
HAL Id: hal-00618814
https://hal.science/hal-00618814v1

Submitted on 3 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On global types and multi-party sessions
Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Luca Padovani

To cite this version:
Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Luca Padovani. On global types and multi-party
sessions. 13th Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS)
/ 31th International Conference on FORmal TEchniques for Networked and Distributed Systems
(FORTE), Jun 2011, Reykjavik, Iceland. pp.1-28, �10.1007/978-3-642-21461-5_1�. �hal-00618814�

https://hal.science/hal-00618814v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On Global Types and Multi-Party Sessions

Giuseppe Castagna1, Mariangiola Dezani-Ciancaglini2, and Luca Padovani2

1 CNRS, Université Paris Diderot – Paris 7
2 Dipartimento d’Informatica, Università degli Studi di Torino

Abstract. We present a new, streamlined language of global types equipped with
a trace-based semantics and whose features and restrictions are semantically jus-
tified. The multi-party sessions obtained projecting our global types enjoy a live-
ness property in addition to the traditional progress and are shown to be sound and
complete with respect to the set of traces of the originating global type. Our notion
of completeness is less demanding than the classical ones, allowing a multi-party
session to leave out redundant traces from an underspecified global type.

1 Introduction

Relating the global specification of a system of communicating entities with an imple-
mentation (or description) of the single entities is a great classic in many different areas
of computer science. The recent development of session-based computing has renewed
the interest in this problem. In this work we attack it from the behavioral type and
process algebra perspectives and briefly compare the approaches used in other areas.

A (multi-party) session is a place of interaction for a restricted number of partic-
ipants that communicate messages. The interaction may involve the exchange of ar-
bitrary sequences of messages of possibly different types. Sessions are restricted to
a (usually fixed) number of participants, which makes them suitable as a structuring
construct for systems of communicating entities. In this work we define a language to
describe the interactions that may take place among the participants implementing a
given session. In particular, we aim at a definition based on few “essential” assump-
tions that should not depend on the way each single participant is implemented. To give
an example, a bargaining protocol that includes two participants, “seller” and “buyer”,
can be informally described as follows:

Seller sends buyer a price and a description of the product; then buyer sends
seller acceptance or it quits the conversation.

If we abstract from the value of the price and the content of the description sent
by the seller, this simple protocol describes just two possible executions, according to
whether the buyer accepts or quits. If we consider that the price and the description
are in distinct messages then the possible executions become four, according to which
communication happens first. While the protocol above describes a finite set of pos-
sible interactions, it can be easily modified to accommodate infinitely many possible
executions, as well as additional conversations: for instance the protocol may allow
“buyer” to answer “seller” with a counteroffer, or it may interleave this bargaining with
an independent bargaining with a second seller.

2 Castagna, Dezani-Ciancaglini, Padovani

All essential features of protocols are in the example above, which connects some
basic communication actions by the flow control points we underlined in the text. More
generally, a protocol is a possibly infinite set of finite sequences of interactions be-
tween a fixed set of participants. We argue that the set of sequences that characterizes a
protocol—and thus the protocol itself—can be described by a language with one form
of atomic actions and three composition operators.

Atomic actions. The only atomic action is the interaction, which consists of one (or
more) sender(s) (eg, “seller sends”), the content of the communication (eg, “a price”,
“a description”, “acceptance”), and one (or more) receiver(s) (eg, “buyer”).

Compound actions. Actions and, more generally, protocols can be composed in three
different ways. First, two protocols can be composed sequentially (eg, “Seller sends
buyer a price. . . ; then buyer sends. . . ”) thus imposing a precise order between the
actions of the composed protocols. Alternatively, two protocols can be composed
unconstrainedly, without specifying any order (eg, “Seller sends a price and (sends)
a description”) thus specifying that any order between the actions of the composed
protocols is acceptable. Finally, protocols can be composed in alternative (eg, “buyer
sends acceptance or it quits”), thus offering a choice between two or more protocols
only one of which may be chosen.

More formally, we use p a−→ q to state that participant p sends participant q a mes-
sage whose content is described by a, and we use “;”, “∧”, and “∨” to denote sequential,
unconstrained, and alternative composition, respectively. Our initial example can thus
be rewritten as follows:

(seller descr−→ buyer∧seller price−→ buyer);

(buyer
accept−→ seller∨buyer quit−→ seller)

(1)

The first two actions are composed unconstrainedly, and they are to be followed by one
(and only one) action of the alternative before ending. Interactions of unlimited length
can be defined by resorting to a Kleene star notation. For example to extend the previous
protocol so that the buyer may send a counter-offer and wait for a new price, it suffices
to add a Kleene-starred line:

(seller descr−→ buyer∧seller price−→ buyer);

(buyer
offer−→ seller;seller

price−→ buyer)*;

(buyer
accept−→ seller∨buyer quit−→ seller)

(2)

The description above states that, after having received (in no particular order) the
price and the description from the seller, the buyer can initiate a loop of zero or more
interactions and then decide whether to accept or quit.

Whenever there is an alternative there must be a participant that decides which path
to take. In both examples it is buyer that makes the choice by deciding whether to
send accept or quit. The presence of a participant that decides holds true in loops too,
since it is again buyer that decides whether to enter or repeat the iteration (by send-
ing offer) or to exit it (by sending accept or quit). We will later show that absence of
such decision-makers gives protocols impossible to implement. This last point critically

On Global Types and Multi-Party Sessions 3

depends on the main hypothesis we assume about the systems we are going to the de-
scribe, that is the absence of covert channels. One the one hand, we try to develop a
protocol description language that is as generic as possible; on the other hand, we limit
the power of the system and require all communications between different participants
to be explicitly stated. In doing so we bar out protocols whose implementation essen-
tially relies on the presence of secret/invisible communications between participants: a
protocol description must contain all and only the interactions used to implement it.

Protocol specifications such as the ones presented above are usually called global
types to emphasize the fact that they describe the acceptable behaviours of a system
from a global point of view. In an actual implementation of the system, though, each
participant autonomously implements a different part of the protocol. To understand
whether an implementation satisfies a specification, one has to consider the set of all
possible sequences of synchronizations performed by the implementation and check
whether this set satisfies five basic properties:

1. Sequentiality: if the specification states that two interactions must occur in a given
order (by separating them by a “;”), then this order must be respected by all possible
executions. So an implementation in which buyer may send accept before receiving
price violates the specification.

2. Alternativeness: if the specification states that two interactions are alternative, then
every execution must exhibit one and only one of these two actions. So an imple-
mentation in which buyer emits both accept and quit (or none of them) in the same
execution violates the specification.

3. Shuffling: if the specification composes two sequences of interactions in an uncon-
strained way, then all executions must exhibit some shuffling (in the sense used
in combinatorics and algebra) of these sequences. So an implementation in which
seller emits price without emitting descr violates the specification.

4. Fitness: if the implementation exhibits a sequence of interactions, then this sequence
is expected by (ie, it fits) the specification. So any implementation in which seller
sends buyer any message other than price and descr violates the specification.

5. Exhaustivity: if some sequence of interactions is described by the specification, then
there must exist at least an execution of the implementation that exhibits these ac-
tions (possibly in a different order). So an implementation in which no execution of
buyer emits accept violates the specification.

Checking whether an implemented system satisfies a specification by comparing
the actual and the expected sequences of interactions is non-trivial, for systems are
usually infinite-state. Therefore, on the lines of [9, 16], we proceed the other way round:
we extract from a global type the local specification (usually dubbed session type [20,
15]) of each participant in the system and we type-check the implementation of each
participant against the corresponding session type. If the projection operation is done
properly and the global specification satisfies some well-formedness conditions, then
we are guaranteed that the implementation satifies the specification. As an example, the
global type (1) can be projected to the following behaviors for buyer and seller:

seller 7→ buyer!descr.buyer!price.(buyer?accept+buyer?quit)
buyer 7→ seller?descr.seller?price.(seller!accept⊕seller!quit)

4 Castagna, Dezani-Ciancaglini, Padovani

or to

seller 7→ buyer!price.buyer!descr.(buyer?accept+buyer?quit)
buyer 7→ seller?price.seller?descr.(seller!accept⊕seller!quit)

where p!a denotes the output of a message a to participant p, p?a the input of a message
a from participant p, p?a.T +q?b.S the (external) choice to continue as T or S according
to whether a is received from p or b is received from q and, finally, p!a.T⊕q!b.S denotes
the (internal) choice between sending a to p and continue as T or sending S to q and
continue as T . We will call session environments the mappings from participants to their
session types. It is easy to see that any two processes implementing buyer and seller
will satisfy the global type (1) if and only if their visible behaviors matches one of the
two session environments above (these session environments thus represent some sort of
minimal typings of processes implementing buyer and seller). In particular, both the
above session environments are fitting and exhaustive with respect to the specification
since they precisely describe what the single participants are expected and bound to do.

We conclude this introduction by observing that there are global types that are in-
trinsically flawed, in the sense that they do not admit any implementation (without
covert channels) satisfying them. We classify flawed global types in three categories,
according to the seriousness of their flaws.
[No sequentiality] The mildest flaws are those in which the global type specifies some

sequentiality constraint between independent interactions, such as in (p a−→ q;r b−→
s), since it is impossible to implement r so that it sends b only after that q has re-
ceived a (unless this reception is notified on a covert channel, of course). Therefore,
it is possible to find exhaustive (but not fitting) implementations that include some
unexepected sequences which differ from the expected ones only by a permutation
of interactions done by independent participants. The specification at issue can be
easily patched by replacing some “;” by “∧”.

