
HAL Id: hal-00619181
https://hal.science/hal-00619181

Submitted on 27 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast parallel Lyndon factorization and applications
Alberto Apostolico, Maxime Crochemore

To cite this version:
Alberto Apostolico, Maxime Crochemore. Fast parallel Lyndon factorization and applications. Math-
ematical System Theory, 1995, 28 (2), pp.89-108. �hal-00619181�

https://hal.science/hal-00619181
https://hal.archives-ouvertes.fr

Purdue University

Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1989

Fast Parallel Lyndon Factorization With
Applications
Alberto Aposiolico

Maxime Crochemore

Report Number:
89-931

his document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Aposiolico, Alberto and Crochemore, Maxime, "Fast Parallel Lyndon Factorization With Applications" (1989). Computer Science
Technical Reports. Paper 792.
htp://docs.lib.purdue.edu/cstech/792

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

FAST PARALLEL LYNDON FACTORIZATION,
WITH APPLICATIONS

Alberto AposLolico
Maxime Crochcmore

CSD·1R·931
November 1989

(RevisedApril 1990)

FAST PARALLEL LYNDON FACTORIZATION
WITH APPLICATIONS

Alberto Apostolico1

Departmentof ComputerScience,PurdueUniversity, WestLafayette,IN 47907
and

Dipartimentodi MatematicaPurae Applicata, Universitade L'Aquila, L'Aquila, Italy

Maxime Crochemore'l
L.I.T.P., University of ParisVII, 4-PlaceJussieu,75252Paris,France

PurdueUniversity CS TR 931
(November,1989)

(RevisedApril 1990)

Abstract: It is shown that the Lyndon decompositionof a word of n
symbolscanbecomputedby an CReW PRAM in O(logn)
time. Extensionsof the basic algorithm convey, within the sametime
and processorsbOWlds, efficient parallel solutions to problemssuchas
finding thelexicographicallyminimumor maximumsuffix for aU prefixes
of the input string, andfinding the lexicographicallyleastrotationof all
prefixesof the input.

Key words: parallelcomputation,combinatoricsonwords,stringmatch-
ing, Lyndon words.

AMS subjectclassification:68C25

1 This author'sresearchwas supportedin part by the French and Italian Ministries of Education,
by the British ResearchCouncil Grant SERC-E76797>by NSF GrantCCR-B9-00305,by NIH Library of
MedicineGrantROJ LM0511B, by AFOSRGrant90-0107,and by NATO GranteRG 900293.

2 This author'sresearchwassupportedin part by PRC'Mathematiqueset Informatique'andby NATO
GrantCRG 900293.

2

1. INTRODUCTION

Within the vast domainof sorting, a specialrole is playedby problemsdefined in terms

of lexicographic orders. Among problem.sin this class, we find that of sorting a set of
strings over someorderedalphabet,finding the lexicographicallyleast circular shift of a
string, finding the lexicographicallysmallestor largestsuffix for a string, etc. In the realm

of serial computation,the last threeproblemsaresolvedefficiently by resort to a special
factorizationof the free monoid [131 introducedin [8] and known as Lyndonfactorization

(or decomposition).Accordingto this factorization,anyword canbedecomposedwriquely

into a sequenceof lexicographicallynon increasingfactors, with the additional property

that eachsuchfactor is lexicographicallyleast amongits own circular shifts. Optimal,
linear-time algorithms for the Lyndon factorizationof a word were given in [10], along

with the implied linear-timesolutionsfor the relatedproblemsof finding lexicographically

leastcircular shifts, computingminimumsuffixes,etc. Recently,further propertiesof the
Lyndon factorizationwere used tocomputein optimal O(n2) time the least rotationsof

all substringsof a string of n symbols[3].

A handful of algorithmic problemson strings [4] havebeenattackedto datealso in
the frameworkof parallel computation(see,e.g., [2], [5], [6], [9]). In this framework, one
is usually interestedin approachingoptimum speed-up for a problem, in thesensethat the

productof the time takenby a parallelsolutionand the numberof processorsusedshould
beascloseaspossibleto theasymptoticcomplexityof thebestserialalgorithmavailablefor

thatproblem. Typically, theavailableefficientsequentialalgoritlunsdonot lend themselves
to efficientparallelizatiollS,so thatfast parallelalgorithmsareto bedevelopedmostlyfrom

scratch. In particular, noneof the parallelalgorithmson words producedresemblesany
sequentialpredecessor. The algorithm presentedin this paper is no exception to this

rule. In this paper,we show that the Lyndon decompositionof a word of n symbolscan
be computedby an n-processorsCRCW PRAM in O(logn) time and linear space. The

bestpreviousparallelsolution to this problemusesa CRCWPRAM with n processorsand

takesO(log2n) time with linearspace,or O(logn) time with quadraticspace(9]. Although

the time x pToceS!JOTS boundof this paperdoesnot achieveoptimumspeed-up,it is very
close to the n(logn/loglogn) lower bound for computingsuch elementaryflUletions as
the parity of n bits on a CReWPRAM usinga polynomialnumberof processors[7].

This paperis organizedas follows. In the next section,we recall somebasic known

facts of combinatoricson words and lexicographicorderings. In Section 3, we analyze

the robustnessof the Lyndon decompositionof a word x underextensionoperationsthat

changex into a new word Xl = xw, wherew is an arbitrary word. In Section4, we study
more in detail the relation betweenthe Lyndon factorizationsof two given words x and

Xl and the Lyndon decompositionof w = xx'. Someof the propertieswe derive are of

3

independentinterest. Section5 containsthe descriptionof our parallelalgorithmfor the

Lyndon decompositionof a word, basedon the resultsof the previoussections. In the

final section, we describesome applicationsand extensionsof the main algorithm that

lead to solve, in overall O(logn) time, someproblemsdefined on the set of all prefixes

of the input string. Specifically, we considerthe problemof finding, for every prefix of

the input, the lexicographicallysmallestor largestsuffix, and the lexicographicallyleast

amongall rotationsof that prefix. The last application is basedon somepropertiesof

Lyndon decompositionsrecentlyintroducedin [3].

2. PRELIMINARIES

Let E be an alphabettotally orderedaccordingto the relation <, E+ the free semigroup

generatedby E, and E* = E+ U {A}, where A is the empty word. The total order < is

extendedin its correspondinglexicographicorder on E+1 asfollows: For any pair of words
x,y E E+, X < Y iff either y E xE+ or

x = ras, y = rbt, with a < bj a,b E Ej r ,s,tEE"'.

In the following, we wri te u « v or v u to denotethat u < v but v is not in uE*.

Fact 1 . Let u -< v. Then,for any W , z in E*, we haveuw -< vz.

A word x E E- is a Lyndonword iff x is strictly smallerthat anyof its propersuffixes.

For example,a, b, aaab,abbb,aababandaababaabbareLyndon wordson the alphabetE =

a,b, but abab and abaab arenot. By the definition of lexicographicorder, onegets then
immediatelythat if x is a Lyndon word, thenno nonemptysuffix of x canbe alsoa prefix

of x. A word with this propertyis border·free. A word x is primitive if settingx = wk

implies k = 1. An immediateconsequenceof the precedingstatementis then that any

Lyndon word is a primitive word. A word x is strongly primitive or squarefreeif every

substringof x is a primitive word. For example, cabeaandcababdareprimitive words,but

eabeais alsostronglyprimitive, while cababdis not, due to the squareabab.

Fact 2. Let 1 be a Lyndon word, v E E+ a suffix of 1 and u a prefix of v. Then u < 1
implies that u is a prefix of l. In otherwords, u -< 1 is impossible.

Thefollowing centraltheoremholds [8].

Theorem1. Any word x E E+ may bewritten in a uniquewayasa nonincreasingproduct

of Lyndon words:

x = 1112...lkl 11 12 2::: ... lk·
Moreover, lk is the (lexicographically)smallestsuffix of x.

4

Thesequence(h,12 , ... j lk) of Lyndon wordssuchthat x = ZllZ ...lk and11 :2:: 12 :;::: ... ;:::

lk is called the Lyndon decompositionor Lyndon factorizationof x. In the following, we
refer to it simply as the decompositionor factorization of x. The following claim is an

obviousconsequenceof the fact that 11 is the longestLyndon word that is alsoa prefix of
x.

Fact 3. Let 1 bea Lyndon word. For any wEE"', the first factor 11 in the decomposition

of Iw obeysthe condition 11,12: III.

The following notions will be neededin the sequel. If x = vwy, then the length Ivl
of v is the position of w in x. Let 1112...h be the Lyndon decompositionof a string x.

For any t (t = 1,2,...,k -I), tail(lt) is the suffix of x having the sameposition in x
as lHb i.e.) tail(lt) = It+lZt+2 ...1k. We also set tail(lk) = A, and, with the convention
that 10 = >., tail(lo) = x. For any t(t = 1,2,...,k), rest(lt) is the suffix of x at position

i + lId, where i is the position of the last factor identical to It in the decompositionof
x. For example,for x = bbababawe have it = 12 = b, 13 = 14 = ab and 15 = a. We

also have tail(l,) = bababaand Test(l,) = tai/(l,) = ababa. Finally, tail(l,) = aba, and
tail(l.) = Test(l.)= Test(l,)= a.

3. FACTOR STABILITY UNDER RIGHT EXTENSIONS

In this section,we study the robustnessof the factors in the decompositionof a word x

with respectto arbitrary extensionsof x into a new word xw. It is easily seenthat the

factorizationof somesuchextensionsare themselveseasyextensionsof the factorization
of x, while othersdepartquitesubstantiallyfrom the factorizationof x. For example,let
x = abcababcababcab.Then, we have11 = abc, 12 = 13 = ababcand 14 = abo Appendingto

x a stringw consistingof thesinglesymbolb leavesh, hand13 unaltered,andonly requires
extending14 into the new factor abb. If, on the otherhand,we hadchosenw = c, then the

decompositionof xc would have11 = abc and 12 = ababcababcabc,which is dramatically
different from the decompositionof x.

We saythat a factor I in the decompositionof a string x is right-stable if I is a factor

of the decompositionof xw for any w E •. Let now 1],12 , ...,lk be the decomposition

of x. Clearly, lk is neverright stableunless lk coincideswith the maximumsymbol c in

However, if lk = c and k > I, then it must be 11 = 12 = ... = h, and all factors
are right-stable. Observealso that, for [hI> 1 the first symbol of Ii cannotbe c. In the

nontrivial casethat lk is not c and that k > I, the following theoremcharacterizesthe
right-stablefactors in the decompositionof x.

Theorem2. Let 11 ,12 , ...,lk bethedecompositionof x, andassumethat k > 1 and lk =f:. c.

For any t in [1, k - I], it is right-stableif and only if rest(lt) is not a prefix of it.

5

Proof. Assumethat It is right-stablebut rest(lt) is a prefix of It. We show that, in this
case, It is not a factor in the decompositionof xc. By the definition of rest(lt), we have
that w = tail(lt_d = (It)!resi(lt) for someintegerf ;::: 1. We show that we is a Lyndon

word. Thus, even if a factor of the decompositionof xc startedwith 1t1 It would only be

a properprefix of sucha factor. Choosei suchthat Irest(lt)cil = 11t l + 1. Let z be an

arbitrary suffix of Itl and u be the suffix of of resi(lt)ci
-

1 such that lui = Izi. Clearly,
u z, whenceuc > z. But z > I t1 so that uc It_ Sinceh =F c, then c >>It . Since

it is a Lyndon word, then we alreadyhavethat for any suffix z of It, z » It. Hence,for

any f' < I, Fact 1 yields z(It)!' rest(lt)ci » (It)! rest(lt)ci . In conclusion,we is a Lyndon
word, which contradictsthe assumptionthat It is right-stable.

For thesecondpart of the proof, we showthat if rest(lt) is not a prefix of It, then It

is right-stable.

Assumefor the momentthat It is not a prefix ofrest(It), i.e., neitherof It or rest(It)

is a prefix of the other. Then, letting v be the longest commonprefix of It and rest{lt),

we haveIvl < min{IItl,lrest(lt)I}. But then therearesymbolsa and a' suchthat a =1= ai,

va is a prefix of It and va' is a prefix of rest(It). Now, it is known from [10) that a < a'

implies that ItIt+l ...va' is a Lyndon word. Hence,a < a' is impossiblein our case,sinceit
would violate Fact3. It is convenientto carry out this part of the proof explicitly, both
for completenessof presentationandfor future reference.Recall that, sinceit is a Lyndon

word, then for every suffix z of it, we havez::»- it and, by Fact 1, z(It)9va' ::»- (It)f va',

where f was definedearlier in this proof and 9 < f is a naturalnumber. Thus, we only
needto show that for every suffix z of va', it is also z::»- ItIt+l ...va'. This is obviousfor
z = va', due to the hypothesisthat va is a prefix of It and a < a'. Let then z be an

arbitrary propersuffix of va', and write z = zlal . Since v is a prefix of III then clearly

z' « it is impossible,by Fact 2. Hencez' < It implies that z' is a prefix of It. Thus,
thereexist a" in E suchthat z'all is a prefix of It. But va is also prefix of It, and z' is a
suffix of v. Therefore, it must be a 2:: a", by Fact 2. Hence,a' > a yields a' > a" and

z = z'a'» z'all
, that is, z Itva'. In conclusion,assuminga' > a yields that ltva' is a

Lyndonword. This violatesFact3. Thus,sincea f:. a', it mustbe that a > a', whencethe

claim is establishedfor it not a prefix of rest(It}.

We now showthat It cannotbea prefix of rest(it). In fact, let 9 > aandu bechosen,
respectively,as the maximumintegerandthelongestprefix of it for which (It)9 U is a prefix

of rest(lt). Clearly, rest{lt) = (It)9u is impossible,for otherwiseeveryfactor following it in

the decompositionof x exceptu would be identical to It, and we would haverest(lt) = u

and u a prefix of It, in contradictionwith our assumptions.Thus, there are symbolsa
and a' suchthat a =1= a', (It)gua' is a prefix of rest(It) and ua is a prefix of It. Assuming

a > a' yields that the first 9 factors in the decompositionof rest(lt) are eachidentical to

6

It, which contradictsthe definition of rest(lt). Assuminga < a' implies instead,through

an argumentalreadyusedearlier in this proof, that ltlt+l ...ua' is a Lyndon word, which
contradictsthe assumptionthat It is a factor in the decomposition.Hence, It cannotbe a
prefix of rest(lt). 0

4. COMBINATORICS OF COMPOSITIONS

In this section, we study how the decompositionsof two strings x and x' are related to

the decompositionof string xx'. This is easyin thecasewhereboth x andx' areLyndon
words, in view of the following knownfact (cf., e.g., [10]).

Fact 4. Let u andv be Lyndon words. Thenuv is a Lyndon word if andonly if u < v.

In general, the compositionof two factorizationsis less straightforward. Of course,
right-stablefactors of x arenot affectedby the extensionof x into xx', but we know that
in the generalcaseat least one factor is not We start by listing two lemmas
that shall be of uselater.

Lemma 1. Let I and I' be two distinct Lyndon words such that, for someu E E+ and

vEE"', we havethat I' = uv, andu is a suffix of l. Then, Iv is a Lyndon word.

Proof. Theassertiontrivially holdsif v is empty, thuswe assumehenceforththat v is not

empty. Since I is a Lyndon word, then for any suffix u' of I we haveu' » I, whence,by

Fact1, alsou'v Iv. Letting now v' bev or somesuffix of v we havealsov' I' > u l,
which concludesthe proof. •

Lemma2. For u E E+ andvEE"', let [= uv be a Lyndon word. Then, for any wEE"',

Ivl is the positionof a factor in the decompositionof vlw.

Proof. Let [' be the last factor in the decompositionof v. Then, [' is border-free. Let

u be the longestprefix commonto 1/ and l. Since I is a Lyndon word, we have luj < WI,
whencethere are symbolsa and a' such that ua' is a prefix of I' and ua is a prefix of I.
Now at < a is impossible,sinceit violatesFact 2. Hence,it mustbe a > a', i.e., [/ is right

stablein vI. The restof the claim is an immediateconsequenceof Fact 3. •

From now on and until statedotherwise, ... is the factorizationof a nonempty

string x'. Considerthe string xx', where x has factorization h[2 ...h, and let d be the

7

minimum index in the decompositionof x for which factor Id is not right-stable. From

now Oll, whenreferring to a string Z, we usez as a subscriptof rest and tail. Let f 2:: 1

be the integer value for which tail z(ld_d = (ld)'resi:l:(ld). For an arbitrarily large m,

let y be the longestprefix COllUDOD to (ld)m and rest:r;(ld)X'. We have, by Theorem2,

that Iy] 2:: Irestx(ld)l· Clearly, ld is either a factor or the properprefix of a factor in the
decompositionof xx/.

Lemma 3. Asswne that IYI < 211dl, and let 9 be the largest index for which s =

... is a prefix of (ld?' Thenoneof the following casesapplies:

Case1: eachone of the consecutiveoccurrencesof Id in tailzUd_dx' is a factor in

the decompositionof XXi; moreover, eachsuch occurrenceis right-stablein xx' iff y =I=-

restx(ld)X'.

Case2: the word z = ... = (ld)f is a Lyndon word.

Beforestartingwith the proof, we observethat, sinceall the Ii'S with i < dareright-

stable, then, in the light of Fact 3, we get that in Case2 z is a factor or the prefix of a

factor in the decompositionof xx'.

Proof. The assertionholds if we havey = rest:r;(ld)X', sincein this casethesuffix of XXi

at position 11l1z...ld_ll is in the form (ld)il with f $ i $ f + 1 and I = ld or I is a proper

prefix of ld. Hence, Case1 of the claim applies,since ld is a Lyndon word. Clearly, the

occurrencesof ld in sucha suffix arenot right-stablefactors for xx'.

Asswnehenceforthy =F rest:r;(ld)X'. We have the following alternatives.

(A) lyl =F 11dl· This caseencompassestwo subcasesdependingon whether(subcase

AI) Iyl < Iidl or (subcaseA2) Iidl < Iyl < 211dl. Clearly, thereexist two distinct symbolsa

anda' suchthat a' is a symbolof ya is a prefix of ld' and either (subcaseAI) va' is

a prefix of rest:r;(ld)x', or (subcaseA2) ldya' is a prefix ofrest:r;(ld)x'.

Irrespectiveof which subcaseapplies, if a > a', then we have CaseI, with every

consecutivefactor identical to ld being also right-stablein xx'. For a < ai, we havethat

a prefix of tail:r;(ld_dx l is either in the fonn w = (ld)f yal (Iyl < Ild!), or in the form

w = (ld)f+1ya' (lid I < Iyl < 211dl) In eithersnhcase,w is a Lyndon word. Case2 of the

claim thenfollows by applyingLemma1 to the Lyndon words w and

(B) Iyl = Ildl· This is similar to the previousalternative:we havenow a =F ai, where

a is the first symbol of ld anda' is a symbol of Clearly, a < a' yields Case2, while

a > a' yields Case1, with everyfactor right-stablein xx'. •

Lemma 4. Assume that Iyl > lldl, and that llllz, ...,ld are the first d factors in the

8

decompositionof xx'. Theneither p = Ildl- Irestx(ld)1
factor in the decompositionof x'.

]x'i or p IS the position of a

Proof. The claim holds trivially for p = Ix'l, so that we concentrateon the casep < Ix'i.
Assumefirst Iy] = Iidl and let a anda' bedefinedasin alternativeB of Lemma3. Sinceld

is a factor in thedecompositionof xx'1 thenCase2 of Lemma3 cannotapply, andwe have

a > a'. Assumethat a/ is not the first symbol of Thenthere is a nonemptyword u

suchthat u is a prefix of andalsoa suffix of [do Let al/ be the first symbolof u. Since

is a Lyndon word, we must haveaf all. But then also a > a" I contradictingthe
assumptionthat Id is a Lyndon word.

Let now Iyl > IIdl, and assumethat p is not the positionof a factor in the decompo-

sition of x'. Then, thereis a factor I' in sucha decompositionsuchthat I' = u'v' with u'
nonemptyandu' a suffix of Id. But thenLemma1 ensuresthat {ld)f+1

V ' is a Lyndon word,

and thus a factor or the prefix of a factor in the decompositionof xx'. This contradicts
the assumptionthat Id is the d-th factor in sucha decomposition. •

Lemma 5. AssumeIYI ?: 21Idl, i.e., (ld)2 is a prefix of rest2;(ld)X' , and that Ii = Id is
a factor in the decompositionof x', but =f:. Id for i < j. Let t be the largest integer
for which {ld)t is a prefix of taiI2;(Id_x)x'. Then, every occurrenceof Id in this prefix of
taiI2;(Id_1)x' is a factor in thedecompositionof xx'.

Proof. Since Id is border-free,then Ii must coincidewith the secondoccurrenceof Id in

restz(ld)X I
• Let g be the largest integerand u E E'" the longest prefix of ld such that

(Id)9 U is a prefix of restx(Id)x' . SinceIi is a factor in the decompositionof x', theneither
= (ld)t-2u or else = (ld)9-2uav for somea E E and vEE'" suchthat

ua « Ii = Id· The assertionclearly holds in both cases. (Note that, in the secondcase,
everyoccurrenceof ld is right-stablein XXi.) •

Lemma6. Assumethat (ld)2 is a prefix of rest(Id)x'. Let Ii be defined as in Lemma5,
but assumethat Ii is not a factor in the decompositionof x'. Then thereis a nonempty

prefix v of x' suchthat tail.(ld_l)V is a Lyndon word and Ivl ! Ix'i implies that Ivl is the
positionof a factor in the decompositionof x'.

Proof. We know from Lemma2 and Fact 3 that Ii must be the prefix of a factor in the

decompositionof x'. Let y be this factor. Since both Ld and yareLyndon words and

Id < y, thenrepeatedapplicationof Fact4 yields that (ld)iy is alsoa Lyndonword for any

i?: 1. Obviously, ... Ii_lyl is the position of a factor in the decompositionof x'. This

establishestheclaim. •

9

We saythat the two stringsx andx' havea simplecompositionif x is a Lyndon word.

In the following theorem,we makethe conventionthat lk+l = 10 = >.. In informal terms,
the theoremshowsthat thefactorizationof XXi canbealwayssplit into two segmentswith

the following properties. The first segmentis simply a prefix of the factorizationof x.
The secondsegmentis the solution to a problemof simple compositionthat involves an
identifiableLyndon word and a suffix fe of x' suchthat the factorizationof x' is a suffix

of thefactorizationof x'.

TheorelD3. Assumethat x and x' do not havea simplecomposition. Then, thereare
alwaysintegersm and i', with m > 0 and1 ::; if :S k' + 1, anda nonemptyLyndon word 1

suchthat we canwrite xx' = xx', with x = loll12 ...lj(l)m, x' = Ij.li'+l .. and such
that eitherxx' hasdecompositionloll12lkllkl+1 or elsem = 1 and I and x'
havea simplecomposition.

Proof. Let d ::; k bethesmallestindexfor which la is not right stablein x. Wedistinguish
the following cases.

Caseld = lk·

Theclaim holds trivially if x' is of theform (ld)Cu, with u a prefix of ld = lk andc ;::: o.
Asswnenext that, for somec ;::: 0 and distinct symbols a and a', we have that (ldYua
is a prefix of tail:e(ld_l)X' = (ld)k-d+l x ' and (ldYua' is a prefix of (ld)k-dx'. If a> a',
then we know that eachone of the consecutivec + 1 occurrencesof ld in tail:e(ld_l):X' is

a factor (in fact, a right-stablefactor) in the decompositionof xx' l and that is the

first factor in the decompositionof u. Setting then i = d - 1, i' = m = c - k + d and
1= ld clearly meetsthe claim. If a < a', then w = (ldy+1ua' is a Lyndon word, and we

know from the precedinglemmasthat w is also the prefix of a Lyndon word z suchthat

Izi - (k - d + 1)11dl is either Ixll or the positionof a factor in the decompositionof x'.
Clearly, settingi = d - 1, 1= z, m = 1 and i' = t satisfiesthe claim.

Caseld "Ilk.

By Theorem2 and the definition of rest, we havethat restz(ld) is a proper prefix

of ld. Since Id =f:. lk, we also havethat restz(ld) =f:. A. Assumefirst that the condition of
Lemma3 is satisfiedand results in an instanceof Case2. Then, taking i = d - 1, [= z

and i' = 9 + 2, wherez and 9 are defined in that lemma, clearly meetsthe claim. The

claim is easily met for eachone of the casesconsideredin Lemmas4-6, i.e., in all cases

whereLd = restz(ld)vwith v a prefix of x'. In brief, this is due to thefact that in all these

casesthereis oneoccurrenceof ld which originatesin x andterminatesin x'. Then,either

Ld is a factor in thedecompositionof xx' andwe chooseI = Ld (Lemmas2 and4 guarantee

10

then theexistenceof i' asspecifiedin the claim), or else Id is theprefix of a Lyndonword
that originatesin x and endsin x' (thenLemma6 guaranteesthe existenceof i').

We are left now with the instancesof d < k where Case1 of Lemma3 occurs. The

existenceof i' is no longerguaranteedfor thechoice1= [do However,we know that under
theseconditions Id andeverysubsequentreplicaof it areright-stablefactors in xx'. Let It
be the first factor in thedecompositionof restz(ld). If It = lkl thenwe haveseenthat it is
possibleto satisfytheclaim. If It =f:. lk' thenrest:z;(ld) is not border-free.It is alsoeasilyseen

that, for It ::f Ikl It cannotbe right-stable(sincerest:r;(ld) is a prefix of Id' then imposing
that It be right-stablewould violate Fact2 for Id). In summary,for It =f Ik we havethat it
is not right stable,and thereis anintegerc 1 suchthat = (It)Crestz(lt),with
restz(lt) a nonemptyprefix of It. Applying to It the caseanalysispreviouslydeveloped

for Id eithersatisfiesthe claim or elseyields that the c replicasof it in x are right-stable.
Repeatedapplicationof this treatmentyields the claim. •

Assumenow that we aregiven a Lyndon word 1and thedecompositionh,l'l, ... , h of
somestring x. At this point, we are interestedin the relation betweenthe decomposition
of x andthe decompositionI]I 2 ...lr. of Ix. This is the casewherewe say that 1andx admit

of a simplecomposition,which seemsto imply that the structureof the decompositionof
Ix is relatedin sometrivial way to thestructuresof 1andof the decompositionof x. This

is not always the case. In fact, appendingjust one symbol to the left of somestring x

may upset theentiredecompositionof x. For example,let x = ebebbebebbcbeabbe.We have

h = e, h = be,13 = 14 = bbebe,is = abbe. If we appendana to the left of x, we get, for ax,

that I] = aebebbebebbebeand 1'1. = abbe. Thefollowing is aneasyconsequenceof lemmas5

and6.

Lemma7. Assumethat Lyndonword1is a prefix of x. TheneitherII = 1, or elseII = Ih.

Proof. That only one of the casesin the claim may apply follows from Fact 3. The rest

of the claim is an easycorollaryof lemmas5 and6. •

Theorem4. Let t be the smallest index m the decompositionof x such that w

111i2 •••1t_1 2:: It· Then, II = wand12 = it·

Proof. By our choiceof t, we havethat, for everyd < t, IhI2 ... ld < id+1• But then, using

Fact 4, it is easyto establishby induction on d that that 111 i2 ...1d is a Lyndon word for

d ::; t. The assertionthen follows from Lerruna 7 in caseof equality betweenwand It.
Assumehenceforthit < w. Theassertionis obvious if II « w, thuswe assumehenceforth

that It is a prefix of w. Let u be the longestcommonprefix of w and The

11

claim holds clearly when u = Ittai12:(lt). Assumingthenu =f:. lttailx(lt), thereare distinct

symbolsa and a' suchthat ua is a prefix of wandua' is a prefix of lttail:r:(lt). We show
that a < a' is impossible,thus establishingthe claim also in this case. Sinceu is a prefix
of a Lyndonword, thenu canbewritten as (vax)mv for someintegerm andLyndonword

vax. If a > a/, thenua' = (vax)rnval is alsoLyndon word. But It is a properprefix of ua',
which contradictsFact 3. •

5. ALGORITHMIC IMPLEMENTATION

In this section,we usethe resultsdeveloped earlierin thepaperto designa CROWPRAM

algorithmfor computingthe Lyndon factorizationof an input word s of IsI = n symbols.

We assumeto be given n processorsPbP2, "'lPn, that havesimultaneous,randomaccess
to a memory bank consistingof OCn . T) locations, where T is the total time taken by

our computation.We saythat processorPi (i = 1, 2, ...,n) hasserial numberi. The input
is stored into an array of consecutivelocations of the conunonmemory, and processor

Pi is assignedto the i-th symbol of s (i = 1,2,...,n). Any subsetof the n processors
can concurrently read from or write to the samememory location. When more than

one processorattemptsto write, we makethe conventionthat the onewith the smallest

serial numbersucceeds.This variant of the model is called PRlORITY CRCW. In our
application, this type of concurrentwrite can be simulatedin constanttime [11] by the
weakermodel whereone processorat randomsucceedsin writing but it is not know in
advancewhich one will succeed.

We adopt a standarddivide-and-conquerscheme,consistingof logn stageseachre-

quiring constanttime. Assumingw.l.o.g. that n is a powerof 2, we regardthe positionsof

theinput stringat thebeginningof theS-thstageaspartitionedinto n/25 - 1 disjoint bloch!

eachof size 25 - 1. Startingwith the first block [1,25 - 1], we give all blocks consecutive
ordinal numbers.For S = 1,2,...,logn, stageS handlessimultaneouslyandindependently

everypair formed by an odd-numberedblock B and by the even-numberedsuccessorB'
of B. For everysuchpair, thegoal of thestageis that of combiningthealreadycomputed

factorizationsof the two substringsx andx' of s that arestored,respectively,into Band
B' into the factorizationof xx'. Thus, the main invariant is that at the beginningof stage

S the factorizationof everyblock of size25 - 1 hasbeencomputed.We call this Invariant

o. Invariant 0 trivially holds for S = 1, since the factorizationof a singlesymbol is the
symbol itself.

We only needto showhow two blockssuchas BandB' are combined. We apply to

the two associatedstrings x and x' the notationalconventionsmadein connectionwith

Theorem3. We needa few additonalnotions, that aregiven next.

12

Thefirst positionof eachblock of s is called the block head,andthe processorassigned

to the headof a block is the block representativeof that block. Sincethe block partitions
arerigidly definedfor eachstage,thenthe positionof any block headcanbecomputedby

any processorin constanttime. Similaxly, if 1 is a factor in the decomposition,say, of X,

thenthe first positionof I is theheadof that factor, andtheprocessorassignedto thefirst

symbol of I is the factor representativeof I. With respectto the decompositionof either
x or X ' , an I-run is a maximalsequenceof factors identical to I in sucha decomposition.
The total numberof replicasof 1 in the l-run is the size of that run. For every run, the

factor of the run havingminimum index in its associateddecompositionis called the head

of that run; therepresentativeof that factor is alsothe run representativeof that run. Our
schemewill maintain,in addition to Invariant0, the following auxiliary invariants.

Invariant 1. If processorp is assignedto a position of factor [in the decomposition
of x (respectively,x'), then p knows the addressin B (resp., B') of the headof I as well

as theaddress(or serialnumber)of the representativeof the run containingI.

Invariant 2. Therepresentativeof an [-run knows III andthe sizeof that run.

Thefollowing threestepshavethe effect of combiningthe decompositionsof x and x'

into the decompositionof xx'. The first two stepstakeplaceonly if x andx' do not have

a simple composition. The combinationof a singleLyndon word with the decomposition
of a givenstring is insteadthe taskof the third step. The condition that the factorization

of x containsonly onefactor is easilycheckedin constanttime, e.g., using two consecutive
appropriateconcurrentwrites to the block headof B to seewhethertherearetwo distinct

factor representatives.Henceforth,we assumethat there are at least two factors in the

decompositionof x. In the courseof our description,we will say often that our scheme
identifies or handlesthe indez (i.e., ordinal number) of a factor in the decompositionof

either x or x'. This phraseologyis used only in order to relate in a clearerway to the
resultsof the previoussection. It shouldbeunderstoodthat, in actuality, theschemeonly

identifies and handlesthe headsof the factors having the said indices. This distinction

is important, sinceour time bound would not be achievedif an explicit computationof

factor indiceshadto takeplaceat eachstage.

Step 1. The goal of Step1 is to detect the factors of x that are not right-stable.

Theorem2 is the handlefor this. For everyfactor y of x, the representativeof the y-run

computes,usingInvariant 2, the positionof restx(Y)in B. If jrestx(y)1> Iyl, then(every
factor in the y-run is right-stable)the run representativesimply setsan appropriateflag

in the first position of the run head. If, on the other hand, Irestx(y)1 ::; Iyj, then the

Iyl processorsassignedto the headof the run inspect the first Iyl symbolsof restx(Y)x'.

13

Specifically, the processorassignedto thed-th symbolof y (d = 1,2,...lyl) checkswhether

that symbolmatchesthe d-th symbolof restz(Y)x'.Note that this processorcanactually

computethe valued using Invariant1. Subsequently,all processorsdetectinga mismatch

attempt to write their respectiveserial numbersinto a memory cell uniquely associated

with the representativeof the run. In OUI working model, the processorhavingsmallest

index succeeds.Therepresentativeof the run cannow checkin constanttime whetherthe

right-stability conditionof Theorem2 is satisfied,in which caseit setsthe:flag locatedin

the first positionof the thenrn head. Using Invariant 1 again,every processorof block B
canlearnat this point by inspectionof theappropriateflag whetherthefactor it is assigned

to is right-stableor not. The processorsassignedto right-stablefactors will remain idle

for the remainderof the stage. All others (recall that there is always at least one non

right-stablefactor) proceedto Step2.

Step2. Themain goal of this stepis to identify i, il,l, m andthe positionin x' of if',
as per Theorem3. If 1and its possiblesubsequentreplicasarefound to be factors in the

decompositionof xx', thensucha decompositionwill also be computedin Step2, whence

Step2 will be terminal for the stage. If this is not the case,thenTheorem3 tells us that

m = 1 and I and x' havea simple composition. In conclusion, if Step2 is not terminal

for the stage,we will only have to solve a well defined problem of simple composition,

and this problem will be handled in Step 3. The details of Step 2 cannot consist of a

mererecapitulationof the criterion set forth in Theorem3. In fact, we are only allowed.

constanttime for the stage,which forbids pursuingthe cascadedtests in that theorem.

Our approachwill be insteadto exploit theconstanttime min computationinherentto our

working model in order to reachquickly the bottomof the iteratedargumentsubtending

Theorem3. From that point on, our main concernwill be to showhow the n processors

canexchangeinformationefficiently andcarry out the rest of thework in constanttime.

The openingaction of Step 2 is the following test: for eachnm of non-right-stable

factors in the decompositionof x, the processorsassignedto the head ld of the rtm test

simultaneouslyandin constanttime whetherld < restx(ld)X'. The detailsof this testare

similar to thoseof Step1. If no run headpassesthe test, thenby Theorem3 everyfactor in

thedecompositionof x is right stablein xx'. (Thecondition ld = restx(ld)X' is impossible

at this point, sincewe ruled out that x is a Lyndon word.) Hence, the decompositionof

XXi consistssimply of the concatenationof the decompositionof x and that of x'. The

operationof thestageis complete,sinceInvariant0 holds now for xx' andinvariants1 and

2 are trivially propagatedto next stage.

Assume,on theotherhand,that at leastonerun headpassesthetest. In this case,all

run representativespassingthetestusecommon-writeto theblockheadin orderto identify,

14

in constanttime, the successfulrun headhavingsmallestindex in the decompositionof

x. Let It be the winning run head. By Theorem3, every factor preceding It in the
decompositionof x is now right-stablein XXi, while It is eithera factor or the prefix of a

factor in the decompositionof xx'. The remainderof the stagetakesoneof two possible
avenues,accordingto whetheror not the conditionresi;c(lt) = ,\ is satisfied.

Alternative 1: rest:z:(lt) =..\. This splits into two subcasesaccordingto whetheror
not It is a prefix of resi;c(lt)x'.

Assumefirst that It is a prefix of x'. Then(cf. Fact3) It eitheris identical to or is the
prefix of thefirst factor in thedecompositionof Xl. Whichcaseappliescanbelearnedby

inspectingthefactor representativeof factor 1 which is also the run representativeof the

in the decompositionof x'. If is identical to It, then mustsurrenderits status

of run headto the headof the It-run. Eachone of the factor representativesof a factor
formerly in the run learnsaboutthis changeby inspectionof their old run representative,
andupdatesits knowledgeof therun representativeaccordingly. This preservesinvariants

1 and2. Havingaccomplishedthe decompositionof xx' thestagetenninates.If > lit!,
thenIt andall its subsequentreplicasin x mustcoalescewith into a singleLyndonword.
In themostgeneralcase, will betheheadof a run of sizelargerthan1. Beforecombining

with tail:E:(lt-d, must passits leadershipon to the secondfactor in this -run. This
is easily accomplishedin constanttime, due to invariants1 and 2. The processorsnow
assembletheLyndon word z = (cf. Case2 of Lemma3) andenterStep3 with
i = t - 1,m = I,l = z and i' the index of the first factor following in x'.

Asswnenow that it is not a prefix of x'. We need to explainhow the word z (that

will serveas the parameterI to be passedon to Step3) is computed. With the notation

of Lemma3, the main problemis that of identifying Let ya' be theshortestprefix of

re.9t(lt)x' that is not a prefix of It. The It-run representativep identifies the factor headof
the factor of x' containinga' (this factor is called in Lemma3). Processorp achieves

this simply by inspectingthe information about the factor headstoredin the processor
assignedto a'. At an extraconstanttime, p canalso identify the run headof the

containing Again, or its run-representativemay haveto surrenderthestatusof

run-representativeto the successor of if = and this is doneas earlier
using the invariants. Once this is done, the lrrun representativecan assembleword z

of Lemma3, using its own information and that storedin the old headof the
Every processorassignedto a position of z updatesits pointers to both faetor- and run

representative,so that both point now to the old run representativeof the it-run. The

procedurenow entersStep3 with i = t - 1, i' = 9 + 2, [= z and m = 1.

Alterna.tille 2: restx(lt) # >... This casesplits into two subcasesdependingon whether

15

or not (It)2 is a prefix of rest:z;(lt)x'. In the following, we usev to denotethe prefix of x'

of length 11,1- IrestxU,)I·

Assumefirst that (It)2 is a prefix of rC8t:z;(lt)X'. Then Lemma2 guaranteesthat Ivl
is the positionof a factor in the decompositionof x'. In other words, the decomposition

of the suffix x' of x' that is obtainedby deleting the first Ivl symbolsof x' is a suffix of

the decompositionof x'. Considernow the word xv. Clearly, the decompositionof xv

can be obtainedby that of x by first deletingall factors in the decompositionof resiz(lt)

andthenappendinga newfactor identicalto Itl i.e., the factor contributedby the Lyndon

word rest:z;(lt)v. At this point, the problemof composingthe decompositionsof xv and

x' is identical to the problem handledin the first subcaseof Alternative 1. In the light

of the precedingdiscussion,the manipulationsthat lead the processorsto extend the

decompositionof x into that of xv, and truncatex' into x', are trivial and areomitted.

Finally, assumethat (1t)2 is not a prefix of restx(1t)x'. If Ivl is the startingposition

of a factor in the decompositionof x', then this is similar to the subcaseof Alternative2

that was just discussed.Observethat, underour currentassumptions,if it is to stayas a

factor in the decompositionof xx' then lvl is guaranteedto be the positionof a factor in

thedecompositionof Xl, by virtue of Lemma4. All othercasesof Alternative2 aresimilar

to thesecondsubcaseof Alternative 1.

Step 3. If Step 3 is entered, then we have identified a prefix x of x such that

the decompositionof x is a prefix of the decompositionof x and also a prefix of the

decompositionof xx'. We also havea Lyndon word z and a suffix x' of Xl such that we

know the decompositionof x' and we know that XXi = xzx'. Thus,solving the problem

of simple compositionfor z and x' is all is neededto completethe stage. Step3 consists

of applying first Lemma 7 and then possibly Theorem4 to the arguments1 = z and

x = x'. If the test implied by Lemma7 fails, the comparisonsof Theorem4 are carried

out simultaneouslyby the processorsassignedto the factors of x'. The block headof B
is usedto identify the positionof z in XXi. The remainingdetailsare trivial at this point

andarethusomitted.

This concludesthedescriptionof our scheme.Thediscussionof this sectionestablishes

the following result.

Theorem5. The Lyndon decompositionof a word of n symbolscanbe computedby a

CReWPRAM with n processorsin time O(logn) and linearspace.

6. APPLICATIONS

16

1 - The minimumsuffix of all prejixe8 of a string.

Themostimmediateapplicationof theparallelalgorithmof Section5 is to thecompu-

tationof the minimumsuffix of the input string. In fact, the minimumsuffix of a string is

preciselythe lastfactor in theLyndondecompositionof thatstring [10]. Justas it happens

for its serial predecessor[10], somelight upgradesof our algorithm lead to actually com-

pute the minimumsuffix for everyprefix of the string, leaving time andprocessorbounds

unaltered. (We note, incidentally, that computingthe minimumsuffixes of all prefixesof

a string yields an implicit descriptionof the Lyndon decompositionsof all suchprefixes.)

To start the discussionof our method,we single out in Fact 5 below a useful char-
acterizationdue to Duval [10] of the class P of all words that are nonemptyprefixes of

Lyndon words. A proof of Fact 5 is also pespersedin the proof of Theorem2. Let S be

the set of all words in the form (uv)ku , whereu E E*, v E E+, k 1 and uv is a Lyndon

word.

Fact 5. 'P = S if the alphabetE is unbounded,and 'P = S - {cklk 2}, wherec is the

maximumsymbol in E, otherwise.

We assumefamiliarity of the readerwith the notion of periodof a string. We saythat

a period q of a word w is nontrivial if q =1= Iwl.

Lemma8. Let w be a word in 'P, and set p = 0 if w is unbordered,andp equal to the

maximumnontrivial periodof w otherwise. Thenp is the position in w of the last factor

in the Lyndon decompositionof w.

Proof. By Fact 5, we can write w in the form (uv)ku, whereu E E·, V E E+, uv is a

Lyndon word, and eitheru is not emptyand k 1 and or u is empty and k > 1. If u is

empty, thenthedecompositionof w consistsof k factorsall identicalto uv, andtheposition

of the last factor is (k -l)luv[. We also havep = (k -l)luv[, sinceuv is unbordered.For

u not empty, kluvj is a nontrivial period of w. The claim thus holds if p = kluvl. If, on

the other hand, p =1= kluv[, thenit must be p > kluvl, i.e., u is bordered.Sinceu E 'P, we

canapply to U theanalysispreviouslyappliedto uv. Iterationof this argumentyields the

claim. •

Let 1112...h be the decompositionof someword x. Combinedwith Fact 3, Lemma8

shows that the minimum suffixes of all prefixes of x can be obtainedby computing the

minimumsuffixesof all prefixesof eachindividual factor in the decompositionof x. From

now on, we can thereforeassumethat the Lyndon decompositionat the outset of the

algorithm of the previoussectionis given, and concentrateon a single factor 1 in sucha

17

decomposition. The understandingis that the manipulationsperformedon I take place

synchronouslyon all other factors of the decompositiOD of x.

In view of Lemma 8, it is not surprising that III processorscan computeall mim-

imum suffixes of Lyndon word I in O(log Ill) time, due to the strong relationship be-

tweenthis problemand plain string searching.Specifically, considerthe tablereach/ such

that reachl[i] equalsthe maximwn length of a prefix of 1 that occurs also at position i

(i = 0,1,2,..., Ill-I). Givenan integerk i, wesay that the i-thsymbolof 1is dominated

by reachdk], iff k + reach[k] i. For i = 1,2,..., III, define now clo.e,!i] as the largestk

suchthat reachdk] dominatesl[i]. At this point, the criterionof Lemma8 translatesinto

sayingthat, for every prefix 1[1]1[2] ...l[iJ of 1, the position in 1 of the minimum suffix of

I[I]1[2] ...1[i] is closerIi]. It is not difficult to computeeitheroneof thetablesreach1or closel

with 111 processorsin O(log 111) time, e.g., by adaptationof thestring searchingalgorithm

in [12]. Thus, given the Lyndon decompositionof a string x, the minimumsuffixes of all

prefixesof x canbecomputedby a CReW PRAM with n processorsin O(logn) time and

linear space.

£ - The maximumsu.Jji:z;esof a.ll prefize3of a 3tring.

As pointedout in [10], this problemis not symmetric to the previousone. However,

it is known that the lexicographicallymaximum suffix of a string x with respectto the

converseof the order relation "<" is the longestoneamongthe suffixes of x that belong

also to the set S defined earlier. We will usea re-statementof this propertyto compute

the maximumsuffixesof all prefixesof x in log n CRCW steps,with n processors.

Let 1 be a factor in the decompositionof x and i the positionof 1 in x. We saythat

an integerj is coveredby 1 if either (j - i) s: 111 or restZ'[l]Z'[2] ...Z'U](I) = tail x [l)X[2] ...Z'(jJ(l)

and restx[l]x[2) ...x(jj(1) is a prefix of 1. Let C be the set of all factors coveringj, and Im(j)
the elementof C havingminimumindex in the decompositionof x. Thefollowing property

yields a criterion for finding all maximumsuffixes of x.

Fact 6. The positionin x of the maximumsuffix of x[1]x[2] ...x[j] equalsthe position in x
of the run headof the Im(j)-run.

We refer to [10] for a justificationof Fact6. Giventhe Lyndon decompositionof x in

the format specifiedin Section5, it is easyto compute,for all j's, the positionsof Im(j)
and its run head,using n processorsand log n steps. To avoid many tediousdetails, we

describethe methodinformally. Let l(lJ(j), I(2J(j), ..., I(hl(j) be the factors of x covering

j. For any d in [1, hJ, aligning factor I(dl(j) with tailz(l(dl(j)) will bring onto position j

preciselyone among the processorsassignedto l(d)(j). Note that, for any j, there is a

group of processorsuniquely assignedto j in this way. Clearly, all processorsassignedto

18

j canperforma binary searchdriven by the lengthof x to identify the minimum among
their own serialnumbers.Thej-th positionof anarray,servingas the targetfor common
writes, canbe usedto perfonn the binary search. Having fOWld the minimum, invariants

1-2 lead to the identificationof lm[j] and,from there, to the headof the lm(j)-run.

9 - The lexicographicallyleast rotations of all prejizesof a string.

Given a word x = x[l]x[2] x[n], the i-th rotation of x (i = 1,2, ... ,n) is the string

w = x[i]x[i+ 1] ...x[n] x[l] x[2] xli -1]. A leastlexicographicrotation (llr) of stringx is a

rotationof x that is lexicographicallysmallestamongall rotationsof x. Sinceall rotations
of x haveequallength, thenfor any two suchrotationswandw', w :f w' implies that w

and w' differ in at least one symbol. An llr of x is completelyidentified by its starting
position (mod. [xl) in xx. We call sucha positiona least startingposition (lsp). An lsp

of x can be computedin linear time by serial computation. The fastestsolution known
was given in [14]. As pointedout in [10], the Lyndon decompositionof word xx will also

exposean llr of x. This is due to the fact that the llr of x is either a Lyndon word or a
powerof a Lyndon word, and eithercasemanifestsitself while decomposingxx.

It is not difficult to compute the least rotation of x on a CRCW PRAM with n

processorsin O(logn) time. One possibleapproachis to perform, on xx, logn constant-
time iterations of the following kind: At the i-th iteration, x is partitioned into n/2i

blocks of size 2i , and, for eachblock, we know the starting position of a lexicographic

minimumamongall substringsof length2i+1 of x originating in that block. The iteration
consistsof combiningpairwise the blocks and computingone minimum substringof size

2i+2 for eachcombinedblock. We clearly haveenoughprocessorsto performall substring

comparisonsin constanttime. The only difficulty is whenboth candidatesubstringsfrom
two combiningblocksextendinto identicalminima. Using an observationalreadyin [14],
however,it is possibleto alwaysrule out one of the candidatesin constanttime, whence

the overall computationis donein time O(logn).

Computingthe llr's of all prefixesof x within the sameboundsis moreinvolved. For
this task, we resort to a criterion recently establishedin [3], and used to computethe
llr of all prefixes of x in overall linear time. Let 1 be one of the factors in the Lyndon

decompositionof x. Define prev(l) as the prefix of x that precedesthe first occurrenceof

1. We saythat 1is a specialfactor of x if andonly if rest(l) is a prefix of 1and, in addition,
oneof the following conditionsis satisfied:

- rest(l) is emptYi
- I is a prefix of rest(l)prev(l); or

- I < rest(l)prev(l) but I is not a prefix of rest(l)prev(l) .
Observethat, for any word x, the Lyndon decomposition11121k of x has at leastone

specialfactor, namely, lk' As shownin [31, the following fact holds.

19

Fact 7. Let lth ...h be the Lyndon factorization of a non-empty word x. Let t be the

smallest index such that It is a special factor of x. Then It .. .lkh ... lt-l is an llr of X, and
Iprev(l,)1 is an lsp for x.

To seehow Fact 7 can be used in our computation, assumethat the table reach;c has
beencomputed. (Recall that the n processorscan computereach;c in O(logn) time.) Con-

sider now an integer j :$ Ixl = n, and let as earlier ImU) be the factor in the decomposition
of x such that j is coveredby lm(j) and m is minimum. Let i be the position of lm{j) in x
andassumefor generalitythat U - i) > IlmU)1 (i.e., j doesnot fall inside ImU)). It is not
difficult to show that ImU) is a factor also in the decompositionof x[l]x[2] ...x[j]. Once

reachx and the position i of lm(i) in x are available, it takes constant time for processor

Pi to test whether lm{j) (whencealso the run head of the lm(j)-run) is a special factor
in the decompositionof x[l]x[2] ...x[j): This processorsimply checks on reach:z; whether

j - Ilm(j)1 is the starting position of a sufficiently long or (lexicographically) sufficiently

small prefix of x. If the run headof the ImU)-run is a specialfactor for x[1]x[2] ...x[j],
then, by Fact 7, the position of such a run head is also an Isp for x[1]x[2] ...x[j]. Assume

now that the test preformed by Pi fails, and, setting f = j - 11m(j)I, consider the prefix
w = xli + I]x[i + 2) ...x[j] of ImU). Let k be the maximumlength of a borderof w. It

is easy to seethat the the factor following lm(j) in the decompositionof x[1]x[2]. ..x[j] is

x[i+ III +IJx[i+111+2] ...x[j - k]. Therefore,if k = 0, thenx[i+ 111+I]x[i+III+2] ...x[j] is the
last factor in the decompositionof x[1]x[2] ...x[j] and, alsothe earliest specialfactor in such
a decomposition. Otherwise, the next Lyndon word to be testedby Pi as a specialfactor in

thedecompositionof x[l]x[2] ...x[j] is xli + III + I]x[i + III + 2] ...x[j - k]. Note that Pi needs
only to know k and III in orderto identify this word. Ifalsox[i+ III + l]x[i+ III +2] ...x[j - k]
fails the test, then we consider its rest in the decomposition of x[l]x[2] ...x[j] and apply
the same treatment to it. In conclusion, given reach:z; and a mechanismfor identifying

the words to be considered in succession,it takes Pi time proportional to the number of
words tested in order to compute an Isp for x[l]x[2]. ..x[i]. As is easily seen, the words

consideredby Pi are all replicas of shorter and shorter prefixes of lm(j), and they can be
identified in successionby repeatedapplication of the function "longest border of" to such

prefixes. The "longest border of" function is actually the failure /unction [1] for Im(j), and

it is not difficult to show that Pi will go through at most log 11m(j)1 applications of this
function during its tests. Computing the failure function for a factor I is somewhat dual

to the computation of the table closel discussedearlier, and is done easily in O(log Ill)
time either starting from the table reach l or by direct adaptation of the techniquesin [12].

In conclusion, n processorscan compute the least rotations of all prefixes of a string in

O(logn) time.

20

References

[IJ A. V. Aho, J. E. Hopcroft, J. D. Ullman, "The design and analysis of computer

algorithmsll , Addison-Wesley,1974.

[2] Apostolico, A., M.J. Atallah, L.L. Larmore and H.S. McFaddin, "Efficient Parallel

Algorithms for StringEditing andRelatedProblems", ProceedinglJof the 26·thAller-

ton Conferenceon Communications,Control and Computing,Monticello, Ill. (Sept.
1988). Also, SIAM Journal on Computing, to appear.

[3] Apostolico, A. and M. Crochemore,"Optimal Canonizationof All Substringsof a
String", PurdueUniversity CS TR 903 (1989).Also, Information and Computation,

to appear.

[4] Apostolico, A. and Z. Galil (eds.), Combinatorial on Words, Springer-
Verlag Nato ASI SeriesF, Vol. 12, 1985.

[5] Apostolico, A., C. Iliopoulos, G. Landau,B. SchieberandU. Vishkin, "ParallelCon-

structionof a Suffix Tree,with Applications", Algorithmica3, 347-365(1988) .

[6J Berkman,0., D. Breslauer,Z. Galil, B. SchieberandU. Vishkin, "Highly Parallelizable
Problems",Proc. 21-st ACM Symp. on Theory of Computing,Seattle,Wash., (May
1989),309-319.

[7] Beame,P. and J. Hastad, "Optimal Boundsfor Decision Problemson the CRCW
PRAM", Journal of the ACM 96,3,643·670(1989).

[8] Chen, K.T., R.H. Fox and R.C. Lyndon, "Free Differential Calculus,IV", Ann. of

Math. 68, 81-95 (1958).

[9] Crochemore,M. andW. Rytter, "Usefulnessof the Karp-Miller-RosenbergAlgorithm

in ParallelComputationson StringsandArrays", typescript,(1989).

[10] Duval, J.P., "FactorizingWordsoveranOrdered.Alphabet", Journal ofAlgorithmJ4,

363-381(1983).

[11] Fich, F.E.,R. L. RagdeandA. Wigderson,"RelationsbetweenConcurrent-writeMod-

elsof ParallelComputation", Proceeding8of the 9-rd A eMSymp08ioumon Principle8

of Di8tributed Computing(Vancouver,B.C., Canada,Aug. 27-29), ACM, New York,

179-184(1984).

[12] Galil, Z., "OptimalParallelAlgorithmsfor StringMatching",Informationand Control

67, 144-157(1985).

21

[13] Lothaire, M" Combinatoric8 on Word.9, Addison Wesley,Reading, Mass., 1982.

[14] Shiloach, Y., "Fast Canonization of Circular Strings", Journal of Algorithms 2, 107-
121 (1981).

	Purdue University
	Purdue e-Pubs
	1989

	Fast Parallel Lyndon Factorization With Applications
	Alberto Aposiolico
	Maxime Crochemore
	Report Number:

