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Abstract

We consider transducers over infinite words with a Biichi or a Muller
acceptance condition. We give characterizations of functions that can
be realized by Biichi and Muller sequential transducers. We describe
an algorithm to determinize transducers defining functions over infinite
words.

1 Introduction

The aim of this paper is the study of the determinization of transducers over
infinite words, that is of machines realizing rational transductions over infinite
words. Transducers are finite state automata with edges labeled by pairs of fi-
nite words (an input and an output label). They are very useful in a lot of areas
like coding [10], computer arithmetic [11], language processing (see for instance
[16] and [13]) or in program analysis [8]. Transducers that have a deterministic
input automaton are called sequential transducers [19] and functional relations
that can be realized by a sequential transducer are called sequential functions.
They play an important role since they allow sequential encoding. The deter-
minization of a transducer is the construction of a sequential transducer which
defines the same function. We refer the reader to [4] and [18] for complete
introductions to transducers.

The determinization of an automaton over finite words is easily solved by
a subset construction. The determinization of a transducer is more complex
than the determinization of an automaton since it involves both the input and



the output labels. In the case of finite words, it has been solved by Choffrut
who gives in [6, 7] a characterization of subsequential functions and an algo-
rithm that transforms a transducer which realizes a subsequential function into
a subsequential transducer (see also [4, p. 109-110], [16, p. 223-233] and [2]).
Choffrut proved that the subsequentiality of functions realized by transducers
over finite words is decidable. A polynomial time decision procedure has been
obtained by Weber and Klemm in [22], see also [3]. The determinization of
transducers over finite words is the first step before a minimization process in-
troduced by Choffrut in [6] and [7]. Efficient algorithms to minimize sequential
transducers have been described later in [13], [14], [5] and [1].

We consider here transducers that define functional relations over infinite
words. The determinization of automata over infinite words is already much
more difficult than over finite words. First, not every Biichi automaton can be
determinized. Muller automata which have a more powerful acceptance con-
dition must be used [12]. Second, all determinization algorithms of automata
over infinite words that have been given so far are complex [17]. In [2], we
have coped with this difficulty by considering transducers without acceptance
condition, that is, all their states are final. This case is indeed much simpler
because the determinization of an automaton over infinite words without any
acceptance condition can be achieved by a simple subset construction. How-
ever, in this case, the determinization of a transducer is already non-trivial and
needs new techniques like the notion of constant states. In [2], we have given
a characterization of sequential functions, and a determinization algorithm, in
the case where all states of the transducer are final.

In this paper, we solve the general case, that is, where the transducers over
infinite words have Biichi or Muller acceptance conditions. We give character-
izations of functions that can be realized by Biichi or Muller sequential trans-
ducers. In the case where the function is Biichi or Muller sequential, we give an
effective algorithm to construct a sequential transducer (i.e., a transducer with
a deterministic input automaton) which realizes the same function. However,
this result does not completely cover those in [2]. Indeed, this general algo-
rithm applied to a transducer without acceptance condition yields a sequential
transducer with an acceptance condition although we have proved in [2] that a
sequential function realized by a non-sequential transducer without acceptance
condition can actually be realized by a sequential transducer without acceptance
condition.

The paper uses notions already considered in [2] like the notion of a constant
state in a transducer (a state such that all paths going out of it have the same
infinite output label) but it also introduces new methods. The characterizations
are based on the continuity of the function realized by the transducer and on
a new notion which is a variant of the twinning property introduced by Chof-
frut [6, 7] that we call weak twinning property. The determinization algorithm
is performed in two main steps. The first step constructs a sequential trans-
ducer without acceptance condition which realizes an extension of the function
f realized by the initial transducer. The second step combines, with an easy
product construction, the transducer obtained at the first step with a determin-



istic Biichi (or Muller) automaton recognizing the domain of f to get a Biichi
(or Muller) sequential transducer that realizes exactly f. The problem that the
determinization of transducers includes the determinization of automata is thus
avoided by this second step. Roughly speaking, the first step mainly deals with
the outputs of the transducer whereas the second one ignores completely the
outputs and deals only with the inputs.

We mention that the continuity of functions realized by Biichi transducers
is decidable in polynomial time [15]. The decidability of the weak twinning
property that we introduce is not discussed in the paper. See the Conclusion
for a further discussion.

A consequence of our characterizations is that any function realized by a
Muller sequential transducer is the restriction of a function realized by a Biichi
sequential transducer. This means that the difference between functions realized
by Biichi and Muller sequential transducers is entirely due to the domains of
the functions and not to the outputs.

The paper is organized as follows. Basic notions about transducers and
acceptance conditions over infinite words are defined in Section 2. The two
main results (Theorem 3 and Theorem 4) that state the characterizations of
Biichi and Muller sequential functions are given in Section 3. Section 4 contains
the determinization algorithm and an example of the construction of a sequential
transducer.

2 Transducers

In the sequel, A and B denote finite alphabets. The set of finite and infinite
words over A are denoted by A* and A“, respectively. The empty word is
denoted by ¢.

A transducer over A x B is composed of a finite set () of states, a finite set
E C Q@ x A* x B* x @ of edges, a set I C @ of initial states and an acceptance
condition ®. An edge e = (p,u,v,q) from p to ¢ is denoted by p vy . The
words v and v are called the input label and the output label of the edge. Thus,
a transducer is the same object as an automaton, except that the labels of the
edges are pairs of words instead of letters (as usual) or words.

A finite path v in a transducer is a finite sequence

U1|'U1 ug"vg unlvn
do * Q1 yo ’

an

of consecutive edges. Its input label is the word u = wjus...u,, its output
label is the word v = vyvs ... u, and its label is the pair (u,v) (also denoted
u|v) of finite words. Such a path is sometimes denoted by gqo v, qn like a
transition. We say it starts at go and ends at g,. Similarly, an infinite path v
in a transducer is an infinite sequence

ug‘vg\ ul\vl\ ug‘vz\
do 7 q1 > 42 qs---




of consecutive edges. Its input label is the word © = upuyus . .., its output label
is the word y = vov1vs ... and its label is the pair (z,y) (also denoted z|y) of
words. Note that the input label or the output label of an infinite path may be
a finite word because the input label or the output label of a transition may be
the empty word. We say that the path starts at qo. We denote by lim(v) the
set of states that appear infinitely often along . Since the number of states of
the transducer is finite, lim(7y) is always nonempty.

The acceptance condition ® determines a family of final paths as follows. A
path is final if it satisfies ® and if both its input and output labels are infinite
words. A path is successful if it is final and if it starts at an initial state. In
this paper, we consider two types of acceptance condition : Biichi and Muller
acceptance conditions. In a Biichi transducer the acceptance condition @ is a
set F' of states, called final states, and a path 7 satisfies @ if it goes infinitely
often through a final state, i.e., lim(y) N F # &. In a Muller transducer the
acceptance condition ® is a family F of sets of states, and a path 7 satisfies
® if lim(y) € F. Observe that whether or not v satisfies ® depends only on
the set lim(y) of states that occur infinitely often along the path . Therefore,
removing a finite prefix of a final path or prefixing a final path with a finite
path always yields a final path.

In the sequel we say that a finite cycling path around a state ¢ (i.e., starting
and ending at ¢), also called a loop, is accepting if the infinite path made by
looping infinitely often along this loop is final. For a Biichi acceptance condition,
a loop is accepting if it contains a final state. For a Muller acceptance condition,
aloop is accepting if the set of states that are encountered along the path belongs
to the family F.

A vpair (z,y) of infinite words is recognized if it is the label of a successful
path. The set of all recognized pairs is the relation realized by the transducer.
This relation R is of course a function f if for any word 2 € A“, there exists
at most one word y € B“ such that (z,y) € R. In that case, a transducer can
be seen as a machine computing nondeterministically the output word y = f(x)
from the input word x. We denote by dom(f) the domain of the function f.

As in the case of automata, nondeterministic Biichi and Muller transducers
have the same power. First, any Biichi transducer with a set F' of final states
can be viewed as Muller transducer whose acceptance condition is given by the
family F = {P C Q@ | PN F # @&}. Conversely, any Muller transducer can
be simulated by a Biichi transducer. This equivalent Bichi transducer can be
obtained by the same construction as for automata [21, p. 417].

A transducer is trim if each state is accessible from an initial state and if
there is at least one final path starting at each state. States which do not satisfy
these conditions can be removed. Therefore, we assume in the sequel that all
transducers are trim. Note that it can be effectively checked whether a given
state is accessible from an initial state. It can also be effectively checked whether
it is the first state of a final path. Indeed a state is the first state of a final path
if an accepting loop is accessible from that state. Therefore, a transducer can
be effectively made trim. This action can be seen as a preprocessing of the
transducer.



A transducer is said to be real-time if it is labeled in A x B*, that is, the
input label of each transition is a letter. We say that a transducer T is sequential
if the following conditions are satisfied:

e it is real-time,
e it has a unique initial state,

e for any state ¢ and any letter a, there is at most one transition going out
of ¢ and input labeled by a.

These conditions ensure that for each word z € A%, there is at most one word
y € B¥ such that (z,y) is recognized by 7. Thus, the relation realized by T is
a function from A“ into B¥. A function is said to be Biichi sequential (respec-
tively Muller sequential) if it can be realized by a sequential Biichi (respectively
Muller) transducer.

In the case of finite words, one often distinguishes sequential and subsequen-
tial functions. In a subsequential transducer, an additional finite word depend-
ing on the ending state is appended to the output label of the path. However,
the notion of subsequential transducer is irrelevant in the case of infinite words.

F ={{0},{0,0",1},{0",1,2},{0,0",1,2},{1,2}}

Figure 2: Sequential Muller transducer of Example 1

ExXAMPLE 1 Let A = {0,1} be the binary alphabet. Consider the sequential
transducer 7 pictured in Figure 1. If the infinite word x is the binary expansion
of a real number « € [0,1), the output corresponding to x in T is the binary
expansion of «/3. If all states of this transducer are final, it accepts both as
input and as output label binary expansions which are not normalized, that is
of the form (0 + 1)*1¥. In order to reject these expansions as output label, this



transducer must be equipped with the Biichi acceptance condition F' = {0,1}
as shown in Figure 1. In order to reject these expansions also as input label,
the state 0 must be split and the transducer must be equipped with a Muller
acceptance condition as shown in Figure 2.

The following proposition allows us in the sequel to only consider real-time
transducers. This result is due to Gire [9] in the more general case of rational
relations of infinite words. We give below a simpler proof for rational functions.

PROPOSITION 2 For any Bichi transducer realizing a function of infinite words,
one can compute a real-time Biichi transducer realizing the same function.

Proof Let 7 be a Biichi transducer realizing a function. We can assume that
each transition is labeled by a pair ¢|a or ale where a is a letter or e. Otherwise,
each transition p “% ¢ where u = a; ...a,, and v = by ...b,, can be replaced
by n + m consecutive transitions

aile as|e an e elb elb

P —— @2 o1 — G — Qo1 b1 —— 4,

where ¢1,...,¢n+n—1 are new states.

Let @ be the set of states of 7 and let F' be its set of final states. We define
a real-time transducer 7' as follows.