[No knowledge for choice] A more severe kind of flaw occurs when the global type
requires some participant to behave in different ways in accordance with some choice
it is unaware of. For instance, in the global type

(p a−→ q;q a−→ r;r a−→ p) ∨ (p b−→ q;q a−→ r;r b−→ p)

participant p chooses the branch to execute, but after having received a from q par-
ticipant r has no way to know whether it has to send a or b. Also in this case it is
possible to find exhaustive (but not fitting) implementations of the global type where
the participant r chooses to send a or b independently of what p decided to do.

[No knowledge, no choice] In the worst case it is not possible to find an exhaustive
implementation of the global type, for it specifies some combination of incompati-
ble behaviors, such as performing and input or an output in mutual exclusion. This
typically is the case of the absence of a decision-maker in the alternatives such as in

p
a−→ q∨q b−→ p

where each participant is required to choose between sending or receiving. There
seems to be no obvious way to patch these global types without reconsidering also
the intended semantics.

On Global Types and Multi-Party Sessions 5

Contributions and outline. A first contribution of this work is to introduce a stream-
lined language of global specifications—that we dub global types (Section 2)—and to
relate it with session environments (Section 3), that is, with sets of independent, sequen-
tial, asynchronous session types to be type-checked against implementations. Global
types are just regular expressions augmented with a shuffling operator and their se-
mantics is defined in terms of finite sequences of interactions. The second contribution,
which is a consequence of the chosen semantics of global types, is to ensure that every
implementation of a global type preserves the possibility to reach a state where every
participant has successfully terminated.

In Section 4 we study the relationship between global types and sessions. We do
so by defining a projection operation that extracts from a global type all the (sets of)
possible session types of its participants. This projection is useful not only to check
the implementability of a global description (and, incidentally, to formally define the
notions of errors informally described so far) but, above all, to relate in a compositional
and modular way a global type with the sets of distributed processes that implement it.
We also identify a class of well-formed global types whose projections need no covert
channels. Interestingly, we are able to effectively characterize well-formed global types
solely in terms of their semantics.

In Section 5 we present a projection algorithm for global types. The effective gen-
eration of all possible projections is impossible. The reason is that the projectability
of a global type may rely on some global knowledge that is no longer available when
working at the level of single session types: while in a global approach we can, say,
add to some participant new synchronization offerts that, thanks to our global knowl-
edge, we know will never be used, this cannot be done when working at the level of
single participant. Therefore in order to work at the projected level we will use stronger
assumptions that ensure a sound implementation in all possible contexts.

In Section 6 we show some limitations deriving from the use of the Kleene star
operator in our language of global types, and we present one possible way to circumvent
them. We conclude with an extended discussion on related work (Section 7) and a few
final considerations (Section 8).

Proofs, more examples and an extended survey of related work were omitted and
can be found in the long version available on the authors’ home pages.

2 Global Types

In this section we define syntax and semantics of global types. We assume a set A of
message types, ranged over by a, b, . . . , and a set Π of roles, ranged over by p, q, . . . ,
which we use to uniquely identify the participants of a session; we let π , . . . range over
non-empty, finite sets of roles.

Global types, ranged over by G , are the terms generated by the grammar in Table 1.
Their syntax was already explained in Section 1 except for two novelties. First, we
include a skip atom which denotes the unit of sequential composition (it plays the same
role as the empty word in regular expressions). This is useful, for instance, to express
optional interactions. Thus, if in our example we want the buyer to do at most one

6 Castagna, Dezani-Ciancaglini, Padovani

Table 1. Syntax of global types.

G ::= Global Type
skip (skip) | π

a−→ p (interaction)
| G ;G (sequence) | G ∧G (both)
| G ∨G (either) | G ∗ (star)

counteroffer instead of several ones, we just replace the starred line in (2) by

(buyer
offer−→ seller;seller

price−→ buyer)∨ skip

which, using syntactic sugar of regular expressions, might be rendered as

(buyer
offer−→ seller;seller

price−→ buyer)?

Second, we generalize interactions by allowing a finite set of roles on the l.h.s. of
interactions. Therefore, π

a−→ p denotes the fact that (the participant identified by) p
waits for an a message from all of the participants whose tags are in π . We will write
p

a−→ q as a shorthand for {p} a−→ q.
To be as general as possible, one could also consider interactions of the form π

a−→
π ′, which could be used to specify broadcast communications between participants. It
turns out that this further generalization is superfluous in our setting since the interac-
tion π

a−→ {pi}i∈I can be encoded as
∧

i∈I(π
a−→ pi). The encoding is made possible

by the fact that communication is asynchronous and output actions are not blocking
(see Section 3), therefore the order in which the participants in π send a to the pi’s is
irrelevant. Vice versa, we will see that allowing sets of multiple senders enriches the
expressiveness of the calculus, because π

a−→ p can be used to join different activities
involving the participants in π ∪{p}, while

∧
i∈I(pi

a−→ q) represents fork of parallel
activities. For example, we can represent two buyers waiting for both the price from a
seller and the mortgage from a bank before deciding the purchase:

(seller
price−→ buyer1∧bank mortgage−→ buyer2);

({buyer1,buyer2} accept−→ seller∧{buyer1,buyer2} accept−→ bank)
(3)

In general we will assume p 6∈ π for every interaction π
a−→ p occurring in a global

type, that is, we forbid participants to send messages to themselves. For the sake of
readability we adopt the following precedence of global type operators−→ ∗ ; ∧ ∨.

Global types denote languages of legal interactions that can occur in a multi-party
session. These languages are defined over the alphabet of interactions

Σ = {π a−→ p | π ⊂fin Π,p ∈ Π,p 6∈ π,a ∈A }

and we use α as short for π
a−→ p when possible; we use ϕ , ψ , . . . to range over strings

in Σ ∗ and ε to denote the empty string, as usual. To improve readability we will some-
times use “;” to denote string concatenation.

On Global Types and Multi-Party Sessions 7

In order to express the language of a global type having the shape G1∧G2 we need
a standard shuffling operator over languages, which can be defined as follows:

Definition 2.1 (shuffling). The shuffle of L1 and L2, denoted by L1

∃

L2, is the language

defined by: L1

∃

L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}.

Observe that, in L1

∃

L2, the order of interactions coming from one language is
preserved, but these interactions can be interspersed with other interactions coming
from the other language.

Definition 2.2 (traces of global types). The set of traces of a global type is inductively
defined by the following equations:

tr(skip) = {ε}
tr(π a−→ p) = {π a−→ p}

tr(G1;G2) = tr(G1)tr(G2)
tr(G ∗) = (tr(G))?

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃

tr(G2)

where juxtaposition denotes concatenation and (·)? is the usual Kleene closure of reg-
ular languages.

Before we move on, it is worth noting that tr(G) is a regular language (recall that
regular languages are closed under shuffling). Since a regular language is made of finite
strings, we are implicitly making the assumption that a global type specifies interactions
of finite length. This means that we are considering interactions of arbitraty length, but
such that the termination of all the involved participants is always within reach. This
is a subtle, yet radical change from other multi-party session theories, where infinite
interactions are considered legal.

3 Multi-Party Sessions

We devote this section to the formal definition of the behavior of the participants of a
multiparty session.

3.1 Session Types

We need an infinite set of recursion variables ranged over by X , Pre-session types,
ranged over by T , S, . . . , are the terms generated by the grammar in Table 2 such that
all recursion variables are guarded by at least one input or output prefix. We consider
pre-session types modulo associativity, commutativity, and idempotence of internal and
external choices, fold/unfold of recursions and the equalities

π!a.T ⊕π!a.S = π!a.(T ⊕S) π?a.T +π?a.S = π?a.(T +S)

Pre-session types are behavioral descriptions of the participants of a multiparty ses-
sion. Informally, end describes a successfully terminated party that no longer partici-
pates to a session. The pre-session type p!a.T describes a participant that sends an a
message to participant p and afterwards behaves according to T ; the pre-session type
π?a.T describes a participant that waits for an a message from all the participants in π

8 Castagna, Dezani-Ciancaglini, Padovani

Table 2. Syntax of pre-session types.

T ::= Pre-Session Type
end (termination) | X (variable)

| p!a.T (output) | π?a.T (input)
| T ⊕T (internal choice) | T +T (external choice)
| rec X .T (recursion)

and, upon arrival of the message, behaves according to T ; we will usually abbreviate
{p}?a.T with p?a.T . Behaviors can be combined by means of behavioral choices⊕ and
+: T ⊕S describes a participant that internally decides whether to behave according to
T or S; T +S describes a participant that offers to the other participants two possible be-
haviors, T and S. The choice as to which behavior is taken depends on the messages sent
by the other participant. In the following, we sometimes use n-ary versions of internal
and external choices and write, for example,

⊕n
i=1 pi!ai.Ti for p1!a1.T1⊕·· ·⊕pn!an.Tn

and ∑
n
i=1 πi?ai.Ti for π1?a1.T1 + · · ·+πn?an.Tn. As usual, terms X and rec X .T are used

for describing recursive behaviors. As an example, rec X .(p!a.X⊕p!b.end) describes a
participant that sends an arbitrary number of a messages to p and terminates by sending
a b message; dually, rec X .(p?a.X +p?b.end) describes a participant that is capable of
receiving an arbitrary number of a messages from p and terminates as soon a b message
is received.

Session types are the pre-session types where internal choices are used to combine
outputs, external choices are used to combine inputs, and the continuation after every
prefix is uniquely determined by the prefix. Formally:

Definition 3.1 (session types). A pre-session type T is a session type if either:
– T = end, or
– T =

⊕
i∈I pi!ai.Ti and ∀i, j ∈ I we have that pi!ai = p j!a j implies i = j and each Ti

is a session type, or
– T = ∑i∈I πi?ai.Ti and ∀i, j ∈ I we have that πi ⊆ π j and ai = a j imply i = j and each

Ti is a session type.

3.2 Session Environments

A session environment is defined as the set of the session types of its participants, where
each participant is uniquely identified by a role. Formally:

Definition 3.2 (session environment). A session environment (briefly, session) is a fi-
nite map {pi : Ti}i∈I .

In what follows we use ∆ to range over sessions and we write ∆]∆′ to denote the
union of sessions, when their domains are disjoint.

To describe the operational semantics of a session we model an asynchronous form
of communication where the messages sent by the participants of the session are stored
within a buffer associated with the session. Each message has the form p

a−→ q describ-
ing the sender p, the receiver q, and the type a of message. Buffers, ranged over by B,

On Global Types and Multi-Party Sessions 9

. . . , are finite sequences p1
a1−→ q1 :: · · · :: pn

an−→ qn of messages considered modulo the
least congruence ' over buffers such that:

p
a−→ q :: p′ b−→ q′ ' p′

b−→ q′ :: p a−→ q for p 6= p′ or q 6= q′

that is, we care about the order of messages in the buffer only when these have both the
same sender and the same receiver. In practice, this corresponds to a form of communi-
cation where each pair of participants of a multiparty session is connected by a distinct
FIFO buffer.

There are two possible reductions of a session:

B #{p :
⊕

i∈I pi!ai.Ti}]∆ −→ (p
ak−→ pk)::B #{p : Tk}]∆ (k∈I)

B::(pi
a−→p)i∈I #{p : ∑ j∈J π j?a j.Tj}]∆

πk
a−→p−−−−→ B #{p : Tk}]∆

(
k∈J ak=a

πk={pi|i∈I}

)

The first rule describes the effect of an output operation performed by participant p,
which stores the message p

ak−→ pk in the buffer and leaves participant p with a residual
session type Tk corresponding to the message that has been sent. The second rule de-
scribes the effect of an input operation performed by participant p. If the buffer contains
enough messages of type a coming from all the participants in πk, those messages are
removed from the buffer and the receiver continues as described in Tk. In this rule we
decorate the reduction relation with πk

a−→ p that describes the occurred interaction (as
we have already remarked, we take the point of view that an interaction is completed
when messages are received). This decoration will allow us to relate the behavior of
an implemented session with the traces of a global type (see Definition 2.2). We adopt
some conventional notation: we write =⇒ for the reflexive, transitive closure of−→; we
write α=⇒ for the composition =⇒ α−→=⇒ and

α1···αn===⇒ for the composition
α1=⇒ ··· αn=⇒.

We can now formally characterize the “correct sessions” as those in which, no mat-
ter how they reduce, it is always possible to reach a state where all of the participants
are successfully terminated and the buffer has been emptied.

Definition 3.3 (live session). We say that ∆ is a live session if ε #∆
ϕ

=⇒ B #∆′ implies
B #∆′

ψ
=⇒ ε #{pi : end}i∈I for some ψ .

We adopt the term “live session” to emphasize the fact that Definition 3.3 states a
liveness property: every finite computation ε,∆

ϕ
=⇒ B #∆′ can always be extended to a

successful computation ε #∆
ϕ

=⇒ B #∆′
ψ

=⇒ ε # {pi : end}i∈I . This is stronger than the
progress property enforced by other multiparty session type theories, where it is only
required that a session must never get stuck (but it is possible that some participants
starve for messages that are never sent). As an example, the session

∆1 = {p : rec X .(q!a.X⊕q!b.end) , q : rec Y.(p?a.Y +p?b.end)}

is alive because, no matter how many a messages p sends, q can receive all of them and,
if p chooses to send a b message, the interaction terminates successfully for both p and
q. This example also shows that, despite the fact that session types describe finite-state

10 Castagna, Dezani-Ciancaglini, Padovani

processes, the session ∆1 is not finite-state, in the sense that the set of configurations
{(B # ∆′) | ∃ϕ,B,∆′ : ε # ∆1

ϕ
=⇒ B # ∆′} is infinite. This happens because there is no

bound on the size of the buffer and an arbitrary number of a messages sent by p can
accumulate in B before q receives them. As a consequence, the fact that a session is
alive cannot be established in general by means of a brute force algorithm that checks
every reachable configuration. By contrast, the session

∆2 = {p : rec X .q!a.X , q : rec Y.p?a.Y}

which is normally regarded correct in other session type theories, is not alive because
there is no way for p and q to reach a successfully terminated state. The point is that
hitherto correctness of session was associated to progress (ie, the system is never stuck).
This is a weak notion of correctness since, for instance the session ∆2]{r : p?c.end}
satisfies progress even though role r starves waiting for its input. While in this example
starvation is clear since no c message is ever sent, determining starvation is in general
more difficult, as for

∆3 = {p : rec X .q!a.q!b.X , q : rec Y.(p?a.p?b.Y +p?b.r!c.end) , r : q?c.end}

which satisfies progress, where every input corresponds to a compatible output, and
viceversa, but which is not alive.

We can now define the traces of a session as the set of sequences of interactions that
can occur in every possible reduction. It is convenient to define the traces of an incorrect
(ie, non-live) session as the empty set (observe that tr(G) 6= /0 for every G).

Definition 3.4 (session traces).

tr(∆)
def
=

{
{ϕ | ε #∆

ϕ
=⇒ ε #{pi : end}i∈I} if ∆ is a live session

/0 otherwise

It is easy to verify that tr(∆1) = tr((p a−→ q)∗;p b−→ q) while tr(∆2) = tr(∆3) = /0
since neither ∆2 nor ∆3 is a live session.

4 Semantic projection

In this section we show how to project a global type to the session types of its partic-
ipants —ie, to a session— in such a way that the projection is correct with respect to
the global type. Before we move on, we must be more precise about what we mean by
correctness of a session ∆ with respect to a global type G . In our setting, correctness
refers to some relationship between the traces of ∆ and those of G . In general, how-
ever, we cannot require that G and ∆ have exactly the same traces: when projecting
G1 ∧ G2 we might need to impose a particular order in which the interactions spec-
ified by G1 and G2 must occur (shuffling condition). At the same time, asking only
tr(∆) ⊆ tr(G) would lead us to immediately loose the exhaustivity property, since for

instance {p : q!a.end , q : p?a.end} would implement p a−→ q∨ p b−→ q even though

On Global Types and Multi-Party Sessions 11

Table 3. Rules for semantic projection.

(SP-SKIP)
∆ ` skip . ∆

(SP-ACTION)
{pi : Ti}i∈I]{p : T}]∆ ` {pi}i∈I

a−→ p . {pi : p!a.Ti}i∈I]{p : {pi}i∈I?a.T}]∆

(SP-SEQUENCE)
∆ ` G2 . ∆′ ∆′ ` G1 . ∆′′

∆ ` G1;G2 . ∆′′

(SP-ALTERNATIVE)
∆ ` G1 . {p : T1}]∆′ ∆ ` G2 . {p : T2}]∆′

∆ ` G1∨G2 . {p : T1⊕T2}]∆′

(SP-ITERATION)
{p : T1⊕T2}]∆ ` G . {p : T1}]∆

{p : T2}]∆ ` G ∗ . {p : T1⊕T2}]∆

(SP-SUBSUMPTION)
∆ ` G ′ . ∆′ G ′ 6 G ∆′′ 6 ∆′

∆ ` G . ∆′′

the implementation systematically exhibits only one (p a−→ q) of the specified alterna-
tive behaviors. In the end, we say that ∆ is a correct implementation of G if: first, every
trace of ∆ is a trace of G (soundness); second, every trace of G is the permutation of a
trace of ∆ (completeness). Formally:

tr(∆)⊆ tr(G)⊆ tr(∆)◦

where L◦ is the closure of L under arbitrary permutations of the strings in L:

L◦ def= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}

Since these relations between languages (of traces) play a crucial role, it is conve-
nient to define a suitable pre-order relation:

Definition 4.1 (implementation pre-order). We let L1 6 L2 if L1 ⊆ L2 ⊆ L◦1 and ex-
tend it to global types and sessions in the natural way, by considering the corresponding
sets of traces. Therefore, we write ∆ 6 G if tr(∆) 6 tr(G).

It is easy to see that soundness and completeness respectively formalize the notions
of fitness and exhaustivity that we have outlined in the introduction. For what concerns
the remaining three properties listed in the introduction (ie, sequentiality, alternative-
ness, and shuffling), they are entailed by the formalization of the semantics of a global
type in terms of its traces (Definition 2.2). In particular, we have that soundness implies
sequentiality and alternativeness, while completeness implies shuffling. Therefore, in
the formal treatment that follows we will focus on soundness and completeness as to
the only characterizing properties connecting sessions and global types. The relation
∆ 6 G summarizes the fact that ∆ is both sound and complete with respect to G , namely
that ∆ is a correct implementation of the specification G .

Table 3 presents our rules to build the projections of global types. Projecting a global
type basically means compiling it to an “equivalent” set of session types. Since the
source language (global types) is equipped with sequential composition while the tar-
get language (session types) is not, it is convenient to parameterize projection on a

12 Castagna, Dezani-Ciancaglini, Padovani

continuation, ie, we consider judgments of the shape:

∆ ` G . ∆′

meaning that if ∆ is the projection of some G ′, then ∆′ is the projection of G ;G ′. This
immediately gives us the rule (SP-SEQUENCE). We say that ∆′ is a projection of G
with continuation ∆.

The projection of an interaction π
a−→ p adds p!a in front of the session type of

all the roles in π , and π?a in front of the session type of p (rule (SP-ACTION)). For
example we have:

{p : end,q : end} ` p a−→ q . {p : q!a.end, q : p?a.end}

An alternative G1 ∨G2 (rule (SP-ALTERNATIVE)) can be projected only if there
is a participant p that actively chooses among different behaviors by sending differ-
ent messages, while all the other participants must exhibit the same behavior in both
branches. The subsumption rule (SP-SUBSUMPTION) can be used to fulfil this require-
ment in many cases. For example we have ∆0 ` p

a−→ q . {p : q!a.end,q : p?a.end}
and ∆0 ` p

b−→ q . {p : q!b.end,q : p?b.end}, where ∆0 = {p : end,q : end}. In or-

der to project p a−→ q∨ p b−→ q with continuation ∆0 we derive first by subsumption
∆0 ` p

a−→ q . {p : q!a.end , q : T} and ∆0 ` p
b−→ q . {p : q!b.end , q : T} where

T = p?a.end+p?b.end. Then we obtain

∆0 ` p
a−→ q∨p b−→ q . {p : q!a.end⊕q!b.end , q : T}

Notice that rule (SP-ALTERNATIVE) imposes that in alternative branches there must be
one and only one participant that takes the decision. For instance, the global type

{p,q} a−→ r ∨ {p,q} b−→ r

cannot be projected since we would need a covert channel for p to agree with q about
whether to send to r the message a or b.

To project a starred global type we also require that one participant p chooses be-
tween repeating the loop or exiting by sending messages, while the session types of
all other participants are unchanged. If T1 and T2 are the session types describing the
behavior of p when it has respectively decided to perform one more iteration or to ter-
minate the iteration, then T1⊕T2 describes the behavior of p before it takes the decision.
The projection rule requires that one execution of G followed by the choice between
T1 and T2 projects in a session with type T1 for p. This is possible only if T1 is a recur-
sive type, as expected, and it is the premise of rule (SP-ITERATION). For example if
T1 = q!a.rec X .(q!a.X⊕q!b.end), T2 = q!b.end, and S = rec Y.(p?a.Y +p?b.end) we
can derive {p : T1⊕T2,q : S} ` p a−→ q . {p : T1,q : S} and then

{p : T2,q : S} ` (p a−→ q)∗ . {p : T1⊕T2, q : S}

Notably there is no rule for “∧”, the both constructor. We deal with this constructor
by observing that all interleavings of the actions in G1 and G2 give global types G such

On Global Types and Multi-Party Sessions 13

that G 6 G1 ∧G2, and therefore we can use the subsumption rule to eliminate every
occurrence of ∧. For example, to project the global type p a−→ q∧r b−→ s we can use
p

a−→ q;r b−→ s: since the two actions that compose both global types have disjoint
participants, then the projections of these global types (as well as that of r b−→ s;p a−→
q) will have exactly the same set of traces.

Other interesting examples of subsumptions useful for projecting are

r
b−→ p;p a−→ q 6 (p a−→ q;r b−→ p)∨ (r b−→ p;p a−→ q) (4)

r
b−→ p;(p a−→ q∨p b−→ q) 6 (r b−→ p;p a−→ q)∨ (r b−→ p;p b−→ q) (5)

In (4) the 6-larger global type describes the shuffling of two interactions, therefore
we can project one particular ordering still preserving completeness. In (5) we take
advantage of the flat nature of traces to push the ∨ construct where the choice is actually
being made.

We are interested in projections without continuations, that is, in judgments of the
shape {pi : end | pi ∈ G } ` G . ∆ (where p ∈ G means that p occurs in G) which we
shortly will write as

` G . ∆

The mere existence of a projection does not mean that the projection behaves as
specified in the global type. For example, we have

` p a−→ q;r a−→ s . {p : q!a.end, q : p?a.end, r : s!a.end, s : r?a.end}

but the projection admits also the trace r
a−→ s;p a−→ q which is not allowed by the

global type. Clearly the problem resides in the global type, which tries to impose a
temporal ordering between interactions involving disjoint participants. What we want,
in accordance with the traces of a global type G1;G2, is that no interaction in G2 can be
completed before all the interactions in G1 are completed. More in details:

– an action π
a−→ p is completed when the participant p has received the message a

from all the participants in π;

– if ϕ;π
a−→ p;π ′

b−→ p′;ψ is a trace of a global type, then either the action π ′
b−→ p′

cannot be completed before the action π
a−→ p is completed, or they can be executed

in any order. The first case requires p to be either p′ or a member of π ′, in the second
case the set of traces must also contain the trace ϕ;π ′

b−→ p′;π
a−→ p;ψ .

This leads us to the following definition of well-formed global type.

Definition 4.2 (well-formed global type). We say that a set of traces L is well formed if
ϕ;π

a−→ p;π ′
b−→ p′;ψ ∈ L implies either p∈ π ′∪{p′} or ϕ;π ′

b−→ p′;π
a−→ p;ψ ∈ L.

We say that a global type G is well formed if so is tr(G).

It is easy to decide well-formedness of an arbitrary global type G by building in a
standard way the automaton that recognises the language of traces generated by G .

14 Castagna, Dezani-Ciancaglini, Padovani

Projectability and well-formedness must be kept separate because it is sometimes
necessary to project ill-formed global types. For example, the ill-formed global type
p

a−→ q;r a−→ s above is useful to project p a−→ q∧r a−→ s which is well formed.
Clearly, if a global type is projectable (ie, `G . ∆ is derivable) then well-formedness

of G is a necessary condition for the soundness and completeness of its projection (ie,
for ∆ 6 G). It turns out that well-formedness is also a sufficient condition for having
soundness and completeness of projections, as stated in the following theorem.

Theorem 4.1. If G is well formed and ` G . ∆, then ∆ 6 G .

In summary, if a well-formed global type G is projectable, then its projection is a live
projection (it cannot be empty since tr(G) ⊆ tr(∆)◦) which is sound and complete wrt
G and, therefore, satisfies the sequentiality, alternativeness, and shuffling properties
outlined in the introduction.

We conclude this section by formally characterizing the three kinds of problematic
global types we have described earlier. We start from the least severe problem and
move towards the more serious ones. Let L# denote the smallest well-formed set such
that L⊆ L#.

No sequentiality. Assuming that there is no ∆ that is both sound and complete for G , it
might be the case that we can find a session whose traces are complete for G and sound
for the global type G ′ obtained from G by turning some « ; »’s into «∧ »’s. This means
that the original global type G is ill formed, namely that it specifies some sequentiality
constraints that are impossible to implement. For instance, {p : q!a.end, q : p?a.end, r :
s!b.end, s : r?b.end} is a complete but not sound session for the ill-formed global type

p
a−→ q;r b−→ s (while it is a sound and complete session for p a−→ q∧r b−→ s). We

characterize the global types G that present this error as:

@∆ : ∆ 6 G and ∃∆ : tr(G)⊆ tr(∆)⊆ tr(G)# .

No knowledge for choice. In this case every session ∆ that is complete for G invariably
exhibits some interactions that are not allowed by G despite the fact that G is well
formed. This happens when the global type specifies alternative behaviors, but some
participants do not have enough information to behave consistently. For example, the
global type

(p a−→ q;q a−→ r;r a−→ p)∨ (p b−→ q;q a−→ r;r b−→ p)

mandates that r should send either a or b in accordance with the message that p sends
to q. Unfortunately, r has no information as to which message q has received, because
q notifies r with an a message in both branches. A complete implementation of this
global type is

{p : q!a.(r?a.end+r?b.end)⊕q!b.(r?a.end+r?b.end),
q : p?a.r!a.end+p?b.r!a.end,r : q?a.(q!a.end⊕q!b.end)}

which also produces the traces p a−→ q;q a−→ r;r b−→ p and p
b−→ q;q a−→ r;r a−→ p.

We characterize this error as:

@∆ : tr(G)⊆ tr(∆)⊆ tr(G)# and ∃∆ : tr(G)⊆ tr(∆) .

On Global Types and Multi-Party Sessions 15

No knowledge, no choice. In this case we cannot find a complete session ∆ for G .
This typically means that G specifies some combination of incompatible behaviors.
For example, the global type p

a−→ q∨ q a−→ p implies an agreement between p and
q for establishing who is entitled to send the a message. In a distributed environment,
however, there can be no agreement without a previous message exchange. Therefore,
we can either have a sound but not complete session that implements just one of the two
branches (for example, {p : q!a.end,q : p?a.end}) or a session like {p : q!a.q?a.end,q :
p?a.p!a.end} where both p and q send their message but which is neither sound nor
complete. We characterize this error as:

@∆ : tr(G)⊆ tr(∆) .

5 Algorithmic projection

We now attack the problem of computing the projection of a global type. We are looking
for an algorithm that “implements” the projection rules of Section 4, that is, that given a
session continuation ∆ and a global type G , produces a projection ∆′ such that ∆ ` G :
∆′. In other terms this algorithm must be sound with respect to the semantic projection
(completeness, that is, returning a projection for every global type that is semantically
projectable, seems out of reach, yet).

The deduction system in Table 3 is not algorithmic because of two rules: the rule
(SP-ITERATION) that does not satisfy the subformula property since the context ∆ used
in the premises is the result of the conclusion; the rule (SP-SUBSUMPTION) since it is
neither syntax-directed (it is defined for a generic G) nor does it satisfy the subformula
property (the G ′ and ∆′′ in the premises are not uniquely determined).3 The latter rule
can be expressed as the composition of the two rules

(SP-SUBSUMPTIONG)
∆ ` G ′ . ∆′ G ′ 6 G

∆ ` G . ∆′

(SP-SUBSUMPTIONS)
∆ ` G . ∆′ ∆′′ 6 ∆′

∆ ` G . ∆′′

Splitting (SP-SUBSUMPTION) into (SP-SUBSUMPTIONG) and (SP-SUBSUMPTIONS)
is useful to explain the following problems we have to tackle to define an algorithm:
1. How to eliminate (SP-SUBSUMPTIONS), the subsumption rule for sessions.
2. How to define an algorithmic version of (SP-ITERATION), the rule for Kleene star.
3. How to eliminate (SP-SUBSUMPTIONG), the subsumption rule for global types.
We address each problem in order and discuss the related rule in the next sections.

5.1 Session subsumption

Rule (SP-SUBSUMPTIONS) is needed to project alternative branches and iterations
(a loop is an unbound repetition of alternatives, each one starting with the choice of

3 The rule (SP-ALTERNATIVE) is algorithmic: in fact there is a finite number of participants
in the two sessions of the premises and at most one of them can have different session types
starting with outputs.

16 Castagna, Dezani-Ciancaglini, Padovani

whether to enter the loop or to skip it): each participant different from the one that
actively chooses must behave according to the same session type in both branches.
More precisely, to project G1∨G2 the rule (SP-ALTERNATIVE) requires to deduce for
G1 and G2 the same projection: if different projections are deduced, then they must
be previously subsumed to a common lower bound. The algorithmic projection of an
alternative (see the corresponding rule in Table 4) allows premises with two differ-
ent sessions, but then merges them. Of course not every pair of projections is merge-
able. Intuitively, two projections are mergeable if so are the behaviors of each partic-
ipant. This requires participants to respect a precise behavior: as long as a participant
cannot determine in which branch (ie, projection) it is, then it must do the same ac-
tions in all branches (ie, projections). For example, to project G = (p a−→ q;r c−→
q; . . .)∨ (p b−→ q;r c−→ q; . . .) we project each branch separately obtaining ∆1 = {p :
q!a . . . ,q : p?a.r?c . . . ,r : q!c . . .} and ∆2 = {p : q!b . . . ,q : p?b.r?c . . . ,r : q!c . . .}.
Since p performs the choice, in the projection of G we obtain p : q!a . . .⊕ q!b . . . and
we must merge {q : p?a.r?c . . . ,r : q!c . . .} with {q : p?b.r?c . . . ,r : q!c . . .}. Regarding
q, observe that it is the receiver of the message from p, therefore it becomes aware of
the choice and can behave differently right after the first input operation. Merging its
behaviors yields q : p?a.r?c . . .+p?b.r?c Regarding r, it has no information as to
which choice has been made by p, therefore it must have the same behavior in both
branches, as is the case. Since merging is idempotent, we obtain r : q!c In sum-
mary, mergeability of two branches of an “∨” corresponds to the “awareness” of the
choice made when branching (see the discussion in Section 4 about the “No knowledge
for choice” error), and it is possible when, roughly, each participant performs the same
internal choices and disjoint external choices in the two sessions.

Special care must be taken when merging external choices to avoid unexpected in-
teractions that may invalidate the correctness of the projection. To illustrate the problem
consider the session types T = p?a.q?b.end and S = q?b.end describing the behavior of
a participant r. If we let r behave according to the merge of T and S, which intuitively is
the external choice p?a.q?b.end+q?b.end, it may be possible that the message b from
q is read before the message a from p arrives. Therefore, r may mistakenly think that
it should no longer participate to the session, while there is still a message targeted to
r that will never be read. Therefore, T and S are incompatible and it is not possible to
merge them safely. On the contrary, p?a.p?b.end and p?b.end are compatible and can
be merged to p?a.p?b.end+p?b.end. In this case, since the order of messages coming
from the same sender is preserved, it is not possible for r to read the b message coming
from p before the a message, assuming that p sent both. More formally:

Definition 5.1 (compatibility). We say that an input p?a is compatible with a session
type T if either (i) p?a does not occur in T , or (ii) T =

⊕
i∈I pi!ai.Ti and p?a is com-

patible with Ti for all i ∈ I, or (iii) T = ∑i∈I πi?ai.Ti and for all i ∈ I either p ∈ πi and
a 6= ai or p 6∈ πi and p?a is compatible with Ti.

We say that an input π?a is compatible with a session type T if p?a is compatible
with T for some p ∈ π .

Finally, T = ∑i∈I πi?ai.Ti +∑ j∈J π j?a j.Tj and S = ∑i∈I πi?ai.Si +∑h∈H πh?ah.Sh are
compatible if π j?a j is compatible with S for all j ∈ J and πh?ah is compatible with T
for all h ∈ H.

On Global Types and Multi-Party Sessions 17

Table 4. Rules for algorithmic projection.

(AP-SKIP)
∆ `a skip . ∆

(AP-ACTION)
{pi : Ti}i∈I]{p : T}]∆ `a {pi}i∈I

a−→ p . {pi : p!a.Ti}i∈I]{p : {pi}i∈I?a.T}]∆

(AP-SEQUENCE)
∆ `a G2 . ∆′ ∆′ `a G1 . ∆′′

∆ `a G1;G2 . ∆′′

(AP-ALTERNATIVE)
∆ `a G1 . {p : T1}]∆1 ∆ `a G2 . {p : T2}]∆2

∆ `a G1∨G2 . {p : T1⊕T2}] (∆1 !∆2)

(AP-ITERATION)
{p : X}]{pi : Xi}i∈I `a G . {p : S}]{pi : Si}i∈I

{p : T}]{pi : Ti}i∈I]∆ `a G ∗ . {p : rec X .(T ⊕S)}]{pi : rec Xi.(Ti !Si)}i∈I]∆

The merge operator just connects sessions with the same output guards by internal
choices and with compatible input guards by external choices:

Definition 5.2 (merge). The merge of T and S, written T !S, is defined coinductively
and by cases on the structure of T and S thus:

– if T = S = end, then T !S = end;
– if T =

⊕
i∈I pi!ai.Ti and S =

⊕
i∈I pi!ai.Si, then T !S =

⊕
i∈I pi!ai.(Ti !Si);

– if T = ∑i∈I πi?ai.Ti +∑ j∈J π j?a j.Tj and S = ∑i∈I πi?ai.Si +∑h∈H πh?ah.Sh are com-
patible, then T !S = ∑i∈I πi?ai.(Ti !Si)+∑ j∈J π j?a j.Tj +∑h∈H πh?ah.Sh.

We extend merging to sessions so that ∆!∆′ = {p : T !S | p : T ∈ ∆ & p : S ∈ ∆′}.

Rules (AP-ALTERNATIVE) and (AP-ITERATION) of Table 4 are the algorithmic
versions of (SP-ALTERNATIVE) and (SP-ITERATION), but instead of relying on sub-
sumption they use the merge operator to compute common behaviors.

The merge operation is a sound but incomplete approximation of session subsump-
tion insofar as the merge of two sessions can be undefined even though the two sessions
completed with the participant that makes the decision have a common lower bound ac-
cording to 6. This implies that there are global types which can be semantically but not
algorithmically projected. Take for example G1∨G2 where G1 = p

a−→ r;r a−→ p;p a−→
q;q b−→ r and G2 = p

b−→ q;q b−→ r. The behavior of r in G1 and G2 respectively is
T = p?a.p!a.q?b.end and S = q?b. Then we see that G1∨G2 is semantically projectable,
for instance by inferring the behavior T + S for r. However, T and S are incompatible
and G1 ∨G2 is not algorithmically projectable. The point is that the 6 relation on pro-
jections has a comprehensive perspective of the whole session and “realizes” that, if p
initially chooses to send a, then r will not receive a b message coming from q until r
has sent a to p. The merge operator, on the other hand, is defined locally on pairs of
session types and ignores that the a message that r sends to p is used to enforce the
arrival of the b message from q to r only afterwards. For this reason it conservatively
declares T and S incompatible, making G1∨G2 impossible to project algorithmically.

18 Castagna, Dezani-Ciancaglini, Padovani

5.2 Projection of Kleene star

Since an iteration G ∗ is intuitively equivalent to skip∨G ;G ∗ it comes as no surprise that
the algorithmic rule (AP-ITERATION) uses the merge operator. The use of recursion
variables for continuations is also natural: in the premise we project G taking recursion
variables as session types in the continuation; the conclusion projects G ∗ as the choice
between exiting and entering the loop. There is, however, a subtle point in this rule that
may go unnoticed: although in the premises of (AP-ITERATION) the only actions and
roles taken into account are those occurring in G , in its conclusion the projection of G ∗

may require a continuation that includes actions and roles that precede G ∗. The point
can be illustrated by the global type

(p a−→ q;(p b−→ q)∗)∗;p c−→ q

where p initially decides whether to enter the outermost iteration (by sending a) or
not (by sending c). If it enters the iteration, then it eventually decides whether to also
enter the innermost iteration (by sending b), whether to repeat the outermost one (by
sending a), or to exit both (by sending c). Therefore, when we project (p b−→ q)∗,
we must do it in a context in which both p

c−→ q and p
a−→ q are possible, that is a

continuation of the form {p : q!a . . .⊕ q!c.end} even though no a is sent by an action

(syntactically) following (p b−→ q)∗. For the same reason, the projection of (p b−→ q)∗

in (p a−→ q;p a−→ r;(p b−→ q)∗)∗;p c−→ q;q c−→ r will need a recursive session type
for r in the continuation.

5.3 Global type subsumption

Elimination of global type subsumption is the most difficult problem when defining the
projection algorithm. While in the case of sessions the definition of the merge oper-
ator gives us a sound—though not complete—tool that replaces session subsumption
in very specific places, we do not have such a tool for global type containment. This is
unfortunate since global type subsumption is necessary to project several usage patterns
(see for example the inequations (4) and (5)), but most importantly it is the only way
to eliminate ∧-types (neither the semantic nor the algorithmic deduction systems have
projection rules for ∧). The minimal facility that a projection algorithm should provide
is to feed the algorithmic rules with all the variants of a global type obtained by replac-
ing occurrences of G1∧G2 by either G1;G2 or G2;G1. Unfortunately, this is not enough
to cover all the occurrences in which rule (SP-SUBSUMPTIONG) is necessary. Indeed,
while G1;G2 and G2;G1 are in many cases projectable (for instance, when G1 and G2
have distinct roles and are both projectable), there exist G1 and G2 such that G1∧G2 is
projectable only by considering a clever interleaving of the actions occurring in them.

Consider for instance G1 = (p a−→ q;q c−→ s;s e−→ q)∨ (p b−→ r;r d−→ s;s
f−→ r)

and G2 = r
g−→ s;s h−→ r;s i−→ q. The projection of G1 ∧G2 from the environment

{q : p!a.end,r : p!b.end} can be obtained only from the interleaving r
g−→ s;G1;s h−→

r;s i−→ q. The reason is that q and r receive messages only in one of the two branches

On Global Types and Multi-Party Sessions 19

of the ∨, so we need to compute the ! of their types in these branches with their types
in the continuations. The example shows that to project G1 ∧G2 it may be necessary
to arbitrarily decompose one or both of G1 and G2 to find the particular interleaving of
actions that can be projected. As long as G1 and G2 are finite (no non-trivial iteration
occurs in them), we can use a brute force approach and try to project all the elements
in their shuffle, since there are only finitely many of them. In general —ie, in pres-
ence of iteration— this is not an effective solution. However, we conjecture that even
in the presence of infinitely many traces one may always resort to the finite case by
considering only zero, one, and two unfoldings of starred global types. To give a rough
idea of the intuition supporting this conjecture consider the global type G ∗ ∧G ′: its
projectability requires the projectability of G ′ (since G can be iterated zero times), of
G ∧G ′ (since G can occur only once) and of G ;G (since the number of occurences of
G is unbounded). It is enough to require also that either G ;(G ∧G ′) or (G ∧G ′);G can
be projected, since then the projectability of either G n;(G ∧G ′) or (G ∧G ′);G n for an
arbitrary n follows (see the appendix in the extended version).

So we can —or, conjecture we can— get rid of all occurences of ∧ operators auto-
matically, without loosing in projectability. However, examples (4) and (5) in Section 4
show that rule (SP-SUBSUMPTIONG) is useful to project also global types in which the
∧-constructor does not occur. A fully automated approach may consider (4) and (5) as
right-to-left rewriting rules that, in conjunction with some other rules, form a rewriting
system generating a set of global types to be fed to the algorithm of Table 4. The choice
of such rewriting rules must rely on a more thorough study to formally characterize the
sensible classes of approximations to be used in the algorithms. An alternative approach
is to consider a global type G as somewhat underspecified, in that it may allow for a
large number of different implementations (exhibiting different sets of traces) that are
sound and complete. Therefore, rule (SP-SUBSUMPTIONG) may be interpreted as a
human-assisted refinement process where the designer of a system proposes one partic-
ular implementation G 6 G ′ of a system described by G ′. In this respect it is interesting
to observe that checking whether L1 6 L2 when L1 and L2 are regular is decidable, since
this is a direct consequence of the decidability of the Parikh equivalence on regular lan-
guages [18].

5.4 Properties of the algorithmic rules

Every deduction of the algorithmic system given in Table 4, possibly preceeded by
the elimination of ∧ and other possible sources of failures by applying the rewrit-
ings/heuristics outlined in the previous subsection, induces a similar deduction using
the rules for semantic projection (Table 3).

Theorem 5.1. If `a G . ∆, then ` G . ∆.

As a corollary of Theorems 4.1 and 5.1, we immediately obtain that the projection
∆ of G obtained through the algorithm is sound and complete with respect to G .

20 Castagna, Dezani-Ciancaglini, Padovani

6 k-Exit Iterations

The syntax of global types (Table 1) includes that of regular expressions and there-
fore is expressive enough for describing any protocol that follows a regular pattern.
Nonetheless, the simple Kleene star prevents us from projecting some useful protocols.
To illustrate the point, suppose we want to describe an interaction where two partici-
pants p and q alternate in a negotiation in which each of them may decide to bail out.
On p’s turn, p sends either a bailout message or a handover message to q; if a bailout
message is sent, the negotiation ends, otherwise it continues with q that behaves in a
symmetric way. The global type

(p handover−→ q;q handover−→ p)∗;(p bailout−→ q∨p handover−→ q;q bailout−→ p)

describes this protocol as an arbitrarily long negotiation that may end in two possible
ways, according to the participant that chooses to bail out. This global type cannot be
projected because of the two occurrences of the interaction p

handover−→ q, which make it
ambiguous whether p actually chooses to bail out or to continue the negotiation. In gen-
eral, our projection rules (SP-ITERATION) and (AP-ITERATION) make the assumption
that an iteration can be exited in one way only, while in this case there are two possibil-
ities according to which role bails out. This lack of expressiveness of the simple Kleene
star used in a nondeterministic setting [17] led researchers to seek for alternative itera-
tion constructs. One proposal is the k-exit iteration [2], which is a generalization of the
binary Kleene star and has the form

(G1, . . . ,Gk) k∗ (G ′1, . . . ,G
′
k)

indicating a loop consisting of k subsequent phases G1, . . . ,Gk. The loop can be exited
just before each phase through the corresponding G ′i . Formally, the traces of the k-exit
iteration can be expressed thus:

tr((G1, . . . ,Gk) k∗ (G ′1, . . . ,G
′
k))

def= tr((G1; . . . ;Gk)∗;(G ′1∨G1;G ′2∨·· ·∨G1; . . . ;Gk−1;G ′k))

and, for example, the negotiation above can be represented as the global type

(p handover−→ q,q
handover−→ p) 2∗ (p bailout−→ q,q

bailout−→ p) (6)

while the unary Kleene star G ∗ can be encoded as (G) 1∗ (skip).
In our setting, the advantage of the k-exit iteration over the Kleene star is that it

syntactically identifies the k points in which a decision is made by a participant of
a multi-party session and, in this way, it enables more sophisticated projection rules
such as that in Table 5. Albeit intimidating, rule (SP-k-EXIT ITERATION) is just a
generalization of rule (SP-ITERATION). For each phase i a (distinct) participant pi is
identified: the participant may decide to exit the loop behaving as Si or to continue the
iteration behaving as Ti. While projecting each phase Gi, the participant p(i mod k)+1 that
will decide at the next turn is given the continuation T(i mod k)+1⊕ S(i mod k)+1, while
the others must behave according to some Ri that is the same for every phase in which

On Global Types and Multi-Party Sessions 21

Table 5. Semantic projection of k-exit iteration.

(SP-k-EXIT ITERATION)
∆ ` G ′i . {pi : Si}]{p j : R j} j=1,...,i−1,i+1,...,k]∆′ (i∈{1,...,k})

{p2 : T2⊕S2}]{pi : Ri}i=1,3,...,k]∆′ ` G1 . {p1 : T1}]{pi : Ri}i=2,...,k]∆′

{p3 : T3⊕S3}]{pi : Ri}i=1,2,4,...,k]∆′ ` G2 . {p2 : T2}]{pi : Ri}i=1,3,...,k]∆′

...
{p1 : T1⊕S1}]{pi : Ri}i=2,...,k]∆′ ` Gk . {pk : Tk}]{pi : Ri}i=1,...,k−1]∆′

∆ ` (G1, . . . ,Gk) k∗ (G ′1, . . . ,G
′
k) . {p1 : T1⊕S1}]{pi : Ri}i=2,...,k]∆′

they play no active role. Once again, rule (SP-SUBSUMPTION) is required in order to
synthesize these behaviors. For example, the global type (6) is projected to

{p : rec X .(q!handover.(q?handover.X +q?bailout.end)⊕q!bailout.end),
q : rec Y.(p?handover.(p!handover.Y ⊕p!bailout.end)+p?bailout.end)}

as one expects.

7 Related work

The formalization and analysis of the relation between a global description of a dis-
tributed system and a more machine-oriented description of a set of components that
implements it, is a problem that has been studied in several contexts and by different
communities. In this context, important properties that are consider are the verification
that an implementation satisfies the specification, the implementability of the specifica-
tion by automatically producing an implementation from it, and the study of different
properties on the specification that can then be transposed to every (possibly automat-
ically produced) implementation satisfying it. In this work we concentrated on the im-
plementability problem, and we tackled it from the “Web service coordination” angle
developed by the community that focuses on behavioral types and process algebrae.
We are just the latest to attack this problem. So many other communities have been
considering it before us that even a sketchy survey has no chance to be exhaustive.

In what follows we compare the “behavioral types/process algebra” approach we
adopted, with two alternative approaches studied by important communities with a large
amount of different and important contributions, namely the “automata” and “crypto-
graphic protocols” approaches. In the full version of this article the reader will find a
deeper survey of these two approaches along with a more complete comparison. In a
nutshell, the “automata/model checking” community has probably done the most exten-
sive research on the problem. The paradigmatic global descriptions language they usu-
ally refer to are Message Sequence Charts (MSC, ITU Z.120 standard) enriched with
branching and iteration (which are then called Message Sequence Graphs or, as in the
Z.120 standard, High-Level Message Sequence Charts) and they are usually projected
into Communicating Finite State Machines (CFM) which form the theoretical core of
the Specification and Description Language (SDL ITU Z.100 standard). This commu-
nity has investigated the expressive power of the two formalisms and their properties,

22 Castagna, Dezani-Ciancaglini, Padovani

G Global Type G = alice
nat−→ bob;

bob
nat−→ carol

Talice Tbob Tcarol Session Types Tbob = alice?nat.
carol!nat.
end

Palice Pbob Pcarol Processes Pbob = receive x from alice;
send x+42 to carol;
end

Projection

Type checking

Fig. 1. Global types and multiparty sessions in a nutshell.

studied different notions of implementability (but not the notion we studied here which,
as far as we know, is original to our work), and several variants of these formalisms
especially to deal with the decidability or tractability of the verification of properties,
in particular model-checking. The community that works on the formal verification of
cryptographic protocols uses MSC as global descriptions, as well, though they are of
different nature from the previous ones. In particular, for cryptographic protocols much
less emphasis is put on control (branching and iteration have a secondary role) and ex-
pressivity, while much more effort is devoted to the description of the messages (these
include cryptographic primitives, at least), of properties of the participants, and of lo-
cal treatment of the messages. The global descriptions are then projected into local
descriptions that are more detailed than in the automata approach since they precisely
track single values and the manipulations thereof. The verification of properties is finer
grained and covers execution scenari that fall outside the global description since the
roles described in the global type can be concurrently played by different participants,
messages can be intercepted, read, destroyed, and forged and, generally, the communi-
cation topology may be changed. Furthermore different executions of the protocol may
be not independent as attackers can store and detour information in one execution to
use it in a later execution.

Our work springs from the research done to formally describe and verify compo-
sitions of Web services. This research has mainly centered on using process algebras
to describe and verify visible local behavior of services and just recently (all the refer-
ences date of the last five years) has started to consider global choreographic descrip-
tions of multiple services and the problem of their projection. This yielded the three
layered structure depicted in Figure 1 where a global type describing the choreography
is projected into a set of session types that are then used to type-check the processes
that implement it (as well as guide their implementation). The study thus focuses on
defining the relation between the different layers. Implementability is the relation be-
tween the first and second layer. Here the important properties are that projection pro-
duces systems that are sound and complete with respect to the global description (in
the sense stated by Theorem 4.1) and deadlock free (eg, we bar out specifications as

On Global Types and Multi-Party Sessions 23

p
a−→ q∨p a−→ r when it has no continuation, since whatever the choice either q or r

will be stuck). Typeability is the relation between the second and third layer. Here the
important properties are subject reduction (well-typed processes reduce only to well-
typed processes) and progress (which in this context implies deadlock freedom).

Although in this work we disregarded the lower layer of processes, it is neverthe-
less an essential component of this research. In particular, it explains the nature of the
messages that characterize this approach, which are types. One of the principal aims
of this research, thus, is to find the right level of abstraction that must be expressed by
types and session types. Consider again Figure 1. The process layer clearly shows the
relation between the message received by bob and the one it sends to carol, but this
relation (actually, any relation) is abstracted out both in the session and the global type
layers. The level of abstraction is greater than that of cryptographic protocols since
values are not tracked by global descriptions. Although tracking of values could be
partially recovered by resorting to singleton types, there is a particular class of val-
ues that deserves special care and whose handling is one of the main future challenges
of this research, that is, channels. The goal is to include higher order types in global
specifications thus enabling the transmission of session channels and therefore the reifi-
cation of dynamic reconfiguration of session topology. We thus aim at defining recon-
figuration in the specification itself, as opposed to the case of cryptographic protocols
where the reconfiguration of the communication topology is considered at meta-level
for verification purposes. As a matter of fact, this feature has already been studied in
the literature. For instance, the extension of WS-CDL [1] with channel passing is stud-
ied in [11] (as the automata approach has the MSC as their reference standard, so the
Web service-oriented research refers to the WS-CDL standard whose implementability
has been studied in [19]); the paper that first introduced global descriptions for session
types [9] explicitly mentions channels in messages that can be sent to other participants
to open new sessions on them. In our opinion the existing works on session types are
deeply syntactic in nature and suffer from the fact that their global types are defined in
function of the languages used to define processes and session types. The consequence
is that the design choices done in defining session types are amplified in the passage
to global types yielding a somewhat unnatural syntax for global types and restrictive
conditions devoid of semantic characterizations. Here we preferred to take a step back
and to start by defining global descriptions whose restrictions are semantically justified.
So we favored a less rich language with few semantically justified features and leave
the addition of more advanced features for a later time.

Coming back to the comparison of the three approaches, the Web service-oriented
approach shares several features in common with the other two. As for the automata
approach we (in the sense of the Web service-oriented research) focus on the expres-
siveness of the control, the possibility of branching and iterate, and the effective imple-
mentability into deadlock-free local descriptions. However the tendency for Web ser-
vices is to impose syntactic restrictions from the beginning rather than study the general
case and then devise appropriate restrictions with the sought properties (in this respects
our work and those of Bravetti, Zavattaro and Lanese [6, 7, 5] are few exceptions in
the panorama of the Web service approach). Commonalities with the cryptographic
protocol approach are more technical. In particular we share the dynamism of the com-

24 Castagna, Dezani-Ciancaglini, Padovani

munication topology (with the caveat about whether this dynamism is performed at the
linguistic or meta-linguistic level) and the robustness with respect to reconfiguration
(the projected session types should ensure that well-typed process will be deadlock free
even in the presence of multiple interleaved sessions and session delegation, though
few works actually enforce this property [3, 13]). As for cryptographic protocols, this
dynamism is also accounted at level of participants since recent work in session types
studies global descriptions of roles that can then be implemented by several different
agents [12]. Finally, there are some characteristics specific to our approach such as the
exploration of new linguistic features (for instance in this work we introduced actions
with multi-senders and encoded multi-receivers) and a pervasive use of compositional
deduction systems that we inherit from type theory. We conclude this section with a
more in-depth description of the main references in this specific area so as to give a
more detailed comparison with our work.

Multiparty session types. Global types were introduced in [9] for dyadic sessions and
in [16] for multi-party sessions. Channels are present in the global types of both [9]
and [16] while the first also allows messages to have a complex structure. Their pres-
ence, however, requires the definition of syntactic restrictions that ensure projectability:
channels need to be “well-threaded” (to avoid that the use of different channels disrupts
the sequentiality constraints of the specification) and message structures must be used
“coherently” in different threads (to assure that a fixed server offers the same services
to different clients). We did not include such features in our treatment since we wanted
to study the problems of sequentiality (which yielded Definition 4.2 of well-formed
global type) and of coherence (which is embodied by the subsession relation whose
algorithmic counterpart is the ! merge operator) in the simplest setting without further
complexity induced by extra features. As a consequence of this choice, our merge be-
tween session types is a generalization of the merge in [21, 12] since we allow inputs
from different senders (this is the reason why our compatibility is more demanding than
the corresponding notion in [21]).

Another feature we disregarded in the present work is delegation. This was intro-
duced in [16] for multi-party sessions and is directly inherited from that of dyadic ses-
sions [15]. A participant can delegate another agent to play his role in a session. This
delegation is transparent for all the remaining participant of the session. Delegation is
implemented by exchanging channels, ie, by allowing higher-order channels. In this
way the topology of communications may dynamically evolve.

Our crusade for simplification did not restrict itself to exclude features that seemed
inessential or too syntax dependent, but it also used simpler forms of existing constructs.
In particular an important design choice was to use Kleene star instead of more expres-
sive recursive global types used in [15, 9, 16, 12]. Replacing the star for the recursion
gives us a fair implementation of the projected specification almost for free. Fairness
seems to us an important —though neglected by current literature— requirement for
multi-party sessions. Without it a session in which a part continuously interacts leaving
a second one to starve is perfectly acceptable. This is what happens in all the papers
referred in this subsection. Without Kleene star, fairness would be more difficult to en-

On Global Types and Multi-Party Sessions 25

force. Clearly recursion is more expressive than iteration, even though we can partially
bridge this gap using k-exit iterations (Section 6).

Finally, although we aimed at simplifying as much as possible, we still imposed
few restrictions that seemed unavoidable. Foremost, the sequentiality condition of Sec-
tion 4, that is, that any two actions that are bound by a semicolon must always appear
in the same order in all traces of (sound and complete) implementations. Surprisingly,
in all current literature of multi-party session types we are aware of, just one work [9]
enforces the sequential semantics of “;”. In [9] the sequentiality condition, called con-
nectedness is introduced (albeit in a simplified setting since—as in [15, 16]— instead
of the “;” the authors consider the simpler case of prefixed actions) and identified as
one of three basic principles for global descriptions under which a sound and com-
plete implementation can be defined. All others (even later) works admit to project, say,
q

a−→ p;r a−→ p in implementations in which p reads from r before having read from q.
While the technical interest of relaxing the sequentiality constraint in the interpretation
of the “;” operator is clear —it greatly simplifies projectability— we really cannot see
any semantically plausible reason to do it.

Of course all this effort of simplification is worth only if it brings clear advantages.
First and foremost, our simpler setting allows us to give a semantic justification of the
formalism and of the restrictions and the operators we introduced in it. For these reasons
many restrictions that are present in other formalisms are pointless in our framework.
For instance, two global types whose actions can be interleaved in an arbitrary way
(ie, composed by ∧ in our calculus) can share common participants in our global types,
while in the work of [9] and [16] (which use the parallel operator for∧) this is forbidden.
So these works fail to project (actually, they reject) protocols as simple as the first line
of the example given in the specification (1) in the introduction. Likewise we can have
different receivers in a choice like, for example, the case in which two associated buyers
wait for a price from a given seller:

seller
price−→ buyer1;buyer1

price−→ buyer2∨seller price−→ buyer2;buyer2
price−→ buyer1

while such a situation is forbidden in [9, 16].
Another situation possible in our setting but forbidden in [9, 16, 12] is to have dif-

ferent sets of participants for alternatives, such as in the following case where a buyer
is notified about a price by the broker or directly by the seller, but in both cases gives
an answer to the broker:

(seller
agency−→ broker;broker

price−→buyer∨sellerprice−→buyer);buyeranswer−→ broker

A similar situation may arise when choosing between repeating or exiting a loop:

seller
agency−→ broker;(broker

offer−→ buyer;buyer
counteroffer−→ broker)∗;

(broker result−→ seller∧broker result−→ buyer)

which is again forbidden in [9, 16, 12].
The fact of focusing on a core calculus did not stop us from experimenting. On the

contrary, having core definitions for global and session types allowed us to explore new

26 Castagna, Dezani-Ciancaglini, Padovani

linguistic and communication primitives. In particular, an original contribution of our
work is the addition of actions with multiple senders and encoded multiple receivers (as
explained at the beginning of Section 2). This allows us to express both joins and forks
of interactions as shown by the specification (3) given in Section 2.

Choreographies. Global types can be seen as choreographies [1] describing the in-
teraction of some distributed processes connected through a private multiparty session.
Therefore, there is a close relationship between our work and [6, 7, 5], which concern
the projection of choreographies into the contracts of their participants. The choreog-
raphy language in these works essentially coincides with our language of global types
and, just like in our case, a choreography is correct if it preserves the possibility to reach
a state where all of the involved Web services have successfully terminated. There are
some relevant differences though, starting from choreographic interactions that invari-
ably involve exactly one sender and one receiver, while in the present work we allow
for multiple senders and we show that this strictly improves the expressiveness of the
formalism, which is thus capable of specifying the join of independent activities. Other
differences concern the communication model and the projection procedure. In par-
ticular, the communication model is synchronous in [6] and based on FIFO buffers
associated with each participant of a choreography in [7]. In our model (Section 3) we
have a single buffer and we add the possibility for a receiver to specify the participant
from which a message is expected. In [6, 7, 5] the projection procedure is basically an
homomorphism from choreographies to the behavior of their participants, which is de-
scribed by a contract language equipped with parallel composition, while our session
types are purely sequential. [6, 7] give no conditions to establish which choreographies
produce correct projects. In contrast, [5] defines three connectedness conditions that
guarantee correctness of the projection. The interesting aspect is that these conditions
are solely stated on properties of the set of traces of the choreography, while we need the
combination of projectability (Table 3) and well-formedness (Definition 4.2). However,
the connectedness conditions in [5] impose stricter constraints on alternative choreogra-
phies by requiring that the roles in both branches be the same. This forbids the definition
of the two global types described just above that involve the broker participant. In ad-
dition, they need a causal dependency between actions involving the same operation
which immediately prevents the projection of recursive behaviors (the choreography
language in [5] lacks iteration and thus can only express finite interactions).

Finally, in discussing MSG in the long version of this work we argue that requir-
ing the specification and its projection produce the same set of traces (called standard
implementation in [14]) seemed overly constraining and advocated a more flexible so-
lution such as the definitions of soundness and completeness introduced here. However
it is interesting that Bravetti and Zavattaro in [5] take the opposite viewpoint, and make
this relation even more constraining by requiring the relation between a choreography
and its projection to be a strong bisimulation.

Other calculi. In this brief overview we focused on works that study the relation be-
tween global specifications and local machine-oriented implementations. However in
the literature there is an important effort to devise new description paradigms for ei-

On Global Types and Multi-Party Sessions 27

ther global descriptions or local descriptions. In the latter category we want to cite [15,
4], while [10] seems a natural candidate in which to project an eventual higher order
extension of our global types. For what concerns global descriptions, the Conversation
Calculus [8] stands out for the originality of its approach.

8 Conclusion

We think that the design-by-contract approach advocated in [9, 16] and expanded in
later works is a very reasonable way to implement distributed systems that are correct
by construction. In this work we have presented a theory of global types in an attempt
of better understanding their properties and their relationship with multi-party session
types. We summarize the results of our investigations in the remaining few lines. First
of all, we have defined a proper algebra of global types whose operators have a clear
meaning. In particular, we distinguish between sequential composition, which models a
strictly sequential execution of interactions, and unconstrained composition, which al-
lows the designer to underspecify the order of possibly dependent interactions. The se-
mantics of gobal types is expressed in terms of regular languages. Aside from providing
an accessible intuition on the behavior of the system being specified, the most signifi-
cant consequence is to induce a fair theory of multi-party session types where correct
sessions preserve the ability to reach a state in which all the participants have success-
fully terminated. This property is stronger than the usual progress property within the
same session that is guaranteed in other works. We claim that eventual termination is
both desirable in practice and also technically convenient, because it allows us to easily
express the fact that every participant of a session makes progress (this is non-trivial,
especially in an asynchronous setting). We have defined two projection methods from
global to session types, a semantic and an algorithmic one. The former allows us to
reason about which are the global types that can be projected, the latter about how these
types are projected. This allowed us to define three classes of flawed global types and
to suggest if and how they can be amended. Most notably, we have characterized the
absence of sequentiality solely in terms of the traces of global types, while we have not
been able to provide similar trace-based characterizations for the other flaws. Finally,
we have defined a notion of completeness relating a global type and its implementa-
tion which is original to the best of our knowledge. In other theories we are aware of,
this property is either completely neglected or it is stricter, by requiring the equivalence
between the traces of the global type and those of the corresponding implementation.

Acknowledgments. We are indebted to several people from the LIAFA lab: Ahmed
Bouajjani introduced us to Parikh’s equivalence, Olivier Carton explained us subtle as-
pects of the shuffle operator, Mihaela Sighireanu pointed us several references to global
specification formalisms, while Wiesław Zielonka helped us with references on trace
semantics. Anca Muscholl helped us on surveying MSC and Martín Abadi and Roberto
Amadio with the literature on security protocols (see the long version). Finally, Roberto
Bruni gave us serveral useful suggestions to improve the final version of this work. This
work was partially supported by the ANR Codex project, by the MIUR Project IPODS,
by a visiting researcher grant of the “Fondation Sciences Mathématiques de Paris”, and
by a visiting professor position of the Université Paris Diderot.

28 Castagna, Dezani-Ciancaglini, Padovani

References

1. Web services choreography description language version 1.0. W3C Candidate Recommen-
dation, available at http://www.w3.org/TR/ws-cdl-10/, 2005.

2. J. A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration. Technical Report
Report CS-R9314, Programming Research Group, University of Amsterdam, 1993.

3. L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida.
Global progress in dynamically interleaved multiparty sessions. In Proceedings of CON-
CUR’08, LNCS 5201, pages 418–433. Springer, 2008.

4. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines for structured
service programming. In Proceedings of FMOODS’08, LNCS 5051, pages 19–38. Springer,
2008.

5. M. Bravetti, I. Lanese, and G. Zavattaro. Contract-driven implementation of choreographies.
In Proceedings of TGC’09, LNCS 5474, pