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arton/June 17, 2003Abstra
tWe 
onsider transdu
ers over in�nite words with a B�u
hi or a Mullera

eptan
e 
ondition. We give 
hara
terizations of fun
tions that 
anbe realized by B�u
hi and Muller sequential transdu
ers. We des
ribean algorithm to determinize transdu
ers de�ning fun
tions over in�nitewords.1 Introdu
tionThe aim of this paper is the study of the determinization of transdu
ers overin�nite words, that is of ma
hines realizing rational transdu
tions over in�nitewords. Transdu
ers are �nite state automata with edges labeled by pairs of �-nite words (an input and an output label). They are very useful in a lot of areaslike 
oding [10℄, 
omputer arithmeti
 [11℄, language pro
essing (see for instan
e[16℄ and [13℄) or in program analysis [8℄. Transdu
ers that have a deterministi
input automaton are 
alled sequential transdu
ers [19℄ and fun
tional relationsthat 
an be realized by a sequential transdu
er are 
alled sequential fun
tions.They play an important role sin
e they allow sequential en
oding. The deter-minization of a transdu
er is the 
onstru
tion of a sequential transdu
er whi
hde�nes the same fun
tion. We refer the reader to [4℄ and [18℄ for 
ompleteintrodu
tions to transdu
ers.The determinization of an automaton over �nite words is easily solved bya subset 
onstru
tion. The determinization of a transdu
er is more 
omplexthan the determinization of an automaton sin
e it involves both the input and1



the output labels. In the 
ase of �nite words, it has been solved by Cho�rutwho gives in [6, 7℄ a 
hara
terization of subsequential fun
tions and an algo-rithm that transforms a transdu
er whi
h realizes a subsequential fun
tion intoa subsequential transdu
er (see also [4, p. 109{110℄, [16, p. 223{233℄ and [2℄).Cho�rut proved that the subsequentiality of fun
tions realized by transdu
ersover �nite words is de
idable. A polynomial time de
ision pro
edure has beenobtained by Weber and Klemm in [22℄, see also [3℄. The determinization oftransdu
ers over �nite words is the �rst step before a minimization pro
ess in-trodu
ed by Cho�rut in [6℄ and [7℄. EÆ
ient algorithms to minimize sequentialtransdu
ers have been des
ribed later in [13℄, [14℄, [5℄ and [1℄.We 
onsider here transdu
ers that de�ne fun
tional relations over in�nitewords. The determinization of automata over in�nite words is already mu
hmore diÆ
ult than over �nite words. First, not every B�u
hi automaton 
an bedeterminized. Muller automata whi
h have a more powerful a

eptan
e 
on-dition must be used [12℄. Se
ond, all determinization algorithms of automataover in�nite words that have been given so far are 
omplex [17℄. In [2℄, wehave 
oped with this diÆ
ulty by 
onsidering transdu
ers without a

eptan
e
ondition, that is, all their states are �nal. This 
ase is indeed mu
h simplerbe
ause the determinization of an automaton over in�nite words without anya

eptan
e 
ondition 
an be a
hieved by a simple subset 
onstru
tion. How-ever, in this 
ase, the determinization of a transdu
er is already non-trivial andneeds new te
hniques like the notion of 
onstant states. In [2℄, we have givena 
hara
terization of sequential fun
tions, and a determinization algorithm, inthe 
ase where all states of the transdu
er are �nal.In this paper, we solve the general 
ase, that is, where the transdu
ers overin�nite words have B�u
hi or Muller a

eptan
e 
onditions. We give 
hara
ter-izations of fun
tions that 
an be realized by B�u
hi or Muller sequential trans-du
ers. In the 
ase where the fun
tion is B�u
hi or Muller sequential, we give ane�e
tive algorithm to 
onstru
t a sequential transdu
er (i.e., a transdu
er witha deterministi
 input automaton) whi
h realizes the same fun
tion. However,this result does not 
ompletely 
over those in [2℄. Indeed, this general algo-rithm applied to a transdu
er without a

eptan
e 
ondition yields a sequentialtransdu
er with an a

eptan
e 
ondition although we have proved in [2℄ that asequential fun
tion realized by a non-sequential transdu
er without a

eptan
e
ondition 
an a
tually be realized by a sequential transdu
er without a

eptan
e
ondition.The paper uses notions already 
onsidered in [2℄ like the notion of a 
onstantstate in a transdu
er (a state su
h that all paths going out of it have the samein�nite output label) but it also introdu
es new methods. The 
hara
terizationsare based on the 
ontinuity of the fun
tion realized by the transdu
er and ona new notion whi
h is a variant of the twinning property introdu
ed by Chof-frut [6, 7℄ that we 
all weak twinning property. The determinization algorithmis performed in two main steps. The �rst step 
onstru
ts a sequential trans-du
er without a

eptan
e 
ondition whi
h realizes an extension of the fun
tionf realized by the initial transdu
er. The se
ond step 
ombines, with an easyprodu
t 
onstru
tion, the transdu
er obtained at the �rst step with a determin-2



isti
 B�u
hi (or Muller) automaton re
ognizing the domain of f to get a B�u
hi(or Muller) sequential transdu
er that realizes exa
tly f . The problem that thedeterminization of transdu
ers in
ludes the determinization of automata is thusavoided by this se
ond step. Roughly speaking, the �rst step mainly deals withthe outputs of the transdu
er whereas the se
ond one ignores 
ompletely theoutputs and deals only with the inputs.We mention that the 
ontinuity of fun
tions realized by B�u
hi transdu
ersis de
idable in polynomial time [15℄. The de
idability of the weak twinningproperty that we introdu
e is not dis
ussed in the paper. See the Con
lusionfor a further dis
ussion.A 
onsequen
e of our 
hara
terizations is that any fun
tion realized by aMuller sequential transdu
er is the restri
tion of a fun
tion realized by a B�u
hisequential transdu
er. This means that the di�eren
e between fun
tions realizedby B�u
hi and Muller sequential transdu
ers is entirely due to the domains ofthe fun
tions and not to the outputs.The paper is organized as follows. Basi
 notions about transdu
ers anda

eptan
e 
onditions over in�nite words are de�ned in Se
tion 2. The twomain results (Theorem 3 and Theorem 4) that state the 
hara
terizations ofB�u
hi and Muller sequential fun
tions are given in Se
tion 3. Se
tion 4 
ontainsthe determinization algorithm and an example of the 
onstru
tion of a sequentialtransdu
er.2 Transdu
ersIn the sequel, A and B denote �nite alphabets. The set of �nite and in�nitewords over A are denoted by A� and A! , respe
tively. The empty word isdenoted by ".A transdu
er over A�B is 
omposed of a �nite set Q of states, a �nite setE � Q�A� �B� �Q of edges, a set I � Q of initial states and an a

eptan
e
ondition �. An edge e = (p; u; v; q) from p to q is denoted by p ujv��! q. Thewords u and v are 
alled the input label and the output label of the edge. Thus,a transdu
er is the same obje
t as an automaton, ex
ept that the labels of theedges are pairs of words instead of letters (as usual) or words.A �nite path 
 in a transdu
er is a �nite sequen
eq0 u1jv1���! q1 u2jv2���! � � � unjvn����! qnof 
onse
utive edges. Its input label is the word u = u1u2 : : : un, its outputlabel is the word v = v1v2 : : : un and its label is the pair (u; v) (also denotedujv) of �nite words. Su
h a path is sometimes denoted by q0 ujv��! qn like atransition. We say it starts at q0 and ends at qn. Similarly, an in�nite path 
in a transdu
er is an in�nite sequen
eq0 u0jv0���! q1 u1jv1���! q2 u2jv2���! q3 � � �3



of 
onse
utive edges. Its input label is the word x = u0u1u2 : : :, its output labelis the word y = v0v1v2 : : : and its label is the pair (x; y) (also denoted xjy) ofwords. Note that the input label or the output label of an in�nite path may bea �nite word be
ause the input label or the output label of a transition may bethe empty word. We say that the path starts at q0. We denote by lim(
) theset of states that appear in�nitely often along 
. Sin
e the number of states ofthe transdu
er is �nite, lim(
) is always nonempty.The a

eptan
e 
ondition � determines a family of �nal paths as follows. Apath is �nal if it satis�es � and if both its input and output labels are in�nitewords. A path is su

essful if it is �nal and if it starts at an initial state. Inthis paper, we 
onsider two types of a

eptan
e 
ondition : B�u
hi and Mullera

eptan
e 
onditions. In a B�u
hi transdu
er the a

eptan
e 
ondition � is aset F of states, 
alled �nal states, and a path 
 satis�es � if it goes in�nitelyoften through a �nal state, i.e., lim(
) \ F 6= ?. In a Muller transdu
er thea

eptan
e 
ondition � is a family F of sets of states, and a path 
 satis�es� if lim(
) 2 F . Observe that whether or not 
 satis�es � depends only onthe set lim(
) of states that o

ur in�nitely often along the path 
. Therefore,removing a �nite pre�x of a �nal path or pre�xing a �nal path with a �nitepath always yields a �nal path.In the sequel we say that a �nite 
y
ling path around a state q (i.e., startingand ending at q), also 
alled a loop, is a

epting if the in�nite path made bylooping in�nitely often along this loop is �nal. For a B�u
hi a

eptan
e 
ondition,a loop is a

epting if it 
ontains a �nal state. For a Muller a

eptan
e 
ondition,a loop is a

epting if the set of states that are en
ountered along the path belongsto the family F .A pair (x; y) of in�nite words is re
ognized if it is the label of a su

essfulpath. The set of all re
ognized pairs is the relation realized by the transdu
er.This relation R is of 
ourse a fun
tion f if for any word x 2 A!, there existsat most one word y 2 B! su
h that (x; y) 2 R. In that 
ase, a transdu
er 
anbe seen as a ma
hine 
omputing nondeterministi
ally the output word y = f(x)from the input word x. We denote by dom(f) the domain of the fun
tion f .As in the 
ase of automata, nondeterministi
 B�u
hi and Muller transdu
ershave the same power. First, any B�u
hi transdu
er with a set F of �nal states
an be viewed as Muller transdu
er whose a

eptan
e 
ondition is given by thefamily F = fP � Q j P \ F 6= ?g. Conversely, any Muller transdu
er 
anbe simulated by a B�u
hi transdu
er. This equivalent B�u
hi transdu
er 
an beobtained by the same 
onstru
tion as for automata [21, p. 417℄.A transdu
er is trim if ea
h state is a

essible from an initial state and ifthere is at least one �nal path starting at ea
h state. States whi
h do not satisfythese 
onditions 
an be removed. Therefore, we assume in the sequel that alltransdu
ers are trim. Note that it 
an be e�e
tively 
he
ked whether a givenstate is a

essible from an initial state. It 
an also be e�e
tively 
he
ked whetherit is the �rst state of a �nal path. Indeed a state is the �rst state of a �nal pathif an a

epting loop is a

essible from that state. Therefore, a transdu
er 
anbe e�e
tively made trim. This a
tion 
an be seen as a prepro
essing of thetransdu
er. 4



A transdu
er is said to be real-time if it is labeled in A � B�, that is, theinput label of ea
h transition is a letter. We say that a transdu
er T is sequentialif the following 
onditions are satis�ed:� it is real-time,� it has a unique initial state,� for any state q and any letter a, there is at most one transition going outof q and input labeled by a.These 
onditions ensure that for ea
h word x 2 A!, there is at most one wordy 2 B! su
h that (x; y) is re
ognized by T . Thus, the relation realized by T isa fun
tion from A! into B! . A fun
tion is said to be B�u
hi sequential (respe
-tively Muller sequential) if it 
an be realized by a sequential B�u
hi (respe
tivelyMuller) transdu
er.In the 
ase of �nite words, one often distinguishes sequential and subsequen-tial fun
tions. In a subsequential transdu
er, an additional �nite word depend-ing on the ending state is appended to the output label of the path. However,the notion of subsequential transdu
er is irrelevant in the 
ase of in�nite words.
0 1 20j0 1j01j1 0j00j1 1j1

Figure 1: Sequential B�u
hi transdu
er of Example 1
0 00 1 20j0 1j00j0 1j01j1 0j00j1 1j1

F = ff0g; f0; 00; 1g; f00; 1; 2g; f0; 00; 1; 2g; f1; 2ggFigure 2: Sequential Muller transdu
er of Example 1Example 1 Let A = f0; 1g be the binary alphabet. Consider the sequentialtransdu
er T pi
tured in Figure 1. If the in�nite word x is the binary expansionof a real number � 2 [0; 1), the output 
orresponding to x in T is the binaryexpansion of �=3. If all states of this transdu
er are �nal, it a

epts both asinput and as output label binary expansions whi
h are not normalized, that isof the form (0+ 1)�1!. In order to reje
t these expansions as output label, this5



transdu
er must be equipped with the B�u
hi a

eptan
e 
ondition F = f0; 1gas shown in Figure 1. In order to reje
t these expansions also as input label,the state 0 must be split and the transdu
er must be equipped with a Mullera

eptan
e 
ondition as shown in Figure 2.The following proposition allows us in the sequel to only 
onsider real-timetransdu
ers. This result is due to Gire [9℄ in the more general 
ase of rationalrelations of in�nite words. We give below a simpler proof for rational fun
tions.Proposition 2 For any B�u
hi transdu
er realizing a fun
tion of in�nite words,one 
an 
ompute a real-time B�u
hi transdu
er realizing the same fun
tion.Proof Let T be a B�u
hi transdu
er realizing a fun
tion. We 
an assume thatea
h transition is labeled by a pair "ja or aj" where a is a letter or ". Otherwise,ea
h transition p ujv��! q where u = a1 : : : am and v = b1 : : : bm 
an be repla
edby n+m 
onse
utive transitionsp a1j"��! q1 a2j"��! q2 � � � qn�1 anj"���! qn "jb1��! qn+1 � � � qm+n�1 "jbm���! q;where q1; : : : ; qm+n�1 are new states.Let Q be the set of states of T and let F be its set of �nal states. We de�nea real-time transdu
er T 0 as follows.Let a be a letter of the input alphabet, let p and q be two states of T , andlet e be 0 or 1. If e = 0, let V a;ep;q be the set of words v su
h that there is apath p ajv��! q from p to q with input label a and output label v. If e = 1, letV a;ep;q be the set of words v su
h that there is a path p ajv��! q from p to q withinput label a and output label v and whi
h goes through a �nal state. Notethat V a;ep;q is always a rational subset of B� and that V a;1p;q is a subset of V a;0p;q .Suppose that two nonempty words v and v0 belong to a set V a;ep;q . Wheneverthe path p ajv��! q o

urs in a su

essful path of T , it 
an be repla
ed by thepath p ajv0��! q. Indeed, sin
e the transdu
er T realizes a fun
tion, the outputword of the su

essful path remains un
hanged. This means that it suÆ
es tokeep one nonempty word in ea
h set V a;ep;q . From V a;ep;q , we pi
k a subset W a;ep;q of
ardinality at most 2 as follows.� If V a;ep;q 
ontains the empty word, the empty word is also put in W a;ep;q .� If V a;ep;q 
ontains at least one nonempty word, one of them is put in W a;ep;q .The set of states of T 0 is the set Q0 = Q�f0; 1g. The set of initial states isI 0 = f(q; 0) j q 2 Ig and the set of �nal states is F 0 = f(q; 1) j q 2 Qg. The setof transitions of T 0 is de�ned as follows. Let a be a letter of the input alphabetand let (q; e) and (q0; e0) be two states of T 0. There is a transition from (q; e) to(q0; e0) labeled by ajv if v 2W a;e0p;q . The transdu
er T 0 realizes the same fun
tionas T . This is independent of the 
hoi
e of the �nite subsets W a;ep;q . �The domain of a fun
tion realized by a B�u
hi or Muller transdu
er is arational set of in�nite words. Re
all that a set of in�nite words is said to be6



rational if it is a

epted by an automaton. An automaton is a transdu
er wherethe edges are labeled by letters instead of pairs of words. The label of a path inan automaton is thus a word. A B�u
hi (respe
tively Muller) automaton is anautomaton equipped with a B�u
hi (respe
tively Muller) a

eptan
e 
ondition.We refer the reader to [20℄ or [21℄ for a 
omplete introdu
tion to automata onin�nite words.It is not true that any rational set of in�nite words is re
ognized by a de-terministi
 B�u
hi automaton. However, any rational set of in�nite words isre
ognized by a deterministi
 Muller automaton [21, Thm 5.1℄. Furthermorean equivalent deterministi
 Muller automaton 
an be 
omputed from a B�u
hiautomaton. Sets of in�nite words that 
an be re
ognized by a deterministi
B�u
hi automaton are 
alled deterministi
. It 
an be e�e
tively 
he
ked whetherthe set of words re
ognized by a given B�u
hi automaton is deterministi
 [20,Thm 5.3
℄. Furthermore, if that set is deterministi
, an equivalent deterministi
B�u
hi automaton 
an e�e
tively be 
omputed [20, Lem 5.4℄.A B�u
hi automaton re
ognizing the domain of a fun
tion 
an be e�e
tively
omputed from a transdu
er realizing the fun
tion. The rough idea is to removethe output labels of the edges. We refer the reader to the proof of the mainresult in [2℄.3 Chara
terization of sequential fun
tionsThe 
hara
terizations of B�u
hi and Muller sequential fun
tions need the notionof 
ontinuity of a fun
tion. First re
all that the set A! is endowed with theusual topology. This topology 
an be de�ned by the distan
e d given byd(x; y) = (0 if x = y2�n where n = minfk j xk 6= ykg otherwise:Intuitively two in�nite words are 
lose if they share a long 
ommon pre�x.Therefore, a sequen
e of in�nite words (xn)n�0 
onverges to a word x if forany integer k, there is an integer nk su
h that any word xn for n � nk has a
ommon pre�x with x of length greater than k. We re
all now a de�nition ofthe 
ontinuity that we use later. A fun
tion f is said to be 
ontinuous if forany sequen
e (xn)n�0 of elements of its domain 
onverging to an element x ofits domain, the sequen
e (f(xn))n�0 
onverges to f(x).The 
hara
terizations of B�u
hi and Muller sequential fun
tions also need thenotion of a 
onstant state in a transdu
er. We say that a state q of a transdu
eris 
onstant if all �nal paths starting at this state have the same output label.The terminology 
omes from the fa
t that the transdu
er in whi
h q is initialrealizes a 
onstant fun
tion. For a 
onstant state q, the 
ommon output labelof all �nal paths starting at q is denoted by yq. This in�nite word always existssin
e the transdu
er is assumed to be trim.In order to illuminate the notion of a 
onstant state, we make some remarksand we prove some easy properties. Note �rst that in the de�nition of a 
onstant7



state, we only 
onsider �nal paths. There may be other, non�nal, in�nite pathswith either a �nite output label or an in�nite output label whi
h is di�erentfrom the output of a �nal path.Note that if q is a 
onstant state and if the state q0 is a

essible from q, q0 isalso a 
onstant state. Indeed, suppose that there is a �nite path 
 from q to q0whose output label is v. If 
1 and 
2 are two �nal paths starting at q0, the twopaths 

1 and 

2 are two �nal paths starting at q. It follows that the outputlabels of 
1 and 
2 must be equal and q0 is a 
onstant state. Furthermore, theoutput labels yq and yq0 satisfy yq = vyq0 .Note also that the 
ommon output label yq of a 
onstant state q is an ul-timately periodi
 word, that is an in�nite word of the form uv! for two �nitewords u and v. If there is a �nal path starting at q, then there is always anultimately periodi
 �nal path starting at q sin
e the number of states is �nite.Note �nally that if q is a 
onstant state and there is a �nite path from qto q (a loop) with a nonempty output label v, then the output label yq is equalto v!. This is true even if the loop around q is not a

epting. Let 
 be the �nitepath from q to q with the output label v and let 
1 be a �nal path starting at q.By de�nition, the output label of 
1 is yq. Sin
e the path 

1 is also a �nalpath starting at q, the equality vyq = yq holds. Sin
e v is nonempty, yq is equalto v!.The 
hara
terization of sequentiality is essentially based on the followingnotion whi
h is a variant of the twinning property introdu
ed by Cho�rut [7,p. 133℄ (see also [4, p. 128℄). This property is a kind of 
ompatibility of theoutputs of paths with the same inputs. A transdu
er has the weak twinningproperty if for any pair of pathsi tju��! q vjw���! qi0 tju0��! q0 vjw0���! q0;where i and i0 are initial states, the following two properties hold.� If both q and q0 are not 
onstant, then either w = w0 = " or there existsa �nite word s su
h that either u0 = us and sw0 = ws, or u = u0s andsw = w0s. The latter 
ase is equivalent to the following two 
onditions:(i) jwj = jw0j,(ii) uw! = u0w0!� If q is not 
onstant, q0 is 
onstant, and w is nonempty, then the equalityu0yq0 = uw! holds. Note that if w0 is nonempty, then yq0 = w0!.No property is required when both q and q0 are 
onstant states. In that
ase, the 
ompatibility of the outputs is already ensured by the fun
tionalityof the transdu
er. The property required when both q and q0 are not 
onstantis exa
tly the twinning property as de�ned by Cho�rut [7℄ (required for all qand q0). The weak twinning property and the twinning property only di�er inthe way 
onstant states are treated. 8



We now state the two 
hara
terizations of B�u
hi and Muller sequential fun
-tions.Theorem 3 Let f be a fun
tion realized by a real-time B�u
hi transdu
er T .Then the fun
tion f is Muller sequential i� the following two properties hold:� the fun
tion f is 
ontinuous,� the transdu
er T has the weak twinning property.Theorem 4 Let f be a fun
tion realized by a real-time B�u
hi transdu
er T .Then the fun
tion f is B�u
hi sequential i� the following two properties hold:� the domain of f 
an be re
ognized by a deterministi
 B�u
hi automaton,� the fun
tion f is Muller sequential.Before pro
eeding to the proofs of the theorems we provide some examplesshowing that the 
onditions are independent.0 1aja
bj" bjb bjb

Figure 3: Transdu
er of Example 5Example 5 The B�u
hi transdu
er pi
tured in Figure 3 is equipped with a B�u
hia

eptan
e 
ondition. It realizes a non
ontinuous fun
tion f . Indeed, the imageof an in�nite word x is f(x) = a! if x has in�nitely many o

urren
es of a andit is f(x) = anb! if x has n o

urren
es of a. Although the sequen
e xn = bnab!
onverges to x = b!, the sequen
e f(xn) = ab! does not 
onverge to f(x) = b!.State 1 is 
onstant but state 0 is not. This transdu
er has the weak twinningproperty. Note also that it does not have the twinning property sin
e there arepaths 0 bj"��! 0 bj"��! 0 and 0 bjb��! 1 bjb��! 1. This shows that the weak twinningproperty is really weaker.Example 6 The B�u
hi transdu
er pi
tured in Figure 4 realizes the 
ontinuousfun
tion de�ned by f(a!) = a!, f(anbx) = anbx and f(an
x) = a2n
x forany n � 0 and x 2 fa; b; 
g!. However, this transdu
er does not have the weaktwinning property. The states 1 and 2 are not 
onstant but one has the followingpaths 0 aja��! 1 aja��! 1 and 0 ajaa���! 2 ajaa���! 2.9
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Figure 4: Transdu
er of Example 6Example 7 Let A be the alphabet fa; bg and letX = A�b! be the set of in�nitewords having �nitely many a. Let f be the identity fun
tion restri
ted to theset X . This fun
tion is Muller sequential but it is not B�u
hi sequential sin
e itsdomain is not deterministi
.The proofs of Theorems 3 and 4 are given in the remainder of the paper.We prove below that the 
onditions in Theorems 3 and 4 are ne
essary. The
onverse follows from the algorithm that we des
ribe in the following se
tion.We �rst prove that a fun
tion f realized by a Muller sequential transdu
er Smust be 
ontinuous. Suppose that the sequen
e (xn)n�0 of in�nite words 
on-verges to x and that all xn and x are in the domain of f . Sin
e S is sequential,ea
h word of the domain is the input label of exa
tly one path. Let 
n be thepath labeled by xn and let 
 be the path labeled by x. Sin
e xn 
onverges to x,the 
ommon pre�x of xn and x be
omes longer and longer. It follows that 
n
onverges to 
 and hen
e f(xn) 
onverges to f(x).It is almost straightforward that the domain of a B�u
hi sequential fun
tion fis re
ognized by a deterministi
 B�u
hi automaton. An in�nite word belongs tothe domain of f if it is the input label of a path whi
h goes in�nitely oftenthrough a �nal state and through a transition with a nonempty output label.A B�u
hi automaton re
ognizing the domain 
an be easily 
onstru
ted from asequential B�u
hi transdu
er realizing f .It remains to prove that a transdu
er T realizing a Muller sequential fun
tionhas the weak twinning property. We suppose that we have the following pathsin T . i tju��! q vjw���! qi0 tju0��! q0 vjw0���! q0;where i and i0 are initial states. Let S be a sequential Muller transdu
er realizingthe same fun
tion f as T . Let xjy be the label of a �nal path in T starting at q.10



