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This paper establishes a central limit theorem and an invariance principle for a wide class of stationary random fields under natural and easily verifiable conditions. More precisely, we deal with random fields of the form

variables and g is a measurable function. Such kind of spatial processes provides a general framework for stationary ergodic random fields. Under a short-range dependence condition, we show that the central limit theorem holds without any assumption on the underlying domain on which the process is observed. A limit theorem for the sample auto-covariance function is also established.

Introduction

Central limit theory plays a fundamental role in statistical inference of random fields. There have been a substantial literature for central limit theorems of random fields under various dependence conditions. See [START_REF] Bolthausen | On the central limit theorem for stationary mixing random fields[END_REF], [START_REF] Bradley | On the spectral density and asymptotic normality of weakly dependent random fields[END_REF], [START_REF] Bulinski | Central limit theorem for random fields and applications[END_REF], [START_REF] Bulinskiȋ | Various mixing conditions and the asymptotic normality of random fields[END_REF], [START_REF] Chen | A uniform central limit theorem for nonuniform φ-mixing random fields[END_REF], [START_REF] Dedecker | A central limit theorem for stationary random fields[END_REF], [START_REF] Guyon | Vitesse de convergence du théorème de la limite centrale pour des champs faiblement dépendants[END_REF], [START_REF] Jenish | Central limit theorems and uniform laws of large numbers for arrays of random fields[END_REF], [START_REF] Maltz | On the central limit theorem for nonuniform φ-mixing random fields[END_REF], [START_REF] Nakhapetyan | An approach to the proof of limit theorems for dependent random variables[END_REF], [START_REF] Neaderhouser | Limit theorems for multiply indexed mixing random variables, with application to Gibbs random fields[END_REF], [START_REF] Neaderhouser | Some limit theorems for random fields[END_REF], [START_REF] Paulauskas | On Beveridge-Nelson decomposition and limit theorems for linear random fields[END_REF], [START_REF] Perera | Geometry of Z d and the central limit theorem for weakly dependent random fields[END_REF], among others. However, many of them require that the underlying random fields have very special structures such as Gaussian, linear, Markovian or strong mixing of various types. In applications those structural assumptions can be violated, or not easily verifiable.

In this paper we consider stationary random fields which are viewed as nonlinear transforms of independent and identically distributed (iid) random variables. Based on that representation we introduce dependence measures and establish a central limit theorem and an invariance principle. We assume that the random field (X i ) i∈Z d has the form

X i = g ε i-s ; s ∈ Z d , i ∈ Z d , (1) 
where (ε j ) j∈Z d are iid random variables and g is a measurable function. In the one-dimensional case (d = 1) the model ( 1) is well known and includes linear as well as many widely used nonlinear time series models as special cases. In Section 2 based on (1) we shall introduce dependence measures. It turns out that, with our dependence measure, central limit theorems and moment inequalities can be established in a very elegant and natural way. The rest of the paper is organized as follows. In Section 3 we present a central limit theorem and an invariance principle for

S Γ = i∈Γ X i ,
where Γ is a finite subset of Z d which grows to infinity. The proof of our Theorem 1 is based on a central limit theorem for m n -dependent random fields established by Heinrich [START_REF] Heinrich | Asymptotic behaviour of an empirical nearest-neighbour distance function for stationary Poisson cluster process[END_REF]. Unlike most existing results on central limit theorems for random fields which require certain regularity conditions on the boundary of Γ, Heinrich's central limit theorem (and consequently our Theorem 1) has the very interesting property that no condition on the boundary of Γ is needed, and the central limit theorem holds under the minimal condition that |Γ| → ∞, where |Γ| the cardinal of Γ. This is a very attractive property in spatial applications in which the underlying observation domains can be quite irregular. As an application, we establish a central limit theorem for sample auto-covariances. Section 3 also present an invariance principle. Proofs are provided in Section 4.

Examples and Dependence Measures

In (1), we can interpret (ε s ) s∈Z d as the input random field, g is a transform or map and (X i ) i∈Z d as the output random field. Based on this interpretation, we define dependence measure as follows: let (ε ′ j ) j∈Z d be an iid copy of (ε j ) j∈Z d and consider for any positive integer n the coupled version X * i of X i defined by

X * i = g ε * i-s ; s ∈ Z d , where for any j in Z d , ε * j = ε j if j = 0 ε ′ 0 if j = 0.
Recall that a Young function ψ is a real convex nondecreasing function defined on R + which satisfies lim t→∞ ψ(t) = ∞ and ψ(0) = 0. We define the Orlicz space L ψ as the space of real random variables Z defined on the probability space (Ω, F , P) such that E[ψ(|Z|/c)] < +∞ for some c > 0. The Orlicz space L ψ equipped with the so-called Luxemburg norm . ψ defined for any real random variable Z by

Z ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 }
is a Banach space. For more about Young functions and Orlicz spaces one can refer to Krasnosel'skii and Rutickii [START_REF] Krasnosel | Convex Functions and Orlicz Spaces[END_REF].

Following Wu [START_REF] Wu | Nonlinear system theory: another look at dependence[END_REF], we introduce the following dependence measures which are directly related to the underlying processes.

Definition 1 (Physical dependence measure). Let ψ be a Young function and i in Z d be fixed. If X i belongs to L ψ , we define the physical dependence

measure δ i,ψ by δ i,ψ = X i -X * i ψ . If p ∈]0, +∞] and X i belongs to L p , we denote δ i,p = X i -X * i p .
Definition 2 (Stability). We say that the random field X defined by

(1) is p-stable if ∆ p := i∈Z d δ i,p < ∞.
As an illustration, we give some examples of p-stable spatial processes.

Example 1. (Linear random fields) Let (ε i ) i∈Z d be i.i.d random variables with ε i in L p , p ≥ 2. The linear random field X defined for any k in Z d by

X k = s∈Z d a s ε k-s
is of the form (1) with a linear functional g. For any i in

Z d , δ i,p = |a i | ε 0 - ε ′ 0 p . So, X is p-stable if i∈Z d |a i | < ∞.
Clearly, if K is a Lipschitz continuous function, under the above condition, the subordinated process

Y i = K(X i ) is also p-stable since δ i,p = O(|a i |).
Example 2. (Volterra field) Another class of nonlinear random field is the Volterra process which plays an important role in the nonlinear system theory (Casti [5], Rugh [START_REF] Rugh | Nonlinear system theory[END_REF]): consider the second order Volterra process

X k = s 1 ,s 2 ∈Z d a s 1 ,s 2 ε k-s 1 ε k-s 2 ,
where a s 1 ,s 2 are real coefficients with a s 1 ,s

2 = 0 if s 1 = s 2 and ε i in L p , p ≥ 2. Let A k = s 1 ,s 2 ∈Z d (a 2 s 1 ,k + a 2 k,s 2 ) and B k = s 1 ,s 2 ∈Z d (|a s 1 ,k | p + |a k,s 2 | p ).
By the Rosenthal inequality, there exists a constant C p > 0 such that

δ k,p = X k -X * k p ≤ C p A 1/2 k ε 0 2 ε 0 p + C p B 1/p k ε 0 2 p .

Main Results

To establish a central limit theorem for S Γ we need the following moment inequality. With the physical dependence measure, it turns out that the moment bound can have an elegant and concise form.

Proposition 1. Let Γ be a finite subset of Z d and (a i ) i∈Γ be a family of real numbers. For any p ≥ 2, we have

i∈Γ a i X i p ≤ 2p i∈Γ a 2 i 1 2 ∆ p
where ∆ p = i∈Z d δ i,p .

In the sequel, for any i in Z d , we denote δ i in place of δ i,2 . 

Proposition 2. If ∆ 2 := i∈Z d δ i < ∞ then k∈Z d |E(X 0 X k )| < ∞. More- over, if (Γ n ) n≥1 is
lim n→+∞ |Γ n | -1 E(S 2 Γn ) = k∈Z d E(X 0 X k ). (2) 

Central Limit Theorem

Our first main result is the following central limit theorem.

