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Extensions of the methodof poles for ode onstrutionMarie-Pierre B�eal�AbstratThe method of poles is a method introdued by P. A. Franaszekfor onstruting a rate 1 : 1 �nite state ode from k-ary data intoa onstrained hannel of �nite type whose apaity is stritly greaterthan log(k). The method is based on the omputation of a set ofstates alled poles. To eah pole is assoiated a set of paths goingfrom this pole to others. Eah set veri�es an entropy ondition. Theode produed by the method of poles has a sliding blok deoder ifeah set of paths satis�es moreover an optimization ondition basedon the sum of the path lengths of the set. In this paper we give anew optimization ondition whih guarantees the sliding blok windowdeoding property and has a lower omputational omplexity than theprevious one. We also extend the method of poles to the more generalase of so� onstrained hannels.Index Terms: method of poles, sliding-blok deoder, enoder, shiftof �nite type, so� system, strongly synhronizing state.1 IntrodutionWe are interested in the problem of enoding digital data into a onstrainedset of sequenes. Typial appliations are oding for storage systems ortransmission systems. For digital magneti storage for instane, onstraintsare run-length onstraints on the sequenes of bits stored. They are dueto physial limitations of the storage systems. The onstraints that an bemodeled by a �nite state mahine are alled rational onstraints or so�onstraints. The problem is then to enode a free soure of data, usuallysequenes of bits 0 and 1, into an available sequene, that is a sequene�Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee, 77454 Marne-la-Vall�ee Cedex2, Frane. http://www-igm.univ-mlv.fr/~beal.1



that an be read as the label of a path of the automaton that models theonstraints. With a �xed rate p : q oding strategy, eah blok of p bits isenoded in a blok of q bits, where p and q are small integers. After hangingthe alphabets, that is after reoding eah soure blok of length p by oneletter and eah onstrained blok of length q by one letter, the oding (seenwith these new alphabets), is a 1 : 1 rate oding from an unonstrainedsoure into a onstrained hannel.In this paper we will onsider �rst the lass of onstraints of �nite typethat we de�ne as the onstraints that an be reognized or represented bya deterministi loal (or de�nite) automaton. An automaton is omposedof a �nite set of states and a �nite set of edges. Eah edge is de�ned byits origin state, end state, and a letter alled its label. The automaton isdeterministi if there is at most one edge going out of a given state andwith a given label (the end state is then determined). The automaton isdeterministi and loal if it has in addition the following property : thereis an integer n suh that all equally labeled paths of length n end at thesame state. The �nal state depends then only on the label. The method ofpoles is one method of hannel oding for hannels modeled by �nite typeonstraints. The method onstruts a rate 1 : 1 enoder from arbitrary k-ary data into a given �nite type hannel S with a topologial entropy h(S),also alled the Shannon apaity of the hannel, stritly greater than log(k).The log is usually taken base 2. The algorithm starts with a �nite loalautomaton A representing the hannel, and builds a transduer, that is a�nite automaton labeled by pairs of letters, whose input labeling is rightlosing (or deterministi with a �nite delay), and whose output labeling isloal. Sine the input labeling is right losing, the enoding is sequential andsine the output labeling is loal the deoder is a sliding-blok deoder andtherefore propagates a symbol error in an enoded S-string by at most thedeoder window length. The deoding is sometimes alled state independentbeause the network of the deoder is then a purely ombinatorial one. Finalautomata redutions tend to minimize the size of the transduer and henethe size of the deoding window. The onstrution of the output of thetransduer is based on the omputation of a set of states alled prinipalstates. It is possible to assoiate to eah prinipal state a set of paths of theautomaton A. It onsists in all paths going out of a given prinipal state andending at another one. All possible sets of paths satisfy a Kraft onditionon the lengths of the paths. For eah prinipal state, the hosen set of pathsis one that minimizes the set length (that is the sum of the path lengths ofthe set) among all possible sets. Finally the prinipal states that are notreahed by any path of any set are removed and the remainders are alled2