Let a be a letter of the input alphabet, let p and ¢ be two states of 7, and
let e be 0 or 1. If e = 0, let V¥ be the set of words v such that there is a
path p alv, q from p to ¢ with input label a and output label v. If e = 1, let
Vo be the set of words v such that there is a path p aly, q from p to ¢ w1th
input label a and output label v and which goes through a final state. Note
that V,%¢ is always a rational subset of B* and that V%' is a subset of V,*:0.
Suppose that two nonempty words v and v' belong to a set V,..°. Whenever
the path p aly, q occurs in a successful path of 7, it can be replaced by the
path p ﬂv—) g. Indeed, since the transducer 7 realizes a function, the output
word of the successful path remains unchanged. This means that it suffices to
keep one nonempty word in each set V',¢. From V., we pick a subset W;" of
cardinality at most 2 as follows.

e If VI:¢ contains the empty word, the empty word is also put in W°.

e If V!:? contains at least one nonempty word, one of them is put in W

The set of states of 7' is the set Q' = @ x {0,1}. The set of initial states is
I' ={(q,0) | ¢ € I'} and the set of final states is F' = {(¢,1) | ¢ € Q}. The set
of transitions of 7' is defined as follows. Let a be a letter of the input alphabet
and let (g, €) and (¢',€’) be two states of 7". There is a transition from (g, €) to
(¢, €') labeled by a|v ifve W“q6 The transducer 7' realizes the same function
as T This is independent of the choice of the finite subsets W7. O

The domain of a function realized by a Biichi or Muller transducer is a
rational set of infinite words. Recall that a set of infinite words is said to be



rational if it is accepted by an automaton. An automaton is a transducer where
the edges are labeled by letters instead of pairs of words. The label of a path in
an automaton is thus a word. A Biichi (respectively Muller) automaton is an
automaton equipped with a Biichi (respectively Muller) acceptance condition.
We refer the reader to [20] or [21] for a complete introduction to automata on
infinite words.

It is not true that any rational set of infinite words is recognized by a de-
terministic Blichi automaton. However, any rational set of infinite words is
recognized by a deterministic Muller automaton [21, Thm 5.1]. Furthermore
an equivalent deterministic Muller automaton can be computed from a Biichi
automaton. Sets of infinite words that can be recognized by a deterministic
Biichi automaton are called deterministic. It can be effectively checked whether
the set of words recognized by a given Biichi automaton is deterministic [20,
Thm 5.3c]. Furthermore, if that set is deterministic, an equivalent deterministic
Biichi automaton can effectively be computed [20, Lem 5.4].

A Biichi automaton recognizing the domain of a function can be effectively
computed from a transducer realizing the function. The rough idea is to remove
the output labels of the edges. We refer the reader to the proof of the main
result in [2].

3 Characterization of sequential functions

The characterizations of Biichi and Muller sequential functions need the notion
of continuity of a function. First recall that the set A“ is endowed with the
usual topology. This topology can be defined by the distance d given by

d(z,y) = 0 ifx=y
= 2 wheren = min{k | 1 # yr} otherwise.

Intuitively two infinite words are close if they share a long common prefix.
Therefore, a sequence of infinite words (z,)n>0 converges to a word z if for
any integer k, there is an integer nj such that any word z, for n > nj has a
common prefix with x of length greater than k. We recall now a definition of
the continuity that we use later. A function f is said to be continuous if for
any sequence (z)p>o of elements of its domain converging to an element z of
its domain, the sequence (f(z,))n>0 converges to f(x).

The characterizations of Biichi and Muller sequential functions also need the
notion of a constant state in a transducer. We say that a state g of a transducer
is constant if all final paths starting at this state have the same output label.
The terminology comes from the fact that the transducer in which ¢ is initial
realizes a constant function. For a constant state ¢, the common output label
of all final paths starting at ¢ is denoted by y,. This infinite word always exists
since the transducer is assumed to be trim.

In order to illuminate the notion of a constant state, we make some remarks
and we prove some easy properties. Note first that in the definition of a constant



state, we only consider final paths. There may be other, nonfinal, infinite paths
with either a finite output label or an infinite output label which is different
from the output of a final path.

Note that if ¢ is a constant state and if the state ¢’ is accessible from ¢, ¢ is
also a constant state. Indeed, suppose that there is a finite path ~ from ¢ to ¢’
whose output label is v. If 71 and 7, are two final paths starting at ¢', the two
paths yv; and 47, are two final paths starting at ¢. It follows that the output
labels of ;1 and 2 must be equal and ¢’ is a constant state. Furthermore, the
output labels y, and y, satisfy y, = vy, .

Note also that the common output label y, of a constant state ¢ is an ul-
timately periodic word, that is an infinite word of the form uv“ for two finite
words u and v. If there is a final path starting at ¢, then there is always an
ultimately periodic final path starting at ¢ since the number of states is finite.

Note finally that if ¢ is a constant state and there is a finite path from ¢
to ¢ (a loop) with a nonempty output label v, then the output label y, is equal
to v¥. This is true even if the loop around ¢ is not accepting. Let 7 be the finite
path from ¢ to ¢ with the output label v and let 4, be a final path starting at q.
By definition, the output label of 4, is y,. Since the path vy7v; is also a final
path starting at g, the equality vy, = y, holds. Since v is nonempty, y, is equal
to v¥.

