
Determinization of transduersover �nite and in�nite wordsMarie-Pierre B�ealInstitut Gaspard Monge,Universit�e de Marne-la-Vall�eehttp://www-igm.univ-mlv.fr/~beal/Olivier CartonInstitut Gaspard Monge and CNRSUniversit�e de Marne-la-Vall�eehttp://www-igm.univ-mlv.fr/~arton/Marh 27, 2001AbstratWe study the determinization of transduers over �nite and in�nitewords. The �rst part of the paper is devoted to �nite words. We reall theharaterization of subsequential funtions due to Cho�rut. We desribehere a known algorithm to determinize a transduer.In the ase of in�nite words, we onsider transduers with all theirstates �nal. We give an e�etive haraterization of sequential funtionsover in�nite words. We desribe an algorithm to determinize transduersover in�nite words. This part ontains the main novel results of the paper.1 IntrodutionThe aim of this paper is the study of determinization of transduers, that isof mahines realizing rational transdutions. A transduer is a �nite state au-tomaton (or a �nite state mahine) whose edges are labeled by pairs of wordstaken in �nite alphabets. The �rst omponent of eah pair is alled the inputlabel. The seond one the output label. The transduers that we onsider haveaepting (or �nal) states. Suh transduers are sometimes alled a-transduers(a for aepting). The rational relation de�ned by a transduer is the set ofpairs of words whih are labels of an aepting path in the transduer. Weassume that the relations de�ned by our transduers are funtions. This is adeidable property.The study of transduers has many appliations. Transduers are used tomodel oding shemes (ompression shemes, onvolutional oding shemes,1



oding shemes for onstrained hannels, for instane). They are widely used inomputer arithmeti [17℄ and in natural language proessing [25℄. Transduersare also used in programs analysis [14℄. The determinization of a transduer isthe onstrution of another transduer whih de�nes the same funtion and hasa deterministi (or right resolving) input automaton. Suh transduers allow asequential enoding and thus are alled sequential transduers.In the �rst part of the paper, we present a short survey of the determiniza-tion of transduers realizing funtions over �nite words. Our transduers mayhave �nal states. We present some known results about subsequential funtions,that is funtions that an be realized by transduers with a deterministi inputbut that may have an output funtion de�ned on states. The notion of subse-quential funtions has been introdued by Sh�utzenberger [28℄. We reall theharaterization of subsequential funtions obtained by Cho�rut [11, 12℄. Thisharaterization gives a deision proedure for the subsequentiality of funtionsde�ned by a transduer. It has been proved in [30, 31℄ that this an be deidedin polynomial time. We give another proof of this result whih is a onsequeneof the deidability in polynomial time of funtionality over in�nite words [10℄.Another proof of the same result is given in [4℄. The deidability of funtionalitywas already proved by Gire [18℄. We also desribe the algorithm to determinizea transduer. This algorithm takes a real-time transduer whih realizes a sub-sequential funtion and outputs a subsequential transduer. This algorithm isatually ontained in the proof of Cho�rut [11, 12℄ (see also [5, p. 109{110℄).This algorithm has also been desribed by Mohri [22℄ and Rohe and Shabes[25, p. 223{233℄.The determinization of a transduer realizing a subsequential funtion fprovides a subsequential transduer realizing f . If the funtion is sequential,this subsequential transduer an be transformed into a sequential one. Thisan be obtained by the normalization of a transduer introdued by Cho�rut[12, 13℄. EÆient algorithms that ompute the normalization have been givenin [21, 23℄, [8, 9℄ and [2℄.In the seond part of the paper, we onsider transduers and funtions overin�nite words and our transduers have all their states �nal. The reason why weassume that all states are �nal is that the ase of transduers with �nal statesseems to be muh more omplex. Indeed, the determinization of automata overin�nite words is already very diÆult [26℄. In partiular, it is not true that anyrational set of in�nite words is reognized by a deterministi automaton with�nal states. Other aepting onditions, as the Muller ondition for instane,must be used.We �rst give an e�etive haraterization of sequential funtions over in�nitewords. This haraterization extends to in�nite words the twinning propertyintrodued by Cho�rut [11℄. We prove that a funtion is sequential if it isa ontinuous map whose domain an be reognized by a deterministi B�uhiautomaton, and suh that the transduer obtained after removing some speialstates has the twinning property. These onditions an be simpli�ed in thease where the transduer has no yling path with an empty output label. Weuse this haraterization to desribe an algorithm heking whether a funtion2



realized by a transduer is sequential. This algorithm beomes polynomial whenthe transduer has no yling path with an empty output label. Finally, we givean algorithm to determinize a real-time transduer. The algorithm an be easilyadapted to the ase when the transduer is not real-time. The algorithm is muhmore omplex than in the ase of �nite words. It is the main result of the paper.These determinizations do not preserve the dynami properties of the trans-duers as the loality of its output. We mention that in [19℄, an algorithm isgiven to determinize transduers over bi-in�nite words that have a right losinginput (or that are n-deterministi or deterministi with a �nite delay in theinput) and a loal output (see also [20, p. 143℄ and [1, p. 110{115℄). This al-gorithm preserves the loality of the output. These features are important foroding appliations.The paper is organized as follows. Setion 2 is devoted to transduers over�nite words. Basi notions of transduers of rational funtions are de�ned atthe beginning of this setion. The haraterization of subsequential funtionsis realled in Setion 2.1 while the algorithm for determinization of transduersis desribed in Setion 2.2. The haraterization of sequential funtions amongsubsequential ones is realled in Setion 2.3. Setion 3 is devoted to transduersover in�nite words. We give in Setion 3.1 a haraterization of sequentialfuntions while the algorithm for determinization of transduers is desribedin Setion 3.2. In both ases of �nite and in�nite words, we give examples ofdeterminization of transduers.Part of the results of the present paper was presented at the onfereneICALP'2000 [3℄.2 Transduers over �nite wordsIn the sequel, A and B denote �nite alphabets. The free monoid A� is the setof �nite words or sequenes of letters of A. The empty word is denoted by ".We denote the fat that a �nite word u is a pre�x of a �nite word v by u � v.The relation � is a partial order. If u is a pre�x of v, we denote by u�1v theunique word w suh that v = uw.A transduer over the monoid A� � B� is omposed of a set Q of states, aset E � Q � A� � B� � Q of edges and two sets I; F � Q of initial and �nalstates. An edge e = (p; u; v; q) from p to q is denoted by p ujv��! q. The state pis the origin, u is the input label, v is the output label, and q is the end. Thus,a transduer is the same objet as an automaton, exept that the labels of theedges are pairs of words instead of letters.A transduer is often denoted by A = (Q;E; I; F ), or also by (Q;E; I) if allstates are �nal, i.e., Q = F .A path in the transduer T is a sequenep0 u0jv0���! p1 u1jv1���! � � � unjvn���! pnof onseutive edges. Its input label is the word u = u1u2 � � �un whereas itsoutput label is the word v = v1v2 � � � vn. The path leaves p0 and ends in pn.3



