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Valveless pumping assists in fluid transport in various biomedical and engineering sys-
tems. Here we focus on one factor that has often been overlooked in previous studies
of valveless pumping, namely the impact that a compression actuator exerts upon the
pliant part of the system when they collide. In particular, a fluid-filled closed-loop sys-
tem is considered, which consists of two distensible reservoirs connected by two rigid
tubes, with one of the reservoirs compressed by an actuator at a prescribed frequency. A
lumped-parameter model with constant coefficients accounting for mass and momentum
balance in the system is constructed. Based upon such a model, a mean flow in the fluid
loop can only be produced by system asymmetry and the nonlinear effects associated
with actuator impact. Through asymptotic and numerical solutions of the model, a sys-
tematic parameter study is carried out, thereby revealing the rich and complex system
dynamics that strongly depends upon the driving frequency of the actuator and other
geometrical and material properties of the system. The driving-frequency dependence of
the mean flowrate in the fluid loop and that of the mean reservoir pressures also are
examined for a number of representative cases.

Keywords: Valveless pumping; Liebau effect; actuator impact; nonlinear dynamics.

1. Introduction

Many fluid-dynamical systems in nature and engineering more or less rely upon

valveless pumping to transport the working fluids therein. For instance, blood cir-

culation in the cardiovascular system is maintained to some extent even when the

heart’s valves fail.1,2 Meanwhile, the embryonic vertebrate heart begins pumping

blood long before the development of discernable chambers and valves.3,4 (The

reader is also referred to Ref. 2 for a discussion of several other biomedical systems

that involve valveless pumping.) In microfluidics, valveless “impedance pumps” have

been fabricated, and are expected to be particularly suitable for handling sensi-

tive biofluids.5 A rather effective mechanism of valveless pumping, namely that of
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impedance pumps, can be explained as follows. Consider a pliant tube periodically

compressed at an asymmetric site from the tube’s interfaces to different tubing or

reservoirs. Waves then are excited and propagate on the tube. At the tube ends,

the waves would partly reflect due to impedance mismatch, thereby building up a

mean pressure head that drives the fluid flow in the tube.6,7

The study of valveless pumping can be traced back to the work of Liebau in

1954,1 in which he demonstrated the generation of a mean flow in a valveless open-

loop mechanical apparatus by periodically compressing a plaint part of the appa-

ratus. The aim of such a demonstration was to support the view that the heart is

assisted by other forces to sustain the blood circulation (see Ref. 2 for a brief dis-

cussion of the evolution of cardiovascular circulation theories). Liebau’s work then

inspired a number of experiments and mathematical models for various valveless

pumping systems. As these works have been very nicely reviewed by Manopoulos

et al.,8 a detailed account of them will not be presented here. Instead, to give some

quick ideas about such works, a few of them are sketched below. For example, in

1963, Mahrenholtz9 carried out experiments using a valveless closed-loop apparatus

as a mechanical model for the blood circulation system with a heart of valvular

disease. A lumped-parameter mathematical model for the system was also derived

in that work. In 1978, using the method of characteristics in conjunction with nu-

merical computations, Thomann10 studied a simple torus model consisting of an

elastic tube and a rigid tube joined together (as described earlier by Liebau11 and

physically reconstructed in a more recent work by Moser et al.2). A one-dimensional

(1-D) model also was constructed and solved numerically by Rath et al.12 to study

an open-loop valveless pumping system. Meanwhile, in 1983, Takagi and Saijo13

studied, both theoretically and experimentally, the performance of a valveless piston

pump under non-resonant conditions. In a follow-up work, Takagi and Takahashi14

then modified the piston pump configuration and examined the effects of resonance

phenomenon on the pumping characteristics.

In recent years, experimental studies and theoretical works continue to be de-

voted to understanding the many interesting characteristics of valveless pumping.

For example, in 2003, Ottesen15 derived by averaging the Navier–Stokes equations

a 1-D nonlinear mathematical model for a fluid-filled torus (like that originally

described by Liebau11). The mathematical model was then analyzed partly analyt-

ically and partly numerically, and the theoretical findings were validated by some

experiments carried out on a physical realization of the torus system. In such ex-

periments, a remarkable unidirectional mean flow in the torus was produced by

compressing the soft tube at an asymmetric site with respect to the system’s con-

figuration. It was also observed that the size and direction of the mean flow depend

on the frequency and specific temporal form of the compression, the elasticity of

the tubes, and the compression ratio in a complicated manner.

Meanwhile, aiming to answer a number of important questions regarding the fun-

damental mechanisms of valveless pumping, Hickerson et al.6 carried out a compre-
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hensive experimental study using an impedance pump. The pump was constructed

by connecting an elastic tube to two water reservoirs; in some experiments, the two

reservoirs were also connected by an additional rigid tube to form a closed-loop sys-

tem. The elastic tube was compressed by a set of pinchers moving sinusoidally at a

controllable frequency and fixed nominal duty cycle (i.e., the fraction of the pinch-

ing period during which the pinchers are separated by a distance smaller than the

resting diameter of the tube). Several distinguishing features of impedance-driven

flows were then precisely identified, including that the net flow is highly sensitive to

the pinching frequency. In particular, it was observed that an open-loop system can

also create and sustain a pressure head, and that an elastic material is not a neces-

sary condition for impedance-driven flows.6 Hickerson and Gharib7 then proposed

a simple 1-D “wave-pulse model” accounting for wave amplitude attenuation and

reflection at impedance mismatched interfaces in an impedance pump; the model

predicted many of the characteristics exhibited by the experiments of Hickerson et

al.6 A more sophisticated numerical model involving the use of commercial softwares

to solve the Navier–Stokes and structural dynamics equations was also adopted by

Avrahami and Gharib,16 to carry out a more detailed and comprehensive study

of the wave dynamics in impedance pumps. It is also noteworthy that Forouhar

et al.3 used the concept of impedance pumps to interpret the images of zebrafish

heart tube contractions before valve formation, and proposed that in early cardiac

dynamics the pumping action results from suction due to elastic wave propagation

in the heart tube. Moreover, inspired by the embryonic heart structure, Loumes et

al.17 have introduced a novel concept of “multilayer impedance pump.”

Despite the existence of a sizable research literature on valveless pumping, a

full understanding of its mechanisms has not yet been obtained. This, to a certain

extent, is because valveless systems that differ in configuration, or merely in op-

eration conditions (e.g., frequency of compression), may indeed rely upon different

mechanisms to pump fluids. Moreover, in a particular system setup, several differ-

ent mechanisms of valveless pumping may interact synergistically. It is intuitively

clear, however, that for a valveless pumping system to produce any mean flow, a

necessary—but not sufficient (to be explained below)—condition is to drive (i.e.,

compress) the system at an asymmetric site with respect to its configuration.

It is also arguable that appropriate theoretical modeling has been as important

as experimental studies in furnishing a better understanding of valveless pumping

mechanisms. Broadly speaking, existing mathematical models of valveless pump-

ing systems can be divided into the following three categories: namely lumped-

parameter models where the state of the system is represented by a small number

of lumped parameters (which, in turn, are governed by a set of coupled ordinary

differential equations; see, for example, Refs. 2, 18–20), computational models that

solve relevant fluid and structural dynamics equations (e.g., Refs. 3, 8, 15, 21, 22),

and the wave-pulse model of Hickerson and Gharib7 mentioned above. Basically,

lumped-parameter models are suitable for systems having a relatively low driving
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frequency so that the effects of wave propagation are subdominant, whereas the

wave-pulse model presumably would work well for systems driven at a relatively

high frequency. Also, if all the relevant physical factors are accounted for, computa-

tional models supposedly can be used to simulate the system dynamics for a broad

range of driving frequencies (but usually at higher computational costs).

Here we would like to point out that, in existing models of valveless pumping,

the interaction between the compression actuator and the pliant part of the system

in question has often been modeled in rather simple ways. As a matter of fact, in

some of the models cited above, the instantaneous deformation of the pliant part of

the system is prescribed in a manner not inconsistent (but not absolutely consistent

either, as we shall explain in Sect. 4) with the actuator motion (see, for example,

Ref. 15), while in some other models the temporal variation of the external pressure

at the compression site is specified (e.g., Ref. 22). Meanwhile, in the wave-pulse

model of Hickerson and Gharib,7 a pair of pressure waves of a prescribed waveform

are emitted from the compression site at the driving frequency, and then travel in

opposite directions. Under suitable conditions, the aforementioned approaches have

produced theoretical predictions that can be satisfactorily verified by experiments.

This suggests that, in such cases, the actuator and the pliant part of the system

may indeed interact in a rather simple way. However, in the present work we shall

demonstrate that, in some cases, the collision of the compression actuator and the

system’s pliant part would be the only cause that produces a mean flow in the

system, and therefore deserves more careful modeling.

To that end, a fluid-filled closed-loop system is considered here, which consists

of two distensible reservoirs connected by two rigid tubes, with one of the reser-

voirs (hereafter referred to as the V0 reservoir) compressed by an actuator at a

prescribed frequency; see Fig. 1. It is assumed that the actuator motion specifies

the upper bound of the instantaneous volume of the V0 reservoir. Moreover, during

the whole compression cycle, that upper bound is taken to be smaller than the free

(i.e., unstressed) volume of the V0 reservoir, and so the nominal duty cycle of the

compression actuator is unity. To suppress wave propagation effects, the driving

frequency is assumed to be sufficiently low, and a lumped-parameter model (with

constant coefficients) accounting for mass and momentum balance in the system is

constructed in Sect. 2.

Based upon such a model, it will be shown in Sect. 3 that the V0 reservoir may

separate from the compression actuator during some part of the compression cycle if

the driving frequency of the actuator exceeds a certain threshold value. The actual

duty cycle (i.e., the fraction of the compression cycle during which the actuator

actually compresses the system’s plaint part) would then become less than unity.

In fact, only when that happens would a nonzero mean flow be produced in the

fluid loop by the synergetic interaction between configurational asymmetry and the

nonlinear effects associated with actuator impact. A physically based model for the

nonlinear impact effects will then be proposed in Sect. 4 to complete the mathe-
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Fig. 1. Schematic of the model system studied here.

matical formulation. In Sect. 5, on the basis of the impact model proposed here, we

shall apply some asymptotic techniques to examine the existence and stability of

steady periodic system responses in which the V0 reservoir never stays in contact

with the actuator. Such responses are interesting because they have an actual duty

cycle of zero, and are sustained solely by periodic collisions of the V0 reservoir with

the actuator. Then, through numerical solutions of the complete model, a system-

atic parameter study will be carried out. As it turns out, the system dynamics is

rather rich, and strongly depends upon the driving frequency of the actuator and

other geometrical and material properties of the system (see Sect. 6). In addition

to clarifying the different types of actuator–reservoir interactions, the correspond-

ing mean flowrate and reservoir pressures will also be calculated and discussed in

Sect. 6. Finally, some remarks will be given in Sect. 7 to conclude this paper.

2. Basic Formulation

2.1. Model system setup and constitutive relations

Figure 1 depicts the closed-loop valveless pumping system studied here; it consists of

two distensible reservoirs—the V0 and V1 reservoirs—connected by two rigid tubes.

The system is completely filled with an incompressible liquid (say, water) of density

ρ and viscosity µ. The instantaneous volumes of the two reservoirs are V0(t) and

V1(t), respectively, where t is time. The rigid tube on the left-hand side of the system

(hereafter referred to as the L-tube) has radius aL and length lL, while that on the
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right-hand side of the system (the R-tube) has radius aR and length lR. Since the

tubes are assumed to be rigid, aL,R and lL,R have constant values.

Suppose also that, around the V0 reservoir, there is a compression actuator

contracting and expanding periodically. In particular, the physical presence of the

actuator sets the maximum admissible instantaneous volume of the V0 reservoir.

We shall denote such a maximum admissible volume by Va(t). Also, as a specific

example, it is assumed that Va(t) varies sinusoidally, with an angular frequency ω,

between Vmin (> 0) and Vmax (> Vmin):

Va(t) =
1

2
(Vmax + Vmin) +

1

2
(Vmax − Vmin) cosωt. (1)

When V0(t) < Va(t), the V0 reservoir is not in contact with the actuator, and

so its volume would vary freely (but in a way that conserves mass and satisfies

momentum balance; see Sect. 2.2). For convenience, in the sequel we shall say that

the system is in the “free mode” when V0(t) < Va(t). On the other hand, whenever

the V0 reservoir is in contact with the actuator—and the system is said to be in the

“contact mode,” we shall simply set V0(t) = Va(t). In view of this requirement, the

present model system of valveless pumping essentially is “volume-controlled” (as

an anonymous reviewer of this paper kindly pointed it out), although V0(t) is not

affected by the actuator motion during the free mode. Further details for various

interactions between the actuator and the V0 reservoir will be discussed in Sect. 4.

To construct a model where nonlinearities arise only from interactions between

the V0 reservoir and the actuator, the reservoir volume is assumed to vary linearly

with the pressure difference across its elastic wall. Specifically, with p0(t) being the

fluid pressure inside the V0 reservoir, and pe(t) its external pressure, one has

V0(t) = V0f + C0 · {p0(t) − pe(t)}, (2)

where V0f is the free (i.e., unstressed) volume of the V0 reservoir, and C0 is a constant

compliance coefficient. Meanwhile, it is assumed that the actuator can only exercise

a positive pressure on the V0 reservoir, so that pe > 0 when the system is in the

contact mode, and pe = 0 in the free mode. A similar constitutive relation for the

V1 reservoir having an internal fluid pressure p1(t) is

V1(t) = V1f + C1 · p1(t). (3)

Here, in the absence of an additional actuator, the V1 reservoir has no external

pressure. Like C0, the compliance coefficients C1 is also taken to be constant.

2.2. Mass conservation and momentum balance

Denoting the volumetric flowrates (from the V0 reservoir to the V1 reservoir) inside

the L- and R-tubes by QL and QR, respectively, mass conservation requires that

V̇0 = −QL − QR, (4)

V̇1 = QL + QR, (5)
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where the overdots represent derivatives of the state variables with respect to time

t. Recall that, when the system is in the contact mode, V0(t) = Va(t) is prescribed

by Eq. (1); Eq. (4) then requires the flowrates QL and QR to vary consistently. On

the other hand, in the free mode Eq. (4) should be used in conjunction with other

governing equations to determine V0(t).

Again, in order not to introduce additional nonlinearities, the resistance to the

fluid flow in each tube is assumed to be linearly proportional to the volumetric

flowrate therein. Likewise, the inertia of the fluid in each tube is taken to be con-

stant. The momentum equations for the L- and R-tubes therefore are

ILQ̇L + RLQL = p0 − p1, (6)

IRQ̇R + RRQR = p0 − p1, (7)

where RL,R and IL,R are the constant resistance and inertia coefficients, respectively.

It can be readily deduced from Eq. (6) that, if the L-tube stands alone (i.e., not

connected to the system), the intrinsic time scale for the variation of QL is TL =

IL/RL. Similarly, the intrinsic time scale for QR variation when the R-tube stands

alone is TR = IR/RR.

So far we have introduced 7 state variables (namely V0,1, p0,1, pe, and QL,R)

and 11 input parameters (ω, Vmax, Vmax, V0f , V1f , C0,1, IL,R, RL,R) of the model

system. As non-dimensionalization of the above mathematical formulation does not

significantly reduce the number of variables and parameters (by three at most, since

three independent physical dimensions—namely mass, time, and length—appear in

the formulation), here we shall proceed with the dimensional formulation. However,

in the sequel, the main analytical and numerical results will be put in suitable

dimensionless form, so as to bring out some similarities of the system dynamics.

2.3. Initial conditions

Here we shall consider the special case that the V0 and V1 reservoirs are first filled

to their free volumes before the compression actuator is installed. As can be readily

deduced from Eqs. (4) and (5), mass conservation implies that the sum of the fluid

volumes in the two distensible reservoirs remains invariant with time: V0(t)+V1(t) =

V0f +V1f . Suppose then that an actuator is installed and compresses the V0 reservoir

to a certain extent before it starts moving. The initial volume of the V0 reservoir,

Vmax, therefore is smaller than its free volume V0f , and we may define the “pre-

compression ratio” as γ = (V0f −Vmax)/V0f (> 0). In terms of γ, the initial volumes

of the two reservoirs are given by V0(0) = V0f (1 − γ) and V1(0) = V1f + γV0f ,

respectively. Also, with ∆Va = (Vmax − Vmin)/2, Eq. (1) can be rewritten as

Va(t) = V0f (1 − γ) − ∆Va(1 − cosωt). (8)

Meanwhile, since the fluid in the system initially is motionless, one has QL(0) =

QR(0) = 0. It can also be readily calculated from the constitutive relations, Eqs. (2)

and (3), that initially the uniform internal pressure of the system is p0(0) = p1(0) =
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γV0f/C1, and the external pressure exerted on the V0 reservoir by the stationary

actuator is pe(0) = γV0f/C01, with C01 given by 1/C01 = 1/C0 + 1/C1. Note that

the parameter C01 may be viewed as a “characteristic compliance” of the system.

2.4. Sample parameter values

Before we proceed, let us envision a sample system having realistic dimensions and

material properties. A dimensionless compliance parameter will then be identified

to be relatively small under realistic conditions (see Sect. 3.2), and some asymptotic

analysis of the system responses will be carried out accordingly.

Specifically, suppose that the V0 and V1 reservoirs are made of latex rubber,

so that a realistic estimate for the elastic modulus is E = 2 MPa. Let us also

think of the two reservoirs as elastic balls, with free (unstressed) radii of a0 =

25 mm and a1 = 50 mm, respectively, and the same skin thickness of h = 5 mm.

The free volumes of the two reservoirs therefore are V0f = 65.4 ml and V1f =

523.6 ml, respectively. Meanwhile, despite that relatively large volume changes will

be allowed in our numerical calculations, the compliance coefficients of the two

reservoirs are estimated by that of thin-walled spherical shells having mean radii a0,1

and undergoing small volume changes, namely C0,1 = 2πa4
0,1/Eh. This somewhat

crude approximation yields C0 = 2.45 × 10−4 ml/Pa and C1 = 3.93 × 10−3 ml/Pa.

(We have also used expressions of elasticity for a thick-walled hollow sphere to

estimate the compliance coefficients, and the results are only about 20% smaller

than that listed above. So, the values of C0,1 specified above indeed are reasonable

estimates of the compliance coefficients. And of course, more accurate estimates of

the parameter values may be needed if one wishes to compare the model predictions

with relevant experimental data in future works.)

Suppose also that the L- and R-tubes have the same length lL = lR = 200 mm,

but differing inner radii, aL = 5 mm and aR = 7.5 mm. Water at room temperature,

with density ρ = 1000 kg/m3 and viscosity µ = 0.00112 Pa·sec, is taken to be the

working fluid in the system. Using the Poiseulle’s law, the flow resistance coefficients

RL,R appearing in Eqs. (6) and (7) are related to the corresponding tube radii aL,R

by RL,R = 8µlL,R/πa4
L,R, and so RL = 0.913 Pa·sec/ml and RR = 0.180 Pa·sec/ml,

respectively. Meanwhile, the inertia coefficients IL,R in Eqs. (6) and (7) are taken to

be proportional to the mass of the fluid in the L- and R-tubes: IL,R = ρlL,R/πa2
L,R.

It is then calculated that IL = 2.55 Pa·sec2/ml and IR = 1.13 Pa·sec2/ml.

3. Threshold Frequency for the Onset of Free Mode

Note that choosing a positive pre-compression ratio γ implies that the nominal

duty cycle is unity, regardless of the driving frequency of the system. However, as

we shall show here, when the driving frequency of the system exceeds a certain well-

defined threshold value, the V0 reservoir would separate from the actuator. When

that happens, the actual duty cycle would be less than unity, and the mathematical
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model discussed above has to be supplemented by other components (see Sect. 4).

3.1. Steady periodic system response in the contact mode

First we show that, when the system is in the contact mode, the governing equations

can be reduced to a single first-order differential equation for QL. Briefly, using

Eq. (4) one may write QR = −V̇0 − QL = −V̇a −QL (the last equality holds in the

contact mode). Meanwhile, eliminating the pressure difference p0−p1 from Eqs. (6)

and (7) yields ILQ̇L +RLQL = IRQ̇R +RRQR = −IR · (V̈a + Q̇L)−RR · (V̇a +QL).

For the particular choice of Va(t) given by Eq. (8), this result gives

(IL + IR) Q̇L + (RL + RR)QL = −RR · V̇a − IR · V̈a

= ∆Va · (ωRR sin ωt + ω2IR cosωt). (9)

Given a suitable initial value of QL, one can solve Eq. (9) analytically for QL(t), and

then calculate all the other state variables accordingly using Eqs. (2)–(7). Equation

(9) also indicates that, when the L- and R-tubes are connected with the V0 and

V1 reservoirs, the intrinsic time scale for the flowrate variation in the closed loop

is TLR = (IL + IR)/(RL + RR), which generally is different from the time scales

TL = IL/RL and TR = IR/RR for stand-alone tubes. The sample parameter values

specified in Sect. 2.4 give TL = 2.79 sec, TR = 6.28 sec, and TLR = 3.37 sec.

Assume now that the system has a steady periodic response completely in the

contact mode. Accordingly, one may write

QL(t)

ω∆Va
= A cosωt + B sin ωt, (10)

where the coefficients A and B can be readily determined by substituting Eq. (10)

into Eq. (9) and then comparing coefficients of the sine and cosine functions in the

resulting expression. This yields

A =
RLR

RL
· ω(TR − TLR)

1 + ω2T 2
LR

, B =
RLR

RL
· 1 + ω2TRTLR

1 + ω2T 2
LR

,

with RLR, given by 1/RLR = 1/RL + 1/RR, being the overall resistance coefficient

when the L- and R-tubes are connected in parallel. It then transpires that, if the

system is completely in the contact mode—and hence is perfectly linear, no pumping

effects are produced on average. This also points to the fact that asymmetry alone

is not sufficient for producing a mean flow in a valveless pumping system; certain

nonlinearities of the system also are needed (i.e., a perfectly linear valveless pumping

system excited sinusoidally at an asymmetric site still produces no mean flow).

3.2. Threshold frequency

Let us proceed with the analysis anyway. With the above exact result, Eq. (6) gives

p0(t) − p1(t)

ωRL∆Va
= (A + BωTL) cos ωt + (B − AωTL) sin ωt. (11)
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When the system is in the contact mode, V1(t) = V0f + V1f − Va(t), and so Eq. (3)

gives p1(t) = [V0f − Va(t)]/C1. Moreover, using Eqs. (2) and (8), the external pres-

sure of the V0 reservoir can be written as pe(t) = p0(t) − p1(t) + [γV0f + ∆Va(1 −
cosωt)]/C01. Combining this result with Eq. (11) yields

pe(t)

∆Va/C01

= S0 − S1 cosωt − S2 sinωt, (12)

where S0 = 1 + γ/δ and

S1 = 1 − ǫ2ω2T 2
LR

1 + ω2T 2
LR

(
TL + TR − TLR

TLR
+ ω2TLTR

)
,

S2 = − ǫ2ωTLR

1 + ω2T 2
LR

[
1 + ω2TLR(TL + TR) − ω2TLTR

]
.

In the above expressions, δ = ∆Va/V0f is a dimensionless “actuator squeeze volume”

and ǫ2 = C01RLR/TLR is a dimensionless compliance parameter.

Using the sample parameter values specified in Sect. 2.4, the characteristic

compliance and resistance parameters of the system are calculated to be C01 =

2.31× 10−4 ml/Pa and RLR = 0.150 Pa·sec/ml. Recall also that TLR = 3.37 sec as

calculated above, and so we have ǫ2 = 1.03 × 10−5. The extremely small value of

ǫ2 implies that the reservoirs are relatively rigid. Of course, it is possible to specify

other material properties and dimensions of the system to have a greater value of ǫ.

In the ensuing analysis, however, we shall exploit the smallness of the dimensionless

compliance parameter ǫ to simplify some of the results.

Recall now that the external pressure of the V0 reservoir, pe, has to be nonneg-

ative; hence Eq. (12) is an admissible solution only if S2
0 ≥ S2

1 + S2
2 . For weakly

compliant systems with ǫ ≪ 1, if the driving frequency of the actuator ω = O(1)

then S2
1 + S2

2 = 1 + O(ǫ2), while S2
0 = (1 + γ/δ)2 > 1. The above admissibility con-

dition therefore is satisfied. However, it can be deduced by use of dominant balance

analysis23 that the “threshold frequency” ω = ωth—at which S2
0 = S2

1 + S2
2—

is of O(ǫ−1). Accordingly, ωTLR, ωTL and ωTR are O(ǫ−1) quantities, and the

expressions for S1,2 derived above simplify to S1 = 1 − (ǫω)2TLTR + O(ǫ2) and

S2 = O(ǫ). One may then approximate the aforementioned admissibility condition

by S2
0 ≥ [1−(ǫω)2TLTR]2 to leading order, and deduce that the system has a steady

periodic response completely in the contact mode only when ω < ωth, with

ωth ∼ ǫ−1

(
1 + S0

TLTR

)1/2

(13)

for ǫ → 0+. As will be shown in Sect. 5, Eq. (13) gives an accurate estimate for ωth,

provided that the dimensionless compliance parameter ǫ is sufficiently small.

4. Mode Switching and Jump Conditions

In Sect. 2, we have deliberately used linear constitutive relations and conservation

laws to construct the basic mathematical model. Also, the system is assumed to
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be pre-compressed so that the nominal duty cycle is unity. Consequently, no mean

flow would be produced unless the driving frequency of the system ω exceeds a well

defined threshold value ωth, and the V0 separates from the actuator for some part of

the compression cycle. To complete the mathematical formulation, we now discuss

a number of mode switching and jump conditions for the interactions between the

V0 reservoir and the actuator. Nonlinearities resulting from such conditions are

responsible for the mean flow generation in the system.

4.1. Separation of the V0 reservoir from the actuator

As shown in Sect. 3.2, while the system is pre-compressed, as time goes on the

external pressure of the V0 reservoir, pe given by Eq. (12), may decrease to zero,

say, at t = Ts. The V0 reservoir then separates from the actuator, and the system

switches from the contact mode to the free mode. After t = Ts, the volume of the

V0 reservoir varies freely (i.e., without forcing), and we set pe = 0. Accordingly,

Eqs. (2) and (3) give p0(t) = −[V0f − V0(t)]/C0, p1(t) = [V0f −V0(t)]/C1, and so in

the free mode

p0(t) − p1(t) = −[V0f − V0(t)]/C01 < 0. (14)

This implies that, when the system is in the free mode, the difference in the reservoir

pressures tends to drive the working fluid from the V1 reservoir to the V0 reservoir.

(Due to inertial effects, however, the flowrates QL,R still may be positive.) Note also

that all of the state variables vary continuously at t = Ts, and the only discontinuity

occurs in ṗe, which “jumps” from a finite negative value at t = T−

s to zero at t = T +
s .

4.2. Blocking of the fluid loop

Now, when the system is in the free mode, V0(t) may decrease to zero. (Note that this

would not happen for V1(t), because then we would have V0 = V0f + V1f > Vmax;

but Vmax is the maximum value of V0(t) for ∀t > 0.) When the V0 reservoir is

completely depleted, say, at t = T0, the fluid loop would be blocked, and so we

set both QL and QR to zero, regardless of what values they may have at t = T−

0 .