For any integer n, the equality f(tvnx) = uwny holds. Sin
e S realizes f , theremust be a su

essful path in S with label tvnxjuwny for any n. For n greaterthan the number of states of S, the same state appears twi
e. Then there isin S a path i00 tvlju00����! q00 vkjw00����! q00where l � 0, k � 1, and i00 is the initial state of S. By prolonging the path in Tfrom i to q (respe
tively from i0 to q0) with l iterations of the path around q(respe
tively around q0), we 
an assume without loss of generality that l = 0.By repla
ing the 
y
ling path around q (respe
tively around q0) by k iterationsof this path, we 
an also assume without loss of generality that k = 1.We 
laim that if the state q is not 
onstant, then the equality jwj = jw00jholds. Indeed, let xjy and x0jy0 be the labels of two �nal paths starting at qsu
h that y 6= y0. There are in S two paths labeled by xjz and x0jz0 starting atthe state q00 su
h that for any n � 0f(tvnx) = uwny = u00w00nzf(tvnx0) = uwny0 = u00w00nz0:If jwj < jw00j, the words y and y0 have a 
ommon pre�x of length ju00j � juj +n(jw00j � jwj) for any large n. This leads to the 
ontradi
tion that y = y0. Ifjw00j < jwj, the words z and z0 have a 
ommon pre�x of length juj�ju00j+n(jwj�jw00j) for any large n. This leads to the 
ontradi
tion that z = z0 and y = y0.This proves that jwj = jw00j and, if they are nonempty, that uw! = u00w00!.We �rst suppose that q0 is also not 
onstant. By symmetry one has jwj =jw00j = jw0j. Furthermore, if they are nonempty, one has uw! = u00w00! = u0w0!.We now suppose that q0 is 
onstant and that w is nonempty. This lastassumption implies that w00 is also nonempty and that the equality uw! =u00w00! holds. Let x0jyq0 be the label of a �nal path starting at q0. Then thereis a path in S with label x0jz00 starting at q00 su
h thatf(tvnx0) = u0w0nyq0 = u00w00nz00for any n � 0. Sin
e q0 is 
onstant, the word w0nyq0 is equal to yq0 . Therefore,the word u0yq0 is equal to u00w00nz00 for any integer n. Thus, it is equal to u00w00!sin
e w00 is nonempty. This ends the proof of the ne
essity of the 
onditions inTheorems 3 and 4.4 Determinization algorithmIn this se
tion, we des
ribe an algorithm to determinize a B�u
hi transdu
erwhi
h satis�es the 
onditions of Theorem 3 or 4. We des
ribe the 
onstru
tionof a sequential transdu
er S from a B�u
hi transdu
er T . The transdu
er Shas a trivial a

eptan
e 
ondition. This means that any in�nite path in Swhi
h has in�nite input and output labels is �nal. If the transdu
er T satis�esthe 
onditions of Theorem 3, the fun
tion realized by S is an extension of the11



fun
tion realized by T . Then it suÆ
es to 
ombine the transdu
er S with aMuller automaton re
ognizing the domain of T to obtain a Muller sequentialtransdu
er whi
h realizes the same fun
tion as T . If furthermore the domainof T is re
ognized by a deterministi
 B�u
hi automaton A, the transdu
er S is
ombined with A to obtain a B�u
hi sequential transdu
er whi
h realizes thesame fun
tion as T .The sequential transdu
er S is obtained from T by performing a kind ofsubset 
onstru
tion. For a �xed �nite word u, all states whi
h 
an be a

essedfrom the initial states by some path whose input label is u, are grouped togetherinto a state of S. To ea
h of these states is asso
iated a word. This word giveswhat remains to be output. For a non
onstant state, this word is �nite and itis the suÆx of the output obtained by deleting to the left the maximal 
ommonpre�x of the outputs labelling these paths. For a 
onstant state, this word isin�nite and it it equals vw where v is as in the previous 
ase and w is theunique ultimately periodi
 output the state 
an produ
e. The 
onstru
tionyields potentially in�nitely many 
omposite states 
onsisting of pairs (state,output word). It just happens that under the assumptions of Theorem 3 itleads to a �nite obje
t.We now des
ribe the sequential transdu
er S. By Proposition 2, we 
ansuppose that the transdu
er T is real-time. This means that the labels of theedges belong to A�B�. The 
onstru
tion 
an a
tually be adapted to deal withtransdu
ers with edges labeled by A� � B� but this is a bit te
hni
al. Let usdenote by Q, E, I , and C the set of states, edges, initial states, and 
onstantstates of T respe
tively. A state of S is a �nite set P 
ontaining two kinds ofpairs. The �rst kind are pairs (q; z) where q belongs to Q n C and z is a �niteword over B. The se
ond kind are pairs (q; z) where q belongs to C and z isan ultimately periodi
 in�nite word over B. We now des
ribe the transitionsof S. Let P be a state of S and let a be a letter in A. Let R be equal to the setde�ned as followsR = f(q0; zv0) j q0 =2 C and 9(q; z) 2 P; q =2 C and q ajv0��! q0 2 Eg[ f(q0; zv0yq0) j q0 2 C and 9(q; z) 2 P; q =2 C and q ajv0��! q0 2 Eg[ f(q0; z) j q0 2 C and 9(q; z) 2 P; q 2 C and q ajv0��! q0 2 Eg:There are only three 
ases in the de�nition of R be
ause q0 is 
onstant if q isalready 
onstant. We now de�ne the transition from the state P with input la-bel a. If R is empty, there is no transition from P with input label a. Otherwise,the output label of this transition is the word v de�ned as follows. We de�ne vas the �rst letter of the word z if R only 
ontains pairs (q0; z) with q0 2 C andall the in�nite words z are equal. Otherwise, we de�ne v as the longest 
ommonpre�x of all the �nite or in�nite words z for (q0; z) 2 R. The state P 0 is de�nedas follows P 0 = f(q0; z0) j (q0; vz0) 2 Rg:Then there is a transition P ajv��! P 0 in S. The initial state of S is the set Jwhere J = f(i; ") j i 2 I and i =2 Cg [ f(i; yi) j i 2 I and i 2 Cg. We only keep12



in S the a

essible part from the initial state. The transdu
er S is sequential.It turns out that the transdu
er S has a �nite number of states. This will beproved in Lemma 14.Some de�nitions are needed to prove the 
orre
tness of the 
onstru
tion. Weintrodu
e �rst a distan
e d on �nite words. This distan
e should not be mixedup with the distan
e that we have used at the beginning of Se
tion 3 to de�nethe topology on A!. For �nite words u and v, we denote by d the distan
e su
hthat d(u; v) = juj+ jvj � 2ju ^ vj;where u^v is the longest 
ommon pre�x of u and v (see [4, p. 104℄). We extendthis distan
e when v is repla
ed by an in�nite word. Let u be a �nite word andlet x be an in�nite word. We de�ned(u; x) = juj � ju ^ xj;where u^x is the longest 
ommon pre�x of u and x. In that 
ase, the fun
tion dis not a distan
e but it measures how far u is from being a pre�x of x. Note thatif u and w are two �nite words and if z is a �nite or in�nite word, the equalityd(wu;wz) = d(u; z) holds. The following lemma states some relation betweenthe distan
e d and the weak twinning property. This is an easy property of
ombinatori
s of words.Lemma 8 Let v1, v2, v01 and v02 be �nite words su
h that jv2j = jv02j and v1v!2 =v01v02!. For any �nite word v3 and for any �nite or in�nite word v03, one hasd(v1v2v3; v01v02v03) = d(v1v3; v01v03):Proof We �rst suppose that jv1j � jv01j. Then there is a �nite word w su
hthat v01 = v1w and wv02 = v2w. Thus the word v01v02v03 is equal to v1v2wv03 andit follows that d(v1v2v3; v01v02v03) = d(v3; wv03) = d(v1v3; v01v03):The 
ase where jv1j � jv01j 
an be handled similarly. �The transdu
er S is sequential but it may not be 
omplete. For a state qand a letter a, there may be no transition going out of q and input labeled by a.For any nonempty �nite word u and any states P and P 0 of S, there is at mostone path P ujv��! P 0 from P to P 0. The following lemma and its 
orollary statethe main property of the transitions of S. This property 
omes dire
tly fromthe de�nition of the transitions of S. No property of T is assumed.Lemma 9 Let u be a nonempty �nite word.(a) Let P ujv��! P 0 be a path from P to P 0 in S with input label u. If (q0; z0) 2P 0, then there is a pair (q; z) 2 P and a path q ujv0��! q0 in T su
h thatzv0 = vz0 if q; q0 =2 C, zv0yq0 = vz0 if q =2 C and q0 2 C, and z = vz0 ifq; q0 2 C. 13