The characterization of sequentiality is essentially based on the following
notion which is a variant of the twinning property introduced by Choffrut [7,
p. 133] (see also [4, p. 128]). This property is a kind of compatibility of the
outputs of paths with the same inputs. A transducer has the weak twinning
property if for any pair of paths

g ot v’

i —q =,
where ¢ and ¢’ are initial states, the following two properties hold.

e If both ¢ and ¢’ are not constant, then either w = w’ = ¢ or there exists
a finite word s such that either v’ = us and sw’ = ws, or u = u's and
sw = w's. The latter case is equivalent to the following two conditions:

(i) fw| = fw],
(i) ww® = v'w'

e If ¢ is not constant, ¢’ is constant, and w is nonempty, then the equality
u'yy = uw® holds. Note that if w' is nonempty, then y, = w'“.

No property is required when both ¢ and ¢' are constant states. In that
case, the compatibility of the outputs is already ensured by the functionality
of the transducer. The property required when both ¢ and ¢’ are not constant
is exactly the twinning property as defined by Choffrut [7] (required for all ¢
and ¢'). The weak twinning property and the twinning property only differ in
the way constant states are treated.



We now state the two characterizations of Biichi and Muller sequential func-
tions.

THEOREM 3 Let f be a function realized by a real-time Biichi transducer T .
Then the function f is Muller sequential iff the following two properties hold:

e the function f is continuous,

e the transducer T has the weak twinning property.

THEOREM 4 Let f be a function realized by a real-time Biichi transducer T .
Then the function f is Biichi sequential iff the following two properties hold:

o the domain of f can be recognized by a deterministic Biichi automaton,

e the function f is Muller sequential.

Before proceeding to the proofs of the theorems we provide some examples
showing that the conditions are independent.

Figure 3: Transducer of Example 5

ExXAMPLE 5 The Biichi transducer pictured in Figure 3 is equipped with a Biichi
acceptance condition. It realizes a noncontinuous function f. Indeed, the image
of an infinite word z is f(z) = a if « has infinitely many occurrences of a and
it is f(z) = a™b¥ if « has n occurrences of a. Although the sequence x,, = b"ab”
converges to z = b“, the sequence f(z,) = ab” does not converge to f(z) = b*.
State 1 is constant but state 0 is not. This transducer has the weak twinning
property. Note also that it does not have the twinning property since there are
paths 0 bley g 2y 0 and 0 28 1 b5 1. This shows that the weak twinning
property is really weaker.

ExAMPLE 6 The Biichi transducer pictured in Figure 4 realizes the continuous
function defined by f(a¥) = a“, f(a"bz) = a"br and f(a"cx) = a*"cx for
any n > 0 and z € {a,b,c}*. However, this transducer does not have the weak
twinning property. The states 1 and 2 are not constant but one has the following
paths 0 2% 1 2% 1 and 0 2leg, o alaa, o



Figure 4: Transducer of Example 6

EXAMPLE 7 Let A be the alphabet {a, b} and let X = A*b* be the set of infinite
words having finitely many a. Let f be the identity function restricted to the
set X. This function is Muller sequential but it is not Biichi sequential since its
domain is not deterministic.

The proofs of Theorems 3 and 4 are given in the remainder of the paper.
We prove below that the conditions in Theorems 3 and 4 are necessary. The
converse follows from the algorithm that we describe in the following section.

We first prove that a function f realized by a Muller sequential transducer S
must be continuous. Suppose that the sequence (z,,)n>0 of infinite words con-
verges to x and that all z,, and = are in the domain of f. Since S is sequential,
each word of the domain is the input label of exactly one path. Let ~, be the
path labeled by z,, and let v be the path labeled by z. Since x, converges to z,
the common prefix of z,, and x becomes longer and longer. It follows that -,
converges to vy and hence f(z,) converges to f(z).

It is almost straightforward that the domain of a Biichi sequential function f
is recognized by a deterministic Biichi automaton. An infinite word belongs to
the domain of f if it is the input label of a path which goes infinitely often
through a final state and through a transition with a nonempty output label.
A Biichi automaton recognizing the domain can be easily constructed from a
sequential Biichi transducer realizing f.

It remains to prove that a transducer T realizing a Muller sequential function
has the weak twinning property. We suppose that we have the following paths
in 7.

g ot v

i —q —q,

where i and i’ are initial states. Let S be a sequential Muller transducer realizing
the same function f as 7. Let x|y be the label of a final path in 7 starting at q.

10



For any integer n, the equality f(tv"z) = uw™y holds. Since S realizes f, there
must be a successful path in S with label tv™z|uw™y for any n. For n greater
than the number of states of S, the same state appears twice. Then there is
in S a path
i to'[u”! qll o*|w” qll

where [ > 0, k > 1, and 4" is the initial state of S. By prolonging the path in 7
from i to ¢ (respectively from i’ to ¢') with [ iterations of the path around ¢
(respectively around ¢'), we can assume without loss of generality that | = 0.
By replacing the cycling path around ¢ (respectively around ¢') by k iterations
of this path, we can also assume without loss of generality that &k = 1.

We claim that if the state ¢ is not constant, then the equality |w| = |w
holds. Indeed, let z|y and z'|y’ be the labels of two final paths starting at ¢
such that y # y’. There are in S two paths labeled by z|z and z'|z’ starting at
the state ¢ such that for any n > 0

II|

f(tv"z) = uvwy =u"w'""z
ftwz") = uw™y' = u"w"" 7.
If |w| < |w"|, the words y and y’ have a common prefix of length |u"| — |u| +
n(|jw"| — |w|) for any large n. This leads to the contradiction that y = y'. If
|w"| < |w|, the words z and 2’ have a common prefix of length |u|—|u"|+n(|w|—
|w"]) for any large n. This leads to the contradiction that z = 2z’ and y = y'.
This proves that |w| = |w"”| and, if they are nonempty, that uw® = u"w"*
We first suppose that ¢’ is also not constant. By symmetry one has |w| =
"] = |w'|. Furthermore, if they are nonempty, one has uw* = u"w"* = u'w'”
We now suppose that ¢' is constant and that w is nonempty. This last
assumption implies that w"” is also nonempty and that the equality uvw® =
u"w"* holds. Let 2’|y, be the label of a final path starting at ¢’. Then there
is a path in S with label z'|2" starting at ¢” such that

|w

f(t’l)nl'l) — ulwlnyq’ — ullwllnzll
for any n > 0. Since ¢ is constant, the word w'"y, is equal to y,. Therefore,
the word u'y, is equal to u"w""2" for any integer n. Thus, it is equal to u" w"*
since w' is nonempty. This ends the proof of the necessity of the conditions in
Theorems 3 and 4.

