paths ((qi; ai+1; qi+1))0�i<n and((q0i; ai+1; q0i+1))0�i<n have the same label w = a1a2 : : : an, then qm = q0m.The integer m is for memory and a for anti
ipation. If A is moreover deter-ministi
, it is possible to have a null anti
ipation, or, equivalently, to takem = n. Lo
al automata are also 
alled de�nite automata [28℄. An automa-ton is said to be irredu
ible if its graph is strongly 
onne
ted. A 
onstraint
hannel S is said to be re
ognized or represented by the automaton A if itis the set of labels of bi-in�nite paths of the automaton. Su
h a 
onstrained
hannel is 
alled a so�
 
hannel. If it 
an be represented by a lo
al automa-ton, the 
onstraint or the 
hannel is said of �nite type. It is 
hara
terized bya �nite set of �nite blo
ks avoided by any bi-in�nite sequen
e of the 
han-nel. This set is 
alled a set of forbidden words for the 
hannel. It is possibleto represent the 
hannel by an automaton whi
h is both deterministi
 andlo
al.A word w of length m + a, where m and a are nonnegative integers,is said to be (m;a)-syn
hronizing if there is a state p su
h that ea
h path(qi; ai+1; qi+1)0�i<m+a labeled by w satis�es qm = p. We say in this 
asethat w syn
hronizes onto the state p. A word w is said to be syn
hronizingif it is (m;a)-syn
hronizing for some m and a.We introdu
e the notion of strongly syn
hronizing states that will beuseful in the last se
tion to extend the method of poles to so�
 
onstraints.For ea
h state p and ea
h nonnegative integers m;a, we de�ne the set E(m;a)pof �nite words uv, where u is the label of a path ending at p, and v the labelof a path starting at p. A state p of an automaton A is said to be (m;a)-strongly syn
hronizing, where m and a are nonnegative integers, if for anystate q distin
t from p, E(m;a)p \E(m;a)q = ;:A state p is said to be strongly syn
hronizing if it is (m;a)-strongly syn-
hronizing for some m and a. A state p of an automaton A is thus stronglysyn
hronizing if and only there are not two distin
t equally labeled bi-in�nitepaths su
h that the �rst one goes through a state p at some index, and these
ond one goes through a state q 6= p at the same index. This property is
omputable in a polynomial time in the number of states of A (see [9℄ page72). 5



Example. All states of a lo
al automaton are strongly syn
hronizing.We are going to en
ode a free k-ary sour
e into the 
onstraint 
han-nel S represented by an irredu
ible, deterministi
 and lo
al automaton. Weassume that the topologi
al entropy, or the Shannon 
apa
ity, h(S) of Ssatis�es h(S) > log(k). The entropy is 
omputed as the log of the spe
tralradius of the adja
en
y matrix of the graph of the automaton A. It is de-�ned as the limit of 1=n log(
ard(An \ Sn), where Sn is the set of blo
ks oflength n that 
an appear as a subblo
k of a bi-in�nite sequen
e of S.The �rst step in the method of poles 
onsists in �nding a subset P ofstates of Q 
alled prin
ipal states, su
h that there exists a positive integerM(as small as possible) su
h that one 
an asso
iate to ea
h prin
ipal state pa �nite pre�x set Zp of �nite paths that satisfy the following properties1. ea
h path of Zp is a path of A that begins at state p;2. ea
h path of Zp ends at some state of P ;3. the length of ea
h path of Zp is less than or equal to M ;4. the set Zp satis�es the Kraft inequalityXz2Zp 1kl(z) � 1;where l(z) denotes the length of the path z.We re
all that a set of path is a pre�x set1 if no path is the stri
t beginningof another one. A maximal subset of Q satisfying these above 
onditions isunique and is 
alled the set of prin
ipal states of the automaton.It is shown in [8℄ that if h(S) > log(k), then, for a suÆ
iently largeinteger M , su
h a nonempty set P of prin
ipal states always exists. Thesear
h begins withM = 1; 2; � � � , (M is in
remented by 1 at ea
h step whenthe previous one has failed). On
e a nonempty set P of prin
ipal states ofA is found, the maximal size M of the lengths of the paths of any possibleset Zp is �xed.Franaszek's algorithm gives then, for ea
h prin
ipal state p of P , a pre�xset of paths Zp satisfying the above 
onditions, whi
h �rst maximizes thesum Xz2Zp 1kl(z) ;1also 
alled a pre�x free set. 6



and, in addition to this maximization 
ondition, minimizes what we 
all thelength l(Zp) of Zp de�ned byl(Zp) = Xz2Zp l(z): (1)We 
an here remark that the last minimization 
ondition is a lo
al mini-mization 
ondition in the sense that it does not imply that a 
hosen set Zphas a minimal length among all sets that satisfy 
onditions 1 to 4.We des
ribe below Franaszek's algorithm in a pseudo 
ode. The 
ompu-tation of the set of prin
ipal states 
an be performed as followsComputation of the set of prin
ipal statesbeginP  Q //where Q is the set of states of Awhile (P 6= ; and there is a state p 2 P with SP (p) < 1)do P  P � fpgend,where SP (p) is the maximum of the sumsXz2Zp 1kl(z) ;for all possible 
hoi
es of pre�x sets Zp of paths satisfying 
onditions 1 to 4.We now des
ribe the 
omputation of the predi
ate fSP (p) < 1g for astate p in P . Re
all that M is a �xed integer that bounds the lengths of thepaths 
onsidered. We �rst build a tree T of heightM whose nodes representthe paths in A of length less than or equal to M starting at p. The nodesof T are labeled by states of A and we denote by r the root labeled by p. Ifn is a node, its height is the length of the path from the root to the node.Ea
h node at height at most M�1 labeled by a state q admits a son labeledby s for ea
h edge (q; a; s) in A. This 
ompletely de�nes a tree that is a
overing tree starting at p and of height M , of the automaton A. The sizeof the tree is its number of nodes.We assign a boolean mark to ea
h node of the tree T . A node is marked orunmarked. It is marked if its label belongs to set P and unmarked otherwise.We then asso
iate to ea
h node a rational value. The value of a node n isdenoted by v(n) in the pseudo 
ode below. The 
omputations ne
essary to
al
ulate v are linear in the size t of the tree. They are performed bottom-upfrom the leaves to the root of T . 7



Computation of fSP (p) > 1gbeginif (n is a leaf)then if (n is marked) then v(n) 1 else v(n) 0else //n is not a leafif (n is marked and distin
t from the root)then v(n) max(1;Ps sons of n v(s)k )else v(n) Ps sons of n v(s)kendIt is easy to verify that fSP (p) � 1g if and only if v(r) � 1. We pointout that this 
omputation depends on the 
urrent set P and 
an thus beperformed several times for a same state p during the sear
h of the prin
ipalstates. On
e the set of prin
ipal states is obtained, the same algorithm
an be slightly modi�ed to produ
e the Franaszek's sets of paths Zp ofEquation (1). We more pre
isely 
ompute, from the 
overing tree T of Astarting at p and of height M , a tree whose set of paths from the root tothe leaves is Zp.Computation of the Franaszek tree of the state pbeginif (n is a leaf)then if (n is marked) then v(n) 1 else v(n) 0else begin //n is not a leaflet v =Ps sons of n v(s)kif (n is marked and distin
t from the root)then if (v � 1)then v(n) 1 and 
ut all bran
hes under the node nelse v(n) v and 
ut the link between n and ea
h ofits sons s su
h that v(s) = 0else v(n) v and 
ut the link between n and ea
h of its sons ssu
h that v(s) = 0endendIn the sequel, we denote by Tp the �nal tree asso
iated to ea
h prin
ipalstate p 
omputed by the above algorithm. We refer to it as the Franaszektree asso
iated to the prin
ipal state p, or also as the prin
ipal tree asso
iatedto p. 8



Example. We give below an example of 
omputation of the set of prin
ipalstates and of the trees Tp, where p is a prin
ipal state. We 
onsider the lo
alautomaton of Figure 1 whi
h represents a 
onstrained 
hannel of entropygreater than log(2). We 
hoose k = 2 and 
ompute the set of prin
ipal statesfor a maximal path length M equal to 1. The sear
h fails by 
omputing anempty set. We try again with M = 2. The set of states P is initializedto f1; 2; 3g. The marked nodes are 
ir
led and the values of the fun
tion vare given in the squares beside ea
h node of the tree.
23

a

1

fb

ec

dFigure 1: A lo
al automaton
First stepWe have P = f1; 2; 3g. We
he
k if fSP (3) � 1g. The 
omputa-tion of v is done on the tree of Figure2 whose root is denoted by r. We getv(r) = 3=4 and we remove state 3 fromthe set P . 1 1 1

1

1 2 3

3 3/4

3/2

Figure 2: First step.
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Se
ond step We have P = f1; 2g.We 
he
k if fSP (2) � 1g. The 
ompu-tation of v is done on the tree of Fig-ure 3. We again get v(r) = 3=4 andwe remove state 2 from the set P . Inthis 
omputation, some bran
hes havebeen 
ut during the pro
ess. This issymbolized by a dashed line. 1 11

1/2

1 2 3

1

0

3

1

2 3/4

1

Figure 3: Se
ond step.Third step We have P = f1g. We
he
k fSP (1) � 1g. The 
omputationof v is done on the tree of Figure 4. Wenow get v(r) = 1 and then SP (1) =1. The set of prin
ipal states is f1g.Some bran
hes have been 
ut duringthe pro
ess. This is symbolized by adashed line. We obtain the Franaszektree T1.
1
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1

1/2 1/2

1 1 1

1 1
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10 00

3

2 3 3Figure 4: Third step.To ea
h tree Tp, where p is a prin
ipal state, is asso
iated in a naturalway a set of paths Zp satisfying the 
onditions 1 to 4 de�ned as the set ofpaths of the tree going from the root to a leaf. Ea
h su
h path 
orrespondsto a path in A. Sin
e 
ondition 4 is satis�ed, that is,Xz2Zp 1kl(z) � 1;it is possible to extra
t from Zp a subset Z 0p su
h that the above Kraftinequality be
omes a Kraft equalityXz2Zp 1kl(z) = 1:In order to minimize the number of notations, we still 
all this new set Zp.We moreover assume, by possibly removing some unuseful states in P , that10



the following 
ondition is satis�ed: for ea
h pair of prin
ipal states p; p0,there is a 
on
atenation of paths of Sp2P Zp going from p to p0.Now a transdu
er T , used to en
ode and de
ode, 
an be 
onstru
ted asfollows. For ea
h prin
ipal state p, we 
hoose a pre�x 
ode Xp on a k-letteralphabet, that has the same length distribution as Zp. We 
hoose a length-preserving bije
tion �p from Zp to Xp. We de�ne a state p̂, 
alled a pole,for ea
h prin
ipal state p. For ea
h path z in Zp, the transdu
er has a pathẑ of length l(z) from state p̂ to state p̂0, where p0 is the terminal state of thepath in A. One 
an imagine l(z) � 1 dummy states of T strung along thepath ẑ. To the path ẑ is assigned as input label �p(z), and as output label,the label of the path z in A.As shown in [9, p. 172℄, this pro
ess does not ensure that the outputautomaton of the transdu
er is a lo
al automaton, and therefore that thede
oding is sliding blo
k. This is based upon the fa
t that the sets Zp haveto satisfy a length optimization 
ondition di�erent from the 
ondition ofEquation (1), in order to get the state independent de
oding property.3 A new optimization 
ondition in the method ofpolesIn [8℄ is given a length optimization 
ondition that ensures that the trans-du
er has a lo
al output, and then a sliding blo
k window de
oder. The
ondition is to 
hoose, among all possible sets Zp of paths satisfying 
on-ditions 1 to 4, a set that minimizes the sum of the path lengths. Thisoptimization 
ondition is a global optimization 
ondition 
ompared to thelo
al one des
ribed in the de�nition of Franaszek's sets Zp (see the remarkbelow the de�nition of the sets Zp in the se
ond se
tion). This requires asear
h of all pre�x sets of paths satisfying 
onditions 1 to 4, the paths beingpre�xes of paths of the Franaszek tree Tp obtained in the previous se
tion.If we denote by tp the size of the tree Tp, that is the number of nodes of Tp,this exhaustive sear
h has an exponential time 
ost in tp.In this se
tion, we give a new optimization 
ondition that 
an be 
om-puted from the Franaszek trees in a linear time.We 
all subtree of a tree T the part of T formed by a node of T with allits des
endants. We 
all prin
ipal subtree of a Franaszek tree T a subtree ofT whose root is not a leaf of T and is labeled by a prin
ipal state.We now give a family of new optimization 
onditions. We assume thatthe prin
ipal subtrees are preordered with a preorder, denoted by ord, whi
hsatis�es the following 
ondition: 11



� if A and B are two distin
t prin
ipal subtrees of a Franaszek tree,A is a stri
t subtree of B =) ord(A) < ord(B): (2)We 
hoose, for ea
h prin
ipal state p, a prin
ipal subtree of any Franaszektree, whi
h is rooted by a node labeled by p, and minimizes the preorder ord.We denote it by Bp. We point out that the trees (Bp)p2P satisfy the Kraftinequality 
ondition sin
e they are prin
ipal subtrees of some tree Tq. This isdue to the fa
t that ea
h node labeled by a prin
ipal state of a Franaszek treehas a �nal value v, 
omputed during the 
omputation of the Franaszek trees,whi
h is greater than or equal to 1. This property is equivalent to the fa
tthat the prin
ipal subtree satis�es the Kraft inequality. A �nal extra
tion
onsists in removing some bran
hes of the prin
ipal subtrees (Bp)p2P to get�nally sets of paths whi
h satisfy the Kraft equality. The transdu
er usedto en
ode and de
ode is built from the new sets Zp as explained in Se
tion2. It has a strongly 
onne
ted graph.The following proposition states that the important property of stateindependent de
oding is guaranteed.Proposition 1 The output labeling of the transdu
er 
onstru
ted from thetrees (Bp)p2P is a lo
al automaton.Proof : We prove that the transdu
er 
onstru
ted from the trees (Bp)p2Pthat we get before the �nal extra
tion has a lo
al output. Sin
e this au-tomaton is obtained from the �nal pruned trees (Bp)p2P by removing somepaths from it, it will prove the result.Re
all that an irredu
ible automaton is lo
al if and only if it does notadmit two distin
t equally labeled 
y
les. Let us thus 
onsider two distin
tequally labeled 
y
les of the output automaton of the transdu
er T , denotedby ((pi; ai+1; pi+1)0�i<n and ((p0i; ai+1; p0i+1)0�i<n. The addition on the setof indi
es f0; 1; : : : ; n � 1g of the 
y
les, has to be understood modulus n.We �rst 
onsider the 
ase where there is an index i su
h that pi and p0i areboth poles of the transdu
er. The two 
y
les of the output of T proje
t ontotwo 
y
les of the automaton A and the two poles pi and p0i proje
t onto twoprin
ipal states. Sin
e the prin
ipal states of A are strongly syn
hronizing,the two proje
ted prin
ipal states are equal, and then the poles pi and p0ialso. It follows that the two 
y
les of T are also equal, by 
onstru
tion ofthe transdu
er.We 
an now assume that for ea
h index i, pi and p0i are not simultaneouslypoles. Sin
e ea
h 
y
le of T goes through a pole, there is at least one index12



i su
h that pi is a pole and p0i is not one. The two 
y
les of the transdu
erproje
t onto two 
y
les in A, one going through the proje
tion of pi, theother one going through the proje
tion of p0i at the same time. Sin
e theproje
tion of pi is a prin
ipal state whi
h is strongly syn
hronizing, theproje
tions of pi and p0i are equal. We 
all it the proje
tion of the pair(pi; p0i). Sin
e we are only interested in the pairs (pj ; p0j) su
h that pj or p0jis a pole, we 
an assume, after renumbering, that all pairs are like this, twostates of 
onse
utive indi
es being linked by a path of length at least one.We divide these indi
es into two disjoint sets, one set A where pj is a poleand one set A0 where p0j is a pole. We restri
t then our attention only to theboundary set I 
onsisting of all indi
es j su
h that(j 2 A and (j + 1) 2 A0) or (j 2 A0 and (j + 1) 2 A):Let us assume that the set I is f0; 1; : : : ; r�1g and that the addition on I ismodulus r. We 
onsider then the 
ir
ular sequen
e (ej)0�j<r of the proje
-tions of pairs of states (pi; p0i) indexed by su

essive points of I modulus r(see Figure 5 where the poles are 
ir
led).
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Figure 5: Paths en
roa
hing upon ea
h otherLet ej be one element of this sequen
e whi
h is the proje
tion of apair (pi; p0i). Let us assume that pi is a pole (the 
ase where p0i is a poleis symmetri
). Then ej+1 is the proje
tion of a pair (pk; p0k) where p0k andpk+1 are poles. Let us denote by wj (resp. zj the path from pi to pk (resp.from pk to pk+1) in the �rst 
y
le. The proje
ted path onto A of wjzjbelongs to the set of paths asso
iated to the tree Bej . Sin
e the states pkand p0k proje
t onto the same prin
ipal state of A, the state ej+1, the treeBej has a proper prin
ipal subtree B rooted by ej+1. By de�nition of theoptimized trees (Bp)p2P , we then haveord(Bej+1) � ord(B) < ord(Bej ):13



This implies that for ea
h index j in I, ord(Bej+1) < ord(Bej ). It ends theproof by a 
ontradi
tion sin
e the sequen
e (ej)0�j<r is �nite. �We now give some examples of possible preorders on prin
ipal subtreessatisfying 
ondition (2):� the height of a tree.� the length of a tree, that is the sum of the lengths of all paths goingfrom the root to ea
h leaf.For pra
ti
al appli
ations, we adopt this se
ond preorder as optimization
ondition. This new optimization 
ondition 
an be stated as follows. We
ompute and asso
iate to ea
h prin
ipal state p a prin
ipal subtree Bp,rooted by a node labeled by p, whi
h has a minimal length among all prin-
ipal subtrees of all Franaszek trees. This 
hoi
e is due to two reasons.First, the size of the en
oding transdu
er depends on the length of the trees(Bp)p2P . The de
oding window length is also bounded above by a fun
tionof the size of this transdu
er. Se
ond, the 
omputation of the trees (Bp)p2Pis linear in the sum of the sizes of the Franaszek trees.We pre
ise below the 
omputation of the trees (Bp)p2P from the Franaszektrees. A bottom up 
omputation of these trees is possible as follows. We�rst 
ompute the lengths of all subtrees of the prin
ipal trees. This is easilydone by 
omputing together for a node n the pair (ln; xn) of the length ln ofthe subtree rooted by this node, and the number xn of leaves of this subtree.If n is itself a leaf, we have (ln; xn) = (0; 1). If n is a node whi
h has s sonsdenoted by 1; 2; : : : ; s, we have the following trivial equalities:xn = sXi=1 xi;ln = sXi=1(li + xi) = sXi=1 li + xnLet us now denote by N the set of roots of all prin
ipal subtrees of allFranaszek trees and by 
(n) the label of a node n in N . We de�ne Bp asthe subtree rooted by n where n is a node of the forest (Bp)p2P su
h thatln = minflp j p 2 N and 
(n) = pg:A bottom-up exploration of the forest (Tp)p2P allows simultaneous 
ompu-tations of pairs (ln; xn) and of the forest (Bp)p2P . Sin
e ea
h tree is exploredon
e, the time 
omplexity of the 
omputation is O(Pp2P tp).14



Example. We 
onsider the example of the 
hannel of entropy greater thanlog(2) pi
tured in Figure 6. The trees (Tp)p2P are given in Figure 7. Theset of prin
ipal states with M = 2 is P = f1; 2; 3; 4g. The trees (Bp)p2Pobtained at the end of the 
omputation have their root pointed in the �gure.The value ln for a node n is given beside the node. The nodes are labeledby their proje
tion state onto the automaton of Figure 6 that represents the
hannel. A �nal operation, made in order to get trees that satisfy the Kraftequality, 
onsists in removing some bran
hes of the trees obtained at theprevious step. This is shown in Figure 8.
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Figure 7: Computation of the forest (Bp)p2PHere we 
an remark that we have Bp = Tp for at least one prin
ipalstate p, sin
e otherwise, we 
ould 
hoose a smaller integer M that boundsthe path lengths during the 
omputation of the prin
ipal states.15
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Figure 8: Final extra
tion4 Extension of the method of poles to so�
 
on-straintsIn this se
tion, we extend the method of poles to the more general 
lass of
onstraints represented by a not ne
essarily lo
al automaton. We 
onsidera transitive so�
 
hannel S, that is, a 
hannel that 
an be represented by anirredu
ible automaton. If it is not the 
ase, it is always possible to 
onsidera subset of the 
hannel that has this property and the same 
apa
ity. Wealso assume that the entropy of S is stri
tly greater than log(k), where k is apositive integer. In order to extend the method, we will use state splittingsof states of the representation of the 
hannel. We �rst give the de�nition ofthe notion of state splitting, whi
h 
omes from symboli
 dynami
s.We de�ne the operation of output state splitting in an automaton A =(Q;E). Let q be a vertex of Q and let I (resp. O) be the set of edges
oming in q (resp. going out of q). Let O = O0 + O00 be a partition ofO. The operation of (output) state splitting relative to (O0; O00) transformsA into the automaton B = (Q0; E0) where Q0 = (Q n fqg) [ fq0g [ fq00g isobtained from Q by splitting state q into two states q0 and q00, and where E0is de�ned as follows (see Figure 9 and 10)1. All edges of E that are not in
ident to q are left un
hanged.2. The states q0 and q00 have the same input edges as q.3. The output edges of q are distributed between q0 and q00 a

ording tothe partition of O into O0 and O00. We denote U 0 and U 00 the sets ofoutput edges of q0 and q00 respe
tivelyU 0 = f(q0; x; p) j (q; x; p) 2 O0g and U 00 = f(q00; x; p) j (q; x; p) 2 O00g.16
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Figure 10. Automaton BThe notion of input state splitting is de�ned similarly.We now transform the automaton that represents the 
onstraints intoanother one that has at least one strongly syn
hronizing state.Proposition 2 A transitive so�
 
hannel admits a representation that hasat least one strongly syn
hronizing state.Proof : It is known that a transitive so�
 
hannel has a unique minimaldeterministi
 representation. This representation admits a syn
hronizingword. It is 
alled the minimal automaton in automata theory and the Fis
her
over in the symboli
 dynami
s theory (see for instan
e [10, p. 478℄, [23℄or [9℄).Let A be su
h a representation and let w be a (m;a)-syn
hronizing wordonto a state p. We asso
iate to ea
h state q the set E(m;a)q of pairs (u; v)of �nite words, where u is the label of a path ending at q, and v the labelof a path starting at q. The pairs (u; v) are also denoted by u � v. One
an remark that if u � v and u0 � v0 belongs to a set E(m;a)q , then u � v0 andu0 � v also. We now 
onsider for ea
h state q the longest pre�x zq (possiblyequal to the empty word) of all words v su
h that there is a word u withu �v 2 E(m;a)q . We 
hoose a state r su
h that zr has a minimal length amongall (zq)q2Q. If the length of zr is stri
tly less than the anti
ipation a, the setE(m;a)r 
ontains two pairs u � zrbv and u0 � zr
v0, where u; u0; v; v0 are words,and b; 
 distin
t letters. If zr is not the empty word, let d be its �rst letter.We de�ne the word xr by zr = dxr. We do an output state splitting of stater by partitioning the outgoing edges of r in the ones ending at a state s su
hthat xrb is a pre�x of zs and the other ones. If zr is the empty word, we doan output state splitting of state r by partitioning the outgoing edges of rin the ones labeled by b and the other ones. This state splitting pro
ess ofthe automaton is iterated from the new automaton obtained. This pro
essalways stops sin
e if a state q is split in q1 and q2, the 
ardinalities of E(m;a)q117



and of E(m;a)q2 are stri
tly less than the 
ardinality of E(m;a)q . The automaton
omputed at the last step is su
h that all words zq have a length equal to a.We do the symmetri
al operations with the longest suÆxes yq of allwords u su
h that there is a word v with u � v 2 E(m;a)q . We use this timeinput state splitting. The �nal automaton that we get is su
h that, for allof its states q, the word yq has length m, and the word zq has length a.This means that ea
h set E(m;a)q of the �nal automaton is redu
ed to onepair yq � zq. Sin
e w is a syn
hronizing word of the initial automaton, yp isthe pre�x of length m of w, and zp is its suÆx of length a. This state is astrongly syn
hronizing state of the �nal automaton. �We mention that another proof of the previous result 
an be obtained bydoing a dire
t (or �bered produ
t) of the initial automaton that re
ognizesthe 
hannel and a (m;a)-lo
al universal De Bruin automaton, (we refer forinstan
e to [9℄ for this notion). In the above proof, the order 
hosen to treatthe past and the future 
an be 
hanged. The sequen
es of input and outputstate splittings 
an be merged. The interest of the state splitting way versusthe produ
t of automata is that one 
an stops the pro
ess as soon as wehave obtained enough strongly syn
hronizing states.Let S be a transitive so�
 
hannel re
ognized by an automaton A withan entropy h(S) > log(k). By the previous proposition we 
an assume thatA has a nonempty set of strongly syn
hronizing states. A set of prin
ipalstates for an integer M is obtained like in Se
tion 3 by starting this timethe 
omputation with a set P redu
ed to the strongly syn
hronizing statesonly.Computation of the set of prin
ipal statesbeginP  the set of strongly syn
hronizing stateswhile (P 6= ; and there is a state q with SP (q) < 1)do P  P � fqg.end,where SP (q) is the maximum of the sums:Xz2Zq 1kl(z) ;for all possible 
hoi
es of pre�x sets Zq of paths satisfying 
onditions 1 to 4.Sin
e the set of strongly syn
hronizing states is not empty and sin
ethe Shannon 
apa
ity of the 
hannel is stri
tly greater that log(k), one 
anprove like for 
onstraints of �nite type (see Se
tion 2), that a nonempty set18



of prin
ipal states is found by in
reasingM if the sear
h fails with an emptyset.The 
onstru
tion of a 
oding and de
oding transdu
er in then done ex-a
tly like in the previous se
tion. The proof that its output automaton is alo
al automaton is the same. It is due to the strongly syn
hronizing propertyof the prin
ipal states.Example Let us 
onsider the transitive so�
 system re
ognized by the au-tomaton A of Figure 11. Its entropy is stri
tly greater than log(2). This au-tomaton is the minimal deterministi
 representation of the system. It admitsat least one syn
hronizing word: the word bb, whi
h is (2; 0)-syn
hronizing.It also has a strongly syn
hronizing state: the state 4, whi
h is (2; 0)-stronglysyn
hronizing. In order to get as many strongly syn
hronizing states as pos-sible, we do a sequen
e of input state splittings and get the automaton B ofFigure 12 where the set E(2;0)p is represented inside ea
h state p.
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The set of strongly syn
hronizing states of the automaton B isS = f(1; bb); (4; b
); (2; 
b); (3; 

); (3; a
); (3; aa)g;where a state p is denoted here by its proje
tion state onto A and the left
omponent of the unique pair of E(2;0)p . A nonempty set of prin
ipal statesis obtained for M = 5. The set of poles is thenP = f(1; bb); (2; 
b); (3; 

); (3; a
); (3; aa)g:The labels of the paths Zp asso
iated to ea
h pole p are:Z(3;aa) = f
; ba
; bbb; bbaa; bb

; babb; baba
; bbabbgZ(2;
b) = fa
; bb; abb; baa; b

; aba
; babbgZ(1;bb) = fb; 

; aagZ(3;a
) = C(3;

) = fb; 
gSin
e the optimized trees asso
iated to the poles (3; a
) and (3; 

) are thesame, one 
an merge these two poles in the transdu
er. The transdu
er ob-tained has 4 poles and 41 states for the integer M = 5. A better transdu
er
an be obtained with an initial transformation of the automaton B of Fig-ure 12. If the state (1; ab) is removed for instan
e, the 
hannel representedhas an entropy whi
h is still greater than log(2). The number of stronglysyn
hronizing states is then advantageously in
reased inS = f(1; bb); (4; b
); (2; 
b); (3; 

); (3; a
); (3; aa); (2; ab)g;and the following set of poles is obtained with M = 2 onlyP = f(1; bb); (2; 
b); (3; 

); (3; a
); (3; aa); (2; ab)g:With a �nal automata redu
tion (state merging), we get the very smallen
oding transdu
er of Figure 13. Its sliding blo
k de
oding window lengthis only 2.5 A
knowledgmentWe thank anonymous referees for helpful 
omments.
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