Other state variables, however, are continuous at t = T0. At t = T +

0 , because

p0 − p1 = −V0f/C01 as indicated by Eq. (14), the working fluid would immediately

start refiling the V0 reservoir, thereby increasing its volume again.

4.3. Collision of the V0 reservoir with the actuator

With or without blocking of the fluid loop happening first, during the free mode

of the system, the volume of the V0 reservoir would eventually become equal to

Va(t), say, at t = Tc. Of course, for such a “collision” to occur, it is necessary that

V̇0(T
−

c ) > V̇a(Tc). However, upon collision the physical existence of the actuator

would render V̇0(T
+
c ) = V̇a(Tc), or, using Eq. (4),

QL(T +
c ) + QR(T +

c ) = −V̇a(Tc). (15)
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Let us also assume that the collision at t = Tc produces a delta-function-like vari-

ation of the external pressure pe, and a similar variation of p0 consistent with the

constitutive relation, Eq. (2). This means that, while the collision lasts for practi-

cally zero time, the “impulse” produced by the collision

I =

∫ T+
c

T−

c

p0(t) dt 6= 0.

Integrating then Eqs. (6) and (7) yields

IL ·
[
QL(T +

c ) − QL(T−

c )
]

= I = IR ·
[
QR(T +

c ) − QR(T−

c )
]
. (16)

Using Eqs. (15) and (16), we may express the flowrates after the collision by

QL(T +
c ) =

IL · QL(T−

c ) − IR · [QR(T−

c ) + V̇a(Tc)]

IL + IR
, (17)

QR(T +
c ) =

IR · QR(T−

c ) − IL · [QL(T−

c ) + V̇a(Tc)]

IL + IR
. (18)

Also, upon substitution of Eqs. (17) and (18) into Eq. (16), a simple expression for

the impulse produced by the collision is obtained:

I = ILR ·
[
V̇0(T

−

c ) − V̇a(Tc)
]

(> 0), (19)

where the “characteristic inertia” ILR of the system is defined by 1/ILR = 1/IL +

1/IR. It then transpires that the magnitude of the impulse and the resulting flowrate

jumps are directly proportional to the decrease in V̇0; see Eq. (16).

4.4. Mode switching at the reservoir–actuator collision

After the collision at t = Tc, the V0 reservoir may stay in contact with the actuator

(and the system switches to the contact mode), or simply rebound (so that the

system stays in the free mode). To decide what would happen, first we assume

that the V0 reservoir rebounds, so that pe(T
+
c ) = 0 and hence p0(T

+
c ) = −[V0f −

Va(Tc)]/C0, p1(T
+
c ) = [V0f − Va(Tc)]/C1 (see Sect. 4.1). Of course, one would also

have QL(T +
c ) and QR(T +

c ) given by Eqs. (17) and (18), in addition to V0(T
+
c ) =

Va(Tc) and V1(T
+
c ) = V0f + V1f − Va(Tc). If these state conditions render V0 < Va

right after t = Tc, it is interpreted that the V0 reservoir just has to rebound. On the

other hand, if V0 > Va subsequently (which is inadmissible), the V0 reservoir stays

in contact with the actuator, and the system is switched to the contact mode.

Figure 2 summarizes the decision rules discussed above. Such rules can be readily

integrated with the numerical procedures for solving Eqs. (2)–(7). Briefly, with the

initial conditions specified in Sect. 2.3, the fourth-order Runge–Kutta method is

used to integrate Eqs. (2)–(7). At each time step, the decision rules are applied

to check if any mode switching occurs, and, if necessary, reset the values of the

system’s state variables. In general, the computation is terminated when a steady

state of the system is reached. In our computations, when the relative variations



July 9, 2010 10:41 WSPC/WS-JMMB jmmb2009-pumping-rev

Effects of Actuator Impact on the Nonlinear Dynamics of a Valveless Pumping System 13

Fig. 2. Summary of the mode decision rules for the model system studied here.

of all the system state variables after a complete compression period are less than

10−13 (or 10−11%), which in fact is a rather stringent criterion, it is decided that

a steady state is established. Generally speaking, it takes a few dozen compression

cycles for the system to reach steady periodic responses with complete depletion of

the V0 reservoir, while a few hundred compression cycles may be needed for steady

periodic responses without complete depletion of the V0 reservoir. Care is also taken

to ensure that the time step is sufficiently small to adequately resolve the system

dynamics. Typically, the number of time steps in a complete compression cycle is

on the order of 103–104. The numerical results will be discussed in due course.

5. Steady Periodic Purely-Free System Response

As shown in Sect. 3.1, when the system is driven at a frequency ω lower than the

threshold frequency ωth, it would have a steady periodic response completely in the

contact mode. A related interesting question then is, would it be possible for the

system to have a steady periodic response that is completely in the free mode? If

so, the actuator would collide with the V0 reservoir at a particular phase of the

compression cycle, but the collision would send the V0 reservoir right back to the

free mode. The actual duty cycle of the system then is zero, while the nominal duty
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cycle quite misleadingly is unity. Here we examine the existence and stability of

such responses—hereafter referred to as the steady periodic “purely-free” responses

for convenience.

5.1. Asymptotic solution of the free-mode system response

To begin with, recall that when the system is in the free mode, pe(t) = 0 and

p0 − p1 = −(V0f − V0)/C01 = ILQ̇L + RLQL = IRQ̇R + RRQR. (20)

Substituting Eq. (4) into the last equality in Eq. (20) yields (IL + IR)Q̇L + (RL +

RR)QL = −IRV̈0 − RRV̇0. Also, Eq. (20) gives V0 − V0f = C01(ILQ̇L + RLQL).

Combining these two results, it is found that in the free mode QL(t) satisfies

ǫ2
(

d3QL

dt3
+

TL + TR

TLTR

d2QL

dt2

)
+

1 + ǫ2

TLTR
· dQL

dt
+

QL

TLTRTLR
= 0. (21)

It can be readily shown that QR(t) and V0(t) − V0f also are governed by Eq. (21).

Proceed with the assumption that the dimensionless compliance parameter ǫ2 ≪
1 (see Sect. 3.2). The presence of the small parameter ǫ2 multiplying the highest-

derivative term d3QL/dt3 in Eq. (21) implies that QL varies on a fast time scale.

Specifically, a dominant-balance analysis reveals that the time scale is of O(1/ǫ).23

The same conclusion applies for QR(t) and [V0(t) − V0f ] as well. One may then

introduce the fast temporal variable τ = t/ǫ and transform Eq. (21) into

Q′′′

L +
ǫ(TL + TR)

TLTR
Q′′

L +
1 + ǫ2

TLTR
Q′

L +
ǫQL

TLTRTLR
= 0, (22)

where the primes denote differentiations with respect to τ , i.e., (·)′ = d(·)/dτ .

The leading-order approximation of Eq. (22) for ǫ → 0+ is

Q′′′

L + Q′

L/TLTR = 0, (23)

which has the general solution QL(τ) = C1 +C2 cos(τ/
√

TLTR)+C3 sin(τ/
√

TLTR).

However, Eq. (23) is a valid approximation of Eq. (22) only for fast varying QL, and

hence the constant solution must be discarded. Accordingly, for ǫ → 0+, we have

QL(t) ∼ CL

ǫIL

√
TLTR

sin

(
t

ǫ
√

TLTR

+ φL

)
(24)

to leading order, where the amplitude factor CL and phase constant φL are to be

determined. Note also that some extra factors are introduced in the coefficient of

Eq. (24) for some convenience in subsequent algebra. Similarly, we have for ǫ → 0+

QR(t) ∼ CR

ǫIR

√
TLTR

sin

(
t

ǫ
√

TLTR

+ φR

)
(25)

and

V0(t) − V0f ∼ CV

ILR
cos

(
t

ǫ
√

TLTR

+ φV

)
, (26)
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with undetermined (as yet) amplitude factors CR,V and phase constants φR,V . Now,

with Eqs. (14) and (24)–(26), balancing the leading-order, namely O(1/ǫ2), terms

in Eqs. (6) and (7) requires that

CL,R

ǫ2TLTR
cos

(
t

ǫ
√

TLTR

+ φL,R

)
=

CV

ǫ2TLTR
cos

(
t

ǫ
√

TLTR

+ φV

)
.

It is then deduced that

CL = CR = CV ≡ C, φL = φR = φV ≡ φ.

Without any loss of generality, it is assumed that C > 0.

5.2. Periodicity and separation conditions

As we are seeking steady periodic system responses, the V0 reservoir must have the

same volume every time when it collides with the actuator. In view of Eq. (26),

these observations imply that, in a steady periodic purely-free system response,

V0(t) must first decrease and then increase. In addition, if at one collision, say at

t = t1, the phase of the cosine function in Eq. (26)

t1

ǫ
√

TLTR

+ φ = π − α (27)

for a certain α ∈ (0, π/2), then at the next collision, t = t2, one must have

t2

ǫ
√

TLTR

+ φ = π + α. (28)

Note also that between the two consecutive collisions, the motion of the compression

actuator must complete an integral number of cycles, so that ω(t2−t1) = 2nπ where

n = 1, 2, 3, · · ·. However, here we are concerned with the case that the actuator

motion completes exactly one cycle between two consecutive collisions, and write

ωt1 = θ, ωt2 = θ + 2π. Recall also that the driving frequency ω must exceed the

threshold frequency ωth, which is of O(1/ǫ) as indicated by Eq. (13). Let us then

take ω = O(1/ǫ) as well, and explicitly write ω = ω̃/ǫ, with ω̃ = O(1) being a

rescaled driving frequency parameter. Equations (27) and (28) then yield

α =
π

ω̃
√

TLTR

, φ = π − θ + π

ω̃
√

TLTR

. (29)

Formally, for a specified driving frequency (i.e., ω̃), we have obtained an explicit

expression for the phase parameter α appearing in Eqs. (27) and (28). However, the

other phase parameter φ has only been related to the collision phase θ of the actuator

motion, which remains to be determined. Meanwhile, the amplitude parameter C

appearing in Eqs. (24)–(26) also is undetermined as yet.

To determine θ, φ, and C, note first that V0(t1,2) = Va(t1,2). With Eqs. (8) and

(26), this implies that −C cosα/ILR = −γV0f − ∆Va(1 − cos θ); hence we have

cos θ = S0 −
C cosα

ILR∆Va
. (30)
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Next, using Eqs. (24) and (25), the jumps in the flowrates QL and QR upon

a collision are calculated as follows: QL(t+1 ) − QL(t−1 ) = QL(t1) − QL(t2) ∼
2C sinα/ǫIL

√
TLTR; similarly, QR(t+1 ) − QR(t−1 ) ∼ 2C sin α/ǫIR

√
TLTR. These

results are consistent with Eq. (16), which also gives the impulse of the colli-

sion at t = t1: I ∼ 2C sinα/ǫ
√

TLTR (> 0). Meanwhile, Eq. (19) gives I =

ILR[V̇0(t
−

1 )−V̇a(t1)] = ILR[V̇0(t2)−V̇a(t1)] ∼ ǫ−1(C sinα/
√

TLTR+ω̃ILR∆Va sin θ).

Equating the above two equivalent results then yields

sin θ =
C sin α

ω̃ILR∆Va

√
TLTR

=
Cα sin α

πILR∆Va
, (31)

where the last equality is obtained by use of Eq. (29). Moreover, as explained in

Sect. 4.4, to ascertain that the collision at t = t1 does not switch the system to

the contact mode, V0(t) must decrease faster than Va(t) does at t = t+1 . Since

V̇0 = V̇a after collision (see Sect. 4.3), this implies that V̈0(t
+

1 ) − V̈a(t1) < 0. Using

Eqs. (26), (29) and (30), it is calculated that V̈0(t
+

1 )− V̈a(t1) ∼ ǫ−2ω̃2∆Va[S0− (1−
α2/π2)(C/ILR∆Va) cosα]; hence it is required that

C

ILR∆Va
≥ S0

(1 − α2/π2) cosα
. (32)

Now, making use of the basic trigonometric identity that sin2 θ + cos2 θ = 1, it

is derived from Eqs. (30) and (31) that
[
α2

π2
+

(
1 − α2

π2

)
cos2 α

] (
C

ILR∆Va

)2

− 2S0 cosα

(
C

ILR∆Va

)
+ S2

0 − 1 = 0.

One root of the above algebraic equation clearly violates the separation condition

given by Eq. (32), and the only possibly admissible root is written as follows:

C

ILR∆Va
=

S0 cosα +
√

cos2 α − (α2/π2)(S2
0 − 1) sin2 α

α2/π2 + (1 − α2/π2) cos2 α
. (33)

After some straightforward yet tedious algebra, it can be shown that, for the above

root to satisfy Eq. (32), one must have

cosα ≥ S0 · (α/π)

(1 − α2/π2)1/2[1 + (α2/π2)(S2
0 − 1)]1/2

. (34)

The right-hand side of Eq. (34) clearly vanishes at α = 0 and increases monotoni-

cally with α for α ∈ (0, π/2). Meanwhile, in the same interval, cosα decreases from

unity to zero with increasing α. It then transpires that steady periodic purely-free

responses exist only when the value of α is less than a critical value, denoted by αcr

below, which can be determined numerically by equating the two sides of Eq. (34).

In view of the first part of Eq. (29), this means that such responses are possible only

when the driving frequency of the system exceeds a corresponding critical value:

ω ≥ π/αcr

ǫ
√

TLTR

≡ ωcr. (35)
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5.3. Loop blocking condition

In the above calculations, it is implicitly assumed that V0(t) > 0 (so that the fluid

loop is never blocked). Here let us examine the parametric condition under which

such an assumption is valid. To do so, note first that the minimum of V0(t) is

V0f − C/ILR during the steady periodic purely-free system response; see Eq. (26).

Denoting this minimum by γmV0f , one then has C/(ILR∆Va) = (1−γm)V0f/∆Va =

(1− γm)/δ, which can be combined with Eq. (33) to yield the following expression:

δ =
[(1 − γm) cosα − γ]2 + (1 − γm)2(α/π)2 sin2 α

2[(1 − γm) cosα − γ]
. (36)

For given values of γ and γm, Eq. (36) can be used to plot δ against α (or ω̃).

As a specific example, let us use the parameter values specified in Sect. 2.4, and

take the maximum actuator volume Vmax = 0.6V0f (so that the pre-compression

ratio γ = 0.4). The threshold frequency ωth predicted by the asymptotic result,

Eq. (13), then is plotted as the solid curve in Fig. 3; the corresponding numerical

results (obtained by use of the numerical procedure summarized in Fig. 2) also are

as the overlapping symbols. For convenience, both the dimensional values (for the

present parameter setting) and normalized values (by the characteristic frequency

ǫ−1(TLTR)−1/2) of ωth are shown in Fig. 3. Also, while Eq. (13) predicts that the

leading-order approximation of the normalized threshold frequency, ǫωth

√
TLTR,

depends on the ratio of γ/δ only, here the more straightforward (from a practical

standpoint) volume ratio Vmin/Vmax = (1 − γ − 2δ)/(1− γ) is used as the abscissa

in Fig. 3. It is clearly seen that, given the extremely small value of ǫ2 = 1.03× 10−5

here, the numerical and asymptotic results are in excellent agreement.

Moreover, the critical frequency beyond which the purely-free system responses

arise, i.e., ωcr defined by Eq. (35), and the parameter boundary for such responses

to have a non-negative V0(t), specified by Eq. (36) with γm = 0, are shown as the

short-dashed and dot-dashed curves in Fig. 3, respectively. It is important to note

that the ωcr curve intersects the γm = 0 curve at about Vmin/Vmax = 0.30 (with

ǫωth

√
TLTR = 3.7) and terminates there, since Eq. (35) is valid only when V0(t) is

non-negative. Again, the asymptotic and numerical results of ωcr agree extremely

well. Other curves in Fig. 3 will be explained later.

5.4. Linear stability analysis

Since the steady periodic purely-free system responses (having an actual duty cycle

of zero) are sustained solely by collision of the actuator with the V0 reservoir, they

may become unstable. To analyze the stability of such responses, suppose that

one collision occurs at a slightly deviated phase (rather than the correct phase θ

determined in Sect. 5.2), so that

ωt1 = θ + δa1,
t1

ǫ
√

TLTR

= π − α + δv1,
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Fig. 3. The threshold frequency ωth for the onset of free-mode responses, and the critical fre-
quencies ωcr and ωst between which steady periodic purely-free responses stably exist. The curves
are the asymptotic results, and the overlapping symbols are the corresponding numerical results.
(The four numerical data of ωst for Vmin/Vmax < 0.34 also are connected by a curve for clarity.)

with |δa1|, |δv1| ≪ 1. Consequently, at the next collision, the phase of the actuator

motion would also be slightly deviated; one may then write

ωt2 = θ + 2π + δa2,
t2

ǫ
√

TLTR

= π + α + δv2,

with |δa2|, |δv2| ≪ 1. The steady periodic purely-free responses would be unstable

if the system parameters render |δa2/δa1| > 1.

From the above expressions one derives that ω(t2 − t1) = 2π + δa2 − δa1 =

ω̃
√

TLTR(2α + δv2 − δv1), and so

δv2 = δv1 +
δa2 − δa1

ω̃
√

TLTR

.

Note also that, right after the first collision, V0(t
+
1 ) = Va(t1) and V̇0(t

+
1 ) = V̇a(t1).

Using Eqs. (8) and (26), with a small error δc added to the amplitude factor C in

the latter (|δc| ≪ C), these conditions are written as

−γV0f − ∆Va[1 − cos(θ + δa1)] =
C + δc

ILR
cos (π − α + δv1) , (37)

ω̃
√

TLTR ∆Va sin(θ + δa1) =
C + δc

ILR
sin (π − α + δv1) . (38)
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Equations (37) and (38) then are linearized with respect to the correct response

(having δa1, δv1, δc = 0), and the resulting linear equations are solved to yield

δc/δa1

ILR∆Va
= sin θ cosα +

π

α
cos θ sin α, (39)

Cδv1/δa1

ILR∆Va
= sin θ sin α − π

α
cos θ cosα. (40)

Since only small collision phase deviations are considered here, there is no need

to impose an additional condition for the separation of the V0 reservoir from the

compression actuator. Similarly, at the next collision, a volume matching condition

analogous to Eq. (37) can be written down and then linearized. Using also Eqs. (39)

and (40), the result is reduced to

δa2

δa1

(
sin θ +

Cα/π

ILR∆Va
sin α

)
= sin θ cos 2α +

π

α
cos θ sin 2α +

Cα/π

ILR∆Va
sin α.

