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Abstract 

The purpose of this paper is to establish the suitable analytical expressions for the light 
scattering cross section of aggregates constituted by optically soft primary particles. The 
used optical approximation is the well-known Rayleigh-Debye-Gans approximation. 
The geometrical description of the aggregate is based on the pair, or distance, 
distribution density function describing at once the two spatial scales (primary particle 
and aggregate). Firstly, a study of the two-particle set is presented. An exact and an 
approximated formulations are proposed for the distance distribution density and the 
scattering cross section. Then the corresponding results are extended to the aggregates. 

 

Keywords: aggregate, light scattering, pair distribution density, Rayleigh-Debye-Gans 
approximation 

 

1. Introduction 
Micro-particles mostly appear as aggregates constituted by nanometric or micrometric 
primary particles. Their geometrical and physical properties are the subject of numerous 
studies. An extensive literature exists for a particular class of aggregates known as the 
fractal-like aggregates. Filippov et al. studied the relationship between the morphology 
and the thermal behaviour of fractal aggregates [1]. The determination of their optical 
properties is particularly important also. The optical properties are needed not only for 
the characterization of micro-particles in a large number of industrial processes, but also 
for the study of environmental problems. Sorensen [2] has deeply studied the scattering 
properties of fractal aggregates. 
During the monitoring of particle aggregation in an industrial process, the optical 
properties of the suspension are measured by means of an experimental set-up 
consisting of a mono- or polychromatic light source, a sampling cell and a 
photodetector. The incident light is scattered by the sample, i.e. the suspension. Then, 
one can record either the light intensity ( )I ϑ  at various scattering angles ϑ  or the 
transmitted intensity, i.e. the non-scattered and non-absorbed light. The transmitted light 
is easier to work up. However the transmitted light intensity only leads to the light 

extinction cross section, that is ( )sinI dϑ ϑ ϑ∫ . So, the light extinction cross section is 

obtained through an attenuation measurement by means of the Beer-Lambert law for 
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diluted suspension. The measurement is performed at various wavelengths. This method 
has been used for the study of the aggregation of silica micro-particles [3] and 
polystyrene beads [4]. 
Simulations show that the aggregation of mono-sized primary particles results in a 
fractal-like cluster characterized by its fractal dimension. This morphological property 
is clearly proved for aggregates with a large number of primary particles (N>103). All 
geometrical properties of a fractal cluster can be deduced from its radius, its number of 
primary particles and its fractal dimension. Nevertheless, in real case the aggregates 
contain a small number of primary particles (N<<103) due to hydrodynamic and 
physicochemical conditions occurring in chemical reactors, e.g. high shear flow. Such 
aggregates are not as fractal-like ones. 
Kahnert [5] reviewed the exact theories and numerical methods about the calculation of 
the optical properties of non spherical particles and aggregates. One can classify them 
into three main categories:  

- Methods based on the partial differential equations that calculate the scattering 
field by solving the Maxwell equations or the Helmholtz equation. They are 
subjected to the boundary conditions suitable in the time or the frequency 
domain. 
- Methods based on integration over volume or surface of equations derived 
from the Maxwell equations. Thus the boundary conditions are automatically 
included in the solution.  
- The other methods are known as hybrids since they derive from the various 
approaches. 

Among the first category, T-matrix method is widely used. In the T-matrix method, the 
incident and scattering fields are expressed in the form of a series of spherical vector 
wave functions. The expansion coefficients of the incident wave and the scattering wave 
are connected by a linear transformation. The corresponding matrix T contains all the 
information on the particle’s optical properties for a given wavelength. It is a function 
of the size parameter, the shape, the optical refractive index of the considered particles, 
but it does not depend on the incident field. Thus this matrix does not need to be 
computed at each particle orientation change or change of the incident wave direction. 
To classify the publications relying on this method, a database was carried out by 
Mishchenko et al.[6-9].  
The solving by separation of variables for only one sphere can be enlarged to an 
aggregate of spheres by using the translation theorem for the spherical wave vector 
functions which expresses them in various bases of coordinates, and by applying a 
superposition principle. The total scattering field for an aggregate is then represented by 
the superposition of all the individual scattering fields resulting from each particle 
knowing that these fields are interdependent. Moreover, the problem can be formulated 
in the way of a T-matrix. A particular case of the T-matrix method [6] bearing the name 
of GMM (Generalized Multi-particle Mie-solution) is particularly suitable for sphere 
aggregates. The details of GMM are given by Xu [10,11]. This method is very precise 
but its computation time depends on the number and the size parameter of primary 
particles.  
However the study of the aggregation process, and the prediction of the time course of 
the turbidity spectrum require a too large computational time. Thus simple and accurate 
expressions for the optical properties of aggregates are needed. Simplified methods 
were developed for predicting the scattering and absorption cross sections of aggregates 
for several practical situations [12-15]. 