Theorem 1. Let (X i ) i∈Z d be the stationary centered random field defined by

(1) satisfying ∆ 2 := i∈Z d δ i < ∞. Assume that σ 2 n := E S 2 Γn → ∞. Let (Γ n ) n≥1 be a sequence of finite subsets of Z d such that |Γ n | → ∞, then the Levy distance L[S Γn / |Γ n |, N(0, σ 2 n /|Γ n |)] → 0 as n → ∞. (3) 
We emphasize that in Theorem 1 no condition on the domains Γ n is imposed other than the natural one

|Γ n | → ∞. Applying Proposition 2, if |∂Γ n |/|Γ n | goes to zero and σ 2 := k∈Z d E(X 0 X k ) > 0 then S Γn |Γ n | L -----→ n→+∞ N (0, σ 2 ).
Theorem 1 can be applied to the mean estimation problem: suppose that a stationary random field X i with unknown mean µ = EX i is observed on the domain Γ. Then µ can be estimated by the sample mean μ = S Γ /|Γ| and a confidence interval for μ can be constructed if there is a consistent estimate for var(S Γ )/|Γ|.

Interestingly, the Theorem can also be applied to the estimation of autocovariance functions. For

k ∈ Z d let γ k = cov(X 0 , X k ) = E(X 0 X k ) -µ 2 . ( 4 
)
Assume X i is observed over i ∈ Γ and let Ξ = {i ∈ Γ : i + k ∈ Γ}. Then γ k can be estimated by γk = 1 |Ξ| i∈Ξ X i X i+k -μ2 . (5) 
To apply Theorem 1, we need to compute the physical dependence measure for the process Y i := X i X i+k , i ∈ Z d . It turns out that the dependence for Y i can be easily obtained from that of X i . Note that

δ i,p/2 (Y ) = X i X i+k -X * i X * i+k p/2 ≤ X i X i+k -X i X * i+k p/2 + X i X * i+k -X * i X * i+k p/2 ≤ X i p δ i+k,p + δ i,p X * i+k p = X 0 p (δ i+k,p + δ i,p ). Hence, if ∆ 4 = i∈Z d δ i,4 < ∞, we have i∈Z d δ i,2 (Y ) < ∞ and the central limit theorem for i∈Ξ X i X i+k /|Ξ| holds if |Ξ| → ∞.

Invariance Principles

Now, we are going to see that an invariance principle holds too. If A is a collection of Borel subsets of [0, 1] d , define the smoothed partial sum process

{S n (A) ; A ∈ A} by S n (A) = i∈{1,...,n} d λ(nA ∩ R i )X i (6) 
where

R i =]i 1 -1, i 1 ] × ...×]i d -1, i d ]
is the unit cube with upper corner at i, λ is the Lebesgue measure on R d and X i is defined by [START_REF] Bolthausen | On the central limit theorem for stationary mixing random fields[END_REF]. We equip the collection A with the pseudo-metric ρ defined for any A, B in A by ρ(A, B) = λ(A∆B). To measure the size of A one considers the metric entropy: denote by H(A, ρ, ε) the logarithm of the smallest number N(A, ρ, ε) of open balls of radius ε with respect to ρ which form a covering of A. The function H(A, ρ, .) is the entropy of the class A. Let C(A) be the space of continuous real functions on A, equipped with the norm . A defined by

f A = sup A∈A |f (A)|.
A standard Brownian motion indexed by A is a mean zero Gaussian process W with sample paths in C(A) and Cov(W (A), W (B)) = λ(A ∩ B). From Dudley [START_REF] Dudley | Sample functions of the Gaussian process[END_REF] we know that such a process exists if

1 0 H(A, ρ, ε) dε < +∞. (7) 
We say that the invariance principle or functional central limit theorem (FCLT) holds if the sequence {n -d/2 S n (A) ; A ∈ A} converges in distribution to an A-indexed Brownian motion in the space (A). The first weak convergence results for Q d -indexed partial sum processes were established for i.i.d. random fields and for the collection

Q d of lower-left quadrants in [0, 1] d , that is to say the collection {[0, t 1 ] × . . . × [0, t d ] ; (t 1 , . . . , t d ) ∈ [0, 1] d }.
They were proved by Wichura [START_REF] Wichura | Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters[END_REF] under a finite variance condition and earlier by Kuelbs [START_REF] Kuelbs | The invariance principle for a lattice of random variables[END_REF] under additional moment restrictions. When the dimension d is reduced to one, these results coincide with the original invariance principle of Donsker [START_REF] Donsker | An invariance principle for certain probability limit theorems[END_REF]. Dedecker [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random fields[END_REF] gave an L ∞ -projective criterion for the process {n -d/2 S n (A) ; A ∈ A} to converge in the space C(A) to a mixture of A-indexed Brownian motions when the collection A satisfies only the entropy condition [START_REF] Dedecker | A central limit theorem for stationary random fields[END_REF]. This projective criterion is valid for martingaledifference bounded random fields and provides a sufficient condition for φmixing bounded random fields. For unbounded random fields, the result still holds provided that the metric entropy condition on the class A is reinforced (see [START_REF] Machkouri | Kahane-Khintchine inequalities and functional central limit theorem for stationary random fields[END_REF]). It is shown in [START_REF] Machkouri | Contre-exemple dans le théorème central limite fonctionnel pour les champs aléatoires réels[END_REF] that the FCLT may be not valid for p-integrable martingale-difference random fields (0 ≤ p < +∞) but it still holds if the conditional variances of the martingale-difference random field are assumed to be bounded a.s. (see [START_REF] Machkouri | Invariance principles for standardnormalized and self-normalized random fields[END_REF]). In this paper, we are going to establish the FCLT for random fields of the form (1) (see Theorem 2).

Following [START_REF] Van Der Vaart | Weak convergence and empirical processes with applications to statistics[END_REF], we recall the definition of Vapnik-Chervonenkis classes (V Cclasses) of sets: let C be a collection of subsets of a set X . An arbitrary set of n points F n := {x 1 , ..., x n } possesses 2 n subsets. Say that C picks out a certain subset from F n if this can be formed as a set of the form C ∩ F n for a C in C. The collection C is said to shatter F n if each of its 2 n subsets can be picked out in this manner. The VC-index V (C) of the class C is the smallest n for which no set of size n is shattered by C. Clearly, the more refined C is, the larger is its index. Formally, we have

V (C) = inf n ; max x 1 ,...,xn ∆ n (C, x 1 , ..., x n ) < 2 n where ∆ n (C, x 1 , ..., x n ) = # {C ∩ {x 1 , ..., x n } ; C ∈ C}. Two classical exam- ples of V C-classes are the collection Q d = [0, t] ; t ∈ [0, 1] d and Q ′ d = [s, t] ; s, t ∈ [0, 1] d ,
s ≤ t with index d + 1 and 2d + 1 respectively (where s ≤ t means s i ≤ t i for any 1 ≤ i ≤ d). Fore more about Vapnik-Chervonenkis classes of sets, one can refer to [START_REF] Van Der Vaart | Weak convergence and empirical processes with applications to statistics[END_REF].

Let β > 0 and h β = ((1β)/β) 1 β 1 1 {0<β<1} . We denote by ψ β the Young function defined by ψ β (x) = e (x+h β ) βe h β β for any x in R + .

Theorem 2. Let (X i ) i∈Z d be the stationary centered random field defined by (1) and let A be a collection of regular Borel subsets of [0, 1] d . Assume that one of the following condition holds:

(i) The collection A is a Vapnik-Chervonenkis class with index V and there exists p > 2(V -1) such that X 0 belongs to L p and ∆ p := i∈Z d δ i,p < ∞.

(ii) There exists θ > 0 and 0 < q < 2 such that E[exp(θ|X 0 | β(q) )] < ∞ where β(q) = 2q/(2q) and ∆ ψ β(q) := i∈Z d δ i,ψ β(q) < ∞ and such that the class A satisfies the condition

1 0 (H(A, ρ, ε)) 1/q dε < +∞. (8) 
(iii) X 0 belongs to L ∞ , the class A satisfies the condition (7) and ∆ ∞ :=

i∈Z d δ i,∞ < ∞.
Then the sequence of processes {n -d/2 S n (A) ; A ∈ A} converges in distribution in C(A) to σW where W is a standard Brownian motion indexed by A and σ 2 = k∈Z d E(X 0 X k ).

Proofs

Proof of Proposition 1. Let τ : Z → Z d be a bijection. For any i ∈ Z, for any

j ∈ Z d , P i X j := E(X j |F i ) -E(X j |F i-1 ) (9) 
where

F i = σ ε τ (l) ; l ≤ i . Lemma 1.
For any i in Z and any j in Z d , we have P i X j p ≤ δ j-τ (i),p .

Proof of Lemma 1.

P i X j p = E(X j |F i ) -E(X j |F i-1 ) p = E(X 0 |T j F i ) -E(X 0 |T j F i-1 ) p where T j F i = σ ε τ (l)-j ; l ≤ i = E g ((ε -s ) s∈Z d ) |T j F i -E g (ε -s ) s∈Z d \{j-τ (i)} ; ε ′ τ (i)-j |T j F i p ≤ g ((ε -s ) s∈Z d ) -g (ε -s ) s∈Z d \{j-τ (i)} ; ε ′ τ (i)-j p = g (ε j-τ (i)-s ) s∈Z d -g (ε j-τ (i)-s ) s∈Z d \{j-τ (i)} ; ε ′ 0 p = X j-τ (i) -X * j-τ (i) p = δ j-τ (i),p .
The proof of Lemma 1 is complete.

For all j in Z d ,

X j = i∈Z P i X j .
Consequently, 

a j P i X j 2 p   1 2 ≤   2p i∈Z j∈Γ |a j | P i X j p 2   1 2 (10) 
By the Cauchy-Schwarz inequality, we have

j∈Γ |a j | P i X j p 2 ≤ j∈Γ a 2 j P i X j p × j∈Γ P i X j p
and by Lemma 1,

j∈Z d P i X j p ≤ j∈Z d δ j-τ (i),p = ∆ p . So, we obtain j∈Γ a j X j p ≤ 2p∆ p j∈Γ a 2 j i∈Z P i X j p 1 2
.

Applying again Lemma 1, for any j in Z d , we have

i∈Z P i X j p ≤ i∈Z δ j-τ (i),p = ∆ p , Finally, we derive j∈Γ a j X j p ≤ 2p j∈Γ a 2 j 1 2 ∆ p .
The proof of Proposition 1 is complete.

Proof of Proposition 2. Let k in Z d be fixed. Since X k = i∈Z P i X k where P i is defined by ( 9) and E((P i X 0 )(P j X k )) = 0 if i = j, we have

E(X 0 X k ) = i∈Z E((P i X 0 )(P i X k )).
Thus, we obtain

k∈Z d |E(X 0 X k )| ≤ i∈Z P i X 0 2 k∈Z d P i X k 2 .
Applying again Lemma 1, we derive

k∈Z d |E(X 0 X k )| ≤ ∆ 2 2 < ∞.
In the other part, since (X k ) k∈Z d is stationary, we have

|Γ n | -1 E(S 2 Γn ) = k∈Z d |Γ n | -1 |Γ n ∩ (Γ n -k)|E(X 0 X k ) where Γ n -k = {i -k ; i ∈ Γ n }. Moreover |Γ n | -1 |Γ n ∩ (Γ n -k)||E(X 0 X k )| ≤ |E(X 0 X k )| and k∈Z d |E(X 0 X k )| < ∞. Since lim n→+∞ |Γ n | -1 |Γ n ∩ (Γ n -k)| = 1
, applying the Lebesgue convergence theorem, we derive

lim n→+∞ |Γ n | -1 E(S 2 Γn ) = k∈Z d E(X 0 X k ).
The proof of Proposition 2 is complete.

Proof of Theorem 1. We first assume that lim inf n σ 2 n /|Γ n | > 0. Let (m n ) n≥1 be a sequence of positive integers going to infinity. In the sequel, we denote X j = E (X j |F mn (j)) where F mn (j) = σ(ε j-s ; |s| ≤ m n ). By factorization, there exists a measurable function h such that X j = h(ε j-s ; |s| ≤ m n ). So, we have

X * j = h(ε * j-s ; |s| ≤ m n ) = E X * j |F * mn (j) (11) 
where F * mn (j) = σ(ε * j-s ; |s| ≤ m n ). We denote also for any j in Z d ,

δ (mn) j,p = (X j -X j ) -(X j -X j ) * p .
The following result is a direct consequence of Proposition 1.

Proposition 3. Let Γ be a finite subset of Z d and (a i ) i∈Γ be a family of real numbers. For any n in N * and any p ∈ [2, +∞], we have

j∈Γ a j (X j -X j ) p ≤ 2p i∈Γ a 2 i 1 2 ∆ (mn) p where ∆ (mn) p = j∈Z d δ (mn) j,p .
We need also the following lemma.

Lemma 2. Let p ∈]0, +∞] be fixed. If ∆ p < ∞ then ∆ (mn) p → 0 as n → ∞. Proof of Lemma 2. Let j in Z d be fixed. Since (X j -X j ) * = X * j -X * j , we have δ (mn) j,p = (X j -X j ) -(X j -X j ) * p ≤ X j -X * j p + X j -X * j p = δ j,p + E(X j |F mn (j) ∨ F * mn (j)) -E(X * j |F * mn (j) ∨ F mn (j)) p ≤ 2δ j,p .
Moreover, lim n→+∞ δ (mn) j,p = 0. Finally, applying the Lebesgue convergence theorem, we obtain lim n→+∞ ∆ (mn) p = 0. The proof of Lemma 2 is complete.

Let (Γ n ) n≥1 be a sequence of finite subsets of Z d such that lim n→+∞ |Γ n | = ∞ and lim inf n σ 2 n
|Γn| > 0 and recall that ∆ 2 is assumed to be finite. Combining Proposition 3 and Lemma 2, we have

lim sup n→+∞ S n -S n 2 σ n = 0. (12) 
We are going to apply the following central limit theorem due to Heinrich ([15], Theorem 2).

Theorem 3 [START_REF] Heinrich | Asymptotic behaviour of an empirical nearest-neighbour distance function for stationary Poisson cluster process[END_REF]). Let (Γ n ) n≥1 be a sequence of finite subsets of Z d with |Γ n | → ∞ as n → ∞ and let (m n ) n≥1 be a sequence of positive integers. For each n ≥ 1, let {U n (j), j ∈ Z d } be an m n -dependent random field with EU n (j) = 0 for all j in Z d . Assume that E j∈Γn U n (j)

2 → σ 2
as n → ∞ with σ 2 < ∞. Then j∈Γn U n (j) converges in distribution to a Gaussian random variable with mean zero and variance σ 2 if there exists a finite constant c > 0 such that for any n ≥ 1,

j∈Γn EU 2 n (j) ≤ c
and for any ε > 0 it holds that

lim n→+∞ L n (ε) := m 2d n j∈Γn E U 2 n (j) 1 1 |Un(j)|≥εm -2d n = 0. Since lim inf n σ 2 n |Γn| > 0, there exists c 0 > 0 and n 0 ∈ N such that |Γn| σ 2 n ≤ c 0 for any n ≥ n 0 . Consider S n = i∈Γn X i , S n = i∈Γn X i and U n (j) := X j
σn . We have

E j∈Γn U n (j) 2 = E(S 2 n ) -σ 2 n σ 2 n + 1.
So, for any n ≥ n 0 we derive

σ 2 n -E(S 2 n ) σ 2 n = 1 σ 2 n E j∈Γn (X j -X j ) j∈Γn (X j + X j ) ≤ 1 σ 2 n j∈Γn (X j -X j ) 2 j∈Γn (X j + X j ) 2 ≤ 2|Γ n |∆ (mn) 2 σ 2 n 4∆ 2 + 2∆ (mn) 2 ≤ 4c 0 ∆ (mn) 2 2∆ 2 + ∆ (mn) 2 -----→ n→+∞ 0.
Consequently,

lim n→+∞ E j∈Γn U n (j) 2 = 1.
Moreover, for any n ≥ n 0 ,

j∈Γn EU 2 n (j) = |Γ n |E(X 2 0 ) σ 2 n ≤ c 0 E(X 2 0 ) < ∞.
Let ε > 0 be fixed. We have

L n (ε) ≤ c 0 m 2d n E X 2 0 1 1 |X 0 |≥ εσn m 2d n ≤ c 0 m 2d n E X 2 0 1 1 |X 0 |≥ εσn m 2d n ≤ c 0 m 2d n σ n P |X 0 | ≥ εσ n m 2d n + c 0 m 2d n E X 2 0 1 1 {|X 0 |≥ √ σn} ≤ c 0 E(X 2 0 )m 6d n ε 2 σ n + c 0 m 2d n ψ( √ σ n ) where ψ(x) = E X 2 0 1 1 {|X 0 |≥x} . Lemma 3. If the sequence (m n ) n≥1 is defined for any integer n ≥ 1 by m n = min ψ √ σ n -1 4d
, σ

1 12d n if ψ( √ σ n ) = 0 and by m n = σ 1 12d n if ψ( √ σ n ) = 0 where [ . ] is the integer part function then m n → ∞, m 6d n σ n → 0 and m 2d n ψ ( √ σ n ) → 0. Proof of Lemma 3. Since σ n → ∞ and ψ( √ σ n ) → 0, we derive m n → ∞. Moreover, m 6d n σ n ≤ 1 √ σ n → 0 and m 2d n ψ ( √ σ n ) ≤ ψ ( √ σ n ) → 0.
The proof of Lemma 3 is complete.

Consequently, we obtain lim n→∞ L n (ε) = 0. So, applying Theorem 3, we derive that

S n σ n Law -----→ n→+∞ N (0, 1). (13) 
Combining ( 12) and ( 13), we deduce

S n σ n Law -----→ n→+∞ N (0, 1).
Hence (3) holds if lim inf n σ 2 n /|Γ n | > 0. In the general case, we argue as follows: If (3) does not hold then there exists a subsequence n ′ → ∞ such that

L S n ′ |Γ n ′ | , N 0, σ 2 n ′ |Γ n ′ | converges to some l in ]0, +∞]. (14) 
Assume that 

L S n ′′ |Γ n ′′ | , N 0, σ 2 n ′′ |Γ n ′′ | converges to 0. (15) 
Since ( 15) contradicts ( 14), we have

σ 2 n ′ |Γ n ′ | converges to zero. Consequently S n ′ / |Γ n ′ | converges to zero in probability and L S n ′ √ |Γ n ′ | , N 0, σ 2 n ′ |Γ n ′ | con-
verges to 0 which contradicts again [START_REF] Guyon | Vitesse de convergence du théorème de la limite centrale pour des champs faiblement dépendants[END_REF]. Consequently, (3) holds. The proof of Theorem 1 is then complete.

Proof of Theorem 2. As usual, we have to prove the convergence of the finite-dimensional laws and the tightness of the partial sum process

{n -d/2 S n (A) ; A ∈ A} in C(A). For any Borel subset A of [0, 1] d , we de- note by Γ n (A) the finite subset of Z d defined by Γ n (A) = nA ∩ Z d . We say that A is a regular Borel set if λ(∂A) = 0. Proposition 4. Let A be a regular Borel subset of [0, 1] d with λ(A) > 0. We have lim n→+∞ |Γ n (A)| n d = λ(A) and lim n→+∞ |∂Γ n (A)| |Γ n (A)| = 0. Moreover, if ∆ 2 is finite then lim n→+∞ n -d/2 S n (A) -S Γn(A) 2 = 0 (16) 
where S Γn(A) = i∈Γn(A) X i .

Proof of Proposition 4. The first part of Proposition 4 is the first part of Lemma 2 in Dedecker [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random fields[END_REF]. So, we are going to prove only the second part. Let n be a positive integer. Arguing as in Dedecker [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random fields[END_REF], we have

S n (A) -S Γn(A) = i∈Wn a i X i (17) 
where

a i = λ(nA ∩ R i ) -1 1 i∈Γn(A) and W n is the set of all i in {1, .., n} d such that R i ∩ (nA) = ∅ and R i ∩ (nA) c = ∅. Noting that |a i | ≤ 1 and applying Proposition 1, we obtain S n (A) -S Γn(A) 2 ≤ 2∆ 2 i∈Wn a 2 i ≤ 2∆ 2 |W n |. (18) 
Following the proof of Lemma 2 in [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random fields[END_REF], we have |W n | = o(n d ) and we derive [START_REF] Jenish | Central limit theorems and uniform laws of large numbers for arrays of random fields[END_REF]. The proof of Proposition 4 is complete.

The convergence of the finite-dimensional laws follows from Proposition 4 and Theorem 1.

So, it suffices to establish the tightness property.

Proposition 5. Assume that Assumption (i), (ii) or (iii) in Theorem 2 holds. Then for any x > 0, we have

lim δ→0 lim sup n→+∞ P    sup A,B∈A ρ(A,B)<δ n -d/2 S n (A) -n -d/2 S n (B) > x    = 0. (19) 
Proof of Proposition 5. Let A and B be fixed in A and recall that ρ(A, B) = λ(A∆B). We have

S n (A) -S n (B) = i∈Λn a i X i where Λ n = {1, ..., n} d and a i = λ(nA ∩ R i ) -λ(nB ∩ R i ). Applying Propo- sition 1, we have n -d/2 S n (A) -S n (B) p ≤ ∆ p 2p n d i∈Λn λ(n(A∆B) ∩ R i ) 1 2
≤ 2p∆ p ρ(A, B).

(20) Assume that Assumption (i) in Theorem 2 holds. Then there exists a positive constant K such that for any 0 < ε < 1, we have (see Van der Vaart and Wellner [START_REF] Van Der Vaart | Weak convergence and empirical processes with applications to statistics[END_REF], Theorem 2.6.4)

N(A, ρ, ε) ≤ KV (4e) V 1 ε 2(V -1)
where N(A, ρ, ε) is the smallest number of open balls of radius ǫ with respect to ρ which form a covering of A. So, since p > 2(V -1), we have 

The condition ( 19) is then satisfied under Assumption (i) in Theorem 2 and the sequence of processes {n -d/2 S n (A) ; A ∈ A} is tight in C(A).

Now, we assume that Assumption (ii) in Theorem 2 holds. The following technical lemma can be obtained using the expansion of the exponential function. Combining Lemma 4 with (20), for any 0 < q < 2, there exists C q > 0 such that n -d/2 S n (A) -S n (B) ψq ≤ C q ∆ ψ β(q) ρ(A, B) [START_REF] Neaderhouser | Some limit theorems for random fields[END_REF] where β(q) = 2q/(2q). Applying Theorem 11.6 in Ledoux and Talagrand [START_REF] Ledoux | Probability in Banach spaces[END_REF], for each positive ǫ there exists a positive real δ, depending on ǫ and on the value of the entropy integral (8) but not on n, such that (22) holds. The condition ( 19) is then satisfied and the process {n -d/2 S n (A) ; A ∈ A} is tight in C(A). 
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 2 | does not converge to zero. Then there exists a subsequence n ′′ such that lim inf n σ ′′ |Γ n ′′ | > 0. By the first part of the proof of Theorem 1, we obtain
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 21 Combining[START_REF] Maltz | On the central limit theorem for nonuniform φ-mixing random fields[END_REF] and[START_REF] Nakhapetyan | An approach to the proof of limit theorems for dependent random variables[END_REF] and applying Theorem 11.6 in Ledoux and Talagrand[START_REF] Ledoux | Probability in Banach spaces[END_REF], we infer that the sequence {n -d/2 S n (A) ; A ∈ A} satisfies the following property: for each positive ǫ there exists a positive real δ, depending on ǫ and on the value of the entropy integral[START_REF] Nakhapetyan | An approach to the proof of limit theorems for dependent random variables[END_REF] but not on n,|n -d/2 S n (A)n -d/2 S n (B)|   < ǫ.

Lemma 4 .

 4 Let β be a positive real number and Z be a real random variable. There exist positive universal constants A β and B β depending only on β such that A β sup p>2 Z p p 1/β ≤ Z ψ β ≤ B β sup p>2 Z p p 1/β .

Finally, if

  Assumption (iii) in Theorem 2 holds then combining Lemma 4 with (20), there exists C > 0 such thatn -d/2 S n (A)n -d/2 S n (B) ψ 2 ≤ C∆ ∞ ρ(A, B).

  a sequence of finite subsets of Z d such that |Γ n | goes to infinity and |∂Γ n |/|Γ n | goes to zero then

Applying again Theorem 11.6 in Ledoux and Talagrand [19], we obtain the tightness of the process {n -d/2 S n (A) ; A ∈ A} in C(A). The proofs of Proposition 5 and Theorem 2 are complete.
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