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h 27, 2001Abstra
tWe study the determinization of transdu
ers over �nite and in�nitewords. The �rst part of the paper is devoted to �nite words. We re
all the
hara
terization of subsequential fun
tions due to Cho�rut. We des
ribehere a known algorithm to determinize a transdu
er.In the 
ase of in�nite words, we 
onsider transdu
ers with all theirstates �nal. We give an e�e
tive 
hara
terization of sequential fun
tionsover in�nite words. We des
ribe an algorithm to determinize transdu
ersover in�nite words. This part 
ontains the main novel results of the paper.1 Introdu
tionThe aim of this paper is the study of determinization of transdu
ers, that isof ma
hines realizing rational transdu
tions. A transdu
er is a �nite state au-tomaton (or a �nite state ma
hine) whose edges are labeled by pairs of wordstaken in �nite alphabets. The �rst 
omponent of ea
h pair is 
alled the inputlabel. The se
ond one the output label. The transdu
ers that we 
onsider havea

epting (or �nal) states. Su
h transdu
ers are sometimes 
alled a-transdu
ers(a for a

epting). The rational relation de�ned by a transdu
er is the set ofpairs of words whi
h are labels of an a

epting path in the transdu
er. Weassume that the relations de�ned by our transdu
ers are fun
tions. This is ade
idable property.The study of transdu
ers has many appli
ations. Transdu
ers are used tomodel 
oding s
hemes (
ompression s
hemes, 
onvolutional 
oding s
hemes,1




oding s
hemes for 
onstrained 
hannels, for instan
e). They are widely used in
omputer arithmeti
 [17℄ and in natural language pro
essing [25℄. Transdu
ersare also used in programs analysis [14℄. The determinization of a transdu
er isthe 
onstru
tion of another transdu
er whi
h de�nes the same fun
tion and hasa deterministi
 (or right resolving) input automaton. Su
h transdu
ers allow asequential en
oding and thus are 
alled sequential transdu
ers.In the �rst part of the paper, we present a short survey of the determiniza-tion of transdu
ers realizing fun
tions over �nite words. Our transdu
ers mayhave �nal states. We present some known results about subsequential fun
tions,that is fun
tions that 
an be realized by transdu
ers with a deterministi
 inputbut that may have an output fun
tion de�ned on states. The notion of subse-quential fun
tions has been introdu
ed by S
h�utzenberger [28℄. We re
all the
hara
terization of subsequential fun
tions obtained by Cho�rut [11, 12℄. This
hara
terization gives a de
ision pro
edure for the subsequentiality of fun
tionsde�ned by a transdu
er. It has been proved in [30, 31℄ that this 
an be de
idedin polynomial time. We give another proof of this result whi
h is a 
onsequen
eof the de
idability in polynomial time of fun
tionality over in�nite words [10℄.Another proof of the same result is given in [4℄. The de
idability of fun
tionalitywas already proved by Gire [18℄. We also des
ribe the algorithm to determinizea transdu
er. This algorithm takes a real-time transdu
er whi
h realizes a sub-sequential fun
tion and outputs a subsequential transdu
er. This algorithm isa
tually 
ontained in the proof of Cho�rut [11, 12℄ (see also [5, p. 109{110℄).This algorithm has also been des
ribed by Mohri [22℄ and Ro
he and Shabes[25, p. 223{233℄.The determinization of a transdu
er realizing a subsequential fun
tion fprovides a subsequential transdu
er realizing f . If the fun
tion is sequential,this subsequential transdu
er 
an be transformed into a sequential one. This
an be obtained by the normalization of a transdu
er introdu
ed by Cho�rut[12, 13℄. EÆ
ient algorithms that 
ompute the normalization have been givenin [21, 23℄, [8, 9℄ and [2℄.In the se
ond part of the paper, we 
onsider transdu
ers and fun
tions overin�nite words and our transdu
ers have all their states �nal. The reason why weassume that all states are �nal is that the 
ase of transdu
ers with �nal statesseems to be mu
h more 
omplex. Indeed, the determinization of automata overin�nite words is already very diÆ
ult [26℄. In parti
ular, it is not true that anyrational set of in�nite words is re
ognized by a deterministi
 automaton with�nal states. Other a

epting 
onditions, as the Muller 
ondition for instan
e,must be used.We �rst give an e�e
tive 
hara
terization of sequential fun
tions over in�nitewords. This 
hara
terization extends to in�nite words the twinning propertyintrodu
ed by Cho�rut [11℄. We prove that a fun
tion is sequential if it isa 
ontinuous map whose domain 
an be re
ognized by a deterministi
 B�u
hiautomaton, and su
h that the transdu
er obtained after removing some spe
ialstates has the twinning property. These 
onditions 
an be simpli�ed in the
ase where the transdu
er has no 
y
ling path with an empty output label. Weuse this 
hara
terization to des
ribe an algorithm 
he
king whether a fun
tion2



realized by a transdu
er is sequential. This algorithm be
omes polynomial whenthe transdu
er has no 
y
ling path with an empty output label. Finally, we givean algorithm to determinize a real-time transdu
er. The algorithm 
an be easilyadapted to the 
ase when the transdu
er is not real-time. The algorithm is mu
hmore 
omplex than in the 
ase of �nite words. It is the main result of the paper.These determinizations do not preserve the dynami
 properties of the trans-du
ers as the lo
ality of its output. We mention that in [19℄, an algorithm isgiven to determinize transdu
ers over bi-in�nite words that have a right 
losinginput (or that are n-deterministi
 or deterministi
 with a �nite delay in theinput) and a lo
al output (see also [20, p. 143℄ and [1, p. 110{115℄). This al-gorithm preserves the lo
ality of the output. These features are important for
oding appli
ations.The paper is organized as follows. Se
tion 2 is devoted to transdu
ers over�nite words. Basi
 notions of transdu
ers of rational fun
tions are de�ned atthe beginning of this se
tion. The 
hara
terization of subsequential fun
tionsis re
alled in Se
tion 2.1 while the algorithm for determinization of transdu
ersis des
ribed in Se
tion 2.2. The 
hara
terization of sequential fun
tions amongsubsequential ones is re
alled in Se
tion 2.3. Se
tion 3 is devoted to transdu
ersover in�nite words. We give in Se
tion 3.1 a 
hara
terization of sequentialfun
tions while the algorithm for determinization of transdu
ers is des
ribedin Se
tion 3.2. In both 
ases of �nite and in�nite words, we give examples ofdeterminization of transdu
ers.Part of the results of the present paper was presented at the 
onferen
eICALP'2000 [3℄.2 Transdu
ers over �nite wordsIn the sequel, A and B denote �nite alphabets. The free monoid A� is the setof �nite words or sequen
es of letters of A. The empty word is denoted by ".We denote the fa
t that a �nite word u is a pre�x of a �nite word v by u � v.The relation � is a partial order. If u is a pre�x of v, we denote by u�1v theunique word w su
h that v = uw.A transdu
er over the monoid A� � B� is 
omposed of a set Q of states, aset E � Q � A� � B� � Q of edges and two sets I; F � Q of initial and �nalstates. An edge e = (p; u; v; q) from p to q is denoted by p ujv��! q. The state pis the origin, u is the input label, v is the output label, and q is the end. Thus,a transdu
er is the same obje
t as an automaton, ex
ept that the labels of theedges are pairs of words instead of letters.A transdu
er is often denoted by A = (Q;E; I; F ), or also by (Q;E; I) if allstates are �nal, i.e., Q = F .A path in the transdu
er T is a sequen
ep0 u0jv0���! p1 u1jv1���! � � � unjvn���! pnof 
onse
utive edges. Its input label is the word u = u1u2 � � �un whereas itsoutput label is the word v = v1v2 � � � vn. The path leaves p0 and ends in pn.3



The path is often denoted p0 ujv��! pn:A path is su

essful if it leaves an initial state and ends in a �nal state. The setre
ognized by the transdu
er is the set of labels of its su

essful paths, whi
h isa
tually a relation R � A��B�. The transdu
er 
omputes a fun
tion if for anyword u 2 A�, there exists at most one word v 2 B� su
h that (u; v) 2 R. We
all it the fun
tion realized by the transdu
er. A transdu
er whi
h realizes afun
tion is sometimes 
alled single-valued in the literature. Thus a transdu
er
an be seen as a ma
hine 
omputing nondeterministi
ally output words frominput words. We denote by dom(f) the domain of the fun
tion f .A transdu
er is �nite if its set of states and its set of transitions are �nite.It is a 
onsequen
e of Kleene's theorem that a subset of A� � B� is a rationalrelation if and only if it is the set re
ognized by a �nite transdu
er.
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Figure 1: A transdu
er for the relation (a2; b2)� [ (a2; 
2)�(a; 
).Example 1 (from [5℄) The automaton of Figure 1 re
ognizes the relation (a2; b2)�[(a2; 
2)�(a; 
) over the alphabets A = fag and B = fb; 
g. This relation is a
tu-ally the fun
tion whi
h maps an to bn if n is even and to 
n if n is odd.Let T be a transdu
er. The underlying input automaton (respe
tively un-derlying output automaton) of T is obtained by omitting the output label (re-spe
tively input label) of ea
h edge.A transdu
er is said to be real-time if it is labeled in A�B�. It 
an be provedthat any rational fun
tion 
an be realized by a real-time transdu
er. Further-more, from any transdu
er realizing a fun
tion 
an be 
omputed in polynomialtime an equivalent real-time transdu
er (see for instan
e [31, Prop. 1.1℄). We saythat a transdu
er T is sequential if it is real-time and if the following 
onditionsare satis�ed.� it has a unique initial state, 4



� the underlying input automaton is deterministi
.These 
onditions ensure that for ea
h word u 2 A�, there is at most one wordv 2 B� su
h that (u; v) is re
ognized by T . Thus, the relation 
omputed byT is a partial fun
tion from A� into B�. A fun
tion is sequential if it 
an berealized by a sequential transdu
er.Remark 2 In [16, p. 299℄, [5℄ and [6℄, it is assumed that all states of a sequen-tial transdu
er are �nal. We follow the de�nition of Cho�rut [11, 12℄ wheresequential transdu
er may have �nal states. Thus, some 
hara
terizations thatwe give below di�er from those presented in [5℄ for this reason. When all statesare �nal, the domain of a sequential fun
tion is pre�x 
losed, i.e., if uv belongsto the domain then u also belongs to the domain. As our de�nition allows �nalstates, the domain of a sequential fun
tion is not ne
essarily pre�x 
losed.
0 1aja ajabjbbjaFigure 2: A sequential transdu
er.Example 3 Let A = B = fa; bg be the input and the output alphabets. Thetransdu
er of Figure 2, whose initial state is 0, is sequential. It repla
es by athose b's whi
h appear after an odd number of b. On the 
ontrary, the trans-du
er of Example 1 is not sequential. A
tually, the fun
tion 
omputed by thistransdu
er is not sequential. Indeed, one may verify that if f is sequential, andif u and v are two words of dom(f) su
h that u � v, then f(u) � f(v).Remark 4 If f is a sequential fun
tion and if f(") is de�ned, then f(") = ".To remove this restri
tion, it is possible to add an initial word asso
iated withthe initial state. This word is output before any 
omputation. This initial wordis ne
essary to get the uni
ity of a minimal sequential transdu
er [28, 12℄.A subsequential transdu
er (A; �) over A� � B� is a pair 
omposed of asequential transdu
er A over A� � B� with F as set of �nal states, and of afun
tion � : F ! B�. The fun
tion f 
omputed by (A; �) is de�ned as follows.Let u be a word in A�. The value f(u) is de�ned if and only if there is a pathi ujv��! q in A with input label u, from the initial state i to a �nal state q. Inthis 
ase, one has f(u) = v�(q). Thus, the fun
tion � is used to append a wordto the output at the end of the 
omputation. A fun
tion is subsequential if it
an be realized by a subsequential transdu
er.5



Remark 5 Any sequential fun
tion is subsequential. It suÆ
es to 
onsider thefun
tion � su
h that �(q) = " for any �nal state q.
0 1a baja aja bjbbjb

Figure 3: A subsequential transdu
er.Example 6 The fun
tion f realized by the subsequential transdu
er pi
turedin Figure 3 appends to ea
h word its last letter. The word u is mapped to uaif it ends with an a and it is mapped to ub if it ends with a b. This fun
tion issubsequential but it is not sequential. Indeed, for any word w, f(wa) is not apre�x of f(wab).2.1 Subsequential fun
tionsIn this se
tion, we present some known results about subsequential fun
tions.We re
all the 
hara
terization of subsequential fun
tions obtained by Cho�rut[11, 12℄. It is known that it is de
idable whether a fun
tion realized by atransdu
er is subsequential. It has been proved in [30, 31℄ that this 
an bede
ided in polynomial time. We give here another proof of this result whi
his a 
onsequen
e of the de
idability in polynomial time of fun
tionality overin�nite words [10℄. We also des
ribe the algorithm to determinize a real-timetransdu
er. This algorithm takes a transdu
er whi
h realizes a subsequentialfun
tion and outputs a subsequential transdu
er. This algorithm is a
tually
ontained in the proof of Cho�rut [11, 12℄ and [5, p. 109{110℄. It has also beendes
ribed by Mohri [21, 23℄ and Ro
he and Shabes [25, p. 223{233℄.If the fun
tion is a
tually sequential, this subsequential transdu
er is againtransformed in a sequential transdu
er by the algorithm des
ribed in Se
tion 2.3.We give below two 
hara
terizations of subsequential fun
tions that havebeen obtained by Cho�rut (see [11, 12℄ and [5, p. 105℄). The �rst 
hara
teriza-tion is intrinsi
 to the fun
tion. It is based on metri
 properties of the fun
tion.The se
ond 
hara
terization is e�e
tive. It is based on a property 
alled twin-ning property of a transdu
er realizing the fun
tion. As it has been shown in[30, 31℄, this property 
an be de
ided in polynomial time.Some notation is needed to state the 
hara
terization of subsequential fun
-tions. We �rst introdu
e a distan
e d on �nite words. Let u; v be two �nitewords, we denote by d the distan
e su
h thatd(u; v) = juj+ jvj � 2ju ^ vj;6



where u ^ v is the longest 
ommon pre�x of u and v (see [5, p. 104℄).A partial fun
tion f : A� ! B� has bounded variation if and only if:8k � 0 9K � 0 8u; v 2 dom(f) d(u; v) � k ) d(f(u); f(v)) � K:The de
idability of the subsequentiality is essentially based on the followingnotion introdu
ed by Cho�rut [12, p. 133℄ (see also [5, p. 128℄). Two states qand q0 of a transdu
er are said to be twinned i� for any pair of pathsi uju0��! q vjv0��! qi0 uju00���! q0 vjv00���! q0where i and i0 are two initial states, the output labels satisfy the followingproperty. Either v0 = v00 = " or there exists a �nite word w su
h that eitheru00 = u0w and wv00 = v0w, or u0 = u00w and wv0 = v00w. The latter 
ase isequivalent to the following two 
onditions:(i) jv0j = jv00j,(ii) u0v0! = u00v00!A transdu
er has the twinning property if any two states are twinned.Proposition 7 (Choffrut) Let f : A� ! B� be a partial fun
tion realizedby a transdu
er T . The following three propositions are equivalent.� The fun
tion f is subsequential.� The fun
tion f has bounded variation.� The transdu
er T has the twinning property.The equivalen
e between the �rst two statements is an intrinsi
 
hara
teriza-tion of subsequential fun
tions among rational fun
tions. It a
tually suÆ
es tosuppose that the inverse image by f of any rational set is still rational and thatf has bounded variation to insure that f is subsequential. However, we are inhis paper interested in e�e
tive matters and we always suppose that a fun
tionon words is given by a transdu
er whi
h realizes it. The equivalen
e betweenthe last two statements allows us to de
ide the subsequentiality. The proof ofthis equivalen
e is essentially the proof of Lemma 16 below.We mention here another 
hara
terization of the subsequentiality. For apartial fun
tion f : A� ! B�, de�ne the right 
ongruen
e � on A� by u � u0 i�there are two words �nite words v and v0 su
h that the following two propertieshold for any �nite word w. First, the word uw is in the domain of f i� u0w isin the domain of f . Se
ond, if uw and u0w are in the domain, then v�1f(uw) =v0�1f(vw). The fun
tion f is then subsequential i� the right 
ongruen
e � has�nite index. In that 
ase, the 
ongruen
e � allows one to 
onstru
t dire
tly asubsequential transdu
er realizing f . Furthermore, this sequential transdu
er isminimal in the sense that any other subsequential transdu
er realizing f 
an beproje
ted onto this one. The algorithm presented in Se
tion 2.2 allows one to
ompute e�e
tively the right 
ongruen
e �.7



Example 8 We have already mentioned in Example 3 that the fun
tion (a2; b2)�[(a2; 
2)�(a; 
) of Example 1 is not sequential. A
tually, this relation is not sub-sequential as it 
an be easily shown with Proposition 7. Indeed, the fun
tiondoes not have bounded variation. For any integer n, one hasd(a2n; a2n+1) = 1 while d(b2n; 
2n+1) = 4n+ 1:We now give two de
idability results about rational relations. The �rst oneis due to S
h�utzenberger [27℄ (see also [7℄). The se
ond one is due to Cho�rut[11, 12℄ (see also [5, p. 128℄).Proposition 9 (S
h�utzenberger) Let T be a transdu
er over A� � B�. Itis de
idable whether the relation de�ned by T is a fun
tion.Cho�rut also proved the de
idability of the subsequentiality. He showed thatit suÆ
es to 
he
k the twinning property when the lengths of the words u and vare bounded by the square of the number of states [12, p. 133℄ and [5, p. 128℄.However, this algorithm does not seem to be polynomial.Proposition 10 (Choffrut) Let T be a transdu
er labeled in A��B� whi
hrealizes a fun
tion f , then the subsequentiality of f is de
idable.The following result is due to Weber and Klemm [30, 31℄.Proposition 11 Let f be the fun
tion realized by a transdu
er labeled in A��B�. It is de
idable in polynomial time whether f is subsequential.The proof of the proposition follows dire
tly from Proposition 7 and fromthe following lemma. We give below another proof based on the de
idability inpolynomial time of the fun
tionality over in�nite words. A third proof is givenin [4℄.Lemma 12 The twinning property of a transdu
er is de
idable in polynomialtime.Proof Let T = (Q;E; I; F ) be a transdu
er. We de
ide the twinning propertyof T in two steps. We �rst de
ide in polynomial time the 
ondition (i) and thenthe 
ondition (ii).We de�ne an automaton A whose states are the pairs of states of T andwhose edges are labeled by integers. There is an edge (p; p0) n�! (q; q0) i� thereare two edges p aju��! q and p0 aju0��! q0 in A su
h that n = ju0j � juj. The labelof a path in A is the sum of the labels of the edges of the path. We 
laim thatthe transdu
er T satis�es 
ondition (i) i� the label of any 
y
le around a pair(q; q0) a

essible from some pair (i; i0) for two initial states i and i0, is equal tozero. This 
an be done by a depth-�rst sear
h.We assume that the transdu
er already satis�es 
ondition (i). This �rst 
on-dition insures that the output label v0 is empty i� v00 is empty. The 
ondition (ii)is then equivalent to the fun
tionality of the relation on in�nite words de�ned8



by the transdu
er T with all states being �nal. Indeed, it is 
lear that if therelation de�ned by T is a fun
tion, then any two states are twinned. Conversely,if this relation is not a fun
tion, there exist two in�nite paths labeled by xjyand xjy0 with y 6= y0. Let p0p1p2 : : : and p00p01p02 : : : be the states visited by thetwo paths. Let k an index su
h that yk 6= y0k. There exist indi
es m > n su
hthat (pm; p0m) = (pn; p0n). Moreover, n may be 
hosen great enough su
h thatthe outputs along the paths from the initial state to pn and p0n have a lengthgreater than k. Then the states pm and p0m are not twinned.It is de
idable in polynomial time whether a relation on in�nite words real-ized by a transdu
er is a fun
tion [10℄. �2.2 Determinization of transdu
ers over �nite wordsIn this se
tion, we des
ribe an algorithm whi
h determinizes a real-time trans-du
er whi
h has the twinning property. This algorithm proves that the 
ondi-tions of Proposition 7 are suÆ
ient.Let T = (Q;E; I; F ) be a real-time transdu
er, that is labeled in A � B�,realizing a fun
tion whi
h is subsequential. We give below an algorithm to de-terminize the transdu
er T , that is, whi
h produ
es a subsequential transdu
errealizing f . The algorithm is exponential in the number of states of T . Thedeterminization of an automaton is already exponential.We de�ne a subsequential transdu
er D as follows. A state P of D is a setof pairs (q; w) where q is a state of T and w is a word over B. We now des
ribethe transitions of T . Let P be state of D and let a be a letter. The pair (P; a)determines a set R de�ned byR = f(q0; wu) j there exist (q; w) 2 P and q aju��! q0 2 Eg:If R is empty, there is no transition from P input labeled by a. Otherwise, letv be the longest 
ommon pre�x of the words wu for (q0; wu) 2 R andP 0 = f(q0; w0) j (q0; vw0) 2 Rg:There is then a transition P ajv��! P 0. The initial state of D is the set J = f(i; ") ji 2 Ig where I is the set of initial states of T . It follows from the de�nitionof the transitions of D that if P is a state a

essible from the initial state, thelongest 
ommon pre�x of the words w for (q; w) 2 P is the empty word. Weonly keep in D the a

essible part from the initial state. The transdu
er D hasa deterministi
 input automaton.The following lemma states the main property of the transitions of D.Lemma 13 Let u be a �nite word. Let J ujv��! P be the unique path in D withinput label u from the initial state. Then, the state P is equal toP = f(q; w) j there exists a path i ujvw���! q in T where i 2 Ig:9



Proof The proof of the lemma is by indu
tion on the length of u. Let us
onsider the following path in DJ ujv��! P ajt�! P 0where a is a letter. Let (q0; w0) be a pair in P 0. By the de�nition of thetransitions of D, there is a pair (q; w) in P and a transition q ajt0��! q0 in T su
hthat tw0 = wt0. By the indu
tion hypothesis, there is a path i ujvw���! q in T .Finally, one has vtw0 = vwt0. �The pre
eding lemma has the following 
onsequen
e. If both pairs (q; w)and (q0; w0) belong to a state P whi
h is a

essible from the initial state and ifboth q and q0 are �nal states in T , then the equality w = w0 ne
essarily holds.Otherwise, the relation realized by T is not a fun
tion. This remark allows usto de�ne the set of �nal states of D and the fun
tion �. A state P is �nal if it
ontains as least one pair (q; w) where q is a �nal state of T . The fun
tion �maps su
h a �nal state P to the word w.
0 1 23 4 5ajb ajba

ajba aj"aj"aj"aj"
bja
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Figure 4: Transdu
er of Example 14Example 14 Consider the transdu
er pi
tured in Figure 4. If the algorithmfor determinization is applied to this transdu
er, one gets the subsequentialtransdu
er pi
tured in Figure 5. This subsequential transdu
er is transformedinto a sequential transdu
er in Examples 19.This de�nes a subsequential transdu
er whi
h may have an in�nite numberof states. However, we 
laim that the bounded variation property of T impliesthat the lengths of the words in states of D are bounded. Thus the number ofstates of D is a
tually �nite.Lemma 15 Let v1, v2, v01 and v02 be four �nite words su
h that jv2j = jv02j andv1v!2 = v01v02!. For any words v3 and v03,d(v1v2v3; v01v02v03) = d(v1v3; v01v03):10



0; "A
B 1; "2; a3; a����
C 1; a2; "4; a����a

5; "Dajb aj"aj" ajabjaa
bja
Figure 5: Determinization of the transdu
er of Figure 4Proof By symmetry, we may suppose that jv1j � jv01j. There is then a �niteword w su
h that v01 = v1w and wv02 = v2w. Thus the word v01v02v03 is equal tov1v2wv03. It follows thatd(v1v2v3; v01v02v03) = d(v3; wv03) = d(v1v3; v01v03):� The following lemma states that if a transdu
er T has the twinning property,then the outputs labels of two paths with the same input label have a long
ommon pre�x. It proves that if the relation realized by T is a fun
tion, it hasbounded variation. The proof is very 
lose to the proof of Proposition 6.4 in [5℄but we do not assume that the relation realized by T is a fun
tion. This isuseful when transdu
ers realizing relations on in�nite words are 
onsidered.Lemma 16 Let T be a transdu
er whi
h has the twinning property. There is a
onstant K su
h that the outputs of two paths i ujv��! q and i0 ujv0��! q0 from twoinitial states i and i0 satisfy d(v; v0) � K:Proof LetK be equal to 2n2M where n is the number of states of the transdu
erand M is the maximal length of the output label of a transition. We proved(v; v0) � K by indu
tion on the length of u. If juj � n2, the result holds byde�nition of K. Otherwise, both paths 
an be fa
torizedi u1jv1���! p u2jv2���! p u3jv3���! qi0 u1jv01���! p0 u2jv02���! p0 u3jv03���! q0where u1u2u3 = u, v1v2v3 = v, v01v02v03 = v0 and ju2j > 0. By the twinningproperty, one has d(v1v2v3; v01v02v03) = d(v1v3; v01v03) and the result follows fromthe indu
tion hypothesis. � 11



The following lemma states that the lengths of the words w of the pairs(q; w) in the states of D are bounded. This implies that the number of statesof D is �nite.Lemma 17 There is a 
onstant K su
h that for any pair (q; w) in a state Pof D, one has jwj � K.Proof Let J ujv��! P be a path in D. Let (q; w) be a pair in some state P .By de�nition of the transitions of D, there is another pair (q0; w0) in D su
hthat w and w0 have no 
ommon pre�x. By Lemma 13, there are two paths,i ujvw���! q and i0 ujvw0���! q0 in T . By Lemma 16, there is a 
onstant K su
h thatd(vw; vw0) � K and thus jwj � K. �The following proposition �nally states that the subsequential transdu
er Dis equivalent to the transdu
er T . It follows dire
tly from Lemma 13 and thede�nition of the fun
tion �.Proposition 18 The sequential transdu
er D realizes the same fun
tion f asthe transdu
er T .We have already mentioned in Proposition 11 that it 
an be de
ided inpolynomial time whether a fun
tion realized by a transdu
er is subsequential.The algorithm des
ribed above is exponential but it provides another de
isionpro
edure. Indeed, Lemma 17 gives a upper bound of the lengths of words whi
h
an appear in states of D. By Lemma 16, this upper bound is 2n2M where n isthe number of states of T and M is the maximal length of the output label of atransition of T . Let T be a transdu
er realizing a fun
tion f . If the algorithmis applied to T , either it stops and gives a subsequential transdu
er D or it
reates a state P 
ontaining a pair (q; w) su
h that the length of w is greaterthan 2n2M . In the former 
ase, the subsequential transdu
er D is equivalentto T and the fun
tion f is subsequential. In the latter 
ase, the fun
tion f isnot subsequential.2.3 Sequential fun
tionsThe determinization of a transdu
er realizing a subsequential fun
tion f pro-vides a subsequential transdu
er realizing f . Even if the fun
tion f is sequential,the algorithm does not give a sequential transdu
er but this subsequential trans-du
er 
an be transformed into a sequential one.This transformation is based on a normalization of subsequential transdu
-ers introdu
ed by Cho�rut [12, 13℄. This normalization 
onsists in pushing asmu
h as possible the output labels from �nal states towards the initial state.Algorithms 
omputing the normalized transdu
er are given in [21, 23℄, [8, 9℄ and[2℄. The algorithms given in [21, 23℄ and [2℄ run in time O(jEjP ) where E is theset of transitions of the transdu
er, and where P is the maximal length of thegreatest 
ommon pre�x of the output labels of paths leaving ea
h state of thetransdu
er. If the normalization is applied to a subsequential transdu
er, the12



resulting transdu
er is sequential i� the fun
tion is sequential. Sin
e the normal-ization 
an be performed in polynomial time, it 
an be 
he
ked in polynomialtime whether a fun
tion realized by a subsequential transdu
er is sequential. It
an be shown that a fun
tion realized by a subsequential transdu
er is sequentiali� it preserves pre�xes. This was already proved in [30, 31℄ that this property
an be 
he
ked in polynomial time.In order to transform a subsequential transdu
er into a sequential one, it isnot ne
essary to push as mu
h as possible the output labels from �nal statestowards the initial state, as the normalization does. It suÆ
es to push theseoutput labels until the output of all states are empty. Therefore, the algorithmgiven in [2℄ 
an be adapted to meet this requirements. This gives a time 
om-plexity of O(jEjL) instead of O(jEjP ) where L is the maximal length of theoutput words.
A B

C Dajba aj"aj" ajabja
bj
Figure 6: Sequential transdu
er of Example 19Example 19 Consider the transdu
er pi
tured in Figure 5 where the stateshave been renamed A, B, C and D. If the normalization is applied to this sub-sequential transdu
er, one gets the sequential transdu
er pi
tured in Figure 6.3 Transdu
ers over in�nite wordsIn this se
tion, we 
onsider transdu
ers over in�nite words with all states being�nal. We �rst give an e�e
tive 
hara
terization of sequential fun
tions over in-�nite words. This 
hara
terization extends to in�nite words the twinning prop-erty introdu
ed by Cho�rut [11, 12℄. We use this 
hara
terization to des
ribean algorithm to 
he
k whether a fun
tion realized by a transdu
er is sequential.Finally, we give an algorithm to determinize a transdu
er.In this se
tion, we denote by A! the set of all (right-)in�nite words overthe alphabet A. We 
onsider transdu
ers over in�nite words. The edges of thetransdu
ers are still labeled in A� � B�. The transdu
er has initial states butwe suppose that all states are �nal. Thus we omit the set F of �nal states inthe notation. An in�nite path is then su

essful if it leaves an initial state. Therelation over in�nite words de�ned by the transdu
er is the set R � A! � B!13



of labels of its su

essful paths. The domain of the transdu
er is the set ofin�nite words x su
h that there is some in�nite word y su
h that (x; y) labelsa su

essful path in the transdu
er. When the transdu
er realizes a fun
tion,its domain is also the domain of the fun
tion. A fun
tion from A! to B! issequential if it is realized by a sequential transdu
er. We point out that thenotion of subsequential fun
tion is irrelevant in the 
ase of in�nite words.3.1 Chara
terization of sequential fun
tionsIn this se
tion, we 
hara
terize fun
tions realized by transdu
ers with all states�nal that 
an be realized by sequential transdu
ers. This 
hara
terization usestopologi
al properties of the fun
tion and some twinning property of the trans-du
er. In this se
tion, we assume that all states of transdu
ers are �nal.We �rst introdu
e a de�nition. We de�ne a subset of states whi
h playa parti
ular role in the sequel. We say that a state q of a transdu
er is non
onstant if there are two paths leaving q labelled by two pairs (x; y) and (x0; y0)of in�nite words su
h that y 6= y0. If a state q is 
onstant, either there is no pathleaving q labelled by a pair of in�nite words or there is an in�nite word yq 
alledthe 
onstant of q su
h that for any pair (x; y) of in�nite words labelling a pathleaving q, then y = yq . In the former 
ase, the state q 
an be removed sin
e it
annot o

ur in an a

epting path labelled by a pair of in�nite words. In thesequel, we always assume that su
h states have been removed. The 
onstant yqis an ultimately periodi
 word. It should be noti
ed that any state a

essiblefrom a 
onstant state is also 
onstant. We now state the 
hara
terization ofsequential fun
tions.Proposition 20 Let f be a fun
tion realized by a transdu
er T with all states�nal. Let T 0 be the transdu
er obtained by removing from T all 
onstant states.Then the fun
tion f is sequential i� the following three properties hold:� the domain of f 
an be re
ognized by a deterministi
 B�u
hi automaton,� the fun
tion f is 
ontinuous,� the transdu
er T 0 has the twinning property.Sin
e the fun
tion f is realized by a transdu
er, the domain of f is rational.However, it is not true that any rational set of in�nite words is re
ognized bya deterministi
 B�u
hi automaton. Landweber's theorem states that a set ofin�nite words is re
ognized by a deterministi
 B�u
hi automaton i� it is rationaland GÆ [29℄. Re
all that a set is said to be GÆ is it is equal to a 
ountableinterse
tion of open sets for the usual topology of A! .It is worth pointing out that the domain of a fun
tion realized by a transdu
ermay be any rational set although it is supposed that all states of the transdu
erare �nal. The �nal states of a B�u
hi automaton 
an be en
oded in the outputs ofa transdu
er in the following way. Let A = (Q;E; I; F ) be a B�u
hi automaton.We 
onstru
t a transdu
er T by adding an output to any transition of A. Atransition p a�! q of A be
omes p ajv��! q in T where v is empty if p is not �nal14



and is equal to a �xed letter b if p is �nal. It is 
lear that the output of a path isin�nite i� the path goes in�nitely often through a �nal state. Thus the domainof the transdu
er T is the set re
ognized by A. For instan
e, the domain ofa transdu
er may be not re
ognizable by a deterministi
 B�u
hi automaton asin the following example. It is however true that the domain is 
losed if thetransdu
er has no 
y
ling path with an empty output.
0 1aj"
bj" bjb bjb

Figure 7: Transdu
er of Example 21Example 21 The domain of the fun
tion f realized by the transdu
er of Fig-ure 7 is the set (a+ b)�b! of words having a �nite number of a. The fun
tion f
annot be realized by a sequential transdu
er sin
e its domain is not a GÆ set.It must be also pointed out that a fun
tion realized by a transdu
er may benot 
ontinuous although it is supposed that all states of the transdu
er are �nalas it is shown in the following example.
0 1aja
bj" bjb bjb

Figure 8: Transdu
er of Example 22Example 22 The image of an in�nite word x by the fun
tion f realized bythe transdu
er of Figure 8 is f(x) = a! if x has an in�nite number of a and15



f(x) = anb! if the number of a in x is n. The fun
tion f is not 
ontinuous. Forinstan
e, the sequen
e xn = bnab! 
onverges to b! while f(xn) = ab! does not
onverge to f(b!) = b!.Proof We �rst explain why the above three 
onditions of the proposition arene
essary. The fa
t that the 
onditions are suÆ
ient follows from the algorithmthat we des
ribe in Se
tion 3.2.If the fun
tion f is realized by a sequential transdu
er D, a deterministi
B�u
hi automaton re
ognizing the domain of f 
an be dedu
ed from the inputautomaton of D in the following way. Ea
h state q is �rst split in two states q1and q2. We distribute then the edges arriving in q between q1 and q2 a

ordingto the emptiness of their output. Edges with an empty output arrive in q1 whileedges with a nonempty output arrive in q2. The state q2 is then �nal and q1 isnot. If q was initial, exa
tly one among q1 and q2 is then initial. All edges goingout of q are dupli
ated in edges going out of q1 and q2. In symboli
 dynami
s,su
h a transformation is 
alled an input state splitting. It is 
lear that thisdeterministi
 B�u
hi automaton re
ognizes the domain of f . It is also 
lear thatany sequential fun
tion is 
ontinuous.We now prove that the third 
ondition is ne
essary. We suppose that wehave the following pi
ture representing paths in T .01 23
uju0uju00 vjv0vjv00where 0 and 1 are initial states, u, u0, u00, v, v0 and v00 are �nite words. LetD be a sequential transdu
er realizing the same fun
tion as T . There are in Dpaths

4 5uvljw vkjw0
where 0 is the initial state, w and w0 are �nite words. By prolonging the pathin T from 0 to 2 (respe
tively from 1 to 3) with l iterations of the path around 2(respe
tively around 3), we 
an assume without loss of generality that l = 0.By repla
ing the 
y
ling path around 2 (respe
tively around 3) by k iterationsof this path, we 
an assume that k = 1.We 
laim that if the state 2 is not 
onstant, then the equality jwj = jv0jholds. Sin
e states 2 and 3 are not 
onstant, then if v = " then v0 = v00 = " and16



the twinning property is satis�ed. We now assume that v is not empty. Let xjx0and yjy0 be the in�nite labels of two in�nite paths leaving 2 su
h that x0 6= y0.There are in D two in�nite paths labeled by xjx00 and yjy00 leaving the state 5su
h that u0v0nx0 = ww0nx00u0v0ny0 = ww0ny00:If jv0j < jw0j, the words x0 and y0 have a 
ommon pre�x of length jwj � ju0j +n(jw0j�jv0j) for any large n. This leads to the 
ontradi
tion that x0 = y0. If jv0j >jw0j, the words x00 and y00 have a 
ommon pre�x of length juj�jwj+n(jv0j�jw0j)for any large n. This leads to the 
ontradi
tion that x00 = y00 and x0 = y0.By symmetry, if the state 3 is not either 
onstant, then the equality alsojwj = jv00j holds and therefore jv0j = jv00j.If both words v0 and v00 are non empty, then f(uv!) = u0v0! = u00v00!. �Before des
ribing the algorithm for determinization, we �rst study a parti
-ular 
ase. It turns out that the �rst two 
onditions of the proposition are due tothe fa
t that the transdu
er T may have 
y
ling paths with an empty output.If the transdu
er T has no 
y
ling path with an empty output, the previousproposition 
an be stated in the following way.Proposition 23 Let f be a fun
tion realized by a transdu
er T with all states�nal. Suppose also that T has no 
y
ling path with an empty output. Let T 0be the transdu
er obtained by removing from T all 
onstant states. Then thefun
tion f is sequential i� the transdu
er T 0 has the twinning property.If the transdu
er T has no 
y
ling path with an empty output, any in�nitepath has an in�nite output. Thus, an in�nite word x belongs to the domain of fi� it is the input label of an in�nite path in T . The domain of f is then a 
losedset. It is then re
ognized by a deterministi
 B�u
hi automaton whose all statesare �nal. This automaton 
an be obtained by the usual subset 
onstru
tionon the input automaton of T . Furthermore, if the transdu
er T has no 
y
lingpath with an empty output, the fun
tion f is ne
essarily 
ontinuous. This 
ouldbe proved dire
tly but it follows from Lemma 31.We now study the de
idability of the 
onditions of Propositions 20 and 23.We have the following results.Proposition 24 It is de
idable if a fun
tion f given by a transdu
er with allstates �nal is sequential. Furthermore, if the transdu
er has no 
y
ling pathwith an empty output, this 
an be de
ided in polynomial time.Note that the result does not hold if it is not supposed that the transdu
erhas no 
y
ling path with an empty output. In the general 
ase, the problemis NP-hard. For any B�u
hi automaton, 
onsider the transdu
er obtained byrepla
ing ea
h transition p a�! q of the B�u
hi automaton by a transition p aj"��! qif p is not �nal and by p ajb��! q for a �xed letter b if p is �nal. The fun
tion17



maps any in�nite word to b! and its domain is exa
lty the set of in�nite wordsre
ognized by the B�u
hi automaton. This fun
tion is sequential i� its domainis deterministi
. Sin
e testing whether the set of in�nite words re
ognized by agiven non deterministi
 B�u
hi automaton is deterministi
 is an NP-hard prob-lem, testing whether a fun
tion is sequential is also NP-hard.Proof As explained in the proof of Proposition 20, a B�u
hi automaton re
ogniz-ing the domain of the fun
tion 
an be easily dedu
ed from the transdu
er. It isthen de
idable if this set 
an be re
ognized by a deterministi
 B�u
hi automaton[29, Thm 5.3℄.It is de
idable in polynomial time if a fun
tion given by a transdu
er with�nal states is 
ontinuous [24℄.We now show that the third 
ondition of Proposition 20 
an be de
ided inpolynomial time. Sin
e we have already proved in Lemma 12 that the twinningproperty 
an be de
ided in a polynomial time, it suÆ
es to prove that thetransdu
er T 0 
an be 
omputed in polynomial time. We 
laim that it 
an bede
ided in polynomial time whether a given state is 
onstant.Let A be the output automaton of the transdu
er. By a depth �rst sear
h, it
an be found two �nite words u and v su
h that juj+ jvj � n and su
h that uv!labels a path leaving q. One 
onstru
ts a 
omplete deterministi
 automaton Bre
ognizing uv! with a sink state 0 whi
h is the only non a

epting state. Wethen 
onsider the syn
hronized produ
t automaton of A and B. There is atransition from (p; r) to (p0; r0) labelled by a �nite word w (perhaps empty) i�there is a transition from p to p0 in A and a path from r to r0 in B. The in�niteword uv! is the label of all paths leaving q i� no state (q0; 0) is a

essible from(q; iB) where iB is the initial of B. This naive algorithm runs in quadrati
 timefor ea
h state q. Therefore the 
onstant states of a transdu
er 
an be 
omputedin 
ubi
 time. It turns out that they 
an be 
omputed in linear time [10℄. �3.2 Determinization of transdu
ers over in�nite wordsIn this se
tion, we des
ribe an algorithm to determinize a real-time transdu
erwhi
h satis�es the properties of Proposition 20. This algorithm 
an easily beadapted to the 
ase when the transdu
er is not real-time. This algorithm provesthat the 
onditions of the proposition are suÆ
ient.Let T = (Q;E; I) be a transdu
er and let T 0 be the transdu
er obtainedby removing from T all 
onstant states. We assume that T 0 has the twinningproperty. We denote by S the set of 
onstant states. For a state q of S, we denoteby yq, the single output of q whi
h is an ultimately periodi
 word. We supposethat the domain of f is re
ognized by the deterministi
 B�u
hi automaton A.This automaton is used in the 
onstru
ted transdu
er to insure that the outputis in�nite only when the input belongs to the domain of the fun
tion.We des
ribe the deterministi
 transdu
er D realizing the fun
tion f . A stateof D is a pair (p; P ) where p is a state of A and P is a set 
ontaining two kindsof pairs. The �rst kind are pairs (q; z) where q belong to Q n S and z is a �niteword over B. The se
ond kind are pairs (q; z) where q belongs to S and z isan ultimately periodi
 in�nite word over B. We now des
ribe the transitions18



of D. Let (p; P ) be a state of D and let a be a letter. Let R be equal to the setde�ned as followsR = f(q0; zw) j q0 =2 S and 9(q; z) 2 P; q =2 S and q ajw��! q0 2 Eg[ f(q0; zwyq0) j q0 2 S and 9(q; z) 2 P; q =2 S and q ajw��! q0 2 Eg[ f(q0; z) j q0 2 S and 9(q; z) 2 P; q 2 S and q ajw��! q0 2 Eg:We now de�ne the transition from the state (p; P ) input labeled by a. If R isempty, there is no transition from (p; P ) input labeled by a. Otherwise, theoutput of this transition is the word v de�ned as follows. Let p a�! p0 be thetransition in A from p labeled by a. If p0 is not a �nal state of A, we de�ne v asthe empty word. If p0 is a �nal state, we de�ne v as the �rst letter of the wordsz if R only 
ontains pairs (q0; z) with q0 2 S and if all the in�nite words z areequal. Otherwise, we de�ne v as the longest 
ommon pre�x of all the �nite orin�nite words z for (q0; z) 2 R. The state P 0 is then de�ned as followsP 0 = f(q0; z) j (q0; vz) 2 Rg:There is then a transition (p; P ) ajv��! (p0; P 0) in D. The initial state of D isthe pair (iA; J) where iA is the initial state of A and where J = f(i; ") j i 2I and i =2 Sg [ f(i; yi) j i 2 I and i 2 Sg. If the state p0 is not �nal in A, theoutput of the transition from (p; P ) to (p0; P 0) is empty and the words z of thepairs (q; z) in P , may have a nonempty 
ommon pre�x. We only keep in D thea

essible part from the initial state. The transdu
erD has a deterministi
 inputautomaton. It turns out that the transdu
er D has a �nite number of states.This will be proved in Lemma 33. It will be also proved in Proposition 34 thatthe transdu
er D realizes the same fun
tion as T .0 1aja
bjb aj" aj"


jaaFigure 9: Transdu
er of Example 25Example 25 Consider the transdu
er pi
tured in Figure 9. A deterministi
B�u
hi automaton re
ognizing the domain is pi
tured in Figure 10. If the algo-rithm for determinization is applied to this transdu
er, one gets the transdu
erpi
tured in Figure 11.The following lemma states the main property of the transitions of D.19
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Figure 10: A deterministi
 B�u
hi automaton for the domain
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Figure 11: Determinization of the transdu
er of Figure 9Lemma 26 Let u be a �nite word. Let (iA; J) ujv��! (p; P ) be the unique pathin D with input label u from the initial state. Then, the state p is the uniquestate of A su
h that iA u�! p is a path in A and the set P is equal toP = f(q; z) j 9 i ujv0��! q in T su
h that v0 = vz if q =2 Sv0yq = vz if q 2 Sg:Proof The proof of the lemma is by indu
tion on the length of u. Let us
onsider the following path in D(iA; J) ujv��! (p; P ) ajt�! (p0; P 0)where a is a letter. Let (q0; z0) be a pair in P 0. If q0 =2 S, there is a pair (q; z)in P and a transition q ajt0��! q0 in T . If both states q and q0 do not belongto S, the proof is similar to the proof of Lemma 13. If q =2 S and q0 2 S, onehas tz0 = zt0yq0 . By the indu
tion hypothesis, there is a path i ujvz���! q in T .One �nally gets vtz0 = vzt0yq0 . If q 2 S and q0 2 S, one has tz0 = z. By theindu
tion hypothesis, there is a path i ujv0��! q in T su
h that v0yq = vz. Sin
eyq = t0yq0 , one �nally gets vtz0 = v0t0yq0 . �The previous lemma has the 
orollary whi
h states that ea
h state q is the�rst 
omponent of at most one pair (q; z) in the se
ond 
omponent P of a state(p; P ) of D.Corollary 27 Let q be a state of T and let (p; P ) be a state of D. The subset P
ontains at most one pair (q; z). 20



Proof Let (iA; J) ujv��! (p; P ) be a path in D and let (q; z) and (q; z0) be twopairs in P .We �rst suppose that q is not 
onstant. Let xjy and x0jy0 be two pairsof in�nite words whi
h label two paths leaving q su
h that y 6= y0. By theprevious lemma, there are two paths i ujvz���! q and i0 ujvz0���! q in T . One hasf(ux) = vzy = vz0y and f(ux0) = vzy0 = vz0y0. If z 6= z0, it may be assumed bysymmetry that jz0j > jzj and that z0 = zw for some �nite word w. This leadsto the 
ontradi
tion y = y0 = w!.We now suppose that q is 
onstant. Let xjy be a pair of in�nite words whi
hlabels a path leaving q. By the previous lemma, there are two paths i ujw��! qand i0 ujw0���! q in T su
h that wy = vz and w0y = vz0. Furthermore, one hasf(ux) = wy = w0y and thus z = z0. �We now introdu
e some te
hni
al property of the paths of a transdu
er. Thisproperty is a kind of twinning property when the output of one of the 
y
lingpaths is empty. Its turns out that this property is equivalent to the 
ontinuityof the fun
tion realized by the transdu
er when it is already supposed that thetransdu
er has the twinning property. Let T be a transdu
er and let S be its setof 
onstant states. The transdu
er T is said to have the "-
ompatibility propertyi� for any pair of paths i uju0��! q vjv0��! qi0 uju00���! q0 vj"��! q0su
h that i and i0 are two initial states and v0 is a nonempty word, the state q0is 
onstant and its 
onstant yq0 satis�es u00yq0 = u0v0!. If the states q and q0 aretwinned, there 
annot be a pair of su
h paths. If the output along the se
ond
y
ling path is empty, the output along the �rst 
y
ling path should also beempty. The above 
onditions add some 
ompatibility of the outputs when qand q0 are not twinned.The following lemma states that if the fun
tion realized by the transdu
er is
ontinuous, then the transdu
er has the "-
ompatibility property. The 
onverseis established in Lemma 31.Lemma 28 Let T be transdu
er realizing a fun
tion f on in�nite words. If thefun
tion f is 
ontinuous, then the transdu
er T has the "-
ompatibility property.Proof Let xjy be a pair of in�nite words whi
h labels a path leaving q0. Forany integer n, one has f(uvnx) = u00y and f(uv!) = u00y by 
ontinuity of f .Sin
e f(uv!) = u0v0!, the state q0 is 
onstant and its 
onstant yq0 satis�esu00yq0 = u0v0!. �For a �nite word w and an in�nite word x, we denote by d(w; x) the integerjwj� jw^xj where w^x is the longest 
ommon pre�x of w and x. Remark thatd is not a distan
e but Lemma 15 still holds when v03 is an in�nite word.21



Lemma 29 Let T be a transdu
er. Suppose that T has the "-
ompatibility prop-erty and that T 0 has the twinning property. There is a 
onstant K su
h that forany two paths i ujv��! q and i0 ujv0��! q0 where i and i0 are initial states, q =2 S andq0 2 S, one has d(v; v0yq0) � K:Proof LetK be equal to n2M where n is the number of states of the transdu
erand M is the maximal length of the output label of a transition. We proved(v; v0yq0) � K by indu
tion on the length of u. If juj � n2, the result holds byde�nition of K. Otherwise, both paths 
an be fa
torizedi u1jv1���! p u2jv2���! p u3jv3���! qi0 u1jv01���! p0 u2jv02���! p0 u3jv03���! q0:where ju2j > 0 and ju3j � n2. If both words v2 and v02 are empty, the resultfollows dire
tly from the indu
tion hypothesis. Thus, we may assume that onethe words v2 or v02 is not empty. Sin
e q does not belong to S, p does not belongto S either. The "-
ompatibility property implies then that v2 
annot be empty.We �rst suppose that p0 =2 S. By the twinning property, Lemma 15 andthe above remark, one has d(v1v2v3; v01v02v03yq0) = d(v1v3; v01v03yq0) and the resultfollows from the indu
tion hypothesis.We now suppose that p0 2 S and we 
laim that v01v02v03yq0 = v1v!2 . Sin
e p0is 
onstant, yp0 = v03yq0 . If the word v02 is empty, the "-
ompatibility propertyimplies that v01yp0 = v1v!2 . If v02 is nonempty, yp0 = v02!. Sin
e f(u1u!2 ) = v1v!2 =v01v02!, the 
laimed equality holds. In both 
ases, one has d(v1v2v3; v01v02v03yq0) =d(v1v2v3; v1v!2 ) � jv3j � K. �The following lemma states some te
hni
al 
onsequen
e of the "-
ompatibilityproperty.Lemma 30 Let T be a transdu
er whi
h has the "-
ompatibility property and letf the fun
tion realized by T . Then if x is in the domain of f and x is the inputlabel of a path entirely out of S, the output of this path is in�nite and is thusequal to the image of x by f .Proof Suppose that x is the input label of two paths 
 and 
0. Suppose alsothat all states of 
 do not belong to S and the output along 
0 is an in�niteword. Sin
e the number of states is �nite, both paths 
 and 
0 
an be fa
torized
 = i u0jv0���! q u1jv1���! q u2jv2���! q � � �
0 = i0 u0jv00���! q0 u1jv01���! q0 u2jv02���! q0 � � �Furthermore, it 
an be assumed that ea
h v0k is nonempty sin
e v00v01v02 : : : is anin�nite word. By hypothesis, this implies that ea
h vk is also nonempty. �22



The following lemma states a kinf of 
onverse of Lemma 28. It shows inparti
ular that if a transdu
er T has no 
y
ling path with an empty output andif T 0 has the twinning property, then the fun
tion realized by T is 
ontinuous.If x and y are two in�nite words, d(x; y) denotes the usual distan
e between xand y whi
h makes the set A! of all in�nite words a 
ompa
t spa
e.Lemma 31 Let T be a transdu
er whi
h has the "-
ompatibility and su
h thatT 0 has the twinning property. Then the fun
tion realized by T is 
ontinuous.Proof Let f be the fun
tion realized by the transdu
er T and let x be anin�nite word in the domain of f . We 
laim that for any integer m there is aninteger k su
h that for any in�nite word x0 also in the domain f , the inequalityd(x; x0) � 2�k implies the inequality d(f(x); f(x0)) � 2�m. Let y = f(x) be theimage of x. Let 
 be a path labeled by xjy and let i be the initial state of 
.Let 
0 be a path labelled by (x0; y0) where y0 = f(x0). A

ording to the previouslemma, it 
an be assumed that either there is a path entirely out of S whi
h islabeled by xjy or that x is not the input label of a path entirely out of S.We �rst suppose that the path 
 is entirely out of S. By Lemma 15, thereis a 
onstant K su
h that if i ujv��! q and i0 ujv0��! q0 are two paths with q =2 Sand q0 =2 S, then one has d(v; v0) � K. By Lemmas 28 and 29, there is another
onstant K 0 su
h that if i ujv��! q and i0 ujv0��! q0 are two paths with q =2 S andq0 2 S, then one has d(v; v0yq0) � K. Let k be 
hosen su
h that the outputalong the �rst k transitions of 
 has a length greater then m + max(K;K 0).Let q be the state of 
 rea
hed after k transitions and let v be the output of 
0along the �rst k transitions. Suppose that x0 satis�es d(x; x0) � k and that 
0is a path labeled by x0jy0 where y0 = f(x0). Let i0 the initial state of 
0 andlet q0 be the state of 
0 rea
hed after k transitions. If q0 does not belong to S,one has d(v; v0) � K where v0 is the output of 
0 along the �rst k transitions.Sin
e jvj � m+K, one has jv ^ v0j � m and thus d(y; y0) � 2�m. If q0 belongsto S, one has d(v; y0) � K 0. Sin
e jvj � m+K 0, one has jv ^ y0j � m and thusd(y; y0) � 2�m.We now suppose that x is not the input label of a path entirely out of S.There is then an integer K su
h that any path input labeled by a pre�x of x oflength greater than K ends in a state of S. Let k be equal to K +K 0 where K 0is the length of part of 
 inside S whi
h 
ontains at least n2 transitions with anonempty output. If d(x; x0) � 2�k, both paths 
 and 
0 
an be fa
torized
 = i u0jv0���! q u1jv1���! q u2jv2���! � � �
0 = i0 u0jv00���! q0 u1jv01���! q0 u02jv02���! � � �where u0u1u2 = x, u0u1u02 = x0, v1 is nonempty and q and q0 belong to S. We
laim that y = y0. One has y = v0yq and y0 = v00yq0 . Sin
e v1 is nonempty,one also has yq = v!1 . If v01 is also nonempty, one has yq0 = v01! and f(u0u!1 ) =v0v!1 = v00v01! and thus y = y0. If the word v01 is empty, the "-
ompatibilityproperty implies v0yq = v00yq0 and y = y0.23



In both 
ases, an integer k satisfying the 
laimed property has been found.The fun
tion f is then 
ontinuous. �The following lemma states that the lengths of the words z of the pairs (q; z)in the states of D are bounded. It is essentially due to the twinning propertyof T 0.Lemma 32 There is a 
onstant K su
h that for any pair (q; z) in P of a state(p; P ) of D where q =2 S and z is a �nite word, one has jzj � K.Proof Let m and n be the respe
tive numbers of states of A and T . By Lemma16 and 29, there is a 
onstant K 0 su
h that if i ujv��! q and i0 ujv0��! q0 are twopaths su
h that q =2 S, then one has d(v; v0) � K 0 if q0 =2 S or d(v; v0yq0) � K 0if q0 2 S. Let K = K 0 +mnM where M is the maximal length of the outputlabel of a transition in T . Let (p; P ) be a state of D and 
onsider a path(iA; J) u0jv0���! (p0; P 0) ujv��! (p; P )where p0 is a �nal state of A. If there is no path from (iA; J) to (p; P ) whi
hgoes through a state (p0; P 0) with p0 �nal, we assume that (p0; P 0) is a
tually(iA; J). The proof is by indu
tion on the length of u. If juj = 0, the state pis a
tually a �nal state of A. In the 
ase where p is �nal, the longest 
ommonpre�x of the words z of the pairs (q; z) in P is empty. Lemmas 16, 26 and 29imply that jzj � K 0. We now suppose that p is not �nal. If juj � mn, theresult follows from the de�nition of the transitions of D. We now suppose thatjuj > mn and that (p0; P 0) is the last state along the path from (iA; J) to (p; P )su
h that p0 is a �nal state of A. Let (q; z) be a pair in P su
h that q =2 S andz is a �nite word. By de�nition of the transitions of D, there is a pair (q0; z0)in P 0 and a path q0 ujw��! q in T su
h that z0w = vz. There is also a path p0 u�! pin A. Sin
e juj > mn, both paths 
an be fa
torizedp0 u1���! p00 u2���! p00 u3���! pq0 u1jw1���! q00 u2jw2���! q00 u3jw3���! qwhere u1u2u3 = u and w1w2w3 = w. Sin
e the 
y
ling path p00 u2�! p00 in Adoes not 
ontain any �nal state, the in�nite word u0u1u!2 does not belong tothe domain of f . This implies that the word w2 is empty. We then 
onsider thepath (p0; P 0) u1u3jv00�����! (p; P 00)in D. The subset P 00 
ontains a pair (q; z00) for some �nite word z00. We 
laimthat z00 = z. Indeed, one has z0w1w2w3 = z0w1w3 = vz = v00z00. As bothpaths p0 u1u2u3����! p and p0 u1u3���! p in A 
ontain no other �nal state than p, bothoutputs v and v00 along the 
orresponding paths in D are empty. Thus one getsz = z00. By the indu
tion hypothesis, one has jzj = jz00j � K. �24



It is now possible to prove that the transdu
er D has a �nite number ofstates. However, the number of states of D 
an be exponential as in the 
ase of�nite words.Lemma 33 The number of states of D is �nite.Proof We have proved in the pre
eding lemma that the lengths of the �nitewords z are bounded. It remains to show that there is a �nite number ofdi�erent in�nite words z whi
h 
an appear in some pair (q; z). By de�nition ofthe transitions, any in�nite word z of a pair is the suÆx of z0wyq where (q0; z0)is a pair su
h that q0 =2 S and z0 is �nite and where q 2 S and q0 ajw��! q is atransition of T . Sin
e the length of z0 is bounded, the number of su
h wordsz0wyq is �nite and they are ultimately periodi
. There are then a �nite numberof suÆxes of su
h words. �The following proposition �nally states that the sequential transdu
er D isequivalent to the transdu
er T . Both transdu
ers realize the same fun
tion overin�nite words.Proposition 34 The sequential transdu
er D realizes the same fun
tion f asthe transdu
er T .Proof We respe
tively denote by f and f 0 the fun
tions realized by the trans-du
er T and D. We �rst prove that if an in�nite word x belongs to the domainof f , it also belongs to the domain of f 0 and f(x) = f 0(x).Let x = a0a1a2 : : : be an in�nite word whi
h is in the domain of f . Let 
be a path 
 = i a0jv0���! q1 a1jv1���! q2 a2jv2���! � � � (1)be a path in T input labeled by x and whose output v0v1v2 : : : is an in�niteword. Consider the unique path � in D input labeled by x� = (iA; J) a0jv00���! (p1; P1) a1jv01���! (p2; P2) a2jv02���! � � � (2)By Lemma 26, ea
h state Pn 
ontains a pair (qn; zn).We �rst suppose that x input labels a path in T entirely out of S. ByLemma 30, it 
an be assumed that ea
h state qn does not belong to S and thatea
h zn is �nite. By Lemma 26, the equality v0 : : : vn = v00 : : : v0nzn holds forany integer n. By Lemma 32, the lengths of the words zn are bounded. Thisimplies the equality v0v1v2 : : : = v00v01v02 : : : of the two outputs.We now suppose that x is not the input label of a path entirely out of S.There is then an integer n su
h that for any m � n, Pm only 
ontains pairs(q; z) with q 2 S and z in�nite. Both path 
 and � 
an be fa
torized
 = i u0jv0���! q u1jv1���! q u2jv2���! q � � �� = (iA; J) u0jv00���! (p; P ) u1jv01���! (p; P ) u2jv02���! (p; P ) � � �25



Furthermore, it 
an be assumed that ea
h vn is nonempty. Thus ea
h pathp uk�! p in A 
ontains a �nal state of A. The single output of the state q is v!1 .By Lemma 26, the subset P 
ontains a pair (q; z) and v0yq = v0v!1 = v00z.Let (q0; z0) be another pair in P . By de�nition of the transitions of D, thereis a sequen
e (qn)n�0 of states su
h that the pairs (qn; v01nz0) belong to P . Sin
ethere is a �nite number of states, there are n < m su
h that qn = qm. Thisimplies that there is in T a 
y
ling path around qn input labeled by um�n1 . Letq00 = qn = qm. We �rst 
laim that v01nz0 = z0. If the word v01 is empty, this isobvious. Otherwise, Corollary 27 implies that v01nz0 = v01mz0. Thus z0 = v01!and the equality v01nz0 = z0 also holds. The subset P 
ontains a pair (q00; z0).By Lemma 26, there is a path i u0jv00���! q00 in T su
h that v00z0 = v00yq00 . By
onstru
tion, there is also a 
y
ling path around q00 input labeled by um�n1 . Wesuppose that the output label of this 
y
ling path is the word w. If the word wis empty, Lemma 28, states that v00yq00 = v0v!1 . Thus, one has v00z0 = v00yq00 =v0v!1 = v00z and z = z0. If the word w is nonempty, one has yq00 = w! andf(u0u!1 ) = v00w! = v0v!1 . This implies z = z0.Sin
e we have proved that all pairs (q; z) in P share the same in�nite word zand sin
e ea
h path p ui�! p 
ontains a �nal state, ea
h word v0i is nonempty byde�nition of the transitions of D and the equality v01v02v03 : : : = z holds. Thislast equality implies that v0yq = v00z = v00v01v02 : : : and that f(x) = f 0(x).Conversely, the de�nition of the transitions of D implies that the domainof f 0 is 
ontained in the domain of f . Thus both fun
tions f and f 0 have thesame domain and f = f 0. �We have already mentioned in Proposition 24 that it 
an be de
ided whethera fun
tion over in�nite words realized by a transdu
er with all states �nal issequential. As in the 
ase of �nite words, the algorithm des
ribed above providesanother de
ision pro
edure. Indeed, Lemma 32 gives an upper bound K of thelengths of �nite words whi
h 
an appear in states of D. Let T be a transdu
erwith all states �nal realizing a fun
tion f . If the algorithm is applied to T ,either it stops and gives a sequential transdu
er D or it 
reates a state (p; P )
ontaining a pair (q; z) su
h that the length of z is greater than K. In theformer 
ase, the sequential transdu
er D is equivalent to T and the fun
tion fis sequential. In the latter 
ase, the fun
tion f is not sequential.A
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