poles. This natural optimization ondition is essential for the importantfeature of state independent deoding.The method of poles and the omputation of the set of prinipal stateshas been introdued by P. A. Franaszek in [14℄. The above optimizationondition and the proof of its inuene on the sliding-window property weregiven in [8℄, (see also [9℄). This method does not work in general in the aseof equality of apaities of the soure and of the onstrained hannel [4℄. Adi�erent method, whih allows also in the ase of equality of apaities, hasbeen obtained in [1℄ (see also [24℄, [25℄). It is alled the state splitting methodor the ACH algorithm and involves state splittings of some states of therepresentation of the hannel. Many other methods based on state splittingare desribed in [27℄ (see also [3℄, [6℄, [20℄). These hannel oding problemsare losely related with the mathematial theory of symboli dynamis [25℄.In the ase of a hannel of �nite type whose Shannon apaity is stritlygreater than the apaity of the soure, both methods lead in pratie totransduers that an have about the same omplexity. By omplexity, wemean the size of the length of the window of the deoder and the size of theenoder. In the ase of equality of apaities, the state splitting method ismore powerful sine the method of poles does not apply in general for thesehannels.The aim of the paper is to improve the method of poles for onstraintsof �nite type by hoosing a better optimization ondition. We also showthat the method an be extended to more general so� onstraints. Thesetwo points an be merged and one an make the improved optimizationondition work in the so� ase.The �rst improvement is a omplexity improvement on the optimiza-tion ondition that ensures the state independent deoding property. Themethod of poles omputes sets of paths of length at most an integerM whihdepends on the entropy of the onstrained hannel and of the geometry ofthe automaton. Let us onsider an n-state loal automaton whih representsthe onstraints. Let us also assume that the Shannon apaity of the hannelis stritly greater than log(k). In most appliations, the integer n is small.The bound M of the length of the paths an asymptotially be kn (see [4℄for instane) and is nevertheless not too big in pratie. For eah prinipalstate p, a set of paths is omputed as a �nite tree Tp of height M and whosearity is the maximal outdegree of the graph representing the hannel. Analgorithm for omputing the set of prinipal states and of one possible treeassoiated to eah prinipal state, is given by Franaszek in [14℄. Its timeomplexity is exponential in M . A omputational problem appears whenwe have to apply the optimization ondition given in [8℄. Indeed, if tp is the3



number of nodes of Tp, the searh of an optimal tree for this minimizationondition requires to hek all trees representing pre�x sets of paths beingpre�xes of paths of Tp. This omputation is exponential in the sum of thesizes tp. We present here a new optimization ondition whih allows us toompute optimal trees in a linear time in the sum of the sizes tp. We provethat the optimal trees obtained with this new optimization ondition stilllead to a sliding-blok window deoder.In the seond part of the paper, we show how to extend the method ofpoles to so� onstraints that are no more of �nite type. This is possibleafter a preliminary transformation of the �nite state mahine that modelsthe onstraints, in order to make the representation ontain some speialstates alled strongly synhronizing states. We desribe this transformationthan an be done with easy rounds of state splittings or also with a �beredprodut of two automata. This preproessing is very di�erent and muhsimpler than the ACH algorithm [1℄. We then show that the method ofpoles an be performed on this so� representation and still builds a 1 : 1enoder with sliding blok deoder.Another method to solve the ase of so� onstraints has been desribedby R. Karabed and B. Marus in [21℄. It is based on the state splittingproess of [1℄. Compared to their method, our method does not allow us, ingeneral, to treat the ase of equality of apaities for the lass of almost of�nite type onstraints (see [21℄). But the method of poles for so� shifts givesa pratial alternative to state splitting methods that are rather ompliatedin the so� ase.In Setion 2 we give the primary de�nitions and we briey reall themethod of poles. As it is used in Setion 3, we desribe the omputationof the set of prinipal states. The algorithm of onstrution of the treesobtained with the new optimization ondition is given in Setion 3. Weprove here that we do not lose the state independent deoding property.The extension of the method of poles to the ase of so� onstraints isdesribed in Setion 4. In this paper, we will sometimes desribe algorithmsas programs written in a pseudo ode. We adopt some onventions given in[12, p. 4℄.2 De�nitions and bakgroundLet A be an alphabet, that is, a �nite set of symbols alled letters.A �nite state automaton A = (Q;E) on the alphabet A is omposed oftwo �nite sets: Q, the set of states, and E, the set of edges. The set of edges4



is inluded in Q � A � Q. A �nite path is a �nite sequene of onseutiveedges ((qi; ai+1; qi+1))0�i<n, the word a1a2 : : : an being the label of the path.A �nite automaton is deterministi if and only if, whenever there aretwo edges (p; a; q) and (p; a; r) then q = r.A �nite automaton is loal if there are three nonnegative integers n;m; awithm+a = n suh that whenever two �nite paths ((qi; ai+1; qi+1))0�i<n and((q0i; ai+1; q0i+1))0�i<n have the same label w = a1a2 : : : an, then qm = q0m.The integer m is for memory and a for antiipation. If A is moreover deter-ministi, it is possible to have a null antiipation, or, equivalently, to takem = n. Loal automata are also alled de�nite automata [28℄. An automa-ton is said to be irreduible if its graph is strongly onneted. A onstrainthannel S is said to be reognized or represented by the automaton A if itis the set of labels of bi-in�nite paths of the automaton. Suh a onstrainedhannel is alled a so� hannel. If it an be represented by a loal automa-ton, the onstraint or the hannel is said of �nite type. It is haraterized bya �nite set of �nite bloks avoided by any bi-in�nite sequene of the han-nel. This set is alled a set of forbidden words for the hannel. It is possibleto represent the hannel by an automaton whih is both deterministi andloal.A word w of length m + a, where m and a are nonnegative integers,is said to be (m;a)-synhronizing if there is a state p suh that eah path(qi; ai+1; qi+1)0�i<m+a labeled by w satis�es qm = p. We say in this asethat w synhronizes onto the state p. A word w is said to be synhronizingif it is (m;a)-synhronizing for some m and a.We introdue the notion of strongly synhronizing states that will beuseful in the last setion to extend the method of poles to so� onstraints.For eah state p and eah nonnegative integers m;a, we de�ne the set E(m;a)pof �nite words uv, where u is the label of a path ending at p, and v the labelof a path starting at p. A state p of an automaton A is said to be (m;a)-strongly synhronizing, where m and a are nonnegative integers, if for anystate q distint from p, E(m;a)p \E(m;a)q = ;:A state p is said to be strongly synhronizing if it is (m;a)-strongly syn-hronizing for some m and a. A state p of an automaton A is thus stronglysynhronizing if and only there are not two distint equally labeled bi-in�nitepaths suh that the �rst one goes through a state p at some index, and theseond one goes through a state q 6= p at the same index. This property isomputable in a polynomial time in the number of states of A (see [9℄ page72). 5



Example. All states of a loal automaton are strongly synhronizing.We are going to enode a free k-ary soure into the onstraint han-nel S represented by an irreduible, deterministi and loal automaton. Weassume that the topologial entropy, or the Shannon apaity, h(S) of Ssatis�es h(S) > log(k). The entropy is omputed as the log of the spetralradius of the adjaeny matrix of the graph of the automaton A. It is de-�ned as the limit of 1=n log(ard(An \ Sn), where Sn is the set of bloks oflength n that an appear as a subblok of a bi-in�nite sequene of S.The �rst step in the method of poles onsists in �nding a subset P ofstates of Q alled prinipal states, suh that there exists a positive integerM(as small as possible) suh that one an assoiate to eah prinipal state pa �nite pre�x set Zp of �nite paths that satisfy the following properties1. eah path of Zp is a path of A that begins at state p;2. eah path of Zp ends at some state of P ;3. the length of eah path of Zp is less than or equal to M ;4. the set Zp satis�es the Kraft inequalityXz2Zp 1kl(z) � 1;where l(z) denotes the length of the path z.We reall that a set of path is a pre�x set1 if no path is the strit beginningof another one. A maximal subset of Q satisfying these above onditions isunique and is alled the set of prinipal states of the automaton.It is shown in [8℄ that if h(S) > log(k), then, for a suÆiently largeinteger M , suh a nonempty set P of prinipal states always exists. Thesearh begins withM = 1; 2; � � � , (M is inremented by 1 at eah step whenthe previous one has failed). One a nonempty set P of prinipal states ofA is found, the maximal size M of the lengths of the paths of any possibleset Zp is �xed.Franaszek's algorithm gives then, for eah prinipal state p of P , a pre�xset of paths Zp satisfying the above onditions, whih �rst maximizes thesum Xz2Zp 1kl(z) ;1also alled a pre�x free set. 6



and, in addition to this maximization ondition, minimizes what we all thelength l(Zp) of Zp de�ned byl(Zp) = Xz2Zp l(z): (1)We an here remark that the last minimization ondition is a loal mini-mization ondition in the sense that it does not imply that a hosen set Zphas a minimal length among all sets that satisfy onditions 1 to 4.We desribe below Franaszek's algorithm in a pseudo ode. The ompu-tation of the set of prinipal states an be performed as followsComputation of the set of prinipal statesbeginP  Q //where Q is the set of states of Awhile (P 6= ; and there is a state p 2 P with SP (p) < 1)do P  P � fpgend,where SP (p) is the maximum of the sumsXz2Zp 1kl(z) ;for all possible hoies of pre�x sets Zp of paths satisfying onditions 1 to 4.We now desribe the omputation of the prediate fSP (p) < 1g for astate p in P . Reall that M is a �xed integer that bounds the lengths of thepaths onsidered. We �rst build a tree T of heightM whose nodes representthe paths in A of length less than or equal to M starting at p. The nodesof T are labeled by states of A and we denote by r the root labeled by p. Ifn is a node, its height is the length of the path from the root to the node.Eah node at height at most M�1 labeled by a state q admits a son labeledby s for eah edge (q; a; s) in A. This ompletely de�nes a tree that is aovering tree starting at p and of height M , of the automaton A. The sizeof the tree is its number of nodes.We assign a boolean mark to eah node of the tree T . A node is marked orunmarked. It is marked if its label belongs to set P and unmarked otherwise.We then assoiate to eah node a rational value. The value of a node n isdenoted by v(n) in the pseudo ode below. The omputations neessary toalulate v are linear in the size t of the tree. They are performed bottom-upfrom the leaves to the root of T . 7



Computation of fSP (p) > 1gbeginif (n is a leaf)then if (n is marked) then v(n) 1 else v(n) 0else //n is not a leafif (n is marked and distint from the root)then v(n) max(1;Ps sons of n v(s)k )else v(n) Ps sons of n v(s)kendIt is easy to verify that fSP (p) � 1g if and only if v(r) � 1. We pointout that this omputation depends on the urrent set P and an thus beperformed several times for a same state p during the searh of the prinipalstates. One the set of prinipal states is obtained, the same algorithman be slightly modi�ed to produe the Franaszek's sets of paths Zp ofEquation (1). We more preisely ompute, from the overing tree T of Astarting at p and of height M , a tree whose set of paths from the root tothe leaves is Zp.Computation of the Franaszek tree of the state pbeginif (n is a leaf)then if (n is marked) then v(n) 1 else v(n) 0else begin //n is not a leaflet v =Ps sons of n v(s)kif (n is marked and distint from the root)then if (v � 1)then v(n) 1 and ut all branhes under the node nelse v(n) v and ut the link between n and eah ofits sons s suh that v(s) = 0else v(n) v and ut the link between n and eah of its sons ssuh that v(s) = 0endendIn the sequel, we denote by Tp the �nal tree assoiated to eah prinipalstate p omputed by the above algorithm. We refer to it as the Franaszektree assoiated to the prinipal state p, or also as the prinipal tree assoiatedto p. 8



Example. We give below an example of omputation of the set of prinipalstates and of the trees Tp, where p is a prinipal state. We onsider the loalautomaton of Figure 1 whih represents a onstrained hannel of entropygreater than log(2). We hoose k = 2 and ompute the set of prinipal statesfor a maximal path length M equal to 1. The searh fails by omputing anempty set. We try again with M = 2. The set of states P is initializedto f1; 2; 3g. The marked nodes are irled and the values of the funtion vare given in the squares beside eah node of the tree.
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Seond step We have P = f1; 2g.We hek if fSP (2) � 1g. The ompu-tation of v is done on the tree of Fig-ure 3. We again get v(r) = 3=4 andwe remove state 2 from the set P . Inthis omputation, some branhes havebeen ut during the proess. This issymbolized by a dashed line. 1 11

1/2

1 2 3

1

0

3

1

2 3/4

1

Figure 3: Seond step.Third step We have P = f1g. Wehek fSP (1) � 1g. The omputationof v is done on the tree of Figure 4. Wenow get v(r) = 1 and then SP (1) =1. The set of prinipal states is f1g.Some branhes have been ut duringthe proess. This is symbolized by adashed line. We obtain the Franaszektree T1.
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2 3 3Figure 4: Third step.To eah tree Tp, where p is a prinipal state, is assoiated in a naturalway a set of paths Zp satisfying the onditions 1 to 4 de�ned as the set ofpaths of the tree going from the root to a leaf. Eah suh path orrespondsto a path in A. Sine ondition 4 is satis�ed, that is,Xz2Zp 1kl(z) � 1;it is possible to extrat from Zp a subset Z 0p suh that the above Kraftinequality beomes a Kraft equalityXz2Zp 1kl(z) = 1:In order to minimize the number of notations, we still all this new set Zp.We moreover assume, by possibly removing some unuseful states in P , that10



the following ondition is satis�ed: for eah pair of prinipal states p; p0,there is a onatenation of paths of Sp2P Zp going from p to p0.Now a transduer T , used to enode and deode, an be onstruted asfollows. For eah prinipal state p, we hoose a pre�x ode Xp on a k-letteralphabet, that has the same length distribution as Zp. We hoose a length-preserving bijetion �p from Zp to Xp. We de�ne a state p̂, alled a pole,for eah prinipal state p. For eah path z in Zp, the transduer has a pathẑ of length l(z) from state p̂ to state p̂0, where p0 is the terminal state of thepath in A. One an imagine l(z) � 1 dummy states of T strung along thepath ẑ. To the path ẑ is assigned as input label �p(z), and as output label,the label of the path z in A.As shown in [9, p. 172℄, this proess does not ensure that the outputautomaton of the transduer is a loal automaton, and therefore that thedeoding is sliding blok. This is based upon the fat that the sets Zp haveto satisfy a length optimization ondition di�erent from the ondition ofEquation (1), in order to get the state independent deoding property.3 A new optimization ondition in the method ofpolesIn [8℄ is given a length optimization ondition that ensures that the trans-duer has a loal output, and then a sliding blok window deoder. Theondition is to hoose, among all possible sets Zp of paths satisfying on-ditions 1 to 4, a set that minimizes the sum of the path lengths. Thisoptimization ondition is a global optimization ondition ompared to theloal one desribed in the de�nition of Franaszek's sets Zp (see the remarkbelow the de�nition of the sets Zp in the seond setion). This requires asearh of all pre�x sets of paths satisfying onditions 1 to 4, the paths beingpre�xes of paths of the Franaszek tree Tp obtained in the previous setion.If we denote by tp the size of the tree Tp, that is the number of nodes of Tp,this exhaustive searh has an exponential time ost in tp.In this setion, we give a new optimization ondition that an be om-puted from the Franaszek trees in a linear time.We all subtree of a tree T the part of T formed by a node of T with allits desendants. We all prinipal subtree of a Franaszek tree T a subtree ofT whose root is not a leaf of T and is labeled by a prinipal state.We now give a family of new optimization onditions. We assume thatthe prinipal subtrees are preordered with a preorder, denoted by ord, whihsatis�es the following ondition: 11



� if A and B are two distint prinipal subtrees of a Franaszek tree,A is a strit subtree of B =) ord(A) < ord(B): (2)We hoose, for eah prinipal state p, a prinipal subtree of any Franaszektree, whih is rooted by a node labeled by p, and minimizes the preorder ord.We denote it by Bp. We point out that the trees (Bp)p2P satisfy the Kraftinequality ondition sine they are prinipal subtrees of some tree Tq. This isdue to the fat that eah node labeled by a prinipal state of a Franaszek treehas a �nal value v, omputed during the omputation of the Franaszek trees,whih is greater than or equal to 1. This property is equivalent to the fatthat the prinipal subtree satis�es the Kraft inequality. A �nal extrationonsists in removing some branhes of the prinipal subtrees (Bp)p2P to get�nally sets of paths whih satisfy the Kraft equality. The transduer usedto enode and deode is built from the new sets Zp as explained in Setion2. It has a strongly onneted graph.The following proposition states that the important property of stateindependent deoding is guaranteed.Proposition 1 The output labeling of the transduer onstruted from thetrees (Bp)p2P is a loal automaton.Proof : We prove that the transduer onstruted from the trees (Bp)p2Pthat we get before the �nal extration has a loal output. Sine this au-tomaton is obtained from the �nal pruned trees (Bp)p2P by removing somepaths from it, it will prove the result.Reall that an irreduible automaton is loal if and only if it does notadmit two distint equally labeled yles. Let us thus onsider two distintequally labeled yles of the output automaton of the transduer T , denotedby ((pi; ai+1; pi+1)0�i<n and ((p0i; ai+1; p0i+1)0�i<n. The addition on the setof indies f0; 1; : : : ; n � 1g of the yles, has to be understood modulus n.We �rst onsider the ase where there is an index i suh that pi and p0i areboth poles of the transduer. The two yles of the output of T projet ontotwo yles of the automaton A and the two poles pi and p0i projet onto twoprinipal states. Sine the prinipal states of A are strongly synhronizing,the two projeted prinipal states are equal, and then the poles pi and p0ialso. It follows that the two yles of T are also equal, by onstrution ofthe transduer.We an now assume that for eah index i, pi and p0i are not simultaneouslypoles. Sine eah yle of T goes through a pole, there is at least one index12



i suh that pi is a pole and p0i is not one. The two yles of the transduerprojet onto two yles in A, one going through the projetion of pi, theother one going through the projetion of p0i at the same time. Sine theprojetion of pi is a prinipal state whih is strongly synhronizing, theprojetions of pi and p0i are equal. We all it the projetion of the pair(pi; p0i). Sine we are only interested in the pairs (pj ; p0j) suh that pj or p0jis a pole, we an assume, after renumbering, that all pairs are like this, twostates of onseutive indies being linked by a path of length at least one.We divide these indies into two disjoint sets, one set A where pj is a poleand one set A0 where p0j is a pole. We restrit then our attention only to theboundary set I onsisting of all indies j suh that(j 2 A and (j + 1) 2 A0) or (j 2 A0 and (j + 1) 2 A):Let us assume that the set I is f0; 1; : : : ; r�1g and that the addition on I ismodulus r. We onsider then the irular sequene (ej)0�j<r of the proje-tions of pairs of states (pi; p0i) indexed by suessive points of I modulus r(see Figure 5 where the poles are irled).
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Figure 5: Paths enroahing upon eah otherLet ej be one element of this sequene whih is the projetion of apair (pi; p0i). Let us assume that pi is a pole (the ase where p0i is a poleis symmetri). Then ej+1 is the projetion of a pair (pk; p0k) where p0k andpk+1 are poles. Let us denote by wj (resp. zj the path from pi to pk (resp.from pk to pk+1) in the �rst yle. The projeted path onto A of wjzjbelongs to the set of paths assoiated to the tree Bej . Sine the states pkand p0k projet onto the same prinipal state of A, the state ej+1, the treeBej has a proper prinipal subtree B rooted by ej+1. By de�nition of theoptimized trees (Bp)p2P , we then haveord(Bej+1) � ord(B) < ord(Bej ):13



This implies that for eah index j in I, ord(Bej+1) < ord(Bej ). It ends theproof by a ontradition sine the sequene (ej)0�j<r is �nite. �We now give some examples of possible preorders on prinipal subtreessatisfying ondition (2):� the height of a tree.� the length of a tree, that is the sum of the lengths of all paths goingfrom the root to eah leaf.For pratial appliations, we adopt this seond preorder as optimizationondition. This new optimization ondition an be stated as follows. Weompute and assoiate to eah prinipal state p a prinipal subtree Bp,rooted by a node labeled by p, whih has a minimal length among all prin-ipal subtrees of all Franaszek trees. This hoie is due to two reasons.First, the size of the enoding transduer depends on the length of the trees(Bp)p2P . The deoding window length is also bounded above by a funtionof the size of this transduer. Seond, the omputation of the trees (Bp)p2Pis linear in the sum of the sizes of the Franaszek trees.We preise below the omputation of the trees (Bp)p2P from the Franaszektrees. A bottom up omputation of these trees is possible as follows. We�rst ompute the lengths of all subtrees of the prinipal trees. This is easilydone by omputing together for a node n the pair (ln; xn) of the length ln ofthe subtree rooted by this node, and the number xn of leaves of this subtree.If n is itself a leaf, we have (ln; xn) = (0; 1). If n is a node whih has s sonsdenoted by 1; 2; : : : ; s, we have the following trivial equalities:xn = sXi=1 xi;ln = sXi=1(li + xi) = sXi=1 li + xnLet us now denote by N the set of roots of all prinipal subtrees of allFranaszek trees and by (n) the label of a node n in N . We de�ne Bp asthe subtree rooted by n where n is a node of the forest (Bp)p2P suh thatln = minflp j p 2 N and (n) = pg:A bottom-up exploration of the forest (Tp)p2P allows simultaneous ompu-tations of pairs (ln; xn) and of the forest (Bp)p2P . Sine eah tree is exploredone, the time omplexity of the omputation is O(Pp2P tp).14



Example. We onsider the example of the hannel of entropy greater thanlog(2) pitured in Figure 6. The trees (Tp)p2P are given in Figure 7. Theset of prinipal states with M = 2 is P = f1; 2; 3; 4g. The trees (Bp)p2Pobtained at the end of the omputation have their root pointed in the �gure.The value ln for a node n is given beside the node. The nodes are labeledby their projetion state onto the automaton of Figure 6 that represents thehannel. A �nal operation, made in order to get trees that satisfy the Kraftequality, onsists in removing some branhes of the trees obtained at theprevious step. This is shown in Figure 8.
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Figure 8: Final extration4 Extension of the method of poles to so� on-straintsIn this setion, we extend the method of poles to the more general lass ofonstraints represented by a not neessarily loal automaton. We onsidera transitive so� hannel S, that is, a hannel that an be represented by anirreduible automaton. If it is not the ase, it is always possible to onsidera subset of the hannel that has this property and the same apaity. Wealso assume that the entropy of S is stritly greater than log(k), where k is apositive integer. In order to extend the method, we will use state splittingsof states of the representation of the hannel. We �rst give the de�nition ofthe notion of state splitting, whih omes from symboli dynamis.We de�ne the operation of output state splitting in an automaton A =(Q;E). Let q be a vertex of Q and let I (resp. O) be the set of edgesoming in q (resp. going out of q). Let O = O0 + O00 be a partition ofO. The operation of (output) state splitting relative to (O0; O00) transformsA into the automaton B = (Q0; E0) where Q0 = (Q n fqg) [ fq0g [ fq00g isobtained from Q by splitting state q into two states q0 and q00, and where E0is de�ned as follows (see Figure 9 and 10)1. All edges of E that are not inident to q are left unhanged.2. The states q0 and q00 have the same input edges as q.3. The output edges of q are distributed between q0 and q00 aording tothe partition of O into O0 and O00. We denote U 0 and U 00 the sets ofoutput edges of q0 and q00 respetivelyU 0 = f(q0; x; p) j (q; x; p) 2 O0g and U 00 = f(q00; x; p) j (q; x; p) 2 O00g.16
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Figure 10. Automaton BThe notion of input state splitting is de�ned similarly.We now transform the automaton that represents the onstraints intoanother one that has at least one strongly synhronizing state.Proposition 2 A transitive so� hannel admits a representation that hasat least one strongly synhronizing state.Proof : It is known that a transitive so� hannel has a unique minimaldeterministi representation. This representation admits a synhronizingword. It is alled the minimal automaton in automata theory and the Fisherover in the symboli dynamis theory (see for instane [10, p. 478℄, [23℄or [9℄).Let A be suh a representation and let w be a (m;a)-synhronizing wordonto a state p. We assoiate to eah state q the set E(m;a)q of pairs (u; v)of �nite words, where u is the label of a path ending at q, and v the labelof a path starting at q. The pairs (u; v) are also denoted by u � v. Onean remark that if u � v and u0 � v0 belongs to a set E(m;a)q , then u � v0 andu0 � v also. We now onsider for eah state q the longest pre�x zq (possiblyequal to the empty word) of all words v suh that there is a word u withu �v 2 E(m;a)q . We hoose a state r suh that zr has a minimal length amongall (zq)q2Q. If the length of zr is stritly less than the antiipation a, the setE(m;a)r ontains two pairs u � zrbv and u0 � zrv0, where u; u0; v; v0 are words,and b;  distint letters. If zr is not the empty word, let d be its �rst letter.We de�ne the word xr by zr = dxr. We do an output state splitting of stater by partitioning the outgoing edges of r in the ones ending at a state s suhthat xrb is a pre�x of zs and the other ones. If zr is the empty word, we doan output state splitting of state r by partitioning the outgoing edges of rin the ones labeled by b and the other ones. This state splitting proess ofthe automaton is iterated from the new automaton obtained. This proessalways stops sine if a state q is split in q1 and q2, the ardinalities of E(m;a)q117



and of E(m;a)q2 are stritly less than the ardinality of E(m;a)q . The automatonomputed at the last step is suh that all words zq have a length equal to a.We do the symmetrial operations with the longest suÆxes yq of allwords u suh that there is a word v with u � v 2 E(m;a)q . We use this timeinput state splitting. The �nal automaton that we get is suh that, for allof its states q, the word yq has length m, and the word zq has length a.This means that eah set E(m;a)q of the �nal automaton is redued to onepair yq � zq. Sine w is a synhronizing word of the initial automaton, yp isthe pre�x of length m of w, and zp is its suÆx of length a. This state is astrongly synhronizing state of the �nal automaton. �We mention that another proof of the previous result an be obtained bydoing a diret (or �bered produt) of the initial automaton that reognizesthe hannel and a (m;a)-loal universal De Bruin automaton, (we refer forinstane to [9℄ for this notion). In the above proof, the order hosen to treatthe past and the future an be hanged. The sequenes of input and outputstate splittings an be merged. The interest of the state splitting way versusthe produt of automata is that one an stops the proess as soon as wehave obtained enough strongly synhronizing states.Let S be a transitive so� hannel reognized by an automaton A withan entropy h(S) > log(k). By the previous proposition we an assume thatA has a nonempty set of strongly synhronizing states. A set of prinipalstates for an integer M is obtained like in Setion 3 by starting this timethe omputation with a set P redued to the strongly synhronizing statesonly.Computation of the set of prinipal statesbeginP  the set of strongly synhronizing stateswhile (P 6= ; and there is a state q with SP (q) < 1)do P  P � fqg.end,where SP (q) is the maximum of the sums:Xz2Zq 1kl(z) ;for all possible hoies of pre�x sets Zq of paths satisfying onditions 1 to 4.Sine the set of strongly synhronizing states is not empty and sinethe Shannon apaity of the hannel is stritly greater that log(k), one anprove like for onstraints of �nite type (see Setion 2), that a nonempty set18



of prinipal states is found by inreasingM if the searh fails with an emptyset.The onstrution of a oding and deoding transduer in then done ex-atly like in the previous setion. The proof that its output automaton is aloal automaton is the same. It is due to the strongly synhronizing propertyof the prinipal states.Example Let us onsider the transitive so� system reognized by the au-tomaton A of Figure 11. Its entropy is stritly greater than log(2). This au-tomaton is the minimal deterministi representation of the system. It admitsat least one synhronizing word: the word bb, whih is (2; 0)-synhronizing.It also has a strongly synhronizing state: the state 4, whih is (2; 0)-stronglysynhronizing. In order to get as many strongly synhronizing states as pos-sible, we do a sequene of input state splittings and get the automaton B ofFigure 12 where the set E(2;0)p is represented inside eah state p.
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The set of strongly synhronizing states of the automaton B isS = f(1; bb); (4; b); (2; b); (3; ); (3; a); (3; aa)g;where a state p is denoted here by its projetion state onto A and the leftomponent of the unique pair of E(2;0)p . A nonempty set of prinipal statesis obtained for M = 5. The set of poles is thenP = f(1; bb); (2; b); (3; ); (3; a); (3; aa)g:The labels of the paths Zp assoiated to eah pole p are:Z(3;aa) = f; ba; bbb; bbaa; bb; babb; baba; bbabbgZ(2;b) = fa; bb; abb; baa; b; aba; babbgZ(1;bb) = fb; ; aagZ(3;a) = C(3;) = fb; gSine the optimized trees assoiated to the poles (3; a) and (3; ) are thesame, one an merge these two poles in the transduer. The transduer ob-tained has 4 poles and 41 states for the integer M = 5. A better transdueran be obtained with an initial transformation of the automaton B of Fig-ure 12. If the state (1; ab) is removed for instane, the hannel representedhas an entropy whih is still greater than log(2). The number of stronglysynhronizing states is then advantageously inreased inS = f(1; bb); (4; b); (2; b); (3; ); (3; a); (3; aa); (2; ab)g;and the following set of poles is obtained with M = 2 onlyP = f(1; bb); (2; b); (3; ); (3; a); (3; aa); (2; ab)g:With a �nal automata redution (state merging), we get the very smallenoding transduer of Figure 13. Its sliding blok deoding window lengthis only 2.5 AknowledgmentWe thank anonymous referees for helpful omments.
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