The path is often denoted p0 ujv��! pn:A path is suessful if it leaves an initial state and ends in a �nal state. The setreognized by the transduer is the set of labels of its suessful paths, whih isatually a relation R � A��B�. The transduer omputes a funtion if for anyword u 2 A�, there exists at most one word v 2 B� suh that (u; v) 2 R. Weall it the funtion realized by the transduer. A transduer whih realizes afuntion is sometimes alled single-valued in the literature. Thus a transdueran be seen as a mahine omputing nondeterministially output words frominput words. We denote by dom(f) the domain of the funtion f .A transduer is �nite if its set of states and its set of transitions are �nite.It is a onsequene of Kleene's theorem that a subset of A� � B� is a rationalrelation if and only if it is the set reognized by a �nite transduer.
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ajbajbajajFigure 1: A transduer for the relation (a2; b2)� [ (a2; 2)�(a; ).Example 1 (from [5℄) The automaton of Figure 1 reognizes the relation (a2; b2)�[(a2; 2)�(a; ) over the alphabets A = fag and B = fb; g. This relation is atu-ally the funtion whih maps an to bn if n is even and to n if n is odd.Let T be a transduer. The underlying input automaton (respetively un-derlying output automaton) of T is obtained by omitting the output label (re-spetively input label) of eah edge.A transduer is said to be real-time if it is labeled in A�B�. It an be provedthat any rational funtion an be realized by a real-time transduer. Further-more, from any transduer realizing a funtion an be omputed in polynomialtime an equivalent real-time transduer (see for instane [31, Prop. 1.1℄). We saythat a transduer T is sequential if it is real-time and if the following onditionsare satis�ed.� it has a unique initial state, 4



� the underlying input automaton is deterministi.These onditions ensure that for eah word u 2 A�, there is at most one wordv 2 B� suh that (u; v) is reognized by T . Thus, the relation omputed byT is a partial funtion from A� into B�. A funtion is sequential if it an berealized by a sequential transduer.Remark 2 In [16, p. 299℄, [5℄ and [6℄, it is assumed that all states of a sequen-tial transduer are �nal. We follow the de�nition of Cho�rut [11, 12℄ wheresequential transduer may have �nal states. Thus, some haraterizations thatwe give below di�er from those presented in [5℄ for this reason. When all statesare �nal, the domain of a sequential funtion is pre�x losed, i.e., if uv belongsto the domain then u also belongs to the domain. As our de�nition allows �nalstates, the domain of a sequential funtion is not neessarily pre�x losed.
0 1aja ajabjbbjaFigure 2: A sequential transduer.Example 3 Let A = B = fa; bg be the input and the output alphabets. Thetransduer of Figure 2, whose initial state is 0, is sequential. It replaes by athose b's whih appear after an odd number of b. On the ontrary, the trans-duer of Example 1 is not sequential. Atually, the funtion omputed by thistransduer is not sequential. Indeed, one may verify that if f is sequential, andif u and v are two words of dom(f) suh that u � v, then f(u) � f(v).Remark 4 If f is a sequential funtion and if f(") is de�ned, then f(") = ".To remove this restrition, it is possible to add an initial word assoiated withthe initial state. This word is output before any omputation. This initial wordis neessary to get the uniity of a minimal sequential transduer [28, 12℄.A subsequential transduer (A; �) over A� � B� is a pair omposed of asequential transduer A over A� � B� with F as set of �nal states, and of afuntion � : F ! B�. The funtion f omputed by (A; �) is de�ned as follows.Let u be a word in A�. The value f(u) is de�ned if and only if there is a pathi ujv��! q in A with input label u, from the initial state i to a �nal state q. Inthis ase, one has f(u) = v�(q). Thus, the funtion � is used to append a wordto the output at the end of the omputation. A funtion is subsequential if itan be realized by a subsequential transduer.5



Remark 5 Any sequential funtion is subsequential. It suÆes to onsider thefuntion � suh that �(q) = " for any �nal state q.
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Figure 3: A subsequential transduer.Example 6 The funtion f realized by the subsequential transduer pituredin Figure 3 appends to eah word its last letter. The word u is mapped to uaif it ends with an a and it is mapped to ub if it ends with a b. This funtion issubsequential but it is not sequential. Indeed, for any word w, f(wa) is not apre�x of f(wab).2.1 Subsequential funtionsIn this setion, we present some known results about subsequential funtions.We reall the haraterization of subsequential funtions obtained by Cho�rut[11, 12℄. It is known that it is deidable whether a funtion realized by atransduer is subsequential. It has been proved in [30, 31℄ that this an bedeided in polynomial time. We give here another proof of this result whihis a onsequene of the deidability in polynomial time of funtionality overin�nite words [10℄. We also desribe the algorithm to determinize a real-timetransduer. This algorithm takes a transduer whih realizes a subsequentialfuntion and outputs a subsequential transduer. This algorithm is atuallyontained in the proof of Cho�rut [11, 12℄ and [5, p. 109{110℄. It has also beendesribed by Mohri [21, 23℄ and Rohe and Shabes [25, p. 223{233℄.If the funtion is atually sequential, this subsequential transduer is againtransformed in a sequential transduer by the algorithm desribed in Setion 2.3.We give below two haraterizations of subsequential funtions that havebeen obtained by Cho�rut (see [11, 12℄ and [5, p. 105℄). The �rst harateriza-tion is intrinsi to the funtion. It is based on metri properties of the funtion.The seond haraterization is e�etive. It is based on a property alled twin-ning property of a transduer realizing the funtion. As it has been shown in[30, 31℄, this property an be deided in polynomial time.Some notation is needed to state the haraterization of subsequential fun-tions. We �rst introdue a distane d on �nite words. Let u; v be two �nitewords, we denote by d the distane suh thatd(u; v) = juj+ jvj � 2ju ^ vj;6



where u ^ v is the longest ommon pre�x of u and v (see [5, p. 104℄).A partial funtion f : A� ! B� has bounded variation if and only if:8k � 0 9K � 0 8u; v 2 dom(f) d(u; v) � k ) d(f(u); f(v)) � K:The deidability of the subsequentiality is essentially based on the followingnotion introdued by Cho�rut [12, p. 133℄ (see also [5, p. 128℄). Two states qand q0 of a transduer are said to be twinned i� for any pair of pathsi uju0��! q vjv0��! qi0 uju00���! q0 vjv00���! q0where i and i0 are two initial states, the output labels satisfy the followingproperty. Either v0 = v00 = " or there exists a �nite word w suh that eitheru00 = u0w and wv00 = v0w, or u0 = u00w and wv0 = v00w. The latter ase isequivalent to the following two onditions:(i) jv0j = jv00j,(ii) u0v0! = u00v00!A transduer has the twinning property if any two states are twinned.Proposition 7 (Choffrut) Let f : A� ! B� be a partial funtion realizedby a transduer T . The following three propositions are equivalent.� The funtion f is subsequential.� The funtion f has bounded variation.� The transduer T has the twinning property.The equivalene between the �rst two statements is an intrinsi harateriza-tion of subsequential funtions among rational funtions. It atually suÆes tosuppose that the inverse image by f of any rational set is still rational and thatf has bounded variation to insure that f is subsequential. However, we are inhis paper interested in e�etive matters and we always suppose that a funtionon words is given by a transduer whih realizes it. The equivalene betweenthe last two statements allows us to deide the subsequentiality. The proof ofthis equivalene is essentially the proof of Lemma 16 below.We mention here another haraterization of the subsequentiality. For apartial funtion f : A� ! B�, de�ne the right ongruene � on A� by u � u0 i�there are two words �nite words v and v0 suh that the following two propertieshold for any �nite word w. First, the word uw is in the domain of f i� u0w isin the domain of f . Seond, if uw and u0w are in the domain, then v�1f(uw) =v0�1f(vw). The funtion f is then subsequential i� the right ongruene � has�nite index. In that ase, the ongruene � allows one to onstrut diretly asubsequential transduer realizing f . Furthermore, this sequential transduer isminimal in the sense that any other subsequential transduer realizing f an beprojeted onto this one. The algorithm presented in Setion 2.2 allows one toompute e�etively the right ongruene �.7