Substituting Eq. (33) into the above result, one then deduces (with some algebra)

that the stability condition |δa2/δa1| ≤ 1 implies that

[
1 +

π2

S2
0α2

(
1 − α2

π2

)][(
1 − α2

π2

)
cos2 α − α2

π2

]
≤ (1 − α2/π2) cos2 α + α2/π2

(1 − α2/π2) cos2 α − α2/π2
.(41)

With the separation condition, Eq. (34), it can be shown that the left-hand side

of Eq. (41) is positive and decreases monotonically with α (from an infinitely large

value at α = 0), while the right-hand side increases monotonically with α (from

unity at α = 0). So, for the steady periodic purely-free response to be stable, the

phase parameter α must exceed a certain critical value, denoted below by αst, which

can be determined numerically from the equality in Eq. (41). In terms of the driving

frequency ω of the system, this implies that such responses are stable when

ω ≤ π/αst

ǫ
√

TLTR

≡ ωst. (42)

Again, with the same parameter values specified in Sect. 2.4 and the pre-

compression ratio γ = 0.4, the stability-margin frequency ωst calculated from

Eq. (41) is shown as the long-dashed curve in Fig. 3. The ωst curve intersects the

γm = 0 curve at about Vmin/Vmax = 0.31 (with ǫωst

√
TLTR = 4.2) and terminates

there, since in deriving Eq. (41) a non-negative V0(t) is assumed. As shown in Fig. 3,

when the volume ratio Vmin/Vmax exceeds about 0.34 (at which ǫωst

√
TLTR = 4.2

and γm ≈ 0.02), the numerical results (indicated by the overlapping symbols) agree

well with the asymptotic results of ωst. However, when the Vmin/Vmax ratio is de-

creased below 0.34 (but still greater than the limiting value 0.31), a sudden increase

in ωst is observed in the numerical results. The nature and implications of this will

be explained in the next section through a detailed discussion of numerical results.
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6. Further Numerical Results and Discussion

6.1. System dynamics for various volume ratios Vmin/Vmax

The above asymptotic calculations have revealed the following features of the system

dynamics: For a given pre-compression ratio γ and a sufficiently large volume ratio

Vmin/Vmax (specifically, for γ = 0.4 and Vmin/Vmax > 0.34 here), when the driving

frequency ω of the system is below the threshold frequency ωth given by Eq. (13),

the V0 reservoir would never separate from the compression actuator. In such cases,

the system does not produce any net pumping effects. When ω exceeds ωth, but is

lower than the critical frequency ωcr defined by Eq. (35), in the steady state the V0

reservoir would separate from the actuator during a certain part of the compression

cycle, thereby inducing some nonlinear effects that generally produce a non-zero

mean flowrate in the fluid loop. Then, for ω > ωcr, the system response becomes

purely-free, in which case the V0 reservoir rebounds from the compression actuator

when they collide, so that the actual duty cycle is zero. However, the purely-free

system responses will lose their stability when ω exceeds a well-defined stability-

margin frequency ωst given by Eq. (42).

As a specific example, let us take γ = 0.4 and Vmin/Vmax = 0.6 (correspond-

ing to the thin vertical line marked with the Roman numeral “I” in Fig. 3). For

such a parameter combination, the asymptotic results give ǫωth

√
TLTR = 2.31 (or

fth = ωth/2π = 27.4 Hz), ǫωcr

√
TLTR = 4.28 (fcr = ωth/2π = 50.7 Hz), and

ǫωst

√
TLTR = 4.73 (fst = ωst/2π = 55.9 Hz). Also, the temporal variations of

V0(t) are calculated for a number of driving frequencies, and the results are shown

in Fig. 4. It is clearly seen that when the driving frequency f = ω/2π = 35 Hz,

which is between fth and fcr, in the steady state the V0 reservoir is in contact with

the actuator for some part of the compression cycle (and so V0(t) = Va(t)), but

moves freely for the rest of the cycle. When the system is driven at 52 Hz, which

is between fcr and fst, the response indeed becomes purely-free. Note also that if

the asymptotic results were included in Fig. 4(a), they would be almost indistin-

guishable from the numerical results. Now, for f = 56 Hz, which slightly exceeds

the stability-margin frequency fst, it is clearly demonstrated in Fig. 4(b) that the

precise collision phase varies from cycle to cycle, even after the initial transient has

essentially died out (which is discarded in Fig. 4(b)). This, of course, is precisely

a manifest of the instability explained in Sect. 5.4. It is also interesting to note

that the response shown in Fig. 4(b) appears to repeat itself every two compression

cycles. However, here we shall not attempt to trace the detailed transition from the

steady periodic responses repeating themselves in one compression cycle to other

more complex responses. (Yet some ongoing and future works in this direction will

be remarked upon in Sect. 7.)

For smaller values of Vmin/Vmax, the results presented in Fig. 3 suggest that

somewhat more complicated system responses may arise. While asymptotic analysis

can be carried out (in principle at least) to clarify the system dynamics in such cases,
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(a)

(b)

Fig. 4. The temporal variations of V0(t) for γ = 0.4 and Vmin/Vmax = 0.6 when the system is
driven at frequencies (a) 35 Hz, 52 Hz, and (b) 56 Hz, respectively. For comparison, the volume
constraint Va(t) set by the actuator motion is also shown.

the algebra involved would be quite formidable. So, here we shall discuss the system

dynamics by use of numerical results only. First, as shown in Fig. 5, for γ = 0.4 and

Vmin/Vmax < 0.34, there exists a critical driving frequency ωv0 beyond which the V0

reservoir would be completely depleted at a certain phase of the compression cycle

(and start being refilled afterwards). It also appears that the ωv0 curve in Fig. 5

passes through the intersection of the ωcr and γm = 0 curves (at Vmin/Vmax = 0.31

and ǫωst

√
TLTR = 4.2), and terminates when it reaches the ωst curve. This has an

important implication. Specifically, for 0.31 < Vmin/Vmax < 0.34 (with γ = 0.4),

the asymptotic results still are applicable, and predict the existence of purely-free

system responses with positive definite V0(t) for ω ∈ (ωcr, ωst). The additional
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Fig. 5. For γ = 0.4 and Vmin/Vmax smaller than about 0.34, when the driving frequency exceeds
a critical value ωv0—plotted here for various Vmin/Vmax ratios—the V0 reservoir would be com-
pletely depleted at a certain phase of the compression cycle. Some results in Fig. 3 are duplicated
here for reference.

presence of the ωv0 curve in this parameter region then implies the coexistence of

system responses in which V0(t) ↓ 0 at a certain phase of the compression cycle.

As a demonstration, let us take Vmin/Vmax = 0.33 (corresponding to line II

in Figs. 3 and 5). For this case, the asymptotic results give ǫωth

√
TLTR = 2.00

(or fth = 23.7 Hz), ǫωcr

√
TLTR = 3.72 (fcr = 44.1 Hz), and ǫωst

√
TLTR = 4.18

(fst = 49.4 Hz). Meanwhile, it is determined numerically that ǫωv0

√
TLTR = 3.97

(fv0 = ωv0/2π = 47.0 Hz). When the system is driven at the frequency f = 48 Hz,

which is higher than both fcr and fv0 and lower than fst, two different system

responses indeed are found in the steady state, and are both shown in Fig. 6(a).

In one of them, the V0 reservoir has a positive volume throughout the compression

cycle, and the numerically calculated response is visually indistinguishable from

the asymptotic solution given by Eq. (26) (not shown in Fig. 6(a)). In the other

response, the V0 reservoir is completely depleted at a particular compression phase.

Since in such a response V̇0(t) has a non-zero (negative) value when V0(t) vanishes, it

will be referred to as the “hard-landing” response in the sequel. Note also that both

of the coexisting responses shown in Fig. 6(a) are purely-free, and are sustained by

a collision of the V0 reservoir with the actuator in each compression cycle. However,

to find the purely-free steady periodic system responses having a positive definite

V0(t) (or, the “never-landing” responses), the initial conditions of the system need
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(a)

(b)

Fig. 6. The temporal variations of V0(t) for γ = 0.4 and Vmin/Vmax = 0.33 when the system is
driven at frequencies (a) 48 Hz and (b) 70 Hz, respectively.

to be carefully tuned. When the arbitrary initial conditions specified in Sect. 2.3 are

used, we generally find the hard-landing purely-free responses instead. This seems

to suggest that the hard-landing responses are more stable than the never-landing

ones, in the sense that certain accidental depletions of the V0 reservoir accompanying

the initial transient would cause the system to respond in the hard-landing way.

Note also that, for driving frequencies f < fv0 (but exceeding fcr), only the

purely-free never-landing responses are found. Meanwhile, for values of f that are

slightly higher than the stability-margin frequency fst predicted by the asymptotic

theory, only the hard-landing purely-free responses are found. However, as indicated
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(a)

(b)

Fig. 7. The temporal variations of V0(t) for γ = 0.4 and Vmin/Vmax = 0.15 when the system is
driven at frequencies (a) 28 Hz, 50 Hz, 100 Hz and (b) 130 Hz, respectively.

in Fig. 5, if f is further increased, the hard-landing purely-free responses also will

become unstable. In particular, for Vmin/Vmax = 0.33, this higher stability-margin

frequency is about 65 Hz (see Fig. 5). Taking then f = 70 Hz as an example,

the resulting system response is shown in Fig. 6(b). It is interesting to note that

the response appears to repeat itself every six compression cycles. However, as

mentioned above, tracing the detailed transition of the simple periodic responses to

other more complex responses is beyond the scope of this paper.

Now, for even smaller volume ratios, i.e., Vmin/Vmax < 0.31, Fig. 5 indicates

that the never-landing purely-free system responses would cease to exist. In such
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Fig. 8. The frequency dependence of the actual duty cycle for γ = 0.4 and Vmin/Vmax = 0.15,
0.33, and 0.60.

cases, the only useful asymptotic result is the still accurate estimate of the thresh-

old frequency ωth for the onset of free-mode system responses. Here we shall take

Vmin/Vmax = 0.15 as a particular example, corresponding to line III in Figs. 3 and

5. For this parameter combination, it is determined numerically that fv0 is 33.1 Hz

(or ǫωv0

√
TLTR = 2.80) and fst = 128 Hz (ǫωv0

√
TLTR = 10.8); see Fig. 3. Also,

the asymptotic theory predicts that fth = 22.4 Hz (ǫωth

√
TLTR = 1.89). Moreover,

it is found that, for f ∈ (fth, fv0) (say, f = 28 Hz; see Fig. 7(a) for the resulting

system response), the V0 reservoir would separate from the compression actuator

for some part of the compression cycle, and its volume during that part would be

positive. Meanwhile, when f slightly exceeds fv0, the V0 reservoir still would be

in contact with the compression actuator for some part of the compression cycle,

but would be completely depleted during the free mode of the system response; see

Fig. 7(a) for an example with f = 50 Hz. When the driving frequency is further

increased (beyond a critical frequency fcr of about 71 Hz), however, the system

response becomes purely-free, and the V0 reservoir would be completely depleted

at a certain phase of the compression cycle. An example with f = 100 Hz is also

shown in Fig. 7(a). Finally, when f > fst (say, f = 130 Hz; see Fig. 7(b)), steady

periodic responses repeating themselves in one compression cycle no longer can be

found. While the response shown in Fig. 7(b) also appears to repeat itself every six

compression cycles, more complex system responses would result from rather small

variations of the driving frequency, which will not be discussed here.

6.2. Frequency dependence of actual duty cycle and mean flowrate

We now make some quantitative comparisons of the steady periodic system re-

sponses discussed above. First, the actual duty cycles for cases I, II, and III are

plotted in Fig. 8. Recall that the actual duty cycle is the fraction of the compression
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(a)

(b)

Fig. 9. The frequency dependence of various temporally averaged system characteristics for
γ = 0.4 and Vmin/Vmax = 0.15, 0.33, and 0.60: (a) the mean volumetric flowrate in the L-tube
(normalized by ∆Va/TLR), and (b) the mean pressures 〈p0,1〉 in the V0,1 reservoirs (compared with
the contact-mode mean pressures 〈p0,1〉0, and normalized by ∆Va/C0 and ∆Va/C1, respectively).

cycle in which the V0 reservoir is in contact with the actuator. In all our computa-

tions, it is found that the actual duty cycle becomes zero once the driving frequency

ω exceeds the critical frequency ωcr for the onset of purely-free responses. And of

course, the system responses would have a unity duty cycle if ω is lower than the

threshold frequency ωth. So, only the results for ω ∈ (ωth, ωcr) are shown in Fig. 8.

It is interesting to note that, when the actual duty cycle is plotted against the nor-
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malized (dimensionless) driving frequency parameter ω̂ = (ω − ωth)/(ωcr − ωth),

the curves for cases I and II (having Vmin/Vmax ratios of 0.6 and 0.33, respec-

tively) appear to be quite similar, while that for case III (with Vmin/Vmax = 0.15)

looks rather different. In particular, the curve for case III has a kink at the critical

frequency ωv0 (beyond which the V0 reservoir would be completely depleted at a

certain phase of the compression cycle). Intuitively, when the V0 reservoir is com-

pletely depleted, the system is restarted (by resetting both QL and QR to zero),

so that the V0 reservoir would collide with the actuator earlier than it would when

negative values of V0(t) were allowed. This results in the small increase of the actual

duty cycle when ω slightly exceeds ωv0 (followed by further decrease of the duty

cycle for even higher driving frequencies). Meanwhile, the curves in Fig. 8 suggest

that the frequency dependence of the actual duty cycle for different Vmin/Vmax ra-

tios is somewhat similarity—with ω̂ being the similarity parameter—as long as the

V0 reservoir has a positive volume throughout the compression cycle.

Next we discuss the frequency dependence of the mean volumetric flowrate in

the L-tube, which is calculated by averaging QL(t) over one compression period:

〈QL〉 =
∫ T

0
QL(t) dt/T , with T = 2π/ω. (By mass conservation, 〈QR〉 = −〈QL〉 in

the steady state; there therefore is no need to discuss 〈QR〉 separately.) After being

normalized by the characteristic scale ∆Va/TLR, the calculated results of 〈QL〉 for

cases I, II, and III are plotted as functions of the normalized driving-frequency

parameter ω∗ = (ω−ωth)/(ωst −ωth) in Fig. 9(a). Unlike in Fig. 8, here we present

the results for driving frequencies ω up to the stability-margin frequencies ωst in

the three case. Also, since the mean flowrate 〈QL〉 may change sign as ω varies,

shown in Fig. 9(a) is the absolute value of 〈QL〉.
Let us discuss the frequency dependence of 〈QL〉 in case I (with Vmin/Vmax =

0.6) first; see the solid curve Fig. 9(a). Note that in case I the mean flowrate 〈QL〉
is positive (i.e., there is a mean flow in the L-tube from the V0 reservoir to the V1

reservoir) when the driving frequency ω slightly exceeds the threshold frequency

ωth. As ω further increases, 〈QL〉 reaches a maximum near ω∗ = 0.10, and changes

its sign near ω∗ = 0.62. (The dependence of the mean-flow direction on the driv-

ing frequency is a common feature shared by many valveless pumping systems. For

example, in Ref. 15 such a dependence was demonstrated both experimentally and

numerically.) The reversed mean flow reaches its maximum magnitude at about

ω∗ = 0.73, and vanishes at about ω∗ = 0.81, which corresponds to the onset fre-

quency ωcr for the purely-free responses in case I (marked with the abbreviation

“ωI = ωcr” in Fig. 9(a)). When the driving frequency ω exceeds ωcr (but still

is within the stability margin), the numerically calculated values of 〈QL〉 become

exceedingly small and cannot be shown in Fig. 9(a). While this result may seem

surprising at first, it is actually predicted by the asymptotic calculations. Specif-

ically, according to the leading-order results, Eqs. (24) and (25), the purely-free

system responses would produce zero average flowrate in the fluid loop, which is

now confirmed numerically.
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In case II (with Vmin/Vmax = 0.33), the frequency dependence of 〈QL〉 depicted

by the (blue) dashed curve in Fig. 9(a) is qualitatively similar to that in case I for

driving frequencies up to ωcr (marked with “ωII = ωcr”). The only quantitative

differences are that 〈QL〉 now changes sign (from positive to negative) at about

ω∗ = 0.38, and vanishes at about ω∗ = 0.50. However, while the purely-free re-

sponses having positive definite V0(t) again have a vanishingly small mean flowrate,

a relatively large 〈QL〉 is produced when the V0 reservoir is completely depleted.

Specifically, this occurs when the driving frequency ω exceeds the critical frequency

ωv0, which corresponds to ω∗ = 0.56 and is marked with “ωII = ωv0” in Fig. 9(a).

Note in particular that the resulting mean flowrate is about 100 times greater than

the maximum mean flowrate that would be produced by system responses having

a nonzero actual duty cycle. This makes good intuitive sense, because the system

restarting following the complete depletion of the V0 reservoir generally would pro-

duce a much stronger nonlinearity than that produced by the separation of the

V0 reservoir and the actuator. (It was also pointed out by Kenner et al.24 that

complete compression of a fluid-filled valveless tube, like the complete depletion

of the V0 reservoir here, is very effective in generating a mean flow in the tube.

In the present model system, however, the V0 reservoir has to separate from the

actuator first, before it can possibly be completely depleted. Careful modeling of

the interactions between the V0 reservoir and the compression actuator therefore

still is important.) For the same reason, the mean flowrate 〈QL〉 in case III, with

Vmin/Vmax = 0.15 and depicted by the (red) short-dashed curve in Fig. 9(a), also

experiences a sudden increase of about 500 times as the driving frequency crosses

ωv0, corresponding to ω∗ = 0.10 and marked with “ωIII = ωv0.” Note also that

since the depletion of the V0 reservoir occurs first (i.e., at a lower critical driving

frequency) before purely-free responses arise in case III, the calculated (positive)

values of 〈QL〉 are never vanishingly small.