(b) Let P be a state of S. If (q; z) 2 P and q ujv0��! q0 is a path in T , then thereis a path P ujv��! P 0 in S and a word z0 su
h that (q0; z0) 2 P 0, zv0 = vz0 ifq; q0 =2 C, zv0yq0 = vz0 if q =2 C and q0 2 C, and z = vz0 if q; q0 2 C.Proof We �rst prove the statement (a). The proof is an easy indu
tion onthe length of the word u. If u is a letter, the result follows dire
tly from thede�nition of the transitions of S. Otherwise, the word u is equal to u0u1 whereu0 and u1 are two nonempty words. The path from P to P 0 
an be fa
torizedP u0jv0���! P 00 u1jv1���! P 0where v = v0v1. For ea
h pair (q0; z0) of P 0, there are from the indu
tionhypothesis two pairs (q; z) and (q00; z00) in P and P 00 and two paths q u0jv00���! q00and q00 u1jv01���! q0 in T . We dis
uss on the membership of q, q00 and q0 to C.� If q =2 C, q00 =2 C and q0 =2 C, the indu
tion hypothesis gives zv00 = v0z00and z00v01 = v1z0. This implies zv00v01 = v0z00v01 = v0v1z0, that is zv0 = vz0.� If q =2 C, q00 =2 C and q0 2 C, the indu
tion hypothesis gives zv00 = v0z00and z00v01yq0 = v1z0. This implies zv00v01yq0 = v0z00v01yq0 = v0v1z0, that iszv0yq0 = vz0.� If q =2 C, q00 2 C and q0 2 C, the indu
tion hypothesis gives zv00yq00 = v0z00and z00 = v1z0. Sin
e yq00 = v01yq0 , this implies that zv00v01yq0 = zv00yq00 =v0z00 = v0v1z0, that is zv0yq0 = vz0.� If q 2 C, q00 2 C and q0 2 C, the indu
tion hypothesis gives z = v0z00 andz00 = v1z0. This implies z = v0v1z0, that is z = vz0.The proof of the statement (b) 
an be handled similarly. �The following 
orollary just states the result of the previous lemma whenthe state P is the initial state J of S.Corollary 10 Let u be a nonempty �nite word.(a) Let J ujv��! P be a path from the initial state J to P in S with input label u.If (q; z) 2 P , then there is a path i ujv0��! q in T su
h that v0 = vz if q =2 C,and v0yq = vz if q 2 C.(b) If i ujv0��! q is a path in T , then there is a path J ujv��! P in S and a word zsu
h that (q; z) 2 P , v0 = vz if q =2 C, and v0yq = vz if q 2 C.Proof The se
ond 
omponent z of a pair (i; z) in J is either the empty word ifi is not 
onstant or the word yi if i is 
onstant. Then the result follows dire
tlyfrom the previous lemma. �The following four lemmas are devoted to the proof that the transdu
er Shas �nitely many states. It is �rst proved in the next lemma that in ea
h state Pof S there is at most one o

urren
e of ea
h state q. Therefore, the number of14



pairs in ea
h state of S is bounded by the number of states in T . Then itis proved in the next two lemmas that the lengths of the �nite words whi
happear in the pairs are bounded. It is �nally proved in the fourth lemma thatthe number of in�nite words whi
h 
an appear in the pairs is bounded.Lemma 11 Let T be a transdu
er realizing a fun
tion f . Let q be a state of Tand let P be a state of S. There is at most one word z su
h that (q; z) belongsto P .Proof Let J ujv��! P be a path in S and let (q; z) and (q; z0) be two pairs in P .We �rst suppose that q is not 
onstant and thus that z and z0 are �nite.Let xjy and x0jy0 be the labels of two �nal paths starting at q su
h that y 6= y0.By the previous 
orollary, there are two paths i ujvz���! q and i0 ujvz0���! q in T .One has f(ux) = vzy = vz0y and f(ux0) = vzy0 = vz0y0. If z 6= z0, it may beassumed by symmetry that jz0j > jzj and that z0 = zw for some �nite word w.This leads to the 
ontradi
tion y = y0 = w! .We now suppose that q is 
onstant and thus that z and z0 are in�nite. Letxjyq be the label of a �nal path starting at q. By the previous 
orollary, thereare two paths i ujw��! q and i0 ujw0���! q in T su
h that wyq = vz and w0yq = vz0.Furthermore, one has f(ux) = wyq = w0yq and thus z = z0. �From now on, we always assume that the transdu
er T realizes a fun
tion f .Lemma 12 Let T be a transdu
er whi
h has the weak twinning property. Thereis a 
onstant K su
h that for any two paths i ujv��! q and i0 ujv0��! q0 where i and i0are initial states and q =2 C, one hasd(v; v0) � K if q0 =2 Cd(v; v0yq0) � K if q0 2 CProof Let K be equal to 2n2M where n is the number of states of the trans-du
er T and M is the maximal length of the output label of a transition. Weprove the inequalities by indu
tion on the length of u. If juj � n2, then the resultfollows easily from jvj; jv0j � n2M . Otherwise, both paths 
an be fa
torizedi u1jv1���! p u2jv2���! p u3jv3���! qi0 u1jv01���! p0 u2jv02���! p0 u3jv03���! q0where u1u2u3 = u, v1v2v3 = v, v01v02v03 = v0, ju2j > 0 and ju3j � n2. Sin
e q isnot 
onstant, p is also not 
onstant.We �rst suppose that p0 is not 
onstant. By the weak twinning propertyand by Lemma 8, one has either d(v1v2v3; v01v02v03) = d(v1v3; v01v03) if q0 is not
onstant or d(v1v2v3; v01v02v03yq0) = d(v1v3; v01v03yq0) otherwise. The result followsfrom the indu
tion hypothesis.We now suppose that p0 is 
onstant. Therefore, q0 is also 
onstant andyp0 = v03yq0 and yp0 = v02yp0 . If v2 is empty, one has d(v1v2v3; v01v02v03yq0) =15



d(v1v3; v01v03yq0) sin
e v02v03yq0 = v03yq0 . The result follows from the indu
tionhypothesis. If v2 is nonempty, the weak twinning property implies that v01yp0 =v1v!2 . Therefore, d(v1v2v3; v01v02v03yq0) � jv3j � K. �The following lemma states that the lengths of the �nite words z of thepairs (q; z) in the states of S are bounded. It is essentially due to the twinningproperty of T .Lemma 13 Let T be a transdu
er whi
h has the weak twinning property. Thereis a 
onstant K su
h that for any pair (q; z) in a state P of S, z is in�nite ifq 2 C, and jzj � K if q =2 C.Proof Let K be the 
onstant given by the previous lemma. Let (q; z) be a pairin a state P su
h that the state q of T is not 
onstant. If (q; z) is the only pairin the state P , the word z must be empty and the result holds. Otherwise, thereis another pair (q0; z0) in P su
h that z and z0 do not have a 
ommon pre�x.One has jzj � d(z; z0) � K. �It is now possible to prove that the transdu
er S has a �nite number ofstates. However, the number of states of S 
an be exponential as in the 
ase of�nite words.Lemma 14 Let T be a transdu
er whi
h has the weak twinning property. Thenumber of states of S is �nite.Proof We have proved in the pre
eding lemma that the lengths of the �nitewords z are bounded. It remains to show that there is a �nite number ofdi�erent in�nite words z whi
h 
an appear in some pair (q; z). By de�nition ofthe transitions, any in�nite word z of a pair is the suÆx of z0wyp where (p0; z0)is a pair su
h that p0 =2 C and z0 is �nite and where p 2 C and p0 ajw��! p is atransition of T . Sin
e the length of z0 is bounded, the number of su
h wordsz0wyp is �nite and they are ultimately periodi
. Then there are a �nite numberof suÆxes of su
h words. �The following lemma states the key property of S. Its purpose is to guaranteethat the transdu
er S has the same output as T up to a bounded suÆx.Lemma 15 Let T be a transdu
er satisfying the 
onditions of Theorem 3 andlet S be the 
orresponding sequential transdu
er. Let q ujv��! q and P ujv0��! P be
y
ling paths in T and S where the state P 
ontains a pair (q; z). If the pathq ujv��! q 
ontains a �nal state and if v is nonempty, then v0 is also nonempty.Proof By Lemma 11, there is only one word z su
h that (q; z) belongs to P .Sin
e the state P is a

essible, there is a path J tjw0��! P in S. By Corollary 10,there is a path i tjw��! q in T for some �nite word w. The paths are summarized
16



by the following diagram. i tjw��! q ujv��! qJ tjw0��! P ujv0��! PWe assume that the loop q ujv��! q around q 
ontains a �nal state. Sin
e v 6= ",the word tu! belongs to the domain of the fun
tion and f(tu!) = wv! .We distinguish two main 
ases depending on whether q is a 
onstant stateor not. In the 
ase that q is not 
onstant, the hypothesis that the path q ujv��! qgoes through a �nal state is not needed. This fa
t is used in the proof of theother 
ase.We �rst suppose that q is not 
onstant. The word z is thus �nite. ByCorollary 10 applied to the paths J tjw0��! P and J tujw0v0����! P , both equalitiesw = w0z and wv = w0v0z hold. This implies that jv0j = jvj and the word v0 isnonempty.We now suppose that q is 
onstant. The word z is thus in�nite. We dis-tinguish again two 
ases depending on whether the state P 
ontains at least anon
onstant state or not. In both 
ases, we use the following 
laim. For anypair (q0; z0) in P , there is a pair (q00; z00) in P su
h that there are paths in Tand S as shown in the following diagrami0 tjw00���! q00 uk jv00����! q00 uljv000����! q0J tjw0��! P uk jv0k����! P ukjv0l����! Pwhere k is a positive integer and l is a nonnegative integer. Let (q0; z0) beany pair in P . De�ne by indu
tion the sequen
e (qn; zn)n�0 of pairs in P asfollows. Let (q0; z0) be the pair (q0; z0). Suppose that the pair (qn; zn) is alreadyde�ned. By Lemma 9, there is a pair (qn+1; zn+1) in P su
h that there is a pathqn+1 ujwn���! qn in T . Sin
e the set P is �nite, there are two integers k � 1 andl � 0 su
h that qk+l = ql and thus zk+l = zl by Lemma 11. Let (q00; z00) denotethe pair (ql; zl). By 
onstru
tion of q00, there is in T a 
y
ling path q00 ukjv00����! q00and there is also a path q00 uljv000����! q0. Sin
e the pair (q00; z00) belongs to P , thereis, by Corollary 10, a path i0 tjw00���! q00 in T , with i0 2 I . This proves the 
laim.We �rst suppose that P 
ontains a pair (q0; z0) su
h that q0 is not 
onstant.Let (q00; z00) be the pair given by the previous 
laim. Sin
e there is a path from q00to q0, the state q00 is also not 
onstant. We prove by 
ontradi
tion that v00 isnonempty. Let us assume that v00 = ". Sin
e q00 is not 
onstant, there are two�nal paths starting at q00 with di�erent output labels. Let xjy and x0jy0 be thelabels of these two �nal paths with y 6= y0. The images f(tuknx) and f(tuknx0)are equal to w00y and w00y0 for any integer n. Both sequen
es (tuknx)n�0 and(tuknx0)n�0 
onverge to tu!. Sin
e the fun
tion f is 
ontinuous, both wordsw00y and w00y0 are equal to f(tu!) = wv! . This is a 
ontradi
tion sin
e y 6= y0.This proves that v00 6= ". Sin
e q00 is not 
onstant, the proof of the �rst 
ase 
anbe applied to the paths q00 ukjv00����! q00 and P ukjv0k����! P . This proves that v0k andthus v0 is nonempty. 17



We �nally suppose that for every pair (q0; z0) in P , the state q0 is 
onstant.Let (q0; z0) be any pair in P and let (q00; z00) be the pair given by the 
laim above.We prove that z = z00. By hypothesis, the state q00 is 
onstant. Let xjyq00 be thelabel of a �nal path starting at q00. Sin
e q00 is 
onstant, the equality v00yq00 = yq00holds. The image f(tuknx) is equal to w00v00nyq00 = w00yq00 for any integer n.The sequen
e (tuknx)n�0 
onverges to tu!. Sin
e the fun
tion f is 
ontinuous,the word w00yq00 is equal to f(tu!) = wv! = wyq . By Corollary 10 applied to thepath J tjw0��! P , both equalities wyq = w0z and w00yq00 = w0z00 hold. Combinedwith the equality w00yq00 = wyq , one gets z = z00.By Lemma 9 applied to the path P uljv0l���! P , the equality z00 = v0lz0 holds.If v0 = ", then z00 = z = z0. Sin
e this equality holds for any pair (q0; z0) of P ,all words z0 of the pairs (q0; z0) in P are equal. This 
ontradi
ts the de�nitionof the transitions of S sin
e the output v0 along the path P ujv0��! P is nonemptyin this 
ase. This implies that v0 6= ". �The following proposition states that the fun
tion realized by the sequentialtransdu
er S is an extension of the fun
tion realized by the transdu
er T .Proposition 16 Let T be a transdu
er satisfying the 
onditions of Theorem 3and let S be the 
orresponding sequential transdu
er. Let f and f 0 be the fun
-tions realized by the transdu
ers T and S. Then the in
lusion dom(f) � dom(f 0)holds and for any x in dom(f), the equality f(x) = f 0(x) holds.Proof We prove that if the in�nite word x belongs to the domain of f , it alsobelongs to the domain of f 0 and its images by f and f 0 are equal.Let x be an in�nite word whi
h belongs to the domain of f and let 
 bea su

essful path in T with input label x. Therefore, this path goes in�nitelyoften through a �nal state and its output label is an in�nite word. Consider theunique path � in S with input label x.We 
laim that the output label along � is nonempty and that it is equal tothe output label along 
. Sin
e both transdu
ers T and S (by Lemma 14) havea �nite number of states, both paths 
 and � 
an be fa
torized
 = i u0jv0���! q u1jv1���! q u2jv2���! q � � �� = J u0jv00���! P u1jv01���! P u2jv02���! P � � �Sin
e the output along the path 
 is in�nite, it 
an be assumed that ea
hword vn is nonempty and sin
e the path 
 goes in�nitely often through a �nalstate, it 
an be also assumed that ea
h path q unjvn����! q 
ontains a �nal state.By Corollary 10, the state P of S 
ontains a pair (q; z) for some �nite or in�niteword z. By Lemma 15, ea
h word v0n is nonempty.By Corollary 10, one has for ea
h n, v0 : : : vn = v00 : : : v0nz if q is not 
on-stant and one has v0 : : : vnyq = v00 : : : v0nz otherwise. This implies the equalityv0v1v2 : : : = v00v01v02 : : : of the two outputs. �By the last proposition, the fun
tion realized by the sequential transdu
er Sextends the fun
tion realized by the given transdu
er T . To obtain a sequential18



transdu
er equivalent to T , one must restri
t the domain of the transdu
er S.This is a
hieved by 
onstru
ting a new sequential transdu
er S 0 whi
h is thesyn
hronized produ
t of S and of an automaton for the domain of T .Re
all that the transdu
er S has no a

eptan
e 
ondition. This means thatan in�nite path is �nal i� both its input and output labels are in�nite words.Let X be the domain of the fun
tion realized by T . Let A be a deterministi
B�u
hi automaton re
ognizing X if X is deterministi
 or let A be a deterministi
Muller automaton re
ognizing X otherwise. In the former 
ase, its a

eptan
e
ondition � is a set F of �nal states and, in the latter 
ase, its a

eptan
e
ondition � is a family F of sets of states. As explained at the end of Se
tion 2,the automaton A 
an be 
omputed from the transdu
er T .We now des
ribe the transdu
er S 0. The state set of S 0 is Q�Q0 where Qand Q0 are the state sets of S and A. The initial state is (i; i0) where i and i0are the initial states of S and A. There is a transition (p; p0) aju��! (q; q0) i�p aju��! q and p0 a�! q0 are transitions of S and A. The a

eptan
e 
ondition �0of S 0 mimi
s that of A. More formally, if A is a B�u
hi automaton, then S 0 is aB�u
hi transdu
er and its set of �nal states is F 0 = f(q; q0) j q0 2 Fg. If A is aMuller automaton, then S 0 is a Muller transdu
er and its family F 0 of sets ofstates is de�ned as follows.F 0 = ff(q1; q01); : : : ; (qk; q0k)g j fq01; : : : ; q0kg 2 Fg:It is pure routine to 
he
k that S 0 is equivalent to T .0 1aja bjb

j"aja
j"

ajaa

j"Figure 5: Transdu
er T of Example 17

0;"A 0;"1;a! Bbjb aja
j"bjb aja

j"Figure 6: Transdu
er S of Example 1719
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F = ffxg; fx; zgg
Figure 7: A Muller automaton for the domain of T
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F 0 = ffBxg; fBx;Bzgg
Figure 8: Transdu
er S 0 of Example 17We illustrate the 
onstru
tion of S and S 0 by the following example.Example 17 Let A be the alphabet fa; b; 
g and 
onsider the transdu
er Tpi
tured in Figure 5. Note that the state 1 is 
onstant whereas the state 0is not. Applying the 
onstru
tion des
ribed above, one gets the transdu
er Spi
tured in Figure 6. The domain of T is A�(
�a)! but the domain of S isA�(
�(a + b))!. The Muller automaton A for the domain of T is pi
tured inFigure 7. The transdu
er S 0 obtained by 
ombining S and A is pi
tured inFigure 8.5 Con
lusionIn this paper, we have provided 
hara
terizations of sequential fun
tions of in�-nite words realized by Muller and B�u
hi transdu
ers. When a transdu
er realizesa sequential fun
tion, we have given an algorithm to 
ompute an equivalent se-quential transdu
er. Sin
e this determinization in
ludes the determinization ofan automaton for the domain of the fun
tion, the 
omplexity is at least expo-nential.In the 
ase of �nite words, the determinization is also exponential but it
an be 
he
ked in polynomial time whether a fun
tion given by a transdu
eris sequential. The 
ontinuity 
an be 
he
ked in polynomial time [15℄. The20



de
idability of the weak twinning property that we introdu
e is not dis
ussedin the paper. We do not know whether this 
an be 
he
ked in polynomial time.However, sin
e this notion is 
lose to the twinning property of Cho�rut [6, 7℄,we think that the methods used in [22℄ or [3℄ 
an be used to obtain a polynomialtime algorithm to 
he
k this property.A
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