Example 8 We have already mentioned in Example 3 that the funtion (a2; b2)�[(a2; 2)�(a; ) of Example 1 is not sequential. Atually, this relation is not sub-sequential as it an be easily shown with Proposition 7. Indeed, the funtiondoes not have bounded variation. For any integer n, one hasd(a2n; a2n+1) = 1 while d(b2n; 2n+1) = 4n+ 1:We now give two deidability results about rational relations. The �rst oneis due to Sh�utzenberger [27℄ (see also [7℄). The seond one is due to Cho�rut[11, 12℄ (see also [5, p. 128℄).Proposition 9 (Sh�utzenberger) Let T be a transduer over A� � B�. Itis deidable whether the relation de�ned by T is a funtion.Cho�rut also proved the deidability of the subsequentiality. He showed thatit suÆes to hek the twinning property when the lengths of the words u and vare bounded by the square of the number of states [12, p. 133℄ and [5, p. 128℄.However, this algorithm does not seem to be polynomial.Proposition 10 (Choffrut) Let T be a transduer labeled in A��B� whihrealizes a funtion f , then the subsequentiality of f is deidable.The following result is due to Weber and Klemm [30, 31℄.Proposition 11 Let f be the funtion realized by a transduer labeled in A��B�. It is deidable in polynomial time whether f is subsequential.The proof of the proposition follows diretly from Proposition 7 and fromthe following lemma. We give below another proof based on the deidability inpolynomial time of the funtionality over in�nite words. A third proof is givenin [4℄.Lemma 12 The twinning property of a transduer is deidable in polynomialtime.Proof Let T = (Q;E; I; F ) be a transduer. We deide the twinning propertyof T in two steps. We �rst deide in polynomial time the ondition (i) and thenthe ondition (ii).We de�ne an automaton A whose states are the pairs of states of T andwhose edges are labeled by integers. There is an edge (p; p0) n�! (q; q0) i� thereare two edges p aju��! q and p0 aju0��! q0 in A suh that n = ju0j � juj. The labelof a path in A is the sum of the labels of the edges of the path. We laim thatthe transduer T satis�es ondition (i) i� the label of any yle around a pair(q; q0) aessible from some pair (i; i0) for two initial states i and i0, is equal tozero. This an be done by a depth-�rst searh.We assume that the transduer already satis�es ondition (i). This �rst on-dition insures that the output label v0 is empty i� v00 is empty. The ondition (ii)is then equivalent to the funtionality of the relation on in�nite words de�ned8



by the transduer T with all states being �nal. Indeed, it is lear that if therelation de�ned by T is a funtion, then any two states are twinned. Conversely,if this relation is not a funtion, there exist two in�nite paths labeled by xjyand xjy0 with y 6= y0. Let p0p1p2 : : : and p00p01p02 : : : be the states visited by thetwo paths. Let k an index suh that yk 6= y0k. There exist indies m > n suhthat (pm; p0m) = (pn; p0n). Moreover, n may be hosen great enough suh thatthe outputs along the paths from the initial state to pn and p0n have a lengthgreater than k. Then the states pm and p0m are not twinned.It is deidable in polynomial time whether a relation on in�nite words real-ized by a transduer is a funtion [10℄. �2.2 Determinization of transduers over �nite wordsIn this setion, we desribe an algorithm whih determinizes a real-time trans-duer whih has the twinning property. This algorithm proves that the ondi-tions of Proposition 7 are suÆient.Let T = (Q;E; I; F ) be a real-time transduer, that is labeled in A � B�,realizing a funtion whih is subsequential. We give below an algorithm to de-terminize the transduer T , that is, whih produes a subsequential transduerrealizing f . The algorithm is exponential in the number of states of T . Thedeterminization of an automaton is already exponential.We de�ne a subsequential transduer D as follows. A state P of D is a setof pairs (q; w) where q is a state of T and w is a word over B. We now desribethe transitions of T . Let P be state of D and let a be a letter. The pair (P; a)determines a set R de�ned byR = f(q0; wu) j there exist (q; w) 2 P and q aju��! q0 2 Eg:If R is empty, there is no transition from P input labeled by a. Otherwise, letv be the longest ommon pre�x of the words wu for (q0; wu) 2 R andP 0 = f(q0; w0) j (q0; vw0) 2 Rg:There is then a transition P ajv��! P 0. The initial state of D is the set J = f(i; ") ji 2 Ig where I is the set of initial states of T . It follows from the de�nitionof the transitions of D that if P is a state aessible from the initial state, thelongest ommon pre�x of the words w for (q; w) 2 P is the empty word. Weonly keep in D the aessible part from the initial state. The transduer D hasa deterministi input automaton.The following lemma states the main property of the transitions of D.Lemma 13 Let u be a �nite word. Let J ujv��! P be the unique path in D withinput label u from the initial state. Then, the state P is equal toP = f(q; w) j there exists a path i ujvw���! q in T where i 2 Ig:9



Proof The proof of the lemma is by indution on the length of u. Let usonsider the following path in DJ ujv��! P ajt�! P 0where a is a letter. Let (q0; w0) be a pair in P 0. By the de�nition of thetransitions of D, there is a pair (q; w) in P and a transition q ajt0��! q0 in T suhthat tw0 = wt0. By the indution hypothesis, there is a path i ujvw���! q in T .Finally, one has vtw0 = vwt0. �The preeding lemma has the following onsequene. If both pairs (q; w)and (q0; w0) belong to a state P whih is aessible from the initial state and ifboth q and q0 are �nal states in T , then the equality w = w0 neessarily holds.Otherwise, the relation realized by T is not a funtion. This remark allows usto de�ne the set of �nal states of D and the funtion �. A state P is �nal if itontains as least one pair (q; w) where q is a �nal state of T . The funtion �maps suh a �nal state P to the word w.
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Figure 4: Transduer of Example 14Example 14 Consider the transduer pitured in Figure 4. If the algorithmfor determinization is applied to this transduer, one gets the subsequentialtransduer pitured in Figure 5. This subsequential transduer is transformedinto a sequential transduer in Examples 19.This de�nes a subsequential transduer whih may have an in�nite numberof states. However, we laim that the bounded variation property of T impliesthat the lengths of the words in states of D are bounded. Thus the number ofstates of D is atually �nite.Lemma 15 Let v1, v2, v01 and v02 be four �nite words suh that jv2j = jv02j andv1v!2 = v01v02!. For any words v3 and v03,d(v1v2v3; v01v02v03) = d(v1v3; v01v03):10