4 Determinization algorithm

In this section, we describe an algorithm to determinize a Biichi transducer
which satisfies the conditions of Theorem 3 or 4. We describe the construction
of a sequential transducer S from a Biichi transducer 7. The transducer S
has a trivial acceptance condition. This means that any infinite path in S
which has infinite input and output labels is final. If the transducer 7 satisfies
the conditions of Theorem 3, the function realized by S is an extension of the

11



function realized by 7. Then it suffices to combine the transducer & with a
Muller automaton recognizing the domain of 7 to obtain a Muller sequential
transducer which realizes the same function as 7. If furthermore the domain
of T is recognized by a deterministic Biichi automaton .4, the transducer S is
combined with A to obtain a Biichi sequential transducer which realizes the
same function as 7T .

The sequential transducer S is obtained from 7 by performing a kind of
subset construction. For a fixed finite word u, all states which can be accessed
from the initial states by some path whose input label is u, are grouped together
into a state of S. To each of these states is associated a word. This word gives
what remains to be output. For a nonconstant state, this word is finite and it
is the suffix of the output obtained by deleting to the left the maximal common
prefix of the outputs labelling these paths. For a constant state, this word is
infinite and it it equals vw where v is as in the previous case and w is the
unique ultimately periodic output the state can produce. The construction
yields potentially infinitely many composite states consisting of pairs (state,
output word). It just happens that under the assumptions of Theorem 3 it
leads to a finite object.

We now describe the sequential transducer S. By Proposition 2, we can
suppose that the transducer T is real-time. This means that the labels of the
edges belong to A x B*. The construction can actually be adapted to deal with
transducers with edges labeled by A* x B* but this is a bit technical. Let us
denote by Q, E, I, and C the set of states, edges, initial states, and constant
states of T respectively. A state of S is a finite set P containing two kinds of
pairs. The first kind are pairs (g, z) where ¢ belongs to @ \ C' and z is a finite
word over B. The second kind are pairs (g, z) where ¢ belongs to C and z is
an ultimately periodic infinite word over B. We now describe the transitions
of S. Let P be a state of S and let a be a letter in A. Let R be equal to the set
defined as follows

R={(¢,2v") | ¢ ¢ C and 3(q,2) € P, q¢Canquvl>q'€E}

U{(¢’,2v'yy) | d € C and I(q,2) € P, ¢ ¢ C and ¢ 2% ¢’ € E}

q'EC’andEI(q,z)EP,qEC’andqﬂ)q'eE}.

u{(d,2)

There are only three cases in the definition of R because ¢’ is constant if ¢ is
already constant. We now define the transition from the state P with input la-
bel a. If R is empty, there is no transition from P with input label a. Otherwise,
the output label of this transition is the word v defined as follows. We define v
as the first letter of the word z if R only contains pairs (¢', z) with ¢’ € C' and
all the infinite words z are equal. Otherwise, we define v as the longest common
prefix of all the finite or infinite words z for (¢’,2) € R. The state P’ is defined
as follows
P'={(d.#)| (¢,v) € R}.

Then there is a transition P 2% P’ in S. The initial state of S is the set J
where J = {(i,e) |i € Tand i ¢ C}YU{(i,4;) | i € I and i € C'}. We only keep
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in S the accessible part from the initial state. The transducer S is sequential.
It turns out that the transducer S has a finite number of states. This will be
proved in Lemma 14.

Some definitions are needed to prove the correctness of the construction. We
introduce first a distance d on finite words. This distance should not be mixed
up with the distance that we have used at the beginning of Section 3 to define
the topology on A“. For finite words v and v, we denote by d the distance such
that

d(u,v) = |u| + |v] — 2|u Av|,

where u A v is the longest common prefix of u and v (see [4, p. 104]). We extend
this distance when v is replaced by an infinite word. Let u be a finite word and
let = be an infinite word. We define

d(u,x) = |u| — |[uA ],

where u Az is the longest common prefix of v and z. In that case, the function d
is not a distance but it measures how far u is from being a prefix of z. Note that
if u and w are two finite words and if z is a finite or infinite word, the equality
d(wu,wz) = d(u, z) holds. The following lemma states some relation between
the distance d and the weak twinning property. This is an easy property of
combinatorics of words.

LEMMA 8 Let vy, v2, v] and v} be finite words such that |va| = |v}| and v1v§ =
vivy”. For any finite word v3 and for any finite or infinite word v}, one has

d(vivav3, v vavy) = d(viv3, V] V8).

Proof We first suppose that |vi| < |vj|. Then there is a finite word w such
that v] = vyw and wvy = vow. Thus the word vjvhv} is equal to vivawvs and
it follows that

d(vivavs3, v vavy) = d(v3, wos) = d(vivs, v]vy).
The case where |v;| > |v}| can be handled similarly. O

The transducer S is sequential but it may not be complete. For a state ¢
and a letter a, there may be no transition going out of ¢ and input labeled by a.
For any nonempty finite word u and any states P and P’ of S, there is at most
one path P 2% P’ from P to P'. The following lemma and its corollary state
the main property of the transitions of S. This property comes directly from
the definition of the transitions of S. No property of 7 is assumed.

LEMMA 9 Let u be a nonempty finite word.

(a) Let P s P! be g path from P to P’ in S with input label u. If (¢',2") €
P’', then there is a pair (q,z) € P and a path q LN q" in T such that
20" = ifq,q ¢ C, 2v'yy = v ifq¢ C and ¢ € C, and z = v2' if
q,q' € C.

13



(b) Let P be a state of S. If (q,2) € P and q RN q' is a path in T, then there
is a path P 1% P’ in' S and a word 2' such that (¢',2") € P!, 20" =v2' if
¢.¢ ¢C, 2v'yy =v2' ifq¢ C and ¢’ € C, and z =v2' if q,¢' € C.

Proof We first prove the statement (a). The proof is an easy induction on
the length of the word w. If w is a letter, the result follows directly from the
definition of the transitions of S. Otherwise, the word u is equal to upu; where
ug and u; are two nonempty words. The path from P to P’ can be factorized

ug |v ut|v
P olvo PII 1]v1 Pl

where v = vov1. For each pair (¢',2") of P', there are from the induction
hypothesis two pairs (g, 2) and (¢"”,2") in P and P" and two paths ¢ olva, q"
and ¢ wlv, ¢ in T. We discuss on the membership of ¢, ¢" and ¢' to C.

e Ifg¢ C,q" ¢ C and ¢ ¢ C, the induction hypothesis gives zv}, = vgz"
and z''v{ = vy 2’. This implies zv{v| = voz"v| = vou12’, that is zv' = vz'.

e Ifg¢ C,q" ¢ C and ¢' € C, the induction hypothesis gives zv, = vgz"
and z'viyy = viz’. This implies zv{v]yy = voz"viyy = vov12', that is
2v'yy = vz

e Ifg¢ C,¢" € Candq € C, the induction hypothesis gives zvjygy = voz"
and 2" = v;2’. Since y,» = vjyy, this implies that zvgviy, = zvyyyr =
voz" = wvou1 2, that is zv'yy = vz'.

e Ifqge C, q" € C and ¢ € C, the induction hypothesis gives z = vgz" and
2" = v12'. This implies z = vgv1 2’, that is z = v2'.

The proof of the statement (b) can be handled similarly. O

The following corollary just states the result of the previous lemma when
the state P is the initial state .J of S.

COROLLARY 10 Let u be a nonempty finite word.

(a) Let J 4% P be a path from the initial state J to P in S with input label u.
If (q,z) € P, then there is a path i upy q in T such thatv' = vz if ¢ ¢ C,
and v'y, = vz if g€ C.

(b) If i LI q is a path in T, then there is a path J vy P in S and a word 2
such that (¢,z) e P, v =vz ifq ¢ C, andv'y, = vz if g € C.

Proof The second component z of a pair (i,z) in J is either the empty word if
i is not constant or the word y; if ¢ is constant. Then the result follows directly
from the previous lemma. O

The following four lemmas are devoted to the proof that the transducer S
has finitely many states. It is first proved in the next lemma that in each state P
of S there is at most one occurrence of each state g. Therefore, the number of
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pairs in each state of S is bounded by the number of states in 7. Then it
is proved in the next two lemmas that the lengths of the finite words which
appear in the pairs are bounded. It is finally proved in the fourth lemma that
the number of infinite words which can appear in the pairs is bounded.

LEMMA 11 Let T be a transducer realizing a function f. Let q be a state of T
and let P be a state of S. There is at most one word z such that (q,z) belongs
to P.

Proof Let J 4% P be a path in S and let (¢, 2) and (g, 2") be two pairs in P.

We first suppose that ¢ is not constant and thus that z and 2’ are finite.
Let z|y and 2’|y’ be the labels of two final paths starting at ¢ such that y # y'.
By the previous corollary, there are two paths 4 RULEN q and 7’ RULERN qin T.
One has f(ux) = vzy = v2'y and f(ux') = vzy' = v2'y’. If 2 # 2/, it may be
assumed by symmetry that |2'| > |z| and that 2z’ = zw for some finite word w.
This leads to the contradiction y = ¢’ = w*.

We now suppose that ¢ is constant and thus that z and 2’ are infinite. Let
x|y, be the label of a final path starting at ¢. By the previous corollary, there
are two paths i “% ¢ and i’ RN ¢ in T such that wy, = vz and w'y, = vz’
Furthermore, one has f(uz) = wy, = w'y, and thus z = 2. O

From now on, we always assume that the transducer 7 realizes a function f.

LEMMA 12 Let T be a transducer which has the weak twinning property. There
is a constant K such that for any two paths i v, q and 1’ ey q' where i and i’

are initial states and q ¢ C, one has

dv,v') <K ifqd ¢C

dv,v'yy) <K ifqd €C
Proof Let K be equal to 2n2M where n is the number of states of the trans-
ducer 7 and M is the maximal length of the output label of a transition. We

prove the inequalities by induction on the length of u. If |u| < n?, then the result
follows easily from |v], [v'| < n?M. Otherwise, both paths can be factorized

’LL1|’U1\ uz‘vz\ ug‘vg\
7

g ouilvy o ouslvy o ouslug
/l AN ) AN

where ujusuz = u, vivovz = v, Vivhvy = v, Jus| > 0 and |uz| < n?. Since q is
not constant, p is also not constant.

We first suppose that p' is not constant. By the weak twinning property
and by Lemma 8, one has either d(vivavs,vivivs) = d(vivs,vivh) if ¢’ is not
constant or d(vyv2v3, V] V4vY, ) = d(v1v3, v]v5y, ) otherwise. The result follows
from the induction hypothesis.

We now suppose that p’ is constant. Therefore, ¢' is also constant and
yp = Vhyy and ypy = vhyy. If vy is empty, one has d(vivevs, vivhviyy) =
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d(vivs, v{viy, ) since vhviy, = v4y,. The result follows from the induction
hypothesis. If v, is nonempty, the weak twinning property implies that vy, =
v1vy . Therefore, d(vivavs, vivhviyy ) < |vg| < K. O

The following lemma states that the lengths of the finite words z of the
pairs (g, z) in the states of S are bounded. It is essentially due to the twinning
property of T.

LEMMA 13 Let T be a transducer which has the weak twinning property. There
is a constant K such that for any pair (q,z) in a state P of S, z is infinite if
geC, and |z|< K ifq¢ C.

Proof Let K be the constant given by the previous lemma. Let (g, 2) be a pair
in a state P such that the state ¢ of T is not constant. If (¢, z) is the only pair
in the state P, the word z must be empty and the result holds. Otherwise, there
is another pair (¢',2’) in P such that z and 2’ do not have a common prefix.
One has |z] < d(z,2') < K. O

It is now possible to prove that the transducer S has a finite number of
states. However, the number of states of S can be exponential as in the case of
finite words.

LEMMA 14 Let T be a transducer which has the weak twinning property. The
number of states of S is finite.

Proof We have proved in the preceding lemma that the lengths of the finite
words z are bounded. It remains to show that there is a finite number of
different infinite words z which can appear in some pair (g, z). By definition of
the transitions, any infinite word z of a pair is the suffix of 2wy, where (p’, z')
is a pair such that p’ ¢ C and 2’ is finite and where p € C and p’ alw, pis a
transition of 7. Since the length of 2’ is bounded, the number of such words
2'wy,, is finite and they are ultimately periodic. Then there are a finite number
of suffixes of such words. O

The following lemma states the key property of S. Its purpose is to guarantee
that the transducer S has the same output as 7 up to a bounded suffix.

LEMMA 15 Let T be a transducer satisfying the conditions of Theorem 8 and
let S be the corresponding sequential transducer. Let q v, q and P wv's pope
cycling paths in T and S where the state P contains a pair (q,z). If the path
q KZEN q contains a final state and if v is nonempty, then v' is also nonempty.

Proof By Lemma 11, there is only one word z such that (g, 2) belongs to P.
Since the state P is accessible, there is a path .J vy pin S. By Corollary 10,
there is a path i Huw, q in T for some finite word w. The paths are summarized
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by the following diagram.

— P

We assume that the loop ¢ v, q around ¢ contains a final state. Since v # ¢,
the word tu® belongs to the domain of the function and f(tu®*) = wov®.

We distinguish two main cases depending on whether ¢ is a constant state
or not. In the case that ¢ is not constant, the hypothesis that the path ¢ KN q
goes through a final state is not needed. This fact is used in the proof of the
other case.

We first suppose that ¢ is not constant. The word 2 is thus finite. By

Corollary 10 applied to the paths J 4% P and J 24%% P both equalities
w = w'z and wv = w'v’'z hold. This implies that |v'| = |v| and the word v’ is
nonempty.

We now suppose that ¢ is constant. The word z is thus infinite. We dis-
tinguish again two cases depending on whether the state P contains at least a
nonconstant state or not. In both cases, we use the following claim. For any
pair (¢',2') in P, there is a pair (¢"',2") in P such that there are paths in T
and S as shown in the following diagram

Icl "

"
g tlw” q,, u”|v

J P s, P, p

where k is a positive integer and [ is a nonnegative integer. Let (¢',z') be
any pair in P. Define by induction the sequence (gn,2n)n>0 Of pairs in P as
follows. Let (qo, 20) be the pair (¢',2"). Suppose that the pair (g,, 2,,) is already
defined. By Lemma 9, there is a pair (¢n+1, 2n+1) in P such that there is a path
Gn+1 jwn, gn in T. Since the set P is finite, there are two integers k& > 1 and
[ > 0 such that gx+; = ¢ and thus z,y; = z; by Lemma 11. Let (¢”,2") denote
ki,

the pair (g, 2;). By construction of q” there isin 7 a cychng path q RCUEN q"
and there is also a path ¢ wlj, q'. Since the palr (¢",2") belongs to P, there
is, by Corollary 10, a path ¢’ RATEN q" in T, with ¢' € I. This proves the claim.

We first suppose that P contains a pair (¢', z') such that ¢’ is not constant.
Let (¢",2") be the pair given by the previous claim. Since there is a path from ¢"
to ¢', the state ¢'’ is also not constant. We prove by contradiction that v" is
nonempty. Let us assume that v" = e. Since ¢" is not constant, there are two
final paths starting at ¢" with different output labels. Let z|y and z'|y’ be the
labels of these two final paths with y # y’. The images f(tu*"z) and f(tu*"z")
are equal to w'y and w'y’ for any integer n. Both sequences (tu*"z),>o and
(tukmz'), >0 converge to tu”. Since the function f is continuous, both words

w'y and w'y’ are equal to f(tu“’) = wv*. This is a contradiction since y # y'.

This proves that v # e. Slnce " is not constant, the proof of the first case can
be apphed to the paths ¢"” AN q" and P “—Iv—> P. This proves that v'* and
thus v’ is nonempty.
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We finally suppose that for every pair (¢',2') in P, the state ¢’ is constant.
Let (¢, 2") be any pair in P and let (¢, z"") be the pair given by the claim above.
We prove that z = 2”. By hypothesis, the state ¢" is constant. Let x|y, be the
label of a final path starting at ¢". Since ¢ is constant, the equality v"yg» = yg
holds. The image f(tu*"z) is equal to w"v"™y,» = w'"y, for any integer n.
The sequence (tuk”x)nzo converges to tu“. Since the function f is continuous,
the word w' y, is equal to f(tu®) = wv* = wy,. By Corollary 10 applied to the
path J LIZIN P, both equalities wy, = w'z and w"y,» = w’z" hold. Combined
with the equality w"y,» = wy,, one gets z = 2".

By Lemma 9 applied to the path P ““s P, the equality z" = vz’ holds.
If o' = ¢, then 2" = z = 2'. Since this equality holds for any pair (¢', 2") of P,
all words 2’ of the pairs (¢',z') in P are equal. This contradicts the definition
of the transitions of S since the output v’ along the path P vy p g nonempty

in this case. This implies that v’ #Z¢. O

The following proposition states that the function realized by the sequential
transducer S is an extension of the function realized by the transducer 7.

PROPOSITION 16 Let T be a transducer satisfying the conditions of Theorem 3
and let S be the corresponding sequential transducer. Let f and f' be the func-
tions realized by the transducers T and S. Then the inclusion dom(f) C dom(f’)
holds and for any x in dom(f), the equality f(x) = f'(z) holds.

Proof We prove that if the infinite word 2 belongs to the domain of f, it also
belongs to the domain of f’ and its images by f and f’ are equal.

Let = be an infinite word which belongs to the domain of f and let v be
a successful path in 7 with input label . Therefore, this path goes infinitely
often through a final state and its output label is an infinite word. Consider the
unique path I' in § with input label z.

We claim that the output label along I' is nonempty and that it is equal to
the output label along 7. Since both transducers 7 and S (by Lemma 14) have
a finite number of states, both paths v and T" can be factorized

. u0|v0 u1\v1 u2|v2
Y= »q > q »q
uo |vg uq |v) us|vh
r=7J > P > > P

Since the output along the path v is infinite, it can be assumed that each
word v,, is nonempty and since the path v goes infinitely often through a final
state, it can be also assumed that each path ¢ Un|Un, ¢ contains a final state.
By Corollary 10, the state P of S contains a pair (g, z) for some finite or infinite
word z. By Lemma 15, each word v/, is nonempty.

By Corollary 10, one has for each n, vg...v, = v} ...v,,z if ¢ is not con-
stant and one has vp...vpYy, = V) ...v,,z otherwise. This implies the equality
VoV V2 . .. = VUi Vh ... of the two outputs. O

By the last proposition, the function realized by the sequential transducer S
extends the function realized by the given transducer 7. To obtain a sequential
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transducer equivalent to 7, one must restrict the domain of the transducer S.
This is achieved by constructing a new sequential transducer S’ which is the
synchronized product of S and of an automaton for the domain of 7.

Recall that the transducer S has no acceptance condition. This means that
an infinite path is final iff both its input and output labels are infinite words.

Let X be the domain of the function realized by 7. Let A be a deterministic
Biichi automaton recognizing X if X is deterministic or let 4 be a deterministic
Muller automaton recognizing X otherwise. In the former case, its acceptance
condition ® is a set F of final states and, in the latter case, its acceptance
condition ® is a family F of sets of states. As explained at the end of Section 2,
the automaton A can be computed from the transducer 7.

We now describe the transducer S’. The state set of S’ is @ x Q' where Q
and @' are the state sets of S and A. The initial state is (4,i") where 7 and 7'
are the initial states of S and A. There is a transition (p,p’) alu, (¢,q") iff
p alu, g and p' % ¢' are transitions of S and 4. The acceptance condition ®’
of &’ mimics that of A. More formally, if A is a Biichi automaton, then S’ is a
Biichi transducer and its set of final states is F' = {(¢,q¢") | ¢ € F}. f Ais a
Muller automaton, then S’ is a Muller transducer and its family F' of sets of
states is defined as follows.

F={{la,q), - (@ a)} [ {dhs - ah} € T

It is pure routine to check that S’ is equivalent to 7.

b|b alaa

Figure 5: Transducer 7 of Example 17

blb ala

Figure 6: Transducer S of Example 17
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F={{z}{=, 2}}

Figure 8: Transducer S’ of Example 17

We illustrate the construction of S and S’ by the following example.

ExAMPLE 17 Let A be the alphabet {a,b,c} and consider the transducer T
pictured in Figure 5. Note that the state 1 is constant whereas the state O
is not. Applying the construction described above, one gets the transducer S
pictured in Figure 6. The domain of 7 is A*(c*a)* but the domain of S is
A*(c*(a + b))¥. The Muller automaton A for the domain of 7 is pictured in
Figure 7. The transducer &’ obtained by combining S and A is pictured in
Figure 8.

5 Conclusion

In this paper, we have provided characterizations of sequential functions of infi-
nite words realized by Muller and Biichi transducers. When a transducer realizes
a sequential function, we have given an algorithm to compute an equivalent se-
quential transducer. Since this determinization includes the determinization of
an automaton for the domain of the function, the complexity is at least expo-
nential.

In the case of finite words, the determinization is also exponential but it
can be checked in polynomial time whether a function given by a transducer
is sequential. The continuity can be checked in polynomial time [15]. The
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decidability of the weak twinning property that we introduce is not discussed
in the paper. We do not know whether this can be checked in polynomial time.
However, since this notion is close to the twinning property of Choffrut [6, 7],
we think that the methods used in [22] or [3] can be used to obtain a polynomial
time algorithm to check this property.
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