As above-mentioned, fractal-like aggregates are not so frequent during the aggregation 
process. As a consequence other geometrical parameters have to be chosen for 
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quantifying the aggregate morphology. Among the geometrical parameters describing 
any body, the distribution density functions relative to some quantities are involved in 
the calculation of scattering parameters. Among these quantities, one can find: 

- The chord length, e.g. the distance between two points located on the surface of 
a convex body [16] 

- The distance between two points located inside the body [17] 
- The pair (distance), i.e. the distance between the centres of any two primary 

particles in a cluster [2] 
- The projected area [18]. 

These functions can often be analytically calculated for convex bodies. However, the 
calculation is less easy for non convex bodies [19, 20], as clusters of primary particles.  
The choice of the relevant geometrical parameter depends on the size and the relative 
refractive index m; m is defined by the ratio between the refractive indices of the 
particle and the surrounding medium. Some scatterers dispersed in a liquid are 
characterized by a low optical contrast, i.e. 11m <<− . For instance, minerals like 
amorphous silica, silicates, carbonates, carboxylates, ice and gas hydrate crystals in 
water are optically soft. Likewise, the biological cells or microorganisms in water 
behave so. A number of important analytical approximations have been obtained for 
such particles. Rayleigh-Debye-Gans (RDG) approximation considers small soft 
particles with small phase shift, namely [21,22] : 
2 / 1d mπ λ <<− 1 

where d and λ are respectively the particle size and the light wavelength. The use of 
RDG approximation for fractal clusters led to numerous works, because it is suitable for 
explaining small angle scattering experiments with X ray or light. So the fractal 
dimension of aggregates can be deduced from the scattering data [23], because there 
exists a mathematically tractable relation between the scattered light intensity, the 
scattering wave vector and the fractal dimension. The ground is a particularly simple 
expression for the pair distribution density function for the fractal clusters. This analysis 
has been criticized by some authors, because it was used with non optically soft 
materials [24]. Furthermore a more realistic pair distribution density function of fractal 
clusters needs the insertion of a cut-off function [2]. 
The aim of this paper is to calculate the light scattering cross section of an optically soft 
aggregate from a distance distribution density. This will take into account at once the 
aggregate structure and the primary particle shape. Quasi-analytical expressions will be 
deduced and will be available for fast calculations. 
The second section of this paper reminds the fundamentals about the RDG 
approximation and its relationship with the pair distribution density function. Section 
three presents some results concerning the distance distribution density function for a 
two-particle set with equal or different particle sizes. This section is completed by the 
study of the distance distribution density function for an aggregate. The section four is 
devoted to the exact calculation and an approximated one of the light scattering cross 
section for an aggregate with identical primary particles. 
 

2. Rayleigh-Debye-Gans approximation and aggregates 
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Generally, the object (primary particle, aggregate ...) can be divided into smaller 
identical parts (elements). Each element is polarisable. In the presence of a variable 
electric field, the element becomes an oscillating dipole, which itself creates an 
electromagnetic field. When an object is illuminated by an electromagnetic wave, 
each element receives the incident electric field and the one coming from the other 
elements. As a result an oscillating dipole moment may be associated to each 
element. Thus the object emits an electromagnetic wave (scattered wave), which 
includes the contribution of each oscillating dipole. 

In the Rayleigh-Debye-Gans domain, there is only interference of light waves that 
are independently scattered by all small volume elements. If the object is an 
aggregate, the element may be either the whole primary particle or a part of the 
primary particle. 

Most often the incident wave is randomly polarised and the object (scatterer) can 
randomly orientate. The optical properties are thus obtained after calculating an 
average over all the wave polarisation states and object orientations. 

The averaged light scattering cross section  for aggregates consisting of N 
primary particles with radius a obeys the following relation: 

NC

( ) ( )2
1

(4 )
NC N F S Q d

π

ϑ= Ω∫  with ( )1 1
(4 )

C F d
π

ϑ= Ω∫       (1) 

where , ,Qϑ Ω  are respectively the scattering angle, the solid angle and the magnitude 
of the scattering wave vector ( ( )2 sin / 2Q k ϑ=  ; 2 /k π λ= ). ( )1F ϑ  corresponds to 
the primary particle. The structure factor ( )S Q  depends on the aggregate 
morphology [25]: 

( ) ( ) ( ) ( ) ( )2

1,

( ) sin / / 1 1 sin / /
N

ij ij ij ij ij
i j i j

S Q N QR QR N N QR QR
= = ≠

= + = + −
⎡ ⎤

N⎡ ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦
∑  (2) 

where ijR  is the distance between the centres of the primary particles i and j. 
ij
 

represents the averaged value over all i,j pairs. 
The scattering cross section of a doublet of primary particles separated by the centre 
to centre distance 2a+h has been calculated for several materials and sizes of primary 
particle. The primary particles were considered as Rayleigh [26] or Mie [27-29] 
scatterers. For Rayleigh-Debye-Gans scatterers it is expressed as [21, 25]: 

( ) ( ) ( )( ) ( )( )
( )

4 2 2 2

0

2
2

sin 28
1 1 cos 1 sin

9 2
a h

ka m G Qa d
a h

Q
C a

Q

π

ϑ ϑπ ϑ
+

− + +
+

⎛ ⎞
⎜
⎝ ⎠

∫� ⎟   (3) 

with 

( ) ( )3

3
sin cosG u u u u

u
= −  

 
In a continuous formulation, the structure factor can be written as: 

( ) ( ) ( )
max

min

( ) sin /
R

P
R

S Q QR QR D R dR= ∫        (4) 

The distribution density function ( )PD R  for the distance R between primary particle 
pair so appears. This function is chosen as a normalized one: 

( )
max

min

1
R

P
R

D R dR =∫          (5) 
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where Rmin and Rmax are respectively the smallest and the largest distances between 
the primary particles. 
Then the scattering cross section can be written as [30, 31]: 

( ) ( ) ( )2
1 1 1 RDG RDG

N ij ij
N

C NC N F kR N C F kR
→∞

= + −⎡ ⎤
⎣ ⎦ � 1     (6) 

The mean value in Eq.6 is expressed within a continuous formulation as: 

( ) ( )
max

min

R

P
R

X X R D R dR= ∫         (7) 

with 

( ) ( ) ( ) ( ) ( )
1

0 0
, / , sin 2 / 2 / ,RDG 1

F ka R a V x ka kRx kRx dx V x ka dx= ∫ ∫    (8a) 

and 

( ) ( )( ) ( )
( )

( )
( )

2
22

3

sin 2 cos 2
, 1 1 2

2 2

kax kax
V x ka x x

kax kax
= + − −

⎡ ⎤
⎢
⎢ ⎥⎣ ⎦

2 ⎥     (8b) 

When , Eq.8a becomes [31]: 0ka →

( ) ( )( ) ( )( ) (2 4 1 3 2 4
0 3 cos 2 1 5 3 sin 2 2 6 1 3 / 4RDG )2F x x x x x x x x x− − − − − −= − + − + − + + +⎡ ⎤⎣ ⎦ x

)

(9) 

( , /RDGF ka R a  only depends on kR. 
Eq.6 can be rewritten by using only continuous variables: 

( ) ( )24 2
0

2 1
3

RDG
N F kRC k V m

π
−�        (10) 

V is the matter volume of the scattering body. Thus the scattering cross section is 
expressed as a function of the distribution density of the distance R between any two 
points belonging to the scattering body. The latter will be merely called pair 
distribution density. Eq.10 is easily verified for a sphere when compared to the 
expression given by Van de Hulst [21]. It is valid for any scattering body. 
 
3. Pair or distance distribution density function 
 
3.1. Doublet of identical primary particles 
 
Let us examine the case of a doublet of two identical spheres with radius b. Figure 1 
represents the normalized pair or distance distribution density obtained by 
simulation. The distance H is the distance between the centres of the two primary 
particles. R is the distance between two points inside the doublet. All distances are 
made dimensionless with regard to the radius of the primary particle.  
The pair distribution density function for a doublet contains two contributions: 

( ) ( ) ( )( 1 2, s sDp R H Dp R Dp R H= + ), / 2       (11) 

( )1sDp R  and ( )2 ,sDp R H  are respectively the normalized pair distribution density for 
a single sphere (the two points of the segment are inside the same sphere) and for a 
doublet (each end of the segment belongs to different spheres). (2 ,s )Dp R H  will be 
called the partial pair distribution density. ( ),Dp R H  is also normalized. 
The pair distribution density for a sphere [17] obeys: 

( ) (2 3
1

3
12 16

16sDp R RR R= − )+        (12a) 
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for 0 2 . R< <
The distribution jth-order moments are: 

1 ,
1 3 212 2

6 4 3
j

s jM
j j j

=
⎡ ⎤

× − +⎢ + + +⎣ ⎦
⎥

2

       (12b) 

The partial pair distribution density is such as: 

( )
2

1

2 1, '
T

s
T

Dp R H A S S dR= ∫         (13a) 

, where A is the normalization constant. 
The notations are illustrated on Figure 2. A simple calculation leads to: 
if R H<  

( ) ( )( )( )( )
1

2
2

1

, 1 ' 1 ' 1 ' 1 '
R

s
H

Dp R H A
R 'R R R R H R H R d
H

π
+

−

−

= − + + − − + + −∫ R   

( ) ( ) ( ) ( )(3 2
2 ,

3 2 6
160sDp R H

R R H R H R H
H

− = − + − − − + )4    (13b) 

 
if R H>  

( ) ( )( )( )( )
1

2
2

1

, 1 ' 1 ' 1 ' 1 '
H

s
R

Dp R H A
R 'R R R R H R H R d
H

π
+

+

−

= − + + − − + + −∫ R   

( ) ( ) ( ) ( )(3 2
2 ,

3 2 6
160sDp R H

R H R R H R H
H

+ = − + − + − + )4    (13c) 

 
The j-moments of the partial pair distribution (doublet) ( )2 ,sDp R H  are: 

( ) ( ) ( ) ( )2 , 2 , 2 , 2 , 2 ,, 2, 2,s j s j s j s j s j ,M F H H F H H F H H F H H− − + += − − + + −   (14) 
with 

( ) ( ) ( ) ( ) ( )6 51
1

2 , 1
0

2 23, 2 10 20
160 6 5 4

q qj
j qq

s j j
q

R H R H R H
F R H C H

H q q

+ ++
+ −±

+
=

42 q

q

+⎡ ⎤− − −
= ± −⎢ ⎥

+ + +⎢ ⎥⎣ ⎦
∑

∓ ∓
∓ ∓

∓

           (15) 
It can be deduced: 

1
1

2 , ,
0

j
m

s j m j
m

M B H
+

−

=

= ∑         (16a) 

with 
, 0 1m jB if j m is odd= + −       (16b) 

( ) ( ) ( ) ( )( )
1

1 1 18
, 1 1

0

3 1 2 6 5 5 5 4 1
160

j m
q q m j m

m j j j q
q

B C C q q q if j m is even
+ −

− − −+ −
+ + −

=

= − + − + + + + −∑
          (16c) 
As an extension, 

, 0m j 1B if m j= > +        (16d) 
If the set of the two spheres separated by the H distance is converted to a set of two 
points separated by the same distance, then ( ) ( )2 ,s R HDp R Hδ= −  and 2 ,

j
s jM H= , 

where δ  is the Dirac function. Thus the ,m jB  coefficients represent the contribution 
of the primary particle shape (here a sphere) to the moments of the partial pair 
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distribution density. The table 1 contains the ,m jB  coefficient values for the four first 

moments of the 2sDp density. 
 
3.2. Doublet of different primary particles 
 
Let us consider an asymmetric doublet consisting of spheres with radii b1 and b2 
(with b1>b2). The distances are not made dimensionless because the choice of a 
characteristic length is not imperative. 
The pair distribution density for an asymmetric doublet separated by the centre to 
centre distance H obeys the relation: 

( ) ( ) ( ) ( )11 11 22 22 12 12,Dp R H P Dp R P Dp R P Dp R H= + + 2 ,     (17) 

The weighted coefficients  are simply: ijP
2 2

11 1 22 2 12 1 2P P P P P PP= = =  with ( )3 3 3
1 2/j jP b b b= +  

( )jjDp R  (j=1,2) and  are respectively the normalized pair distribution 
densities for a single sphere (the two ends of the segment are inside the j sphere) and 
for a doublet (each end of the segment belongs to different spheres).  
will be called the partial pair distribution density too. 

(12 ,Dp R H )

( )12 ,Dp R H

The pair distribution density function for a single sphere is: 

( ) ( ) ( ) ( )( )2 33
12 16

16
/ / /jj j j j

j
Dp R

b
R b R b R b= − +      (18) 

with 0 2 jR b< < . 
The partial distribution density for the doublet is also obtained from Eq.13a: 

( ) ( )( )( )(
2

1

2
12 2 2 1 1, ' ' ' '

T

T

Dp R H A
R b R R b R R b H R b H R dR
H

π= − + + − − + + −∫ ) '   

           (19) 
The normalization factor A can be given by: 

( )
2

3

1 2

3
4

A b b
π

−= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The lower and upper limits T1 and T2 of the integral are: 
if 2 1R H b b< + −     , 1 1 2T H b T R b2= − = +   (20a) 
if   , 2 1 1H b b R H b b+ − < < + − 2 21 2 2T R b T R b= − = +   (20b) 
if   , 1 2 1H b b R H b b+ − < < + + 2 11 2 2T R b T H b= − = +

)

  (20c) 
 
An analytical solution of this integral (Eq.19) exists as: 

( ) (12 2 1Dp f T f Tβ β= − − −       (21a) 
where 

( )
( )( )

( ) ( )

2 2 2 2 2 4
1 2 1 22

2 2 2 2 2 2 3 5
1 2 1 2 2 / 3 /

b b b b yRf y A
H b b y b b y y

π
α α

α α

⎡ ⎤− + +
⎢ ⎥=
⎢ ⎥+ − − + + +⎣ ⎦5

  (21b) 

and  and ( ) / 2R Hα = − ( ) / 2R Hβ = +  
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3.3. Set of identical primary particles 
 
The generalization of the previous calculations to a chain of N primary particles 
(Eq.22) and to an aggregate with N primary particles (Eq.23) is straightforward: 

( ) ( ) ( ) ( )( ) 2
1 2

2
2 1 , 2 1 /

N

s s
j

Dp R N Dp R N j Dp R j N
=

⎛ ⎞
= + + − −⎜ ⎟
⎝ ⎠

∑    (22) 

( ) ( ) ( ) ( )
max

min

1
1 1 ,

H

s Ne s
H

NDp R Dp R Dp H Dp R H dH
N N

−
= + ∫ 2     (23) 1N ≥

( )NeDp H  is the pair distribution density function for the set of the N sphere centres. 
This set represents the superstructure of the body whereas the spherical primary 
particle represents its substructure. ( )NeDp H is normalized. For a chain of N primary 

particles,  obeys the expression: ( )NeDp H

( ) ( ) ( )(
2

2 2 1
1

N

Ne
j

N HDp H H j
N N

δ
=

−
= −

−∑ )−       (24) 

Figure 3a represents the pair distribution density function for a chain of N primary 
particles (Eqs.23, 24). The two size scales are clearly identified. Figure 3b represents 
the pair distribution density function for a cubic packing of N primary particles. The 
two size scales can be observed, but less distinctly. 
Using the expressions for the distribution moments of a primary particle (Eq.12b) 
and for a doublet (Eq.16a), the jth-moment of the aggregate distribution is written as: 

1
1 ,

,
0

1 j
s j

j
m

M N
1m j mM B Q

N N

+

−
=

−
= + ∑        (25) 

where Qi is the ith-moment of the superstructure distribution ( )NeDp H . 
The aggregate of N spheres can be compared to the cluster of N points (centres of 
spheres) for which: 

( ) ( ) ( ) ( )2

, 1,
/

N

ik
i k i k

NeDp R Dp R R H N Nδ
= ≠

= = −∑ − . 

Then 

( )2

, 1,

/
N

j
j j ik

i k i k

M Q H N
= ≠

= = −∑ N  

where 1 , ,s j m jM and B  characterize once more the primary particle shape, i.e. the 
substructure. 
 
3.4. Set of different primary particles 
 
The pair distribution density function for a set of N primary particles with different 
radii bj can be written as: 

( ) ( ) (2

1 , 1

,
N N

j jj j k jk jk
j j k

j k

Dp R P Dp R P P Dp R H
= =

≠

= +∑ ∑ )      (26) 

with 
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3 3

1

/
N

j j i
i

P b b
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  

jkH is the distance between the centres of the primary particles j and k. R and jkH  are 

not made dimensionless. One can verify that Dp is normalized.  is 

calculated from Eqs.20-21. 
( ),jk jkDp R H

 
4. Light scattering cross section 
 
4.1 Doublet of identical primary particles 
 
4.1.1 Exact calculation 
The scattering cross section of a doublet as a function of the primary particle size 
parameter kb has been calculated by two ways: 

- following Van de Hulst (Eq.3), 
- following Eqs. 9-10 and the pair distribution density for a doublet (Eq.11) 

The deviation between the two calculations is smaller than 10-3 within the whole 
range [0,100] of the size parameter. 
Figure 4 represents the ratio of the scattering cross sections of the doublet and the 
primary particle as a function of the primary particle size parameter kb for various 
distances H. The ratio tends to 4 if kb→0 and to a value close to 2 if kb→∞. One can 
also observe the occurrence of two kb-ranges: [0,3] and [3,100]: as kb>3, the ratio 
has a constant value within 5%. The latter one follows the approximate expression: 

( )0.70.85 2
2 1/ 2 0.25 HC C e− −= +         (27) 

 
4.1.2 Approximated calculation 
 
The function ( )0

RDGF x  can be approximated by a polynomial function allowing the 
introduction of the moments of the distribution. Figure 5 and Eq.28a show such an 
approximation. 

( ) 21 0.4 0.1appF x 3x x= − +   0 x α< <     (28a) 

( ) 0appF x =     x α>  
where 3.0α =  
or 
 

( ) 21 0.4 0.1appF x 3x x= − +   0 x α< <     (28b) 

( ) 0.0105 0.21/appF x x= − +   x α>  
where 2.5α =   
 
If the approximation (Eq.28a) is applied, the distribution moments with orders 0, 2 
and 3 appear in the expression of the scattering cross section. In fact, only the partial 
or the truncated moments, called ( ), are involved due to the relation 

. 
1 , 2 ,, ,T T T

j s j sM M M j

( ) 0appF x α> =
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In the case of the partial moment, the integration interval [A,B] in 

( )
BT j

j pA
M R D R dR= ∫  is included within [Rmin,Rmax]. Rmin and Rmax are respectively 

the smallest and the largest distances between two points belonging to the scattering 
body. 
Then for a doublet and setting ( ) 1u kbα −= : 

( 1 , 2 , / 2T T T
j s j s jM M M= + )         (29) 

with 
( ) ( ) ( ) ( )2 , 2 , 2 , 2 , 2 ,, 2, ,T

s j s j s j s j s j ,M A F Y H B F H H A F Y H B F H H− − − − − + + + + += − − + −          (30) 

where  
( ) ( ), , , 1,1,1,1A B A B− − + + =  and ( ) ( ), ,Y Y H H− + 2= +   if 2 2H u< < −   

( ) ( ), , , 1,1,1,1A B A B− − + + =  and ( ) ( ), ,Y Y H u− + =    if 2u H u− < <  

( ) ( ), , , 1,1,0,0A B A B− − + + =  and ( ) ( ), ,Y Y u H− + =   if 2u H u< < +  

( ) (, , , 0,0,0,0A B A B− − + + = )       if  2H u> +

and 

1 , 10

YT j
s j sM R Dp dR= ∫          (31) 

where 
2Y =  if  2u >

Y u=  if . 2u <
However, Eq.31 (withY ) leads to an erroneous value for the moments of the 
distribution in the case of the large primary particles. As a consequence, one keeps 
out Eq.31 with , i.e.

u=

2Y = 1 , 1 ,
T
s j sM M= j . 

 
Then, the scattering cross section of the doublet is written as: 

( ) ( ) (24 2
2 0

2 1 0.4 0.1
3

T TC H k V m M M M
π

= − − + )2 3
T     (32) 

or 
( ) ( )2 1 22 pC H C C H= +        (33a) 

with 

( ) ( ) ( )24 2
2 2 ,0 2

1 1 0.4 0.1
3

T T
p s sC H k V m M M M

π
= − − +,2 2 ,3

T
s    (33b) 

Figure 6 compares  calculated following Van de Hulst (Eq.3) and (Eqs.33a-
b). Only the doublet of touching primary particles (H=2) leads to a non-negligible 
error for kb>3. The use of the second approximation (Eq.28b) leads to a negligible 
error for . 

( )2C H

15kb <
If the largest distance between two points of the doublet is such as 2H u+ <  (i.e., the 
largest distance is smaller than / /k 2α λ≈ ), then Eq.14 and Eqs.16a-c can be 
applied for any H. Eq.33b becomes: 

( ) ( ) (
4

24 2 1
2

0

1 1 1 0.4 0.1
3

m
p m

m

C H k V m B B H
π

−

=

⎛= − − −⎜
⎝ ⎠

∑ ),2 ,3m
⎞
⎟    (34) 
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4.2. Set of identical primary particles 
 
The aggregate scattering cross section is calculated by using Eqs.10 and 23: 

( ) ( ) ( )
max

min

1

1
2

H

N Ne
H

N N
C NC Dp H C H dH

−
= + ∫ 2 p

jk

    (35a) 

or 

( )1 2
, 1

/ 2
N

N jk
j k
j k

C NC C H
=

≠

= + ∑        (35b) 

If the largest distance into the aggregate corresponds to the case where 
{ } 2jkMax H u+ <  (i.e., the largest distance is smaller than / /k 2α λ≈ ), Eq.14 and 

16a-c can be applied for all H. Eq.35b becomes: 
( ) ( ) (

4
24 2

1 ,
0

1 1 1 1 0.4 0.1
2 3N m m m

m

N N
C NC k V m B B Q

π −
=

− ⎛ ⎞= + − − −⎜ ⎟
⎝ ⎠

∑ )2 ,3 1  (36) 

V is the matter volume of the doublet. 
The percentage of doublets with primary particles touching each others (H=2) in an 
aggregate is often small. The body having the largest ratio is a three-dimensional 
compact object. Although the deviation (Eq.3 vs Eqs.33a-b) previously observed for 
a doublet (figure 6) is small, the deviation for an aggregate is cumulative and 
increases with the number N of primary particles. 
The values of the ratio  have been calculated for various, kb and N, values 
in the case of two aggregates: a simple cubic arrangement of primary particles and a 
chain of primary particles. The values of the ratio  were calculated by the 

following Eq.35a and by using either 

1/NC NC

1/NC NC

( )0
RDGF x  or ( )appF x . After calculations the 

deviation between the two value sets is smaller than 5% if  for a 3D-
body (d=3) and  for 1D-body (d=1). In fact,  is the size parameter 
for the whole aggregate. Calculations were performed with N<10

1/ 2.5dkbN <
1/ 10dkbN < 1/ dkbN

4 for d=3 and 
N<200 for d=1. The condition  corresponds to a x-range such as 1/0 dkbN< < 2.5

( ) ( )0
RDG

appF x F x=  (see figure 5). This condition is strictly verified for a 3D-body 
whereas it is weakened for 1D-body. In the latter case the ratio of primary particles 
separated by a large distance ( ) is smaller than in a 3D-body and contribute 
less to the scattering cross section. 

2.5kR >

Figure 4 shows that for , the scattering cross section of the doublet does not 
depend on kb and depends only on H. Eqs.27 and 35a lead to: 

10kb >

( ) ( ) ( )
max 0.7

min

0.85 2
1

1
1 0.25

2

H
H

N Ne
H

N
C NC Dp H e dH− −

⎡ ⎤−
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∫    (37) 

The deviation between the two value series (Eq.35a versus Eq.37) is also smaller 
than 5%. The scattering cross section (Eq.37) depends on the whole morphology 
(superstructure) of the aggregate. The kernel of the integral (Eq.37) corresponds to 
the substructure, i.e. the primary particle.  
Moreover, the scattering cross section for a set of different primary particles obeys: 
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( ) ( )
2

1, 2
1 , 1

2 /
N N

N j jk j k jjk
j j k

j k

C C C H V V V V
= =

≠

= + +∑ ∑ k     (38a) 

with 

( ) ( ) ( ) ( )2 24
2 0

1 1 ,
3

jk j k

jk j k

H b b RDG
jk j k jk jkH b b

C k V V m F kR Dp R H
π

+ +

− −
= + − ∫ dR

)

 (38b) 

( ,jk jkDp R H  is calculated from Eqs.20-21. 

 
5. Conclusion 
 
An aggregate composed of spherical primary particles presents two size scales. In 
other words there exists a substructure (primary particle) and a superstructure 
(aggregate). The pair (distance) distribution density function shows the details of the 
two scales. These are more distinguishable from each other in the case of a body with 
a small spatial dimension like the chain of primary particles. The distribution jth-
order moment is a linear combination of the moments with order ≤j of the 
superstructure distance distribution. The coefficients of the combination are relative 
to the sub-structure. In the framework of the RDG approximation, the scattering 
cross section of the aggregate is related to the distance distribution in the 
superstructure and the scattering cross section of a doublet. Equations are available 
as well as their approximations decreasing the computation time. However, there 
does not exist a relation between the scattering cross section of the aggregate and the 
distribution moments over the whole range of size and number of primary particles. 
This work will be enlarged to other primary particle shapes (e.g. polyhedral) in order 
to determine the corresponding combination coefficients in the ( ),Dp R H  moments 
and to calculate the doublet and aggregate scattering cross sections. 
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Captions 
 
Fig.1: Dp as a function of R (normalized by the radius of the primary particle) for a 
doublet. 
 
Fig. 2: drawing showing the notation and the procedure to calculate the pair 
distribution density; case of the doublet. 
 
Fig.3a: Dp as a function of R (made dimensionless by the radius of a primary 
particle) for a chain of N primary particles. 
 
Fig.3b: Dp as a function of R (made dimensionless by the radius of a primary 
particle) for a cubic packing of N primary particles. 
 
Fig. 4: ratio between the scattering cross sections of the doublet and the primary 
particle for H=2 (---), H=6 ( ___ ), H=12 (+++) as a function of the primary 
particle size parameter. 
 
Fig.5: ( )0

RDGF x and ( )appF x  functions 
 
Fig. 6: ratio between the scattering cross sections of the doublet and the primary 
particle as a function of the primary particle size parameter. Comparison between 
Van de Hulst (Eq.3) and this work (Eqs.33a-b). * (H=1, Eq.3), x (H=1, Eqs.33a-b), o 
(H=2, Eq.3), . (H=2, Eqs.33a-b), < (H=5, Eq.3), > (H=5, Eqs.33a-b) 
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j,m 0 1 2 3 4 5 
0 0 1     
1 0.4 0 1    
2 0 1.2 0 1   
3 0.411 0 2.4 0 1  
4 0 2.057 0 4 0 1 

 
Table 1: values of the coefficients ,m jB  for j<5 
 

* corresponding author: gruy@emse.fr  23