Some interesting observations also can be made by examining the temporal

variations of the volumetric flowrates QL,R in various types of system responses

(as an anonymous reviewer kindly pointed it out). In particular, QL,R(t) in three

representative responses with Vmin/Vmax = 0.33 (i.e., case II discussed above) and

driving frequencies f = 40, 45, and 50 Hz (corresponding to ω∗ = (ω −ωth)/(ωst −
ωth) = 0.39, 0.52, and 0.64), respectively, are are plotted in Fig. 10. It is clearly

seen that, while QL and QR vary with time in similar manners, the instantaneous

flowrate in the R-tube generally has a larger magnitude than that in the L-tube,

because both the inertia and resistance coefficients of the R-tube are smaller than

that of the L-tube; see Sect. 2.4. Note also that the sudden increases in QL,R

observed in Fig. 10 (around ωt/2π = 0.25) are caused by a collision of the V0

reservoir with the actuator. In the case of f = 40 Hz, the impact of the collision

relatively is smaller, and so the V0 reservoir stays in contact with the actuator

after the collision. As a result, QL,R both continue to increase for a while after

the collision. By contrast, in the cases of f = 45 and 50 Hz, the impact of the
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(a)

(b)

Fig. 10. Temporal variations of the volumetric flowrates (a) QL and (b) QR for driving frequencies
f = 40, 45, and 50 Hz. Here Vmin/Vmax = 0.33, and so the three cases correspond to case II in
Fig. 9(a), with ω∗ = (ω − ωth)/(ωst − ωth) = 0.39, 0.52, and 0.64, respectively.

collision is somewhat stronger, and the V0 reservoir separates from the actuator

right afterwards. Also, the subsequent refilling of the V0 reservoir causes QL,R to

decrease immediately after the collision. There is a qualitative difference between

the cases of f = 45 and 50 Hz, however. Specifically, for the case of f = 50 Hz, the

V0 reservoir is completely depleted at ωt/2π ≈ 0.69, causing both QL and QR to be

reset to zero. As already discussed above, this reset produces a rather substantial

mean flowrate in the loop. It is also worth noting that the variation amplitudes

of the normalized flowrates, QL,RTLR/∆Va, are of O(102) and so are much higher
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than their mean values (see Fig. 9a). This is another common feature shared by

many valveless pumping systems; see Ref. 15 for example.

We have also calculated the mean pressures in the V0 and V1 reservoirs for

the three cases discussed above, and the results are presented in Fig. 9(b) for the

same driving frequency ranges shown in Fig. 9(a). Specifically, the mean pressures

are determined by evaluating 〈p0,1〉 =
∫ T

0
p0,1(t) dt/T , with T = 2π/ω. Also, to

bring out some similarity of the results, the mean pressures in the two reservoirs

when the system is in the contact mode (i.e., having an actual duty cycle of unity)

are subtracted from 〈p0〉 and 〈p1〉, and the resulting mean pressure differences are

normalized by the characteristic pressure scales ∆Va/C0 and ∆Va/C1, respectively.

Using the exact results presented in Sect. 3, it can be readily calculated that the

contact-mode mean pressures, denoted by 〈p0〉0 and 〈p1〉0 in Fig. 9(b), are equal

and independent of the driving frequency: 〈p0〉0 = 〈p1〉0 = S0∆Va/C1.

Note that, when the driving frequency ω exceeds the threshold frequency ωth, the

V0 reservoir would separate from the actuator for some portion of the compression

cycle, so that the temporal mean of its volume would be smaller than that in the

contact mode. Also, by mass conservation, the mean volume of the V1 reservoir

would be greater than that in the contact mode. Accordingly, the V1 reservoir is

expanded to a greater extent in the free mode than in the contact mode, so that the

mean pressure difference 〈p1〉−〈p1〉0 is positive irrespective of the driving frequency,

as shown in Fig. 9(b). Meanwhile, for ω > ωth, since the V0 reservoir has a smaller

mean volume and is in less complete contact with the actuator, its mean pressure

is lower than that in the contact mode; see also Fig. 9(b).

Unlike on the mean flowrates, however, the driving frequency appears to have

a milder effect upon the mean reservoir pressures. This, of course, results from the

fact that the volumes of the distensible reservoirs in our model (and in reality as

well) have a well defined lower limit of zero, and less apparent upper limits set by the

magnitude of the pressure variations in the fluid loop. On the other hand, the mean

flowrate in the loop is produced by various nonlinear effects having substantially

differing strengths. Nevertheless, when the driving frequency ω crosses a particular

critical frequency associated with a qualitative change of the system responses, the

mean pressure variations also are affected to some extent. In particular, in cases

II and III (see Fig. 9(b)), the effect is more apparent when ω crosses ωv0 (and the

V0 reservoir starts to be completely depleted at a certain phase of the compression

cycle) than when it crosses ωst (and the system response becomes purely-free).

Consistently, since the V0 reservoir would never be completely depleted in case I,

the mean pressures vary rather smoothly with ω.

7. Summary and Concluding Remarks

In order to focus upon the often-overlooked actuator impact effects on the dynamics

and performance characteristics—such as the mean flowrate and mean pressure—of

valveless pumping systems, here we have constructed a lumped-parameter model
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that accounts for mass and momentum balance in a closed fluid loop. As demon-

strated in Sect. 3, when the system is pre-compressed and the driving frequency

ω of the system is below a well defined threshold frequency ωth, the pliant part

of the model system (i.e., the V0 reservoir in Fig. 1) would never separate from

the compression actuator, and the perfectly linear governing equations discussed in

Sect. 2 would produce zero mean flowrate in the fluid loop. In the present model,

a nonzero mean flowrate therefore can only be produced by the somewhat complex

interactions of the compression actuator with the V0 reservoir arising when ω > ωth.

To account for such interactions, the mathematical model is supplemented with a

number of decision rules (discussed in Sect. 4) that are derived from fundamen-

tal mechanical considerations. The decision rules provide some nonlinearities for

the overall mathematical model, while an additional nonlinearity comes with the

restarting of the system when the V0 reservoir is completed depleted at a certain

phase of the compression cycle under suitable conditions (also discussed Sect. 4).

As the overall mathematical model involves rather intricate decision rules (sum-

marized in Fig. 2), its solution generally has to be obtained numerically. However,

by using a set of sample parameter values specified in Sect. 2.4, a dimensionless

compliance parameter is identified to be relatively small under realistic conditions.

We have then taken advantage of this small parameter, and carried out a series of

asymptotic calculations to obtain accurate estimates for some critical driving fre-

quencies across which the system response undergoes qualitative changes. In par-

ticular, the threshold frequency ωth for the separation of the V0 reservoir from the

compression actuator, the onset frequency ωcr and stability-margin frequency ωst

of the purely-free responses (which have an actual duty cycle of zero) are obtained

in Sect. 5. Furthermore, numerical solutions of the model for three representative

cases are carefully discussed in Sect. 6 to elucidate the complex dynamics of the

model system studied here, and to clarify the frequency dependence of the mean

flowrate and mean pressures in the system.

While we have also studied the model system using other pre-compression ratios

(than the particular choice of γ = 0.4 here), the dependence of the numerical results

upon the driving frequency and other system parameters appear to be qualitatively

similar to that discussed in this article. Such results therefore are not included here

for brevity of the presentation. However, it should be noted that when the system

is not pre-compressed, i.e., when the compression actuator initially is not in contact

with the V0 reservoir, they would collide with each other at any driving frequency,

and are expected to produce a significant mean flowrate thereby. Although some

numerical results have been obtained, a detailed discussion of them is beyond the

scope of this article, and will be presented elsewhere.

In fact, even if we limit our scope to pre-compressed systems only, the system

dynamics still is extremely complicated. For example, as suggested by the responses

depicted in Figs. 6(b) and 7(b), there may exist steady periodic system responses

having a period that is a multiple of the compression cycle period for higher driving
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frequencies. In fact, chaotic system responses may also arise under suitable con-

ditions. While we have clarified some transition routes of such more complicated

responses, including them here would render this article overly lengthy and poorly

focused. Such transition routes therefore will be discussed in a follow-up work.

Furthermore, even if we focus only on steady periodic system responses repeating

themselves in one compression cycle, it will also be interesting to locate the precise

boundaries between system responses of different types and completely map the

parameter space shown in Fig. 3. These, again, will be presented in another work.

In closing, we would like to point out that, while the mathematical model pro-

posed here may seem to be simple, it is capable of providing valuable insights into

the actuator impact effects that have often been overlooked in previous studies

of valveless pumping systems. Moreover, the results discussed in previous sections

suggest that such effects very likely would be important in other more complicated

valveless pumping systems as well. The actuator impact effects therefore deserve to

be carefully considered in other modeling approaches (such as the computational

and wave-pulse models mentioned in Sect. 1). Also, from a dynamical systems view-

point, the system dynamics of such a seemingly simple model system is rich and

complicated. Although some interesting results have been obtained and discussed

in this article, there clearly still are more to be explored. And of course, it would be

interesting as well to verify such results experimentally. Finally, from the viewpoint

of biomedical applications, we expect that a deep and complete understanding of

valveless pumping mechanisms would motivate certain innovative designs of blood

pumps that can be used in cardiac assist devices. (An interesting axial blood pump,

which does not rely upon valveless pumping though, is studied in Ref. 25.)
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