0; "A
B 1; "2; a3; a����
C 1; a2; "4; a����a

5; "Dajb aj"aj" ajabjaabjaFigure 5: Determinization of the transduer of Figure 4Proof By symmetry, we may suppose that jv1j � jv01j. There is then a �niteword w suh that v01 = v1w and wv02 = v2w. Thus the word v01v02v03 is equal tov1v2wv03. It follows thatd(v1v2v3; v01v02v03) = d(v3; wv03) = d(v1v3; v01v03):� The following lemma states that if a transduer T has the twinning property,then the outputs labels of two paths with the same input label have a longommon pre�x. It proves that if the relation realized by T is a funtion, it hasbounded variation. The proof is very lose to the proof of Proposition 6.4 in [5℄but we do not assume that the relation realized by T is a funtion. This isuseful when transduers realizing relations on in�nite words are onsidered.Lemma 16 Let T be a transduer whih has the twinning property. There is aonstant K suh that the outputs of two paths i ujv��! q and i0 ujv0��! q0 from twoinitial states i and i0 satisfy d(v; v0) � K:Proof LetK be equal to 2n2M where n is the number of states of the transduerand M is the maximal length of the output label of a transition. We proved(v; v0) � K by indution on the length of u. If juj � n2, the result holds byde�nition of K. Otherwise, both paths an be fatorizedi u1jv1���! p u2jv2���! p u3jv3���! qi0 u1jv01���! p0 u2jv02���! p0 u3jv03���! q0where u1u2u3 = u, v1v2v3 = v, v01v02v03 = v0 and ju2j > 0. By the twinningproperty, one has d(v1v2v3; v01v02v03) = d(v1v3; v01v03) and the result follows fromthe indution hypothesis. � 11



The following lemma states that the lengths of the words w of the pairs(q; w) in the states of D are bounded. This implies that the number of statesof D is �nite.Lemma 17 There is a onstant K suh that for any pair (q; w) in a state Pof D, one has jwj � K.Proof Let J ujv��! P be a path in D. Let (q; w) be a pair in some state P .By de�nition of the transitions of D, there is another pair (q0; w0) in D suhthat w and w0 have no ommon pre�x. By Lemma 13, there are two paths,i ujvw���! q and i0 ujvw0���! q0 in T . By Lemma 16, there is a onstant K suh thatd(vw; vw0) � K and thus jwj � K. �The following proposition �nally states that the subsequential transduer Dis equivalent to the transduer T . It follows diretly from Lemma 13 and thede�nition of the funtion �.Proposition 18 The sequential transduer D realizes the same funtion f asthe transduer T .We have already mentioned in Proposition 11 that it an be deided inpolynomial time whether a funtion realized by a transduer is subsequential.The algorithm desribed above is exponential but it provides another deisionproedure. Indeed, Lemma 17 gives a upper bound of the lengths of words whihan appear in states of D. By Lemma 16, this upper bound is 2n2M where n isthe number of states of T and M is the maximal length of the output label of atransition of T . Let T be a transduer realizing a funtion f . If the algorithmis applied to T , either it stops and gives a subsequential transduer D or itreates a state P ontaining a pair (q; w) suh that the length of w is greaterthan 2n2M . In the former ase, the subsequential transduer D is equivalentto T and the funtion f is subsequential. In the latter ase, the funtion f isnot subsequential.2.3 Sequential funtionsThe determinization of a transduer realizing a subsequential funtion f pro-vides a subsequential transduer realizing f . Even if the funtion f is sequential,the algorithm does not give a sequential transduer but this subsequential trans-duer an be transformed into a sequential one.This transformation is based on a normalization of subsequential transdu-ers introdued by Cho�rut [12, 13℄. This normalization onsists in pushing asmuh as possible the output labels from �nal states towards the initial state.Algorithms omputing the normalized transduer are given in [21, 23℄, [8, 9℄ and[2℄. The algorithms given in [21, 23℄ and [2℄ run in time O(jEjP ) where E is theset of transitions of the transduer, and where P is the maximal length of thegreatest ommon pre�x of the output labels of paths leaving eah state of thetransduer. If the normalization is applied to a subsequential transduer, the12



resulting transduer is sequential i� the funtion is sequential. Sine the normal-ization an be performed in polynomial time, it an be heked in polynomialtime whether a funtion realized by a subsequential transduer is sequential. Itan be shown that a funtion realized by a subsequential transduer is sequentiali� it preserves pre�xes. This was already proved in [30, 31℄ that this propertyan be heked in polynomial time.In order to transform a subsequential transduer into a sequential one, it isnot neessary to push as muh as possible the output labels from �nal statestowards the initial state, as the normalization does. It suÆes to push theseoutput labels until the output of all states are empty. Therefore, the algorithmgiven in [2℄ an be adapted to meet this requirements. This gives a time om-plexity of O(jEjL) instead of O(jEjP ) where L is the maximal length of theoutput words.
A B

C Dajba aj"aj" ajabjabjFigure 6: Sequential transduer of Example 19Example 19 Consider the transduer pitured in Figure 5 where the stateshave been renamed A, B, C and D. If the normalization is applied to this sub-sequential transduer, one gets the sequential transduer pitured in Figure 6.3 Transduers over in�nite wordsIn this setion, we onsider transduers over in�nite words with all states being�nal. We �rst give an e�etive haraterization of sequential funtions over in-�nite words. This haraterization extends to in�nite words the twinning prop-erty introdued by Cho�rut [11, 12℄. We use this haraterization to desribean algorithm to hek whether a funtion realized by a transduer is sequential.Finally, we give an algorithm to determinize a transduer.In this setion, we denote by A! the set of all (right-)in�nite words overthe alphabet A. We onsider transduers over in�nite words. The edges of thetransduers are still labeled in A� � B�. The transduer has initial states butwe suppose that all states are �nal. Thus we omit the set F of �nal states inthe notation. An in�nite path is then suessful if it leaves an initial state. Therelation over in�nite words de�ned by the transduer is the set R � A! � B!13



of labels of its suessful paths. The domain of the transduer is the set ofin�nite words x suh that there is some in�nite word y suh that (x; y) labelsa suessful path in the transduer. When the transduer realizes a funtion,its domain is also the domain of the funtion. A funtion from A! to B! issequential if it is realized by a sequential transduer. We point out that thenotion of subsequential funtion is irrelevant in the ase of in�nite words.3.1 Charaterization of sequential funtionsIn this setion, we haraterize funtions realized by transduers with all states�nal that an be realized by sequential transduers. This haraterization usestopologial properties of the funtion and some twinning property of the trans-duer. In this setion, we assume that all states of transduers are �nal.We �rst introdue a de�nition. We de�ne a subset of states whih playa partiular role in the sequel. We say that a state q of a transduer is nononstant if there are two paths leaving q labelled by two pairs (x; y) and (x0; y0)of in�nite words suh that y 6= y0. If a state q is onstant, either there is no pathleaving q labelled by a pair of in�nite words or there is an in�nite word yq alledthe onstant of q suh that for any pair (x; y) of in�nite words labelling a pathleaving q, then y = yq . In the former ase, the state q an be removed sine itannot our in an aepting path labelled by a pair of in�nite words. In thesequel, we always assume that suh states have been removed. The onstant yqis an ultimately periodi word. It should be notied that any state aessiblefrom a onstant state is also onstant. We now state the haraterization ofsequential funtions.Proposition 20 Let f be a funtion realized by a transduer T with all states�nal. Let T 0 be the transduer obtained by removing from T all onstant states.Then the funtion f is sequential i� the following three properties hold:� the domain of f an be reognized by a deterministi B�uhi automaton,� the funtion f is ontinuous,� the transduer T 0 has the twinning property.Sine the funtion f is realized by a transduer, the domain of f is rational.However, it is not true that any rational set of in�nite words is reognized bya deterministi B�uhi automaton. Landweber's theorem states that a set ofin�nite words is reognized by a deterministi B�uhi automaton i� it is rationaland GÆ [29℄. Reall that a set is said to be GÆ is it is equal to a ountableintersetion of open sets for the usual topology of A! .It is worth pointing out that the domain of a funtion realized by a transduermay be any rational set although it is supposed that all states of the transduerare �nal. The �nal states of a B�uhi automaton an be enoded in the outputs ofa transduer in the following way. Let A = (Q;E; I; F ) be a B�uhi automaton.We onstrut a transduer T by adding an output to any transition of A. Atransition p a�! q of A beomes p ajv��! q in T where v is empty if p is not �nal14



and is equal to a �xed letter b if p is �nal. It is lear that the output of a path isin�nite i� the path goes in�nitely often through a �nal state. Thus the domainof the transduer T is the set reognized by A. For instane, the domain ofa transduer may be not reognizable by a deterministi B�uhi automaton asin the following example. It is however true that the domain is losed if thetransduer has no yling path with an empty output.
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Figure 7: Transduer of Example 21Example 21 The domain of the funtion f realized by the transduer of Fig-ure 7 is the set (a+ b)�b! of words having a �nite number of a. The funtion fannot be realized by a sequential transduer sine its domain is not a GÆ set.It must be also pointed out that a funtion realized by a transduer may benot ontinuous although it is supposed that all states of the transduer are �nalas it is shown in the following example.
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Figure 8: Transduer of Example 22Example 22 The image of an in�nite word x by the funtion f realized bythe transduer of Figure 8 is f(x) = a! if x has an in�nite number of a and15



f(x) = anb! if the number of a in x is n. The funtion f is not ontinuous. Forinstane, the sequene xn = bnab! onverges to b! while f(xn) = ab! does notonverge to f(b!) = b!.Proof We �rst explain why the above three onditions of the proposition areneessary. The fat that the onditions are suÆient follows from the algorithmthat we desribe in Setion 3.2.If the funtion f is realized by a sequential transduer D, a deterministiB�uhi automaton reognizing the domain of f an be dedued from the inputautomaton of D in the following way. Eah state q is �rst split in two states q1and q2. We distribute then the edges arriving in q between q1 and q2 aordingto the emptiness of their output. Edges with an empty output arrive in q1 whileedges with a nonempty output arrive in q2. The state q2 is then �nal and q1 isnot. If q was initial, exatly one among q1 and q2 is then initial. All edges goingout of q are dupliated in edges going out of q1 and q2. In symboli dynamis,suh a transformation is alled an input state splitting. It is lear that thisdeterministi B�uhi automaton reognizes the domain of f . It is also lear thatany sequential funtion is ontinuous.We now prove that the third ondition is neessary. We suppose that wehave the following piture representing paths in T .01 23
uju0uju00 vjv0vjv00where 0 and 1 are initial states, u, u0, u00, v, v0 and v00 are �nite words. LetD be a sequential transduer realizing the same funtion as T . There are in Dpaths

4 5uvljw vkjw0
where 0 is the initial state, w and w0 are �nite words. By prolonging the pathin T from 0 to 2 (respetively from 1 to 3) with l iterations of the path around 2(respetively around 3), we an assume without loss of generality that l = 0.By replaing the yling path around 2 (respetively around 3) by k iterationsof this path, we an assume that k = 1.We laim that if the state 2 is not onstant, then the equality jwj = jv0jholds. Sine states 2 and 3 are not onstant, then if v = " then v0 = v00 = " and16



the twinning property is satis�ed. We now assume that v is not empty. Let xjx0and yjy0 be the in�nite labels of two in�nite paths leaving 2 suh that x0 6= y0.There are in D two in�nite paths labeled by xjx00 and yjy00 leaving the state 5suh that u0v0nx0 = ww0nx00u0v0ny0 = ww0ny00:If jv0j < jw0j, the words x0 and y0 have a ommon pre�x of length jwj � ju0j +n(jw0j�jv0j) for any large n. This leads to the ontradition that x0 = y0. If jv0j >jw0j, the words x00 and y00 have a ommon pre�x of length juj�jwj+n(jv0j�jw0j)for any large n. This leads to the ontradition that x00 = y00 and x0 = y0.By symmetry, if the state 3 is not either onstant, then the equality alsojwj = jv00j holds and therefore jv0j = jv00j.If both words v0 and v00 are non empty, then f(uv!) = u0v0! = u00v00!. �Before desribing the algorithm for determinization, we �rst study a parti-ular ase. It turns out that the �rst two onditions of the proposition are due tothe fat that the transduer T may have yling paths with an empty output.If the transduer T has no yling path with an empty output, the previousproposition an be stated in the following way.Proposition 23 Let f be a funtion realized by a transduer T with all states�nal. Suppose also that T has no yling path with an empty output. Let T 0be the transduer obtained by removing from T all onstant states. Then thefuntion f is sequential i� the transduer T 0 has the twinning property.If the transduer T has no yling path with an empty output, any in�nitepath has an in�nite output. Thus, an in�nite word x belongs to the domain of fi� it is the input label of an in�nite path in T . The domain of f is then a losedset. It is then reognized by a deterministi B�uhi automaton whose all statesare �nal. This automaton an be obtained by the usual subset onstrutionon the input automaton of T . Furthermore, if the transduer T has no ylingpath with an empty output, the funtion f is neessarily ontinuous. This ouldbe proved diretly but it follows from Lemma 31.We now study the deidability of the onditions of Propositions 20 and 23.We have the following results.Proposition 24 It is deidable if a funtion f given by a transduer with allstates �nal is sequential. Furthermore, if the transduer has no yling pathwith an empty output, this an be deided in polynomial time.Note that the result does not hold if it is not supposed that the transduerhas no yling path with an empty output. In the general ase, the problemis NP-hard. For any B�uhi automaton, onsider the transduer obtained byreplaing eah transition p a�! q of the B�uhi automaton by a transition p aj"��! qif p is not �nal and by p ajb��! q for a �xed letter b if p is �nal. The funtion17



maps any in�nite word to b! and its domain is exalty the set of in�nite wordsreognized by the B�uhi automaton. This funtion is sequential i� its domainis deterministi. Sine testing whether the set of in�nite words reognized by agiven non deterministi B�uhi automaton is deterministi is an NP-hard prob-lem, testing whether a funtion is sequential is also NP-hard.Proof As explained in the proof of Proposition 20, a B�uhi automaton reogniz-ing the domain of the funtion an be easily dedued from the transduer. It isthen deidable if this set an be reognized by a deterministi B�uhi automaton[29, Thm 5.3℄.It is deidable in polynomial time if a funtion given by a transduer with�nal states is ontinuous [24℄.We now show that the third ondition of Proposition 20 an be deided inpolynomial time. Sine we have already proved in Lemma 12 that the twinningproperty an be deided in a polynomial time, it suÆes to prove that thetransduer T 0 an be omputed in polynomial time. We laim that it an bedeided in polynomial time whether a given state is onstant.Let A be the output automaton of the transduer. By a depth �rst searh, itan be found two �nite words u and v suh that juj+ jvj � n and suh that uv!labels a path leaving q. One onstruts a omplete deterministi automaton Breognizing uv! with a sink state 0 whih is the only non aepting state. Wethen onsider the synhronized produt automaton of A and B. There is atransition from (p; r) to (p0; r0) labelled by a �nite word w (perhaps empty) i�there is a transition from p to p0 in A and a path from r to r0 in B. The in�niteword uv! is the label of all paths leaving q i� no state (q0; 0) is aessible from(q; iB) where iB is the initial of B. This naive algorithm runs in quadrati timefor eah state q. Therefore the onstant states of a transduer an be omputedin ubi time. It turns out that they an be omputed in linear time [10℄. �3.2 Determinization of transduers over in�nite wordsIn this setion, we desribe an algorithm to determinize a real-time transduerwhih satis�es the properties of Proposition 20. This algorithm an easily beadapted to the ase when the transduer is not real-time. This algorithm provesthat the onditions of the proposition are suÆient.Let T = (Q;E; I) be a transduer and let T 0 be the transduer obtainedby removing from T all onstant states. We assume that T 0 has the twinningproperty. We denote by S the set of onstant states. For a state q of S, we denoteby yq, the single output of q whih is an ultimately periodi word. We supposethat the domain of f is reognized by the deterministi B�uhi automaton A.This automaton is used in the onstruted transduer to insure that the outputis in�nite only when the input belongs to the domain of the funtion.We desribe the deterministi transduer D realizing the funtion f . A stateof D is a pair (p; P ) where p is a state of A and P is a set ontaining two kindsof pairs. The �rst kind are pairs (q; z) where q belong to Q n S and z is a �niteword over B. The seond kind are pairs (q; z) where q belongs to S and z isan ultimately periodi in�nite word over B. We now desribe the transitions18



of D. Let (p; P ) be a state of D and let a be a letter. Let R be equal to the setde�ned as followsR = f(q0; zw) j q0 =2 S and 9(q; z) 2 P; q =2 S and q ajw��! q0 2 Eg[ f(q0; zwyq0) j q0 2 S and 9(q; z) 2 P; q =2 S and q ajw��! q0 2 Eg[ f(q0; z) j q0 2 S and 9(q; z) 2 P; q 2 S and q ajw��! q0 2 Eg:We now de�ne the transition from the state (p; P ) input labeled by a. If R isempty, there is no transition from (p; P ) input labeled by a. Otherwise, theoutput of this transition is the word v de�ned as follows. Let p a�! p0 be thetransition in A from p labeled by a. If p0 is not a �nal state of A, we de�ne v asthe empty word. If p0 is a �nal state, we de�ne v as the �rst letter of the wordsz if R only ontains pairs (q0; z) with q0 2 S and if all the in�nite words z areequal. Otherwise, we de�ne v as the longest ommon pre�x of all the �nite orin�nite words z for (q0; z) 2 R. The state P 0 is then de�ned as followsP 0 = f(q0; z) j (q0; vz) 2 Rg:There is then a transition (p; P ) ajv��! (p0; P 0) in D. The initial state of D isthe pair (iA; J) where iA is the initial state of A and where J = f(i; ") j i 2I and i =2 Sg [ f(i; yi) j i 2 I and i 2 Sg. If the state p0 is not �nal in A, theoutput of the transition from (p; P ) to (p0; P 0) is empty and the words z of thepairs (q; z) in P , may have a nonempty ommon pre�x. We only keep in D theaessible part from the initial state. The transduerD has a deterministi inputautomaton. It turns out that the transduer D has a �nite number of states.This will be proved in Lemma 33. It will be also proved in Proposition 34 thatthe transduer D realizes the same funtion as T .0 1aja
bjb aj" aj"

jaaFigure 9: Transduer of Example 25Example 25 Consider the transduer pitured in Figure 9. A deterministiB�uhi automaton reognizing the domain is pitured in Figure 10. If the algo-rithm for determinization is applied to this transduer, one gets the transduerpitured in Figure 11.The following lemma states the main property of the transitions of D.19
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b   a aFigure 10: A deterministi B�uhi automaton for the domain
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Figure 11: Determinization of the transduer of Figure 9Lemma 26 Let u be a �nite word. Let (iA; J) ujv��! (p; P ) be the unique pathin D with input label u from the initial state. Then, the state p is the uniquestate of A suh that iA u�! p is a path in A and the set P is equal toP = f(q; z) j 9 i ujv0��! q in T suh that v0 = vz if q =2 Sv0yq = vz if q 2 Sg:Proof The proof of the lemma is by indution on the length of u. Let usonsider the following path in D(iA; J) ujv��! (p; P ) ajt�! (p0; P 0)where a is a letter. Let (q0; z0) be a pair in P 0. If q0 =2 S, there is a pair (q; z)in P and a transition q ajt0��! q0 in T . If both states q and q0 do not belongto S, the proof is similar to the proof of Lemma 13. If q =2 S and q0 2 S, onehas tz0 = zt0yq0 . By the indution hypothesis, there is a path i ujvz���! q in T .One �nally gets vtz0 = vzt0yq0 . If q 2 S and q0 2 S, one has tz0 = z. By theindution hypothesis, there is a path i ujv0��! q in T suh that v0yq = vz. Sineyq = t0yq0 , one �nally gets vtz0 = v0t0yq0 . �The previous lemma has the orollary whih states that eah state q is the�rst omponent of at most one pair (q; z) in the seond omponent P of a state(p; P ) of D.Corollary 27 Let q be a state of T and let (p; P ) be a state of D. The subset Pontains at most one pair (q; z). 20



Proof Let (iA; J) ujv��! (p; P ) be a path in D and let (q; z) and (q; z0) be twopairs in P .We �rst suppose that q is not onstant. Let xjy and x0jy0 be two pairsof in�nite words whih label two paths leaving q suh that y 6= y0. By theprevious lemma, there are two paths i ujvz���! q and i0 ujvz0���! q in T . One hasf(ux) = vzy = vz0y and f(ux0) = vzy0 = vz0y0. If z 6= z0, it may be assumed bysymmetry that jz0j > jzj and that z0 = zw for some �nite word w. This leadsto the ontradition y = y0 = w!.We now suppose that q is onstant. Let xjy be a pair of in�nite words whihlabels a path leaving q. By the previous lemma, there are two paths i ujw��! qand i0 ujw0���! q in T suh that wy = vz and w0y = vz0. Furthermore, one hasf(ux) = wy = w0y and thus z = z0. �We now introdue some tehnial property of the paths of a transduer. Thisproperty is a kind of twinning property when the output of one of the ylingpaths is empty. Its turns out that this property is equivalent to the ontinuityof the funtion realized by the transduer when it is already supposed that thetransduer has the twinning property. Let T be a transduer and let S be its setof onstant states. The transduer T is said to have the "-ompatibility propertyi� for any pair of paths i uju0��! q vjv0��! qi0 uju00���! q0 vj"��! q0suh that i and i0 are two initial states and v0 is a nonempty word, the state q0is onstant and its onstant yq0 satis�es u00yq0 = u0v0!. If the states q and q0 aretwinned, there annot be a pair of suh paths. If the output along the seondyling path is empty, the output along the �rst yling path should also beempty. The above onditions add some ompatibility of the outputs when qand q0 are not twinned.The following lemma states that if the funtion realized by the transduer isontinuous, then the transduer has the "-ompatibility property. The onverseis established in Lemma 31.Lemma 28 Let T be transduer realizing a funtion f on in�nite words. If thefuntion f is ontinuous, then the transduer T has the "-ompatibility property.Proof Let xjy be a pair of in�nite words whih labels a path leaving q0. Forany integer n, one has f(uvnx) = u00y and f(uv!) = u00y by ontinuity of f .Sine f(uv!) = u0v0!, the state q0 is onstant and its onstant yq0 satis�esu00yq0 = u0v0!. �For a �nite word w and an in�nite word x, we denote by d(w; x) the integerjwj� jw^xj where w^x is the longest ommon pre�x of w and x. Remark thatd is not a distane but Lemma 15 still holds when v03 is an in�nite word.21



Lemma 29 Let T be a transduer. Suppose that T has the "-ompatibility prop-erty and that T 0 has the twinning property. There is a onstant K suh that forany two paths i ujv��! q and i0 ujv0��! q0 where i and i0 are initial states, q =2 S andq0 2 S, one has d(v; v0yq0) � K:Proof LetK be equal to n2M where n is the number of states of the transduerand M is the maximal length of the output label of a transition. We proved(v; v0yq0) � K by indution on the length of u. If juj � n2, the result holds byde�nition of K. Otherwise, both paths an be fatorizedi u1jv1���! p u2jv2���! p u3jv3���! qi0 u1jv01���! p0 u2jv02���! p0 u3jv03���! q0:where ju2j > 0 and ju3j � n2. If both words v2 and v02 are empty, the resultfollows diretly from the indution hypothesis. Thus, we may assume that onethe words v2 or v02 is not empty. Sine q does not belong to S, p does not belongto S either. The "-ompatibility property implies then that v2 annot be empty.We �rst suppose that p0 =2 S. By the twinning property, Lemma 15 andthe above remark, one has d(v1v2v3; v01v02v03yq0) = d(v1v3; v01v03yq0) and the resultfollows from the indution hypothesis.We now suppose that p0 2 S and we laim that v01v02v03yq0 = v1v!2 . Sine p0is onstant, yp0 = v03yq0 . If the word v02 is empty, the "-ompatibility propertyimplies that v01yp0 = v1v!2 . If v02 is nonempty, yp0 = v02!. Sine f(u1u!2 ) = v1v!2 =v01v02!, the laimed equality holds. In both ases, one has d(v1v2v3; v01v02v03yq0) =d(v1v2v3; v1v!2 ) � jv3j � K. �The following lemma states some tehnial onsequene of the "-ompatibilityproperty.Lemma 30 Let T be a transduer whih has the "-ompatibility property and letf the funtion realized by T . Then if x is in the domain of f and x is the inputlabel of a path entirely out of S, the output of this path is in�nite and is thusequal to the image of x by f .Proof Suppose that x is the input label of two paths  and 0. Suppose alsothat all states of  do not belong to S and the output along 0 is an in�niteword. Sine the number of states is �nite, both paths  and 0 an be fatorized = i u0jv0���! q u1jv1���! q u2jv2���! q � � �0 = i0 u0jv00���! q0 u1jv01���! q0 u2jv02���! q0 � � �Furthermore, it an be assumed that eah v0k is nonempty sine v00v01v02 : : : is anin�nite word. By hypothesis, this implies that eah vk is also nonempty. �22



The following lemma states a kinf of onverse of Lemma 28. It shows inpartiular that if a transduer T has no yling path with an empty output andif T 0 has the twinning property, then the funtion realized by T is ontinuous.If x and y are two in�nite words, d(x; y) denotes the usual distane between xand y whih makes the set A! of all in�nite words a ompat spae.Lemma 31 Let T be a transduer whih has the "-ompatibility and suh thatT 0 has the twinning property. Then the funtion realized by T is ontinuous.Proof Let f be the funtion realized by the transduer T and let x be anin�nite word in the domain of f . We laim that for any integer m there is aninteger k suh that for any in�nite word x0 also in the domain f , the inequalityd(x; x0) � 2�k implies the inequality d(f(x); f(x0)) � 2�m. Let y = f(x) be theimage of x. Let  be a path labeled by xjy and let i be the initial state of .Let 0 be a path labelled by (x0; y0) where y0 = f(x0). Aording to the previouslemma, it an be assumed that either there is a path entirely out of S whih islabeled by xjy or that x is not the input label of a path entirely out of S.We �rst suppose that the path  is entirely out of S. By Lemma 15, thereis a onstant K suh that if i ujv��! q and i0 ujv0��! q0 are two paths with q =2 Sand q0 =2 S, then one has d(v; v0) � K. By Lemmas 28 and 29, there is anotheronstant K 0 suh that if i ujv��! q and i0 ujv0��! q0 are two paths with q =2 S andq0 2 S, then one has d(v; v0yq0) � K. Let k be hosen suh that the outputalong the �rst k transitions of  has a length greater then m + max(K;K 0).Let q be the state of  reahed after k transitions and let v be the output of 0along the �rst k transitions. Suppose that x0 satis�es d(x; x0) � k and that 0is a path labeled by x0jy0 where y0 = f(x0). Let i0 the initial state of 0 andlet q0 be the state of 0 reahed after k transitions. If q0 does not belong to S,one has d(v; v0) � K where v0 is the output of 0 along the �rst k transitions.Sine jvj � m+K, one has jv ^ v0j � m and thus d(y; y0) � 2�m. If q0 belongsto S, one has d(v; y0) � K 0. Sine jvj � m+K 0, one has jv ^ y0j � m and thusd(y; y0) � 2�m.We now suppose that x is not the input label of a path entirely out of S.There is then an integer K suh that any path input labeled by a pre�x of x oflength greater than K ends in a state of S. Let k be equal to K +K 0 where K 0is the length of part of  inside S whih ontains at least n2 transitions with anonempty output. If d(x; x0) � 2�k, both paths  and 0 an be fatorized = i u0jv0���! q u1jv1���! q u2jv2���! � � �0 = i0 u0jv00���! q0 u1jv01���! q0 u02jv02���! � � �where u0u1u2 = x, u0u1u02 = x0, v1 is nonempty and q and q0 belong to S. Welaim that y = y0. One has y = v0yq and y0 = v00yq0 . Sine v1 is nonempty,one also has yq = v!1 . If v01 is also nonempty, one has yq0 = v01! and f(u0u!1 ) =v0v!1 = v00v01! and thus y = y0. If the word v01 is empty, the "-ompatibilityproperty implies v0yq = v00yq0 and y = y0.23



In both ases, an integer k satisfying the laimed property has been found.The funtion f is then ontinuous. �The following lemma states that the lengths of the words z of the pairs (q; z)in the states of D are bounded. It is essentially due to the twinning propertyof T 0.Lemma 32 There is a onstant K suh that for any pair (q; z) in P of a state(p; P ) of D where q =2 S and z is a �nite word, one has jzj � K.Proof Let m and n be the respetive numbers of states of A and T . By Lemma16 and 29, there is a onstant K 0 suh that if i ujv��! q and i0 ujv0��! q0 are twopaths suh that q =2 S, then one has d(v; v0) � K 0 if q0 =2 S or d(v; v0yq0) � K 0if q0 2 S. Let K = K 0 +mnM where M is the maximal length of the outputlabel of a transition in T . Let (p; P ) be a state of D and onsider a path(iA; J) u0jv0���! (p0; P 0) ujv��! (p; P )where p0 is a �nal state of A. If there is no path from (iA; J) to (p; P ) whihgoes through a state (p0; P 0) with p0 �nal, we assume that (p0; P 0) is atually(iA; J). The proof is by indution on the length of u. If juj = 0, the state pis atually a �nal state of A. In the ase where p is �nal, the longest ommonpre�x of the words z of the pairs (q; z) in P is empty. Lemmas 16, 26 and 29imply that jzj � K 0. We now suppose that p is not �nal. If juj � mn, theresult follows from the de�nition of the transitions of D. We now suppose thatjuj > mn and that (p0; P 0) is the last state along the path from (iA; J) to (p; P )suh that p0 is a �nal state of A. Let (q; z) be a pair in P suh that q =2 S andz is a �nite word. By de�nition of the transitions of D, there is a pair (q0; z0)in P 0 and a path q0 ujw��! q in T suh that z0w = vz. There is also a path p0 u�! pin A. Sine juj > mn, both paths an be fatorizedp0 u1���! p00 u2���! p00 u3���! pq0 u1jw1���! q00 u2jw2���! q00 u3jw3���! qwhere u1u2u3 = u and w1w2w3 = w. Sine the yling path p00 u2�! p00 in Adoes not ontain any �nal state, the in�nite word u0u1u!2 does not belong tothe domain of f . This implies that the word w2 is empty. We then onsider thepath (p0; P 0) u1u3jv00�����! (p; P 00)in D. The subset P 00 ontains a pair (q; z00) for some �nite word z00. We laimthat z00 = z. Indeed, one has z0w1w2w3 = z0w1w3 = vz = v00z00. As bothpaths p0 u1u2u3����! p and p0 u1u3���! p in A ontain no other �nal state than p, bothoutputs v and v00 along the orresponding paths in D are empty. Thus one getsz = z00. By the indution hypothesis, one has jzj = jz00j � K. �24



It is now possible to prove that the transduer D has a �nite number ofstates. However, the number of states of D an be exponential as in the ase of�nite words.Lemma 33 The number of states of D is �nite.Proof We have proved in the preeding lemma that the lengths of the �nitewords z are bounded. It remains to show that there is a �nite number ofdi�erent in�nite words z whih an appear in some pair (q; z). By de�nition ofthe transitions, any in�nite word z of a pair is the suÆx of z0wyq where (q0; z0)is a pair suh that q0 =2 S and z0 is �nite and where q 2 S and q0 ajw��! q is atransition of T . Sine the length of z0 is bounded, the number of suh wordsz0wyq is �nite and they are ultimately periodi. There are then a �nite numberof suÆxes of suh words. �The following proposition �nally states that the sequential transduer D isequivalent to the transduer T . Both transduers realize the same funtion overin�nite words.Proposition 34 The sequential transduer D realizes the same funtion f asthe transduer T .Proof We respetively denote by f and f 0 the funtions realized by the trans-duer T and D. We �rst prove that if an in�nite word x belongs to the domainof f , it also belongs to the domain of f 0 and f(x) = f 0(x).Let x = a0a1a2 : : : be an in�nite word whih is in the domain of f . Let be a path  = i a0jv0���! q1 a1jv1���! q2 a2jv2���! � � � (1)be a path in T input labeled by x and whose output v0v1v2 : : : is an in�niteword. Consider the unique path � in D input labeled by x� = (iA; J) a0jv00���! (p1; P1) a1jv01���! (p2; P2) a2jv02���! � � � (2)By Lemma 26, eah state Pn ontains a pair (qn; zn).We �rst suppose that x input labels a path in T entirely out of S. ByLemma 30, it an be assumed that eah state qn does not belong to S and thateah zn is �nite. By Lemma 26, the equality v0 : : : vn = v00 : : : v0nzn holds forany integer n. By Lemma 32, the lengths of the words zn are bounded. Thisimplies the equality v0v1v2 : : : = v00v01v02 : : : of the two outputs.We now suppose that x is not the input label of a path entirely out of S.There is then an integer n suh that for any m � n, Pm only ontains pairs(q; z) with q 2 S and z in�nite. Both path  and � an be fatorized = i u0jv0���! q u1jv1���! q u2jv2���! q � � �� = (iA; J) u0jv00���! (p; P ) u1jv01���! (p; P ) u2jv02���! (p; P ) � � �25



Furthermore, it an be assumed that eah vn is nonempty. Thus eah pathp uk�! p in A ontains a �nal state of A. The single output of the state q is v!1 .By Lemma 26, the subset P ontains a pair (q; z) and v0yq = v0v!1 = v00z.Let (q0; z0) be another pair in P . By de�nition of the transitions of D, thereis a sequene (qn)n�0 of states suh that the pairs (qn; v01nz0) belong to P . Sinethere is a �nite number of states, there are n < m suh that qn = qm. Thisimplies that there is in T a yling path around qn input labeled by um�n1 . Letq00 = qn = qm. We �rst laim that v01nz0 = z0. If the word v01 is empty, this isobvious. Otherwise, Corollary 27 implies that v01nz0 = v01mz0. Thus z0 = v01!and the equality v01nz0 = z0 also holds. The subset P ontains a pair (q00; z0).By Lemma 26, there is a path i u0jv00���! q00 in T suh that v00z0 = v00yq00 . Byonstrution, there is also a yling path around q00 input labeled by um�n1 . Wesuppose that the output label of this yling path is the word w. If the word wis empty, Lemma 28, states that v00yq00 = v0v!1 . Thus, one has v00z0 = v00yq00 =v0v!1 = v00z and z = z0. If the word w is nonempty, one has yq00 = w! andf(u0u!1 ) = v00w! = v0v!1 . This implies z = z0.Sine we have proved that all pairs (q; z) in P share the same in�nite word zand sine eah path p ui�! p ontains a �nal state, eah word v0i is nonempty byde�nition of the transitions of D and the equality v01v02v03 : : : = z holds. Thislast equality implies that v0yq = v00z = v00v01v02 : : : and that f(x) = f 0(x).Conversely, the de�nition of the transitions of D implies that the domainof f 0 is ontained in the domain of f . Thus both funtions f and f 0 have thesame domain and f = f 0. �We have already mentioned in Proposition 24 that it an be deided whethera funtion over in�nite words realized by a transduer with all states �nal issequential. As in the ase of �nite words, the algorithm desribed above providesanother deision proedure. Indeed, Lemma 32 gives an upper bound K of thelengths of �nite words whih an appear in states of D. Let T be a transduerwith all states �nal realizing a funtion f . If the algorithm is applied to T ,either it stops and gives a sequential transduer D or it reates a state (p; P )ontaining a pair (q; z) suh that the length of z is greater than K. In theformer ase, the sequential transduer D is equivalent to T and the funtion fis sequential. In the latter ase, the funtion f is not sequential.AknowledgmentsThe authors would like to thank Jean Berstel for very helpful suggestions andChristian Cho�rut for his relevant omments on a preliminary version of thispaper.Referenes[1℄ B�eal, M.-P. Codage Symbolique. Masson, 1993.26
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