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Abstract

We will study the least square estimator θ̂T,S for the drift parameter θ of the frac-
tional Ornstein-Uhlenbeck sheet which is defined as the solution of the Langevin equa-
tion

Xt,s = −θ
∫ t

0

∫ s

0

Xv,udvdu +Bα,β
t,s , (t, s) ∈ [0, T ]× [0, S].

driven by the fractional Brownian sheet Bα,β with Hurst parameters α, β in (1
2
, 5
8
).

Using the properties of multiple Wiener-Itô integrals we prove that the estimator is
strongly consistent for the parameter θ. In contrast to the one-dimensional case, the
estimator θ̂T,S is not asymptotically normal.

2010 AMS Classification Numbers: 60G15, G0H07, 60G35, 62M40.

Key words: fractional Brownian sheet, parameter estimation, multiple Wiener-Itô
integrals, strong consistency.

1 Introduction

We consider the two-parameter fractional Ornstein-Uhlenbeck process defined as the solu-
tion of the stochastic equation
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Xt,s = −θ
∫ t

0

∫ s

0
Xv,udvdu+Bα,β

t,s , (t, s) ∈ [0, T ] × [0, S]. (1)

Here Bα,β denotes a fractional Brownian sheet with Hurst parameters α, β ∈ (12 , 1). We also
suppose that X0,0 = Xt,0 = X0,s = 0 for every t, s. Our goal is to estimate the unknown
parameter θ from the continuous time observation of the solution (Xt,s)(t,s)∈[0,T ]×[0,S].

The development of the stochastic analysis for fractional Brownian motion (fBm)
naturally led to the study of the statistical inference for stochastic equations driven by this
process. There already exists an important literature related to these aspects. We refer,
among others to [3], [4], [9], [13], [22]. Statistical analysis of the stochastic differential
equations (SDE) driven by the fractional Brownian sheet has been less considered. We refer
to the paper [18] for the study of the maximum likelihood estimator for a SDE with additive
fractional Brownian sheet noise (see also [6] or [1] for the case when the noise is a standard
Brownian sheet).

In this paper we propose a least square estimator for the unknown parameter θ
following the approach in [9]. This estimator is obtained by formally minimizing with
respect to θ the expression

∫ T

0

∫ S

0

∣∣∣∣
∂2

∂t∂s
Xt,s + θXt,s

∣∣∣∣
2

dsdt.

We obtain the following estimator

θ̂T,S = −
∫ T

0

∫ S

0 Xt,sdXt,s∫ T

0

∫ S

0 X2
t,sdtds

. (2)

The integral with respect to dXt,s is understood as the sum of the standard Lebesgue integral

−θ
∫ T

0

∫ S

0 dtdsX2
t,s and of the stochastic integral

∫ T

0

∫ S

0 Xt,sdB
α,β
t,s which is a divergence type

integral with respect to the fractional Brownian sheet Bα,β (it will be defined in Section 2,
we also refer to [10], [11], [12], [20], [21] for the stochastic integration with respect to Bα,β).
Using (1) and (2) we can write

θ̂T,S − θ = −
∫ T

0

∫ S

0 Xt,sdB
α,β
t,s∫ T

0

∫ S

0 X2
t,sdtds

. (3)

We will study the asymptotic behavior of the least square estimator θ̂T,S as T, S → ∞.
Our tools are the multiple stochastic integrals and the Malliavin calculus. Actually, the
nominator and the denominator of the right hand side of (3) can be expressed as multiple
integrals of order 2 with respect to the fractional Brownian sheet and from this we will
obtain concrete estimates for their moments. We will prove that the estimator (2) is a
strongly consistent estimator in the sense that it converges almost surely to the true value
of the parameter θ. This result is similar to the one-dimensional case (see [9]), however the
approach presented in [9] is not possible to be followed for the two-parameter case, instead
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we use among other tools, the hypercontractivity of multiples integrals. By contrary, in the
two-parameter case, the least square estimator does not preserve the asymptotic normality
as in the one-parameter case. This will be noticed at the end of our work by using criteria for
the asymptotic normality of sequences of multiple integrals in terms of Malliavin calculus.

Our paper is structured as follows. Section 2 contains some preliminaries on multiple
integrals and fractional Brownian sheet. In Section 3 we discuss the relation between the
solution to (1) and the Bessel function of order 0. Section 4 contains the proof of the
consistency of the least square estimator while Section 5 is devoted to a discussion about
the asymptotic normality of the estimator.

2 Preliminaries

Let us introduce the elements from stochastic analysis that we will need in the paper.
ConsiderH a real separable Hilbert space and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process
on a probability space (Ω,A, P ), that is, a centered Gaussian family of random variables such
that E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H. Denote by In the multiple stochastic integral with respect
to B (see [16]). This In is actually an isometry between the Hilbert space H⊙n(symmetric
tensor product) equipped with the scaled norm

√
n!‖ · ‖H⊗n and the Wiener chaos of order

n which is defined as the closed linear span of the random variables Hn(B(ϕ)) where ϕ ∈
H, ‖ϕ‖H = 1 and Hn is the Hermite polynomial of degree n ≥ 1

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn

(
exp

(
−x

2

2

))
, x ∈ R.

The isometry of multiple integrals can be written as: for m,n positive integers,

E (In(f)Im(g)) = n!〈f, g〉H⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n. (4)

It also holds that
In(f) = In

(
f̃
)

where f̃ denotes the symmetrization of f defined by

f̃(x1, . . . , xx) =
1

n!

∑

σ∈Sn

f(xσ(1), . . . , xσ(n)).

The Malliavin derivative acts on multiple integrals F = In(f) in the following way: for
every s

DsIn = nIn−1(f(·, s))
where ”·” above denotes n−1 variables. We recall the following hypercontractivity property
for the Lp norm of a multiple stochastic integral (see [14, Theorem 4.1])

E |Im(f)|2m ≤ cm
(
EIm(f)2

)m
(5)
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where cm is an explicit positive constant and f ∈ H⊗m.
In this work we use Malliavin calculus and multiple integrals with respect to the

fractional Brownian sheet (fBs). Let us define this process and its associated Hilbert space.

The fBs with Hurst parameters α, β ∈ (0, 1), (Bα,β
t,s , t, s ∈ [0, T ] × [0, S]) is a zero mean

Gaussian process with covariance

E
(
Bα,β

t,s , B
α,β
u,v

)
= Rα(t, u)Rβ(s, v)

:=
1

2

(
t2α + u2α − |t− u|2α

) 1
2

(
s2β + v2β − |s− v|2β

)
(6)

given for all t, u ∈ [0, T ]2 and s, v ∈ [0, S]2.

We assume that Bα,β is defined on a complete probability space (Ω,A,P) such that
A is generated by Bα,β. Fix a time interval [0, T ]× [0, S], denote by ξ the set of real valued
step functions on [0, T ] × [0, S] and let Hα,β be the Hilbert space defined as the closure of
ξ with respect to the scalar product

〈1[0,t]×[0,s], 1[0,u]×[0,v]〉Hα,β = Rα(t, u)Rβ(s, v)

where Rα(t, u)Rβ(s, v) is the covariance function of the fBs, given in (6). The mapping

1[0,t]×[0,s] 7−→ Bα,β
t,s can be extended to a linear isometry between Hα,β and the Gaussian

space Hα,β
1 spanned by Bα,β which is a closed subspace of L2(Ω,A,P). We denote this

isometry by ϕ 7−→ Bα,β(ϕ). Fix α, β > 1
2 , in this case we have that for every f, g ∈ Hα,β

the scalar product has the form

〈f, g〉Hα,β = c(α)c(β)

∫ T

0

∫ S

0

∫ T

0

∫ S

0
f(a, b)g(m,n)|a −m|2α−2|b− n|2β−2dadbdmdn (7)

and c(α) = α(2α − 1).

3 About the solution

The equation (1) has been studied in several papers (see [8], [15]). It has been showed
that for θ > 0 and α, β > 1

2 equation (1) admits an unique strong solution which can be
expressed as

Xt,s =

∫ T

0

∫ S

0
f(t, s, t0, s0)dB

α,β
t0,s0

(8)

where

f(t, s, t0, s0) = 1[0,t](t0)1[0,s](s0)
∑

n≥0

(−1)nθn
(t− t0)

n(s− s0)
n

(n!)2
. (9)

We will call the process X solution to (1) as the fractional Ornstein-Uhlenbeck sheet. It
is a Gaussian process since it is given by a multiple integral of order 1 (Wiener integral
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actually) with respect to the Gaussian process Bα,β. We mention that the solution to
(1) behaves differently as its one-dimensional counterpart which is fractional Ornstein-
Uhlenbeck process introduced in [5], this will make our analysis quite different from [9]. For
example, we note that the solution of some stochastic differential equations driven by the
Brownian sheet or fractional Brownian sheet, which are positive in the one-parameter case,
can take negative values with strictly positive probability (see [15] or [16]).

A key element of our analysis is the fact that the solution X (more precisely the
kernel f of the solution) can be expressed is terms of the Bessel function of the first kind.
Let us consider the Bessel function of order 0 given, for every x ∈ R, by

J0(x) =
∑

n≥0

(−1)n

n!2

(x
2

)2n

This Bessel function admits the integral representation, for every x ∈ R

J0(x) =
1

π

∫ π

0
cos (x sin ρ) dρ.

The kernel f in (9) of the solution (Xt,s)t,s∈[0,T ]×[0,S] can be expressed as

f(t, s, u, v) = 1[0,t](u)1[0,s](v)J0

(
2
√
θ(t− u)(s− v)

)
(10)

= 1[0,t](u)1[0,s](v)
1

π

∫ π

0
cos
(
2
√
θ(t− u)(s− v) sin ρ

)
dρ.

Let us also recall the following property of the Bessel function (see e.g. [2]) which will play
an important role for our estimates: for x large enough

J0(x) ∼
√

2

πx
cos(x− π

4
) (11)

(the symbol ∼ means that the two sides have the same limit as x→ ∞).

4 Asymptotic behavior of the least square estimator

In this section we study the asymptotic behavior of the estimator θ̂T,S defined in (2). More
precisely, we will show that this estimator is strongly consistent for the parameter θ, that
is, θ̂T,S converges to θ almost surely as T, S → ∞. To this end we will analyze separately
the nominator and the denominator appearing in the right hand side of the expression (3).
Let us start with the study of the nominator. It can be written as the double stochastic
integral ∫ T

0

∫ S

0
Xt,sdB

α,β
t,s := FT,S := I2 (f(u, v, t, s)) (12)

where the kernel f is given by (9) and the integral I2 acts with respect to the variables
(u, v), (t, s).

We will estimate first the L2 norm of FT,S . We have the following result.
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Proposition 1 For every ε > 0 and for α, β ∈ (12 ,
5
8 ),

E

(
T−2α+ 1

4
−εS−2β+ 1

4
−ε

∫ T

0

∫ S

0
Xt,sdB

α,β
t,s

)2

→ 0 when T, S → ∞. (13)

Moreover for T, S large enough we have

E

(
T−2α+ 1

4S−2β+ 1

4

∫ T

0

∫ S

0
Xt,sdB

α,β
t,s

)2

< C

where C is a strictly positive constant not depending on T, S.

Proof: We calculate the L2 norm of the random variable I2 (f(u, v, t, s)). By the isometry
property of multiple integrals (4) and since ‖f̃‖(Hα,β)⊗2 ≤ ‖f‖(Hα,β)⊗2 this norm can be
handles as follows

IT,S ≤
∫

[0,T ]4
dtdt0dudu0

∫

[0,S]4
dsds0dvdv0

×f(t, s, u, v)f(t0, s0, u0, v0)|u− u0|2α−2|v − v0|2β−2|t− t0|2α−2|s− s0|2β−2

=

∫ T

0
dt

∫ t

0
du

∫ T

0
dt0

∫ t0

0
du0

∫ S

0
ds

∫ s

0
dv

∫ S

0
ds0

∫ s0

0
dv0

×J0
(
2
√
θ(t− u)(s − v)

)
J0

(
2
√
θ(t0 − u0)(s0 − v0)

)

×|t− t0|2α−2|u− u0|2α−2|s− s0|2β−2|v − v0|2β−2.

By making the change of variables t̃ = t
T
, ũ = u

T
and similarly for the other variables, we

obtain

IT,S = T 4α−4T 4S4β−4S4

∫ 1

0
dt

∫ t

0
du

∫ 1

0
dt0

∫ t0

0
du0

∫ 1

0
ds

∫ s

0
dv

∫ 1

0
ds0

∫ s0

0
dv0

×J0
(
2
√
θ(t− u)(s − v)TS

)
J0

(
2
√
θ(t0 − u0)(s0 − v0)TS

)

×|t− t0|2α−2|u− u0|2α−2|s− s0|2β−2|v − v0|2β−2

:= T 4αS4βUT,S . (14)

Using the asymptotic behavior of the Bessel function (11), we have that

J0

(
2
√
θ(t− u)(s − v)TS

)

(TS)−
1

4
+ε

→T,S→∞ 0

for almost every t, u, s, v ∈ (0, 1) and for every ε > 0. We will next apply the dominated
convergence theorem. To this end, using again relation (11), it suffices to show that the
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integral

I =

∫ 1

0
dt

∫ t

0
du

∫ 1

0
dt0

∫ t0

0
du0

∫ 1

0
ds

∫ s

0
dv

∫ 1

0
ds0

∫ s0

0
dv0

((t− u)(s− v)(t0 − u0)(s0 − v0))
− 1

4

|t− t0|2α−2|u− u0|2α−2|s− s0|2β−2|v − v0|2β−2 (15)

is finite. This is proved in the following lemma.

Remark 1 In the above statement we can replace the normalization T−2α+ 1

4
−εS−2β+ 1

4
−ε

by T−2α+ 1

4S−2β+ 1

4 f(T, S) where f(T, S) is a deterministic function which converges to zero
as T, S → ∞. This is a consequence of the proof below.

Lemma 1 Let I be given by (15). Then for 1
2 < α, β < 5

8 the integral I is finite.

Proof: Consider the integral
∫ s0

0
dv0 ((t− u)(s − v))−

1

4 ((t0 − u0)(s0 − v0))
− 1

4

×|t− t0|2α−2|u− u0|2α−2|s− s0|2β−2|v − v0|2β−2

= ((t− u)(s− v)(t0 − u0))
− 1

4 |t− t0|2α−2|u− u0|2α−2|s− s0|2β−2

×
∫ s0

0
dv0|v − v0|2β−2 (s0 − v0)

− 1

4 .

If s0 < v we have
∫ s0

0
dv0|v − v0|2β−2 (s0 − v0)

− 1

4 =

∫ s0

0
dv0 (v − v0)

2β−2 (s0 − v0)
− 1

4

making the change of variables z = s0−v0
v−v0

we get

∫ s0
v

0

(
v − s0
1− z

)2β−2(z(v − s0)

1− z

)− 1

4

(
v − s0
(1− z)2

)
dz

≤ (v − s0)
2β− 5

4

∫ 1

0
z−

1

4 (1− z)
1

4
−2βdz = (v − s0)

2β− 5

4 β̃

(
3

4
,
5

4
− 2β

)

where β̃ is the Beta function. The expresion above is finite for β < 5
8 .

Now, if v ≤ s0
∫ s0

0
dv0|v − v0|2β−2 (s0 − v0)

− 1

4

=

∫ v

0
dv0 (v − v0)

2β−2 (s0 − v0)
− 1

4 +

∫ s0

v

dv0 (v0 − v)2β−2 (s0 − v0)
− 1

4 .

7



For the first integral in the right hand side we make the change of variables z = v−v0
s0−v0

, and

for the second one we make z = s0−v0
v0−v

Then we get

≤ (s0 − v)2β−
5

4

(∫ 1

0
z2β−2(1− z)

1

4
−2βdz +

∫ ∞

0
z−

1

4 (1 + z)
1

4
−2βdz

)

= (s0 − v)2β−
5

4

(
β̃

(
2β − 1,

5

4
− 2β

)
+

Γ(34)Γ(2β − 1)

Γ(2β − 1
4 )

2F1(0, 3/4, 2β − 1/4; 0)

)

= (s0 − v)2β−
5

4

(
β̃

(
2β − 1,

5

4
− 2β

)
+ β̃

(
3

4
, 2β − 1

)
2F1(0, 3/4, 2β − 1/4; 0)

)

wich is finite for 1
2 < α, β < 5

8 . Here Γ is the Gamma function, 2F1 is the Hypergeometric

function, and we have make use of the property β̃(x, y) = Γ(x)Γ(y)
Γ(x+y) and the formula (see [19],

formula 1.6.7)

2F1 (a, b, c; 1 − x) =
Γ(c)

Γ(b)Γ(c− b)

∫ ∞

0
wb−1(1 + w)a−c(1 + wx)−adw.

Proceeding in a similar way with the other seven integrals we conclude that I is
finite.

Remark 2 We may note that the prescence of the cos function in the asymptotic behavior
of the Bessel function does not allow to obtain a renormalization for FT,S in terms of the
powers of T and S like in [9].

The following proposition is a consequence of the Proposition 1 and of the hyper-
contractivity property of multiple stochastic integrals.

Proposition 2 For every ε > 0 and for 1
2 < α, β < 5

8 the sequence

1√
T 4α− 1

2
+εS4β− 1

2
+ε

∫ T

0

∫ S

0
Xt,sdB

α,β
t,s

converges to zero a.s. as T, S → ∞.

Proof: As in [9] we can replace the couple (T, S) by a discrete sequence (TM , SN ) such
that TM , SN converge to infinity as M,N → ∞. This is possible since the nominator and
denominator in (3) are continuous a.s. with respect to (T, S). Indeed, the fact that the
divergence integral in the nominator is continuous follows from [16], page 293 since the
integrand X is regular enough, and the integral dtds in the nominator is clearly continuous
a.s. with respect to the couple (T, S). For simplicity, we will assume that (TM , SN ) =
(M,N). Let us show that

AM,N :=M−2α+ 1

4
−εN−2β+ 1

4
−ε

∫ M

0

∫ N

0
Xt,sdB

α,β
t,s

8



converges to zero a.s. as M,N tend to infinity. We will use the Borel-Cantelli lemma. To
do this, we will estimate P (AM,N > (MN)−γ) for some γ > 0. For every p ≥ 1 we have

P (AM,N > (MN)−γ) ≤ (MN)pγ E|AM,N |p

and since AM,N is a multiple integral in the second Wiener chaos, the inequality (5) and
Proposition 1 implies that

E|AM,N |p ≤ c(p)
(
EA2

M,N

) p

2 ≤ c(p, α, β)(MN)−εp.

Putting together the two above bounds, we get

∑

M>M0,N>N0

P (AM,N > (MN)−γ) ≤ c(p, α, β)
∑

M>M0,N>N0

(MN)p(γ−ε)

and this series is convergent when

(ε− γ)p > 1 or equivalently γ < ε− 1

p
.

For every given ε > 0 and for p large enough we can always chose a real number γ such
that 0 < γ < ε − 1

p
. This, together with the Borel-Cantelli lemma allows us to finish the

proof.

The next step is to analyze the denominator in formula (3). We have the following
estimate.

Proposition 3 For any ε > 0 and for any α, β ∈ (12 ,
5
8 )

1

T 2α+ 1

2
−εS2β+ 1

2
−ε

E

∫ T

0
dt

∫ S

0
dsX2

t,s →T,S→∞ ∞.

Proof: By the isometry of multiple integrals (4), the equation (7) and the expression of
the solution to (1)

EX2
t,s = c(α, β)

∫ t

0
du

∫ t

0
du0

∫ s

0
dv

∫ s

0
dv0

×J0(2
√
θ(t− u)(s− v))J0(2

√
θ(t− u0)(s− v0))|u− u0|2α−2|v − v0|2β−2,

making the change of variables t̃ = t
T
, s̃ = s

S
and similar for the other variables we can write

∫ T

0

∫ S

0
dsdtEX2

t,s = c(α, β)T 2α+1S2β+1

∫ 1

0
dt

∫ 1

0
ds

∫ t

0
du

∫ t

0
du0

∫ s

0
dv

∫ s

0
dv0

×J0(2
√
θ(t− u)(s− v)TS)J0(2

√
θ(t− u0)(s− v0)TS)

×|u− u0|2α−2|v − v0|2β−2

9



and thus
∫ T

0

∫ S

0 dsdtEX2
t,s

T 2α+ 1

2
−εS2β+ 1

2
−ε

= c(α, β)

∫ 1

0
dt

∫ 1

0
ds

∫ t

0
du

∫ t

0
du0

∫ s

0
dv

∫ s

0
dv0

×J0(2
√
θ(t− u)(s − v)TS)

(TS)−
1

4
− ε

2

J0(2
√
θ(t− u0)(s− v0)TS)

(TS)−
1

4
− ε

2

×|u− u0|2α−2|v − v0|2β−2.

We will use the same idea as in the proof of Proposition 1. We notice first that

J0(2
√
θ(t− u)(s − v)TS)

(TS)−
1

4
− ε

2

converges to infinity as T, S → ∞ by using (11); also for T, S large enough

J0(2
√
θ(t− u)(s − v)TS)

(TS)−
1

4

is bounded by c (|t− u||s− v|)− 1

4 almost everywhere s, t, u, v. Also we note that the integral
∫ 1

0
dt

∫ 1

0
ds

∫ t

0
du

∫ t

0
du0

∫ s

0
dv

∫ s

0
dv0|u− u0|2α−2|v − v0|2β−2

(|t− u||s− v|)− 1

4 (|t− u0||s− v0|)−
1

4

is finite for α, β ∈ (12 ,
5
8) by using the same computations as in the proof of Lemma 1.

Using Fatou’s lemma (we use the following version of the Fatou’s lemma: if fn is a sequence
of functions such that fn ≥ −g where g is positive and integrable, then lim

∫
fn ≥

∫
lim fn)

this implies that

lim
T,S→∞

∫ T

0

∫ S

0 dsdtEX2
t,s

T 2α+ 1

2
−εS2β+ 1

2
−ε

≥ c(α, β)

∫ 1

0
dt

∫ 1

0
ds

∫ t

0
du

∫ t

0
du0

∫ s

0
dv

∫ s

0
dv0

× lim
T,S→∞

J0(2
√
θ(t− u)(s− v)TS)

(TS)−
1

4
− ε

2

J0(2
√
θ(t− u0)(s − v0)TS)

(TS)−
1

4
− ε

2

× |u− u0|2α−2|v − v0|2β−2 = ∞.

At this point we will need the following auxiliary lemma.

Lemma 2 Consider a sequence of random variables (AN )N such that
∑

N P (AN > cN−γ) <
∞ for some γ > 0 and for every c > 0 (which implies AN → 0 almost surely as N → ∞.)
Also consider a sequence of a.s. strictly positive random variables (BN )N such that EBN →
∞ as N → ∞. Then

AN

BN
→N→∞ 0 almost surely

10



Proof: We will use again the Borel-Cantelli lemma. Let C > 0 be arbitrary. Then

∑

N

P

(
AN

BN
> N−γ

)
=

∑

N

P

(
AN

BN
> N−γ , BN > C

)
+
∑

N

P

(
AN

BN
> N−γ , BN < C

)

≤
∑

N

P

(
AN

C
> N−γ , BN > C

)
+
∑

N

P

(
AN

BN
> N−γ , BN < C

)
.

Using the fact that EBN → ∞ as N → ∞ we obtain that

P

(
AN

BN
> N−γ , BN < C

)
= 0

for N large enough. By assumption,
∑

N P
(
AN

C
> N−γ , BN > C

)
<∞. Therefore

∑

N

P

(
AN

BN
> N−γ

)
<∞

and therefore the conclusion follows.

Remark 3 Lemma 2 can be extended without difficulty to two-parameter sequences. That
is, if AM,N is a sequence of random variables such that

∑
M,N≥0 P (AM,N > c(MN)−γ) <∞

and BM,N is a sequence of positive random variables such that EBM,N →M,N→∞ ∞ then

AM,N

BM,N
→M,N→∞ 0 almost surely.

Let us state the main result of this section.

Theorem 1 Let θT,S be the estimator given by (2). Suppose that α, β ∈ (12 ,
5
8). Then θT,S

is a strongly consistent estimator for the parameter θ, that is,

θ̂T,S → θ almost surely as T, S → ∞.

Proof: From relation (3), the difference between the estimator and the true parameter is

θ̂T − θ =
T−2α+ 1

4
−εS−2β+ 1

4
−ε
∫ T

0

∫ S

0 Xt,sdB
α,β
t,s

T−2α+ 1

4
−εS−2β+ 1

4
−ε
∫ T

0 dt
∫ S

0 dsX2
t,s

=
T−2α+ 1

4
−εS−2β+ 1

4
−ε
∫ T

0

∫ S

0 Xt,sdB
α,β
t,s

T
3

4
−2εS

3

4
−2εT−2α− 1

2
+εS−2β− 1

2
+ε
∫ T

0 dt
∫ S

0 dsX2
t,s

.

The result is obtained by using Proposition 2, Proposition 3 and Lemma 2 (and the remark
that follows after this lemma).

11



5 Asymptotic non-normality of the estimator

We proved in the previous section that the least square estimator θ̂T,S is strongly consistent.
This property has been proved in the one-dimensional case in ([9]). Nevertheless, we show
in this paragraph that the limiting distribution of the estimator is not the same in the one-
parameter and two-parameter cases. This different behavior is somehow expected since the
fractional Ornstein-Uhlenbeck sheet does not keep the properties of the fractional Ornstein-
Uhlenbeck process (for example, the kernel f given by (9) can take any real value while
in the one parameter case it is positive since it is given by an exponential function). In
order to notice the difference between the one-parameter and the two-parameter case, we
will focus only on the nominator in the right hand side of (3). To check the asymptotic
normality we use the following criterium: (see Theorem 4 in [17]).

Theorem 2 Let (Fk, k ≥ 1), Fk = In(fk) (with fk ∈ H⊙n for every k ≥ 1) be a sequence
of square integrable random variables in the n th Wiener chaos such that E[F 2

k ] → 1 as
k → ∞. Then the following are equivalent:

i) The sequence (Fk)k≥0 converges in distribution to the normal law N (0, 1).

ii) ‖DFk‖2H converges to n in L2(Ω) as k → ∞.

Denote by

σ2T,S = E

(∫ T

0

∫ S

0
Xt,sdB

α,β
t,s

)2

= E (FT,S)
2 .

Proposition 4 Assume 1
2 < α, β < 5

8 and let FT,S be given by (12). Then when T, S tend
to infinity,

1

σT,S
FT,S

does not converges in distribution to the normal law N(0, 1).

Proof: We will prove that ‖D 1
σT,S

FT,S‖2Hα,β does not converges to 2 in L2(Ω) as T, S → ∞.

Let us denote by f̃ the symmetrization of f with respect to the variables (t, s), (u, v)

f̃ ((t, s), (u, v)) =
1

2
(f(t, s, u, v) + f(u, v, t, s)) .

We have

Dt,s
1

σT,S
FT,S =

1

σT,S
Dt,sI2 (f) =

1

σT,S
Dt,sI2

(
f̃
)
=

1

σT,S
(I1(f(·, ·, t, s)) + I1(t, s, ·, ·)) .

Here ”·, ·” represents the variable with respect to which the integral I1 acts.

12



We obtain

‖D 1

σT,S
FT,S‖2Hα,β =

1

σ2T,S
c(α)c(β)

∫ T

0
dt

∫ S

0
ds

∫ T

0
dt0

∫ S

0
ds0

× [I1 (f(·, ·, t, s)) + I1 (f(t, s, ·, ·))] [I1 (f(·, ·, t0, s0)) + I1 (f(t0, s0, ·, ·))]
×|t− t0|2α−2|s− s0|2β−2

=
1

σ2T,S
c(α)c(β)

∫ T

0
dt

∫ S

0
ds

∫ T

0
dt0

∫ S

0
ds0

× [I2 (f(·, ·, t, s) ⊗ f(·, ·, t0, s0)) + I2 (f(·, ·, t, s)⊗ f(t0, s0, ·, ·))
+I2 (f(t, s, ·, ·)⊗ f(·, ·, t0, s0)) + I2 (f(t, s, ·, ·) ⊗ f(t0, s0, ·, ·))]
×|t− t0|2α−2|s− s0|2β−2 +E‖D 1

σT,S
FT,S‖2Hα,β

:= A
(1)
T,S +A

(2)
T,S +A

(3)
T,S +A

(4)
T,S +E‖D 1

σT,S
FT,S‖2Hα,β

Let us note that that E‖D 1
σT,S

FT,S‖2Hα,β is equal to 2. This follows from the fact that for

any multiple integral of order n we have

E‖DIn(f)‖2H = nEIn(f)
2.

It remains to show that the terms containing multiple integrals of order 2 does not
converges to zero in L2(Ω) as T, S → ∞. The first and the fourth summand are similar, as
they are the second one and the third one. We will handle only the first summand denoted

by A
(1)
T,S (because the other three terms can be studied analogously). We can write, using

the definition of the scalar product in the Hilbert space
(
Hα,β

)⊗2
and the expression (10)

of the kernel f in terms of the Bessel function J0
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E

∣∣∣A(1)
T,S

∣∣∣
2

=
1

σ4T,S
E

(∫ T

0
dt

∫ S

0
ds

∫ T

0
dt0

∫ S

0
ds0|t− t0|2α−2|s− s0|2β−2

I2 (f(·, ·, t, s) ⊗ f(·, ·, t0, s0)) )2

∼ 2

∫ T

0
dt

∫ S

0
ds

∫ T

0
dt0

∫ S

0
ds0

∫ T

0
du

∫ S

0
dv

∫ T

0
du0

∫ S

0
dv0

|t− t0|2α−2|s− s0|2β−2|u− u0|2α−2|v − v0|2β−2

〈f(·, ·, t, s)⊗ f(·, ·, t0, s0), f(·, ·, u, v) ⊗ f(·, ·, u0, v0)〉(Hα,β)
⊗2

= C
1

σ4T,S

∫ T

0
dt

∫ S

0
ds

∫ T

0
dt0

∫ S

0
ds0

∫ T

0
du

∫ S

0
dv

∫ T

0
du0

∫ S

0
dv0

∫ T

0
dx

∫ S

0
dy

∫ T

0
dx0

∫ S

0
dy0

∫ T

0
da

∫ S

0
db

∫ T

0
da0

∫ S

0
db0

f(x, y, t, s)f(x0, y0, t0, s0)f(a, b, u, v)f(a0, b0, t0, s0)

|t− t0|2α−2|s− s0|2β−2|u− u0|2α−2|v − v0|2β−2

|x− a|2α−2|y − b|2β−2|x0 − a0|2α−2|y0 − b0|2β−2

= C
1

σ4T,S

∫ T

0
dx

∫ S

0
dy

∫ T

0
dx0

∫ S

0
dy0

∫ T

0
da

∫ S

0
db

∫ T

0
da0

∫ S

0
db0

∫ x

0
dt

∫ y

0
ds

∫ x0

0
dt0

∫ y0

0
ds0

∫ a

0
du

∫ b

0
dv

∫ a0

0
du0

∫ b0

0
dv0

J0(2
√
θ(x− t)(y − s))J0(2

√
θ(x0 − t0)(y0 − s0))

J0(2
√
θ(a− u)(b− v))J0(2

√
θ(a0 − u0)(b0 − v0))

|t− t0|2α−2|s− s0|2β−2|u− u0|2α−2|v − v0|2β−2

|x− a|2α−2|y − b|2β−2|x0 − a0|2α−2|y0 − b0|2β−2

making t̃ = t
T
, s̃ = s

S
and similar for the other variables we get

E

∣∣∣A(1)
T,S

∣∣∣
2

= C
1

σ4T,S
T 8αS8β

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dx0

∫ 1

0
dy0

∫ 1

0
da

∫ 1

0
db

∫ 1

0
da0

∫ 1

0
db0

∫ x

0
dt

∫ y

0
ds

∫ x0

0
dt0

∫ y0

0
ds0

∫ a

0
du

∫ b

0
dv

∫ a0

0
du0

∫ b0

0
dv0

J0(2
√
θ(x− t)(y − s)TS)J0(2

√
θ(x0 − t0)(y0 − s0)TS)

J0(2
√
θ(a− u)(b− v)TS)J0(2

√
θ(a0 − u0)(b0 − v0)TS)

|t− t0|2α−2|s− s0|2β−2|u− u0|2α−2|v − v0|2β−2

|x− a|2α−2|y − b|2β−2|x0 − a0|2α−2|y0 − b0|2β−2

.
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Using the asymptotic behavior of the Bessel function when its variable is close to infinity
(see (11)) we see that

E

∣∣∣A(1)
T,S

∣∣∣
2

≈ C
1

σ4T,S
T 8αS8β

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dx0

∫ 1

0
dy0

∫ 1

0
da

∫ 1

0
db

∫ 1

0
da0

∫ 1

0
db0

∫ x

0
dt

∫ y

0
ds

∫ x0

0
dt0

∫ y0

0
ds0

∫ a

0
du

∫ b

0
dv

∫ a0

0
du0

∫ b0

0
dv0

((x− t)(y − s)(x0 − t0)(y0 − s0)(a− u)(b− v)(a0 − u0)(b0 − v0))
−1

4

|t− t0|2α−2|s− s0|2β−2|u− u0|2α−2|v − v0|2β−2

|x− a|2α−2|y − b|2β−2|x0 − a0|2α−2|y0 − b0|2β−2.

and considering the fact that the last integral is finite for 1
2 < α, β < 5

8 (the proof of this
fact is similar to the proof of Lemma 1 ) it is straightforward to see that, for T, S close to

infinity, the quantity E

∣∣∣A(1)
T,S

∣∣∣
2
does not converges to zero.
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