N

N

Determinization of transducers over finite and infinite
words

Marie-Pierre Béal, Olivier Carton

» To cite this version:

Marie-Pierre Béal, Olivier Carton. Determinization of transducers over finite and infinite words.
Theoretical Computer Science, 2002, 289 (1), pp.225-251. hal-00619203

HAL Id: hal-00619203
https://hal.science/hal-00619203

Submitted on 5 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00619203
https://hal.archives-ouvertes.fr

Determinization of transducers
over finite and infinite words

MARIE-PIERRE BEAL
Institut Gaspard Monge,
Université de Marne-la-Vallée

http://wwu-igm.univ-mlv.fr/~beal/

OLIVIER CARTON
Institut Gaspard Monge and CNRS
Université de Marne-la-Vallée

http://wwu-igm.univ-mlv.fr/~carton/

March 27, 2001

Abstract

We study the determinization of transducers over finite and infinite
words. The first part of the paper is devoted to finite words. We recall the
characterization of subsequential functions due to Choffrut. We describe
here a known algorithm to determinize a transducer.

In the case of infinite words, we consider transducers with all their
states final. We give an effective characterization of sequential functions
over infinite words. We describe an algorithm to determinize transducers
over infinite words. This part contains the main novel results of the paper.

1 Introduction

The aim of this paper is the study of determinization of transducers, that is
of machines realizing rational transductions. A transducer is a finite state au-
tomaton (or a finite state machine) whose edges are labeled by pairs of words
taken in finite alphabets. The first component of each pair is called the input
label. The second one the output label. The transducers that we consider have
accepting (or final) states. Such transducers are sometimes called a-transducers
(a for accepting). The rational relation defined by a transducer is the set of
pairs of words which are labels of an accepting path in the transducer. We
assume that the relations defined by our transducers are functions. This is a
decidable property.

The study of transducers has many applications. Transducers are used to
model coding schemes (compression schemes, convolutional coding schemes,

coding schemes for constrained channels, for instance). They are widely used in
computer arithmetic [17] and in natural language processing [25]. Transducers
are also used in programs analysis [14]. The determinization of a transducer is
the construction of another transducer which defines the same function and has
a deterministic (or right resolving) input automaton. Such transducers allow a
sequential encoding and thus are called sequential transducers.

In the first part of the paper, we present a short survey of the determiniza-
tion of transducers realizing functions over finite words. Our transducers may
have final states. We present some known results about subsequential functions,
that is functions that can be realized by transducers with a deterministic input
but that may have an output function defined on states. The notion of subse-
quential functions has been introduced by Schiitzenberger [28]. We recall the
characterization of subsequential functions obtained by Choffrut [11, 12]. This
characterization gives a decision procedure for the subsequentiality of functions
defined by a transducer. It has been proved in [30, 31] that this can be decided
in polynomial time. We give another proof of this result which is a consequence
of the decidability in polynomial time of functionality over infinite words [10].
Another proof of the same result is given in [4]. The decidability of functionality
was already proved by Gire [18]. We also describe the algorithm to determinize
a transducer. This algorithm takes a real-time transducer which realizes a sub-
sequential function and outputs a subsequential transducer. This algorithm is
actually contained in the proof of Choffrut [11, 12] (see also [5, p. 109-110]).
This algorithm has also been described by Mohri [22] and Roche and Shabes
[25, p. 223-233].

The determinization of a transducer realizing a subsequential function f
provides a subsequential transducer realizing f. If the function is sequential,
this subsequential transducer can be transformed into a sequential one. This
can be obtained by the normalization of a transducer introduced by Choffrut
[12, 13]. Efficient algorithms that compute the normalization have been given
in [21, 23], [8, 9] and [2].

In the second part of the paper, we consider transducers and functions over
infinite words and our transducers have all their states final. The reason why we
assume that all states are final is that the case of transducers with final states
seems to be much more complex. Indeed, the determinization of automata over
infinite words is already very difficult [26]. In particular, it is not true that any
rational set of infinite words is recognized by a deterministic automaton with
final states. Other accepting conditions, as the Muller condition for instance,
must be used.

We first give an effective characterization of sequential functions over infinite
words. This characterization extends to infinite words the twinning property
introduced by Choffrut [11]. We prove that a function is sequential if it is
a continuous map whose domain can be recognized by a deterministic Biichi
automaton, and such that the transducer obtained after removing some special
states has the twinning property. These conditions can be simplified in the
case where the transducer has no cycling path with an empty output label. We
use this characterization to describe an algorithm checking whether a function

realized by a transducer is sequential. This algorithm becomes polynomial when
the transducer has no cycling path with an empty output label. Finally, we give
an algorithm to determinize a real-time transducer. The algorithm can be easily
adapted to the case when the transducer is not real-time. The algorithm is much
more complex than in the case of finite words. It is the main result of the paper.

These determinizations do not preserve the dynamic properties of the trans-
ducers as the locality of its output. We mention that in [19], an algorithm is
given to determinize transducers over bi-infinite words that have a right closing
input (or that are n-deterministic or deterministic with a finite delay in the
input) and a local output (see also [20, p. 143] and [1, p. 110-115]). This al-
gorithm preserves the locality of the output. These features are important for
coding applications.

The paper is organized as follows. Section 2 is devoted to transducers over
finite words. Basic notions of transducers of rational functions are defined at
the beginning of this section. The characterization of subsequential functions
is recalled in Section 2.1 while the algorithm for determinization of transducers
is described in Section 2.2. The characterization of sequential functions among
subsequential ones is recalled in Section 2.3. Section 3 is devoted to transducers
over infinite words. We give in Section 3.1 a characterization of sequential
functions while the algorithm for determinization of transducers is described
in Section 3.2. In both cases of finite and infinite words, we give examples of
determinization of transducers.

Part of the results of the present paper was presented at the conference
ICALP’2000 [3].

2 Transducers over finite words

In the sequel, A and B denote finite alphabets. The free monoid A* is the set
of finite words or sequences of letters of A. The empty word is denoted by e&.
We denote the fact that a finite word w is a prefix of a finite word v by u < v.
The relation < is a partial order. If u is a prefix of v, we denote by u~'v the
unique word w such that v = vw.

A transducer over the monoid A* x B* is composed of a set @) of states, a
set £ C Q x A* x B* x @ of edges and two sets I, F' C @ of initial and final
states. An edge e = (p, u,v,q) from p to ¢ is denoted by p RUUN g. The state p
is the origin, u is the input label, v is the output label, and ¢ is the end. Thus,
a transducer is the same object as an automaton, except that the labels of the
edges are pairs of words instead of letters.

A transducer is often denoted by A = (Q, E,I, F), or also by (Q, E,I) if all
states are final, i.e., Q = F.

A path in the transducer T is a sequence

uo|vo uy vy Un |Un

Po » P1 > ? Pn

of consecutive edges. Its input label is the word u = ujus ---u, whereas its
output label is the word v = vjvs ---v,. The path leaves py and ends in p,.

The path is often denoted

ulv

Po ? Dn-

A path is successful if it leaves an initial state and ends in a final state. The set
recognized by the transducer is the set of labels of its successful paths, which is
actually a relation R C A* x B*. The transducer computes a function if for any
word u € A*, there exists at most one word v € B* such that (u,v) € R. We
call it the function realized by the transducer. A transducer which realizes a
function is sometimes called single-valued in the literature. Thus a transducer
can be seen as a machine computing nondeterministically output words from
input words. We denote by dom(f) the domain of the function f.

A transducer is finite if its set of states and its set of transitions are finite.
It is a consequence of Kleene’s theorem that a subset of A* x B* is a rational
relation if and only if it is the set recognized by a finite transducer.

Figure 1: A transducer for the relation (a2,b?)* U (a2,c?)*(a,c).

EXAMPLE 1 (from [5]) The automaton of Figure 1 recognizes the relation (a2, b*)*U
(a?,c%)*(a, c) over the alphabets A = {a} and B = {b, c}. This relation is actu-
ally the function which maps a™ to b™ if n is even and to ¢™ if n is odd.

Let 7 be a transducer. The underlying input automaton (respectively un-
derlying output automaton) of T is obtained by omitting the output label (re-
spectively input label) of each edge.

A transducer is said to be real-time if it is labeled in A x B*. It can be proved
that any rational function can be realized by a real-time transducer. Further-
more, from any transducer realizing a function can be computed in polynomial
time an equivalent real-time transducer (see for instance [31, Prop. 1.1]). We say
that a transducer T is sequential if it is real-time and if the following conditions
are satisfied.

e it has a unique initial state,

e the underlying input automaton is deterministic.

These conditions ensure that for each word u € A*, there is at most one word
v € B* such that (u,v) is recognized by 7. Thus, the relation computed by
T is a partial function from A* into B*. A function is sequential if it can be
realized by a sequential transducer.

REMARK 2 In [16, p. 299], [5] and [6], it is assumed that all states of a sequen-
tial transducer are final. We follow the definition of Choffrut [11, 12] where
sequential transducer may have final states. Thus, some characterizations that
we give below differ from those presented in [5] for this reason. When all states
are final, the domain of a sequential function is prefix closed, i.e., if uv belongs
to the domain then u also belongs to the domain. As our definition allows final
states, the domain of a sequential function is not necessarily prefix closed.

blb
(D
bla

Figure 2: A sequential transducer.

EXAMPLE 3 Let A = B = {a,b} be the input and the output alphabets. The
transducer of Figure 2, whose initial state is 0, is sequential. It replaces by a
those b’s which appear after an odd number of 5. On the contrary, the trans-
ducer of Example 1 is not sequential. Actually, the function computed by this
transducer is not sequential. Indeed, one may verify that if f is sequential, and
if u and v are two words of dom(f) such that u < v, then f(u) < f(v).

REMARK 4 If f is a sequential function and if f(e) is defined, then f(e) = e.
To remove this restriction, it is possible to add an initial word associated with
the initial state. This word is output before any computation. This initial word
is necessary to get the unicity of a minimal sequential transducer [28, 12].

A subsequential transducer (A,p) over A* x B* is a pair composed of a
sequential transducer A over A* x B* with F' as set of final states, and of a
function p : F' — B*. The function f computed by (A, p) is defined as follows.
Let u be a word in A*. The value f(u) is defined if and only if there is a path
TRRLCN q in A with input label u, from the initial state 7 to a final state ¢. In
this case, one has f(u) = vp(q). Thus, the function p is used to append a word
to the output at the end of the computation. A function is subsequential if it

can be realized by a subsequential transducer.

REMARK 5 Any sequential function is subsequential. It suffices to consider the
function p such that p(q) = ¢ for any final state q.

Figure 3: A subsequential transducer.

ExXAMPLE 6 The function f realized by the subsequential transducer pictured
in Figure 3 appends to each word its last letter. The word u is mapped to ua
if it ends with an a and it is mapped to ub if it ends with a b. This function is
subsequential but it is not sequential. Indeed, for any word w, f(wa) is not a
prefix of f(wab).

2.1 Subsequential functions

In this section, we present some known results about subsequential functions.
We recall the characterization of subsequential functions obtained by Choffrut
[11, 12]. It is known that it is decidable whether a function realized by a
transducer is subsequential. It has been proved in [30, 31] that this can be
decided in polynomial time. We give here another proof of this result which
is a consequence of the decidability in polynomial time of functionality over
infinite words [10]. We also describe the algorithm to determinize a real-time
transducer. This algorithm takes a transducer which realizes a subsequential
function and outputs a subsequential transducer. This algorithm is actually
contained in the proof of Choffrut [11, 12] and [5, p. 109-110]. Tt has also been
described by Mohri [21, 23] and Roche and Shabes [25, p. 223-233].

If the function is actually sequential, this subsequential transducer is again
transformed in a sequential transducer by the algorithm described in Section 2.3.

We give below two characterizations of subsequential functions that have
been obtained by Choffrut (see [11, 12] and [5, p. 105]). The first characteriza-
tion is intrinsic to the function. It is based on metric properties of the function.
The second characterization is effective. It is based on a property called twin-
ning property of a transducer realizing the function. As it has been shown in
[30, 31], this property can be decided in polynomial time.

Some notation is needed to state the characterization of subsequential func-
tions. We first introduce a distance d on finite words. Let u,v be two finite
words, we denote by d the distance such that

d(u,v) = |u| + |v] = 2|u Av|,

where u A v is the longest common prefix of u and v (see [5, p. 104]).
A partial function f : A* — B* has bounded variation if and only if:

Vk > 03K > 0Vu,v € dom(f) d(u,v) <k=d(f(u),f(v)) <K.

The decidability of the subsequentiality is essentially based on the following
notion introduced by Choffrut [12, p. 133] (see also [5, p. 128]). Two states ¢
and ¢’ of a transducer are said to be twinned iff for any pair of paths

. ulu v|v'
i—q—>q
il ufu’’ q/ vjv"” q/
where i and ¢’ are two initial states, the output labels satisfy the following
property. Either v/ = v" = ¢ or there exists a finite word w such that either

v’ = v'w and wv" = v'w, or v’ = v'w and wv' = v"w. The latter case is
equivalent to the following two conditions:

H I — "

(i) o' = "],

(ii) ulvlw — ullvllw
A transducer has the twinning property if any two states are twinned.

PROPOSITION 7 (CHOFFRUT) Let f : A* — B* be a partial function realized
by a transducer T . The following three propositions are equivalent.

e The function f is subsequential.
e The function f has bounded variation.

e The transducer T has the twinning property.

The equivalence between the first two statements is an intrinsic characteriza-
tion of subsequential functions among rational functions. It actually suffices to
suppose that the inverse image by f of any rational set is still rational and that
f has bounded variation to insure that f is subsequential. However, we are in
his paper interested in effective matters and we always suppose that a function
on words is given by a transducer which realizes it. The equivalence between
the last two statements allows us to decide the subsequentiality. The proof of
this equivalence is essentially the proof of Lemma 16 below.

We mention here another characterization of the subsequentiality. For a
partial function f : A* — B*, define the right congruence ~ on A* by u ~ u' iff
there are two words finite words v and v’ such that the following two properties
hold for any finite word w. First, the word uw is in the domain of f iff v'w is
in the domain of f. Second, if uw and u'w are in the domain, then v=! f (uw) =
v'~" f(vw). The function f is then subsequential iff the right congruence ~ has
finite index. In that case, the congruence ~ allows one to construct directly a
subsequential transducer realizing f. Furthermore, this sequential transducer is
minimal in the sense that any other subsequential transducer realizing f can be
projected onto this one. The algorithm presented in Section 2.2 allows one to
compute effectively the right congruence ~.

EXAMPLE 8 We have already mentioned in Example 3 that the function (a2, b%)*U
(a?,c*)*(a, c) of Example 1 is not sequential. Actually, this relation is not sub-
sequential as it can be easily shown with Proposition 7. Indeed, the function
does not have bounded variation. For any integer n, one has

d(a®™,a® ™) =1 while d(b*™,c*") =4n + 1.

We now give two decidability results about rational relations. The first one
is due to Schiitzenberger [27] (see also [7]). The second one is due to Choffrut
[11, 12] (see also [5, p. 128]).

PROPOSITION 9 (SCHUTZENBERGER) Let T be a transducer over A* x B*. It
is decidable whether the relation defined by T is a function.

Choffrut also proved the decidability of the subsequentiality. He showed that
it suffices to check the twinning property when the lengths of the words u and v
are bounded by the square of the number of states [12, p. 133] and [5, p. 128].
However, this algorithm does not seem to be polynomial.

PROPOSITION 10 (CHOFFRUT) Let T be a transducer labeled in A* x B* which
realizes a function f, then the subsequentiality of f is decidable.

The following result is due to Weber and Klemm [30, 31].

PROPOSITION 11 Let f be the function realized by a transducer labeled in A* x
B*. It is decidable in polynomial time whether f is subsequential.

The proof of the proposition follows directly from Proposition 7 and from
the following lemma. We give below another proof based on the decidability in
polynomial time of the functionality over infinite words. A third proof is given
in [4].

LEMMA 12 The twinning property of a transducer is decidable in polynomial
time.

Proof Let T = (Q, E, I, F) be a transducer. We decide the twinning property
of T in two steps. We first decide in polynomial time the condition (i) and then
the condition (ii).

We define an automaton A4 whose states are the pairs of states of 7 and
whose edges are labeled by integers. There is an edge (p,p') 2 (q,q") iff there
are two edges p 1% ¢ and p' ﬁu—) q" in A such that n = |u'| — |u|. The label
of a path in A is the sum of the labels of the edges of the path. We claim that
the transducer 7 satisfies condition (i) iff the label of any cycle around a pair
(q,q") accessible from some pair (4,4") for two initial states ¢ and i’, is equal to
zero. This can be done by a depth-first search.

We assume that the transducer already satisfies condition (i). This first con-
dition insures that the output label v' is empty iff v is empty. The condition (i)
is then equivalent to the functionality of the relation on infinite words defined

by the transducer 7 with all states being final. Indeed, it is clear that if the
relation defined by 7 is a function, then any two states are twinned. Conversely,
if this relation is not a function, there exist two infinite paths labeled by z|y
and x|y’ with y # y'. Let pop1p> ... and pipip) ... be the states visited by the
two paths. Let k an index such that yi # yj,. There exist indices m > n such
that (pm,p),) = (Pn,p},). Moreover, n may be chosen great enough such that
the outputs along the paths from the initial state to p, and p], have a length
greater than k. Then the states p,, and p,, are not twinned.

It is decidable in polynomial time whether a relation on infinite words real-
ized by a transducer is a function [10]. O

2.2 Determinization of transducers over finite words

In this section, we describe an algorithm which determinizes a real-time trans-
ducer which has the twinning property. This algorithm proves that the condi-
tions of Proposition 7 are sufficient.

Let T = (Q,E,I,F) be a real-time transducer, that is labeled in A x B*,
realizing a function which is subsequential. We give below an algorithm to de-
terminize the transducer 7, that is, which produces a subsequential transducer
realizing f. The algorithm is exponential in the number of states of 7. The
determinization of an automaton is already exponential.

We define a subsequential transducer D as follows. A state P of D is a set
of pairs (¢, w) where ¢ is a state of T and w is a word over B. We now describe
the transitions of 7. Let P be state of D and let a be a letter. The pair (P, a)
determines a set R defined by

R = {(q',wu) | there exist (¢,w) € P and ¢ LN q € E}.

If R is empty, there is no transition from P input labeled by a. Otherwise, let
v be the longest common prefix of the words wu for (¢',wu) € R and

P'={(¢",w") | (¢',vw') € R}.

There is then a transition P 2% P’. The initial state of D is the set J = {(i,¢) |
i € I} where I is the set of initial states of 7. It follows from the definition
of the transitions of D that if P is a state accessible from the initial state, the
longest common prefix of the words w for (¢,w) € P is the empty word. We
only keep in D the accessible part from the initial state. The transducer D has
a deterministic input automaton.

The following lemma states the main property of the transitions of D.

LEMMA 13 Let u be a finite word. Let J v P be the unique path in D with
input label u from the initial state. Then, the state P is equal to

P = {(q,w) | there exists a path i KL q in T where i € I}.

Proof The proof of the lemma is by induction on the length of u. Let us
consider the following path in D

g p

where a is a letter. Let (¢',w’) be a pair in P'. By the definition of the
transitions of D, there is a pair (¢,w) in P and a transition ¢ alt’y q' in T such
that tw’ = wt'. By the induction hypothesis, there is a path i “4% ¢ in 7.
Finally, one has vtw' = vwt’. O

The preceding lemma has the following consequence. If both pairs (g, w)
and (¢',w') belong to a state P which is accessible from the initial state and if
both ¢ and ¢’ are final states in T, then the equality w = w' necessarily holds.
Otherwise, the relation realized by 7 is not a function. This remark allows us
to define the set of final states of D and the function p. A state P is final if it
contains as least one pair (¢, w) where ¢ is a final state of 7. The function p
maps such a final state P to the word w.

alba ala

Figure 4: Transducer of Example 14

ExaMPLE 14 Consider the transducer pictured in Figure 4. If the algorithm
for determinization is applied to this transducer, one gets the subsequential
transducer pictured in Figure 5. This subsequential transducer is transformed
into a sequential transducer in Examples 19.

This defines a subsequential transducer which may have an infinite number
of states. However, we claim that the bounded variation property of 7 implies
that the lengths of the words in states of D are bounded. Thus the number of
states of D is actually finite.

LEMMA 15 Let vy, va, v} and vl be four finite words such that |ve| = |vb| and
vy = vivh?. For any words v3 and v,

d(viv2v3, vivyvs) = d(v1v3, V]VL).

10

Figure 5: Determinization of the transducer of Figure 4

Proof By symmetry, we may suppose that |v1| < |vj|. There is then a finite
word w such that v{ = vyw and wv) = vow. Thus the word viviv} is equal to
vivawvy. It follows that

d(v1v2v3, Vi v4v5) = d(vs, woh) = d(vyvs, v]vs).
O

The following lemma states that if a transducer 7 has the twinning property,
then the outputs labels of two paths with the same input label have a long
common prefix. It proves that if the relation realized by 7 is a function, it has
bounded variation. The proof is very close to the proof of Proposition 6.4 in [5]
but we do not assume that the relation realized by 7 is a function. This is
useful when transducers realizing relations on infinite words are considered.

LEMMA 16 Let T be a transducer which has the twinning property. There is a
constant K such that the outputs of two paths i RULN q and 1’ LN q' from two
initial states i and i’ satisfy

d(v,v") < K.

Proof Let K be equal to 2n>M where n is the number of states of the transducer
and M is the maximal length of the output label of a transition. We prove
d(v,v") < K by induction on the length of u. If |u| < n?, the result holds by
definition of K. Otherwise, both paths can be factorized

. ur|vr uz|va uz|va
i) 5 5

it ui vy P ualv'z) ; uslvy
— — [AR RO B ! . .
where ujusus = u, vivevs = v, Vivhvy = v’ and |us| > 0. By the twinning

property, one has d(vyvav3,v]vhvh) = d(vivs, vivh) and the result follows from
the induction hypothesis. O

11

The following lemma states that the lengths of the words w of the pairs
(¢, w) in the states of D are bounded. This implies that the number of states
of D is finite.

LEMMA 17 There is a constant K such that for any pair (q,w) in a state P
of D, one has |w| < K.

Proof Let J % P be a path in D. Let (¢, w) be a pair in some state P.

By definition of the transitions of D, there is another pair (¢',w’) in D such

tha‘t w and w' halve no common prefix. By Lemma 13, there are two paths,
u|vw, u|vw

i 4% g and i’ - ¢’ in 7. By Lemma 16, there is a constant K such that
d(vw,vw") < K and thus |w| < K. O

The following proposition finally states that the subsequential transducer D
is equivalent to the transducer 7. It follows directly from Lemma 13 and the
definition of the function p.

PROPOSITION 18 The sequential transducer D realizes the same function f as
the transducer T .

We have already mentioned in Proposition 11 that it can be decided in
polynomial time whether a function realized by a transducer is subsequential.
The algorithm described above is exponential but it provides another decision
procedure. Indeed, Lemma 17 gives a upper bound of the lengths of words which
can appear in states of D. By Lemma 16, this upper bound is 2n2M where n is
the number of states of 7 and M is the maximal length of the output label of a
transition of 7. Let 7 be a transducer realizing a function f. If the algorithm
is applied to T, either it stops and gives a subsequential transducer D or it
creates a state P containing a pair (¢, w) such that the length of w is greater
than 2n2M. In the former case, the subsequential transducer D is equivalent
to 7 and the function f is subsequential. In the latter case, the function f is
not subsequential.

2.3 Sequential functions

The determinization of a transducer realizing a subsequential function f pro-
vides a subsequential transducer realizing f. Even if the function f is sequential,
the algorithm does not give a sequential transducer but this subsequential trans-
ducer can be transformed into a sequential one.

This transformation is based on a normalization of subsequential transduc-
ers introduced by Choffrut [12, 13]. This normalization consists in pushing as
much as possible the output labels from final states towards the initial state.
Algorithms computing the normalized transducer are given in [21, 23], [8, 9] and
[2]. The algorithms given in [21, 23] and [2] run in time O(|E|P) where E is the
set of transitions of the transducer, and where P is the maximal length of the
greatest common prefix of the output labels of paths leaving each state of the
transducer. If the normalization is applied to a subsequential transducer, the

12

resulting transducer is sequential iff the function is sequential. Since the normal-
ization can be performed in polynomial time, it can be checked in polynomial
time whether a function realized by a subsequential transducer is sequential. It
can be shown that a function realized by a subsequential transducer is sequential
iff it preserves prefixes. This was already proved in [30, 31] that this property
can be checked in polynomial time.

In order to transform a subsequential transducer into a sequential one, it is
not necessary to push as much as possible the output labels from final states
towards the initial state, as the normalization does. It suffices to push these
output labels until the output of all states are empty. Therefore, the algorithm
given in [2] can be adapted to meet this requirements. This gives a time com-
plexity of O(|E|L) instead of O(|E|P) where L is the maximal length of the
output words.

Figure 6: Sequential transducer of Example 19

ExAMPLE 19 Consider the transducer pictured in Figure 5 where the states
have been renamed A, B, C and D. If the normalization is applied to this sub-
sequential transducer, one gets the sequential transducer pictured in Figure 6.

3 Transducers over infinite words

In this section, we consider transducers over infinite words with all states being
final. We first give an effective characterization of sequential functions over in-
finite words. This characterization extends to infinite words the twinning prop-
erty introduced by Choffrut [11, 12]. We use this characterization to describe
an algorithm to check whether a function realized by a transducer is sequential.
Finally, we give an algorithm to determinize a transducer.

In this section, we denote by A the set of all (right-)infinite words over
the alphabet A. We consider transducers over infinite words. The edges of the
transducers are still labeled in A* x B*. The transducer has initial states but
we suppose that all states are final. Thus we omit the set F' of final states in
the notation. An infinite path is then successful if it leaves an initial state. The
relation over infinite words defined by the transducer is the set R C A x B¥

13

of labels of its successful paths. The domain of the transducer is the set of
infinite words z such that there is some infinite word y such that (z,y) labels
a successful path in the transducer. When the transducer realizes a function,
its domain is also the domain of the function. A function from A“ to B is
sequential if it is realized by a sequential transducer. We point out that the
notion of subsequential function is irrelevant in the case of infinite words.

3.1 Characterization of sequential functions

In this section, we characterize functions realized by transducers with all states
final that can be realized by sequential transducers. This characterization uses
topological properties of the function and some twinning property of the trans-
ducer. In this section, we assume that all states of transducers are final.

We first introduce a definition. We define a subset of states which play
a particular role in the sequel. We say that a state ¢ of a transducer is non
constant if there are two paths leaving ¢ labelled by two pairs (z,y) and (2',y")
of infinite words such that y # y’. If a state g is constant, either there is no path
leaving ¢ labelled by a pair of infinite words or there is an infinite word y, called
the constant of ¢ such that for any pair (z,y) of infinite words labelling a path
leaving ¢, then y = y,. In the former case, the state ¢ can be removed since it
cannot occur in an accepting path labelled by a pair of infinite words. In the
sequel, we always assume that such states have been removed. The constant y,
is an ultimately periodic word. It should be noticed that any state accessible
from a constant state is also constant. We now state the characterization of
sequential functions.

PROPOSITION 20 Let f be a function realized by a transducer T with all states
final. Let T' be the transducer obtained by removing from T all constant states.
Then the function f is sequential iff the following three properties hold:

e the domain of f can be recognized by a deterministic Biichi automaton,
e the function f is continuous,

e the transducer T' has the twinning property.

Since the function f is realized by a transducer, the domain of f is rational.
However, it is not true that any rational set of infinite words is recognized by
a deterministic Biichi automaton. Landweber’s theorem states that a set of
infinite words is recognized by a deterministic Biichi automaton iff it is rational
and G5 [29]. Recall that a set is said to be Gs is it is equal to a countable
intersection of open sets for the usual topology of A“.

It is worth pointing out that the domain of a function realized by a transducer
may be any rational set although it is supposed that all states of the transducer
are final. The final states of a Biichi automaton can be encoded in the outputs of
a transducer in the following way. Let A = (Q, E, I, F') be a Biichi automaton.
We construct a transducer 7 by adding an output to any transition of A. A
transition p % ¢ of A becomes p alv, q in 7 where v is empty if p is not final

14

and is equal to a fixed letter b if p is final. It is clear that the output of a path is
infinite iff the path goes infinitely often through a final state. Thus the domain
of the transducer 7 is the set recognized by A. For instance, the domain of
a transducer may be not recognizable by a deterministic Bilichi automaton as
in the following example. It is however true that the domain is closed if the
transducer has no cycling path with an empty output.

ale b|b

OO

ble

Figure 7: Transducer of Example 21

ExAMPLE 21 The domain of the function f realized by the transducer of Fig-
ure 7 is the set (a + b)*b* of words having a finite number of a. The function f
cannot be realized by a sequential transducer since its domain is not a G set.

It must be also pointed out that a function realized by a transducer may be
not continuous although it is supposed that all states of the transducer are final
as it is shown in the following example.

ala blb

ble

Figure 8: Transducer of Example 22

ExAMPLE 22 The image of an infinite word z by the function f realized by
the transducer of Figure 8 is f(z) = a“ if x has an infinite number of a and

15

f(z) = a™b¥ if the number of a in = is n. The function f is not continuous. For
instance, the sequence z,, = b"ab* converges to b* while f(z,) = ab* does not
converge to f(b¥) = b¥.

Proof We first explain why the above three conditions of the proposition are
necessary. The fact that the conditions are sufficient follows from the algorithm
that we describe in Section 3.2.

If the function f is realized by a sequential transducer D, a deterministic
Biichi automaton recognizing the domain of f can be deduced from the input
automaton of D in the following way. Each state ¢ is first split in two states q;
and go. We distribute then the edges arriving in g between ¢; and ¢ according
to the emptiness of their output. Edges with an empty output arrive in ¢; while
edges with a nonempty output arrive in ¢o. The state ¢, is then final and ¢; is
not. If ¢ was initial, exactly one among ¢; and ¢ is then initial. All edges going
out of ¢ are duplicated in edges going out of ¢; and ¢. In symbolic dynamics,
such a transformation is called an input state splitting. It is clear that this
deterministic Biichi automaton recognizes the domain of f. It is also clear that
any sequential function is continuous.

We now prove that the third condition is necessary. We suppose that we
have the following picture representing paths in 7.

ulu’
aOamn OB
u|ull

where 0 and 1 are initial states, u, v', u”, v, v’ and v"" are finite words. Let
D be a sequential transducer realizing the same function as 7. There are in D
paths

oF|lw’

OS 0

where 0 is the initial state, w and w' are finite words. By prolonging the path
in 7 from 0 to 2 (respectively from 1 to 3) with [iterations of the path around 2
(respectively around 3), we can assume without loss of generality that [= 0.
By replacing the cycling path around 2 (respectively around 3) by k iterations
of this path, we can assume that k = 1.

We claim that if the state 2 is not constant, then the equality |w| = |v
holds. Since states 2 and 3 are not constant, then if v = ¢ then v = v"" = ¢ and

'

16

the twinning property is satisfied. We now assume that v is not empty. Let x|z’
and yl|y’ be the infinite labels of two infinite paths leaving 2 such that z' # y'.
There are in D two infinite paths labeled by z|z" and y|y" leaving the state 5
such that

n n
UIUI (I]I — wwl :L,II

ulvlnyl — wwmyu-

If [o'| < |w'|, the words 2’ and y’ have a common prefix of length |w| — |u'| +
n(Jw'|—|v'|) for any large n. This leads to the contradiction that 2’ = y'. If |v'| >
|w'|, the words z" and y” have a common prefix of length |u| —|w|+n(]v'| — |w'])
for any large n. This leads to the contradiction that z'" = y" and 2’ = ¢'.

By symmetry, if the state 3 is not either constant, then the equality also
|w| = |v"| holds and therefore |v'| = |v"|.

If both words v' and v are non empty, then f(uv®) = u'v'” =u"v"*. O

Before describing the algorithm for determinization, we first study a partic-
ular case. It turns out that the first two conditions of the proposition are due to
the fact that the transducer 7 may have cycling paths with an empty output.
If the transducer 7 has no cycling path with an empty output, the previous
proposition can be stated in the following way.

PROPOSITION 23 Let f be a function realized by a transducer T with all states
final. Suppose also that T has no cycling path with an empty output. Let T'
be the transducer obtained by removing from T all constant states. Then the
function f is sequential iff the transducer T' has the twinning property.

If the transducer 7 has no cycling path with an empty output, any infinite
path has an infinite output. Thus, an infinite word x belongs to the domain of f
iff it is the input label of an infinite path in 7. The domain of f is then a closed
set. It is then recognized by a deterministic Biichi automaton whose all states
are final. This automaton can be obtained by the usual subset construction
on the input automaton of 7. Furthermore, if the transducer 7 has no cycling
path with an empty output, the function f is necessarily continuous. This could
be proved directly but it follows from Lemma 31.

We now study the decidability of the conditions of Propositions 20 and 23.
We have the following results.

PROPOSITION 24 [t is decidable if a function f given by a transducer with all
states final is sequential. Furthermore, if the transducer has no cycling path
with an empty output, this can be decided in polynomial time.

Note that the result does not hold if it is not supposed that the transducer
has no cycling path with an empty output. In the general case, the problem
is NP-hard. For any Biichi automaton, consider the transducer obtained by
replacing each transition p % ¢ of the Biichi automaton by a transition p alsy q
if p is not final and by p alb, q for a fixed letter b if p is final. The function

17

maps any infinite word to b* and its domain is exaclty the set of infinite words
recognized by the Biichi automaton. This function is sequential iff its domain
is deterministic. Since testing whether the set of infinite words recognized by a
given non deterministic Biichi automaton is deterministic is an NP-hard prob-
lem, testing whether a function is sequential is also NP-hard.

Proof As explained in the proof of Proposition 20, a Biichi automaton recogniz-
ing the domain of the function can be easily deduced from the transducer. It is
then decidable if this set can be recognized by a deterministic Biichi automaton
[29, Thm 5.3].

It is decidable in polynomial time if a function given by a transducer with
final states is continuous [24].

We now show that the third condition of Proposition 20 can be decided in
polynomial time. Since we have already proved in Lemma 12 that the twinning
property can be decided in a polynomial time, it suffices to prove that the
transducer 7' can be computed in polynomial time. We claim that it can be
decided in polynomial time whether a given state is constant.

Let A be the output automaton of the transducer. By a depth first search, it
can be found two finite words v and v such that |u|+ |v| < n and such that uv*
labels a path leaving q. One constructs a complete deterministic automaton B
recognizing wv¥ with a sink state 0 which is the only non accepting state. We
then consider the synchronized product automaton of A and B. There is a
transition from (p,r) to (p',r’) labelled by a finite word w (perhaps empty) iff
there is a transition from p to p’ in A and a path from r to r’ in B. The infinite
word uwv® is the label of all paths leaving ¢ iff no state (¢, 0) is accessible from
(q,ig) where ip is the initial of B. This naive algorithm runs in quadratic time
for each state g. Therefore the constant states of a transducer can be computed
in cubic time. It turns out that they can be computed in linear time [10]. O

3.2 Determinization of transducers over infinite words

In this section, we describe an algorithm to determinize a real-time transducer
which satisfies the properties of Proposition 20. This algorithm can easily be
adapted to the case when the transducer is not real-time. This algorithm proves
that the conditions of the proposition are sufficient.

Let T = (Q, E,I) be a transducer and let 7' be the transducer obtained
by removing from 7 all constant states. We assume that 7' has the twinning
property. We denote by S the set of constant states. For a state ¢ of S, we denote
by y,, the single output of ¢ which is an ultimately periodic word. We suppose
that the domain of f is recognized by the deterministic Biichi automaton A.
This automaton is used in the constructed transducer to insure that the output
is infinite only when the input belongs to the domain of the function.

We describe the deterministic transducer D realizing the function f. A state
of D is a pair (p, P) where p is a state of A and P is a set containing two kinds
of pairs. The first kind are pairs (g, z) where ¢ belong to @ \ S and z is a finite
word over B. The second kind are pairs (g, z) where ¢ belongs to S and z is
an ultimately periodic infinite word over B. We now describe the transitions

18

of D. Let (p, P) be a state of D and let a be a letter. Let R be equal to the set
defined as follows

R={(¢,2w) | ¢ ¢ S and 3(q,z) € P, q¢Sandqﬂ>q' € B}

U{(¢,zwyy) | ¢ € Sand I(q,z) € P, ¢ ¢ S and ¢ ICN q € E}

U{(¢',2) | ¢ € Sand 3(q,2) € P, g€ S and ¢ alw, q € E}.

We now define the transition from the state (p, P) input labeled by a. If R is
empty, there is no transition from (p, P) input labeled by a. Otherwise, the
output of this transition is the word v defined as follows. Let p % p' be the
transition in A from p labeled by a. If p’ is not a final state of A, we define v as
the empty word. If p’ is a final state, we define v as the first letter of the words
z if R only contains pairs (¢, z) with ¢’ € S and if all the infinite words z are
equal. Otherwise, we define v as the longest common prefix of all the finite or
infinite words z for (¢’,z) € R. The state P’ is then defined as follows

P'={(d,2)| (¢',v2) € R}.

There is then a transition (p, P) alv, (p', P") in D. The initial state of D is
the pair (i4,.J) where i4 is the initial state of A and where J = {(i,e) | i €
Tandi ¢ SYU{(i,y;) | i € I and i € S}. If the state p’ is not final in A4, the
output of the transition from (p, P) to (p', P') is empty and the words z of the
pairs (g, z) in P, may have a nonempty common prefix. We only keep in D the
accessible part from the initial state. The transducer D has a deterministic input
automaton. It turns out that the transducer D has a finite number of states.
This will be proved in Lemma 33. It will be also proved in Proposition 34 that
the transducer D realizes the same function as 7.

ala ale
blb

claa

Figure 9: Transducer of Example 25

ExaAMPLE 25 Consider the transducer pictured in Figure 9. A deterministic
Biichi automaton recognizing the domain is pictured in Figure 10. If the algo-
rithm for determinization is applied to this transducer, one gets the transducer
pictured in Figure 11.

The following lemma states the main property of the transitions of D.

19

Figure 11: Determinization of the transducer of Figure 9

LEMMA 26 Let u be a finite word. Let (i4,J) RULN (p, P) be the unique path
in D with input label u from the initial state. Then, the state p is the unique
state of A such that iq - p is a path in A and the set P is equal to

Pz{(qaz)|3iﬂ>qin75uchthatv'=vz ifqé¢ S

v'y, = vz if g € S}

Proof The proof of the lemma is by induction on the length of u. Let us
consider the following path in D

ulv alt

(iAaJ) — (pa P) — (plapl)

where a is a letter. Let (¢',2') be a pair in P'. If ¢’ ¢ S, there is a pair (g, 2)
in P and a transition ¢ 4% ¢’ in 7. If both states ¢ and ¢’ do not belong
to S, the proof is similar to the proof of Lemma 13. If ¢ ¢ S and ¢’ € S, one
has ¢z’ = zt'y,. By the induction hypothesis, there is a path i vz g in T
One finally gets vtz = vzt'yy. If ¢ € S and ¢' € S, one has t2' = 2. By the
induction hypothesis, there is a path ¢ RULIN g in 7 such that v'y, = vz. Since

Yq = t'yq, one finally gets viz' = v't'y,. O

The previous lemma has the corollary which states that each state ¢ is the
first component of at most one pair (g, z) in the second component P of a state
(p, P) of D.

COROLLARY 27 Let q be a state of T and let (p, P) be a state of D. The subset P
contains at most one pair (q,z).

20

Proof Let (ia,J) RULN (p, P) be a path in D and let (g, z) and (g, z') be two
pairs in P.

We first suppose that ¢ is not constant. Let z|y and z'|y’ be two pairs
of infinite words which label two paths leaving ¢ such that y # y'. By the
previous lemma, there are two paths 4 oz, g and 7' RUICEAN q in 7. One has
fluz) = vzy = v2'y and f(uz') = vzy' =v2'y’. If 2 # 2/, it may be assumed by
symmetry that |2’'| > |z| and that 2z’ = zw for some finite word w. This leads
to the contradiction y = y' = w¥.

We now suppose that ¢ is constant. Let x|y be a pair of infinite words which
labels a path leaving g. By the previous lemma, there are two paths i w, q
and ' ﬂ@) ¢ in T such that wy = vz and w'y = vz’. Furthermore, one has
fluz) = wy = w'y and thus z = 2'. O

We now introduce some technical property of the paths of a transducer. This
property is a kind of twinning property when the output of one of the cycling
paths is empty. Its turns out that this property is equivalent to the continuity
of the function realized by the transducer when it is already supposed that the
transducer has the twinning property. Let 7 be a transducer and let S be its set
of constant states. The transducer 7T is said to have the e-compatibility property
iff for any pair of paths

. ulu v|v'
i—q—q
| ; vle

. uu” ,
L ——q —(q

such that 7 and i’ are two initial states and v’ is a nonempty word, the state ¢’
is constant and its constant y, satisfies u'"y, = u'v'“. If the states ¢ and ¢ are
twinned, there cannot be a pair of such paths. If the output along the second
cycling path is empty, the output along the first cycling path should also be
empty. The above conditions add some compatibility of the outputs when ¢
and ¢’ are not twinned.

The following lemma states that if the function realized by the transducer is
continuous, then the transducer has the e-compatibility property. The converse
is established in Lemma 31.

LEMMA 28 Let T be transducer realizing a function f on infinite words. If the
function f is continuous, then the transducer T has the e-compatibility property.

Proof Let x|y be a pair of infinite words which labels a path leaving ¢'. For
any integer n, one has f(uv"z) = u"y and f(uv*) = u''y by continuity of f.
Since f(uv®) = u'v'”, the state ¢’ is constant and its constant y, satisfies

w
u'yy = uv'. O

For a finite word w and an infinite word x, we denote by d(w,z) the integer
|w| — |w A z| where w A x is the longest common prefix of w and . Remark that
d is not a distance but Lemma 15 still holds when v is an infinite word.

21

LEMMA 29 Let T be a transducer. Suppose that T has the e-compatibility prop-
erty and that T' h‘as the twinnilng property. There is a constant K such that for
ulv 1 ulv

any two paths i =% q and i' % ¢' where i and i’ are initial states, ¢ ¢ S and
q €8S, one has

d(v,v'y,) < K.

Proof Let K be equal to n>M where n is the number of states of the transducer
and M is the maximal length of the output label of a transition. We prove
d(v,v'y,) < K by induction on the length of u. If |u| < n?, the result holds by
definition of K. Otherwise, both paths can be factorized

. ug|vr uz|va uz|vz
) > > >

it ullvll) / Uz\vé) ; uslvg "
where |us| > 0 and |uz] < n?. If both words vy and v} are empty, the result
follows directly from the induction hypothesis. Thus, we may assume that one
the words v or v} is not empty. Since ¢ does not belong to S, p does not belong
to S either. The e-compatibility property implies then that vs cannot be empty.

We first suppose that p’ ¢ S. By the twinning property, Lemma 15 and
the above remark, one has d(v1vavs, v]vhviyy) = d(vivs, viviy,) and the result
follows from the induction hypothesis.

We now suppose that p' € S and we claim that v{vhviy, = v1v§. Since p'
is constant, y, = viy, . If the word v} is empty, the e-compatibility property
implies that v]y, = v1v5. If v} is nonempty, y,» = vh“. Since f(uiuy) = v1v§ =
vivy*, the claimed equality holds. In both cases, one has d(vivavs, v} vhviy,) =
d(vivavs, v1v§) < |vs| < K. O

The following lemma, states some technical consequence of the e-compatibility
property.

LEMMA 30 Let T be a transducer which has the e-compatibility property and let
f the function realized by T . Then if x is in the domain of f and x is the input
label of a path entirely out of S, the output of this path is infinite and is thus
equal to the image of x by f.

Proof Suppose that z is the input label of two paths v and «'. Suppose also
that all states of v do not belong to S and the output along ' is an infinite
word. Since the number of states is finite, both paths v and ' can be factorized

uo"vo\ q u1|v1\ q ug"vg\
7

y=i

’ I ’
/ g wolvg , wilvy y welvy
> q > q > cee

T =1

Furthermore, it can be assumed that each vj, is nonempty since vyvivy ... is an
infinite word. By hypothesis, this implies that each v, is also nonempty. O

22

The following lemma states a kinf of converse of Lemma 28. It shows in
particular that if a transducer 7 has no cycling path with an empty output and
if 7' has the twinning property, then the function realized by T is continuous.
If and y are two infinite words, d(x,y) denotes the usual distance between x
and y which makes the set A“ of all infinite words a compact space.

LEMMA 31 Let T be a transducer which has the e-compatibility and such that
T' has the twinning property. Then the function realized by T is continuous.

Proof Let f be the function realized by the transducer 7 and let z be an
infinite word in the domain of f. We claim that for any integer m there is an
integer k such that for any infinite word 2’ also in the domain f, the inequality
d(z,2") < 2% implies the inequality d(f(z), f(2')) < 27™. Let y = f(z) be the
image of z. Let -y be a path labeled by z|y and let i be the initial state of .
Let +' be a path labelled by (z',3') where y' = f(2'). According to the previous
lemma, it can be assumed that either there is a path entirely out of S which is
labeled by z|y or that z is not the input label of a path entirely out of S.

We first suppose that the path v is entirely out of S. By Lemma 15, there
is a constant K such that if i 4% q and i’ RULIN q' are two paths with ¢ ¢ S
and ¢' ¢ S, then one has d(v,v") < K. By Lemmas 28 and 29, there is another
constant K’ such that if ¢ “—1”> q and ¢’ v’y q' are two paths with ¢ ¢ S and
q' € S, then one has d(v,v'yy) < K. Let k be chosen such that the output
along the first k transitions of v has a length greater then m + max(K, K').
Let ¢ be the state of v reached after k transitions and let v be the output of '
along the first k transitions. Suppose that z' satisfies d(z,z') < k and that 4’
is a path labeled by «'|y’ where y' = f(z'). Let i’ the initial state of 7' and
let ¢’ be the state of 7' reached after k transitions. If ¢’ does not belong to S,
one has d(v,v") < K where v’ is the output of 4" along the first & transitions.
Since |v| > m + K, one has |v Av'| > m and thus d(y,y’) < 27™. If ¢’ belongs
to S, one has d(v,y') < K'. Since |v| > m + K', one has |[v Ay'| > m and thus
d(y,y') <27™.

We now suppose that = is not the input label of a path entirely out of S.
There is then an integer K such that any path input labeled by a prefix of = of
length greater than K ends in a state of S. Let k be equal to K + K’ where K’
is the length of part of inside S which contains at least n? transitions with a
nonempty output. If d(x,z') < 27% both paths v and 4’ can be factorized

_ uo\vo\ U1\U1\ u2|v2\
e N .

’ ’ ! !
Iy U‘O‘UO\ ! “1\1)1) ! u2|v2\

where ugujus = z, uguiuh = ', vy is nonempty and ¢ and ¢’ belong to S. We
claim that y = y’. One has y = vy, and y' = vjy,. Since vy is nonempty,
one also has y, = v{. If v] is also nonempty, one has y,, = v{“ and f(uouy) =
vovy = vhvl“ and thus y = y'. If the word v] is empty, the e-compatibility

property implies voy, = vjyy and y =y'.

23

In both cases, an integer k satisfying the claimed property has been found.
The function f is then continuous. O

The following lemma states that the lengths of the words z of the pairs (g, z)
in the states of D are bounded. It is essentially due to the twinning property

of T'.

LEMMA 32 There is a constant K such that for any pair (q,z) in P of a state
(p, P) of D where q ¢ S and z is a finite word, one has |z| < K.

Proof Let m and n be the respective numbers of states of 4 and 7. By Lemma
16 and 29, there is a constant K’ such that if i 4% ¢ and &' RUUN q' are two
paths such that ¢ ¢ S, then one has d(v,v") < K'if ¢’ ¢ S or d(v,v'yy) < K'
if ¢ € S. Let K = K' + mnM where M is the maximal length of the output
label of a transition in 7. Let (p, P) be a state of D and consider a path

(i, 1) 5 (o P') 5 (o, P)
where p' is a final state of A. If there is no path from (i4,J) to (p, P) which
goes through a state (p', P’) with p’ final, we assume that (p', P') is actually
(ia,J). The proof is by induction on the length of u. If |u| = 0, the state p
is actually a final state of A. In the case where p is final, the longest common
prefix of the words z of the pairs (¢,2) in P is empty. Lemmas 16, 26 and 29
imply that |z| < K'. We now suppose that p is not final. If |u| < mn, the
result follows from the definition of the transitions of D. We now suppose that
|u] > mn and that (p’, P’) is the last state along the path from (i4, J) to (p, P)
such that p' is a final state of A. Let (g, z) be a pair in P such that ¢ ¢ S and
z is a finite word. By definition of the transitions of D, there is a pair (¢’,2')
in P’ and a path ¢’ w, g in T such that z'w = vz. There is also a path p' % p
in A. Since |u| > mn, both paths can be factorized

pl u1 5 pll u2 5 pll u3 s p

’ ul\wl\ " “2|“’2\ 1" “3\11’3\
7 7

where ujusuz = u and wiwsws = w. Since the cycling path p” % p" in A
does not contain any final state, the infinite word v'uiu$ does not belong to
the domain of f. This implies that the word ws is empty. We then consider the
path

uug v

(plapl) B (p7 P”)

in D. The subset P" contains a pair (g, z'") for some finite word z”. We claim

that z"” = 2. Indeed, one has z'wjwowz = 2'wiws = vz = v"z". As both

paths p' 142%% p and p’ % p in A4 contain no other final state than p, both
outputs v and v” along the corresponding paths in D are empty. Thus one gets

z = 2z". By the induction hypothesis, one has |z| = |2"| < K. O

24

It is now possible to prove that the transducer D has a finite number of
states. However, the number of states of D can be exponential as in the case of
finite words.

LEMMA 33 The number of states of D is finite.

Proof We have proved in the preceding lemma that the lengths of the finite
words z are bounded. It remains to show that there is a finite number of
different infinite words z which can appear in some pair (g, z). By definition of
the transitions, any infinite word z of a pair is the suffix of z'wy, where (¢, z')
is a pair such that ¢’ ¢ S and 2’ is finite and where ¢ € S and ¢' alw, qis a
transition of 7. Since the length of z' is bounded, the number of such words
z'wy, is finite and they are ultimately periodic. There are then a finite number
of suffixes of such words. [

The following proposition finally states that the sequential transducer D is
equivalent to the transducer 7. Both transducers realize the same function over
infinite words.

PROPOSITION 34 The sequential transducer D realizes the same function f as
the transducer T .

Proof We respectively denote by f and f' the functions realized by the trans-
ducer 7 and D. We first prove that if an infinite word z belongs to the domain
of f, it also belongs to the domain of f’ and f(z) = f'(z).

Let © = agajas ... be an infinite word which is in the domain of f. Let

be a path
v =1 ao|v0/ a1 al‘vl> q> azm/ (1)
be a path in 7 input labeled by 2 and whose output vovivs ... is an infinite

word. Consider the unique path I' in D input labeled by =

Fz(iAaJ)ao—%>(p1,P1)al—‘vl>(p2,P2)a2—‘v2>"' (2)
By Lemma 26, each state P,, contains a pair (g, z,).

We first suppose that z input labels a path in 7 entirely out of S. By
Lemma 30, it can be assumed that each state g, does not belong to S and that
each z, is finite. By Lemma 26, the equality vg...v, = v} ...v}z, holds for
any integer n. By Lemma 32, the lengths of the words z, are bounded. This
implies the equality vovivs ... = vjvivh ... of the two outputs.

We now suppose that x is not the input label of a path entirely out of S.
There is then an integer n such that for any m > n, P, only contains pairs
(q,z) with ¢ € S and z infinite. Both path v and T can be factorized

uo"vo U1"U1 ug"vg
E— > >

uq |v} us \vé\

1)(p,P) ,(p’P)

25

Furthermore, it can be assumed that each v, is nonempty. Thus each path
p % pin A contains a final state of A. The single output of the state ¢ is v{.
By Lemma 26, the subset P contains a pair (g,z) and voy, = vovy = vjz.

Let (go, z') be another pair in P. By definition of the transitions of D, there
is a sequence (g,)n>0 Of states such that the pairs (g,,v}"2’) belong to P. Since
there is a finite number of states, there are n < m such that ¢, = ¢,. This
implies that there is in 7 a cycling path around ¢, input labeled by u{" ". Let
q" = qn = qm. We first claim that v{"z' = 2'. If the word v} is empty, this is
obvious. Otherwise, Corollary 27 implies that v}"z' = v|™2'. Thus 2’ = v}“
and the equality v}"z’ = 2’ also holds, The subset P contains a pair (¢",z').
By Lemma 26, there is a path i olvTy q" in T such that vjz' = v"y,. By
construction, there is also a cycling path around ¢" input labeled by ui"". We
suppose that the output label of this cycling path is the word w. If the word w
is empty, Lemma 28, states that v"'y,» = vovy. Thus, one has vyz' = v"y, =
vovy = vpz and z = 2’. If the word w is nonempty, one has y,» = w* and
fluouy) = v"w* = vovy. This implies z = 2'.

Since we have proved that all pairs (g, z) in P share the same infinite word z
and since each path p % p contains a final state, each word v} is nonempty by
definition of the transitions of D and the equality vjvivs... = z holds. This
last equality implies that voy, = vz = v{vivh ... and that f(z) = f'(z).

Conversely, the definition of the transitions of D implies that the domain
of f' is contained in the domain of f. Thus both functions f and f’ have the
same domain and f = f'. O

We have already mentioned in Proposition 24 that it can be decided whether
a function over infinite words realized by a transducer with all states final is
sequential. As in the case of finite words, the algorithm described above provides
another decision procedure. Indeed, Lemma 32 gives an upper bound K of the
lengths of finite words which can appear in states of D. Let T be a transducer
with all states final realizing a function f. If the algorithm is applied to T,
either it stops and gives a sequential transducer D or it creates a state (p, P)
containing a pair (g¢,z) such that the length of z is greater than K. In the
former case, the sequential transducer D is equivalent to 7 and the function f
is sequential. In the latter case, the function f is not sequential.

Acknowledgments

The authors would like to thank Jean Berstel for very helpful suggestions and
Christian Choffrut for his relevant comments on a preliminary version of this

paper.

References

[1] BEAL, M.-P. Codage Symbolique. Masson, 1993.

26

2]

3]

[4]

[6]

[7]

[8]

[9]
[10]

[11]

BEaL, M.-P., AND CARTON, O. Computing the prefix of an automaton.
Tech. Rep. 2000-08, Institut Gaspard Monge, 2000.

BEAL, M.-P., AND CARTON, O. Determinization of transducers over infi-
nite words. In ICALP’2000 (2000), U. Montanari et al., Eds., vol. 1853 of
Lect. Notes in Comput. Sci., pp. 561-570.

BEAL, M.-P., CARTON, O., PRIEUR, C., AND SAKAROVITCH, J. Squaring
transducers: An efficient procedure for deciding functionality and sequen-
tiality. In LATIN’2000 (2000), G. Gonnet, D. Panario, and A. Viola, Eds.,
vol. 1776 of Lect. Notes in Comput. Sci., pp. 397—406.

BERSTEL, J. Transductions and Context-Free Languages. B.G. Teubner,
1979.

BERSTEL, J., AND PERRIN, D. Finite and infinite words. In Algebraic
Combinatorics on Words, M. Lothaire, Ed. Cambridge, 1999. to appear.

BLATTNER, M., AND HEAD, T. Singled valued a-transducers. J. Comput.
System Seci. 15 (1977), 310-327.

BRESLAUER, D. The suffix tree of a tree and minimizing sequential trans-
ducers. In CPM’96 (1996), vol. 1075 of Lect. Notes in Comput. Sci.,
Springer-Verlag, pp. 116-129.

BRESLAUER, D. The suffix tree of a tree and minimizing sequential trans-
ducers. Theoret. Comput. Sci., 191 (1998), 131-144.

CARTON, O., CHOFFRUT, C., AND PRIEUR, C. How to decide function-
ality of rational relations on infinite words. Preprint.

CHOFFRUT, C. Une caractérisation des fonctions séquentielles et des fonc-
tions sous-séquentielles en tant que relations rationnelles. Theoret. Comput.
Sei. 5 (1977), 325-338.

CHorFrUT, C. Contribution a l’ézfude de quelques familles remarquables
de fonctions rationnelles. These d’Etat, Université Paris VII, 1978.

CHOFFRUT, C. A generalization of Ginsburg and Rose’s characterization
of gsm mappings. In ICALP’79 (1979), vol. 71 of Lect. Notes in Comput.
Seci., pp. 88-103.

CoHEN, A., AND COLLARD, J.-F. Instance-wise reaching definition anal-
ysis for recursive programs using context-free transductions. In PACT’98

(1998).

CorMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. Introduction to
Algorithms. MIT Press, 1990.

EILENBERG, S. Automata, Languages and Machines, vol. A. Academic
Press, New York, 1972.

27

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

FrouaNy, C. Numeration systems. In Algebraic Combinatorics on Words,
M. Lothaire, Ed. Cambridge, 1999. to appear.

GIRE, F. Two decidability problems for infinite words. Inform. Proc.
Letters 22 (1986), 135-140.

KitcHENS, B. Continuity properties of factor maps in ergodic theory.
Ph.D. thesis, University of North Carolina, Chapel Hill, 1981.

LinD, D., AND MARCUS, B. An Introduction to Symbolic Dynamics and
Coding. Cambridge University Press, 1995.

MouRI, M. Minimization of sequential transducers. In CPM’94 (1994),
M. Crochemore and D. Gusfield, Eds., vol. 807 of Lect. Notes in Comput.
Sci., Springer-Verlag, pp. 151-163.

MouriI, M. On some applications of finite-state automata theory to natural
languages processing. Journal of Natural Language Engineering 2 (1996),
1-20.

MoHnRrI, M. Minimization algorithms for sequential transducers. Theoret.
Comput. Sci., 234 (2000), 177-201.

PRrRIEUR, C. How to decide continuity of rational functions on infinite
words. Theoret. Comput. Sci. (1999).

RoOCHE, E., AND SCHABES, Y. Finite-State Language Processing. MIT
Press, Cambridge, 1997, ch. 7.

SAFRA, S. On the complexity of w-automata. In 29th Annual Symposium
on Foundations of Computer Sciences (1988), pp. 24-29.

SCHUTENBERGER, M.-P. Sur les relations rationnelles. In Automata The-
ory and Formal Languages, 2nd GI Conference (1975), H. Brakhage, Ed.,
vol. 33 of Lect. Notes in Comput. Sci., Springer, pp. 209-213.

SCHUTENBERGER, M.-P. Sur une variante des fonctions séquentielles. The-
oret. Comput. Sci. 11 (1977), 47-57.

TrOMAS, W. Automata on infinite objects. In Handbook of Theoreti-
cal Computer Science, J. van Leeuwen, Ed., vol. B. Elsevier, 1990, ch. 4,
pp. 133-191.

WEBER, A., AND KLEMM, R. Economy of description for single-valued
transducers. In STACS’94 (1994), vol. 775 of Lect. Notes in Comput. Sci.,
Springer-Verlag, pp. 607-618.

WEBER, A., AND KLEMM, R. Economy of description for single-valued
transducers. Inform. Comput. 118 (1995), 327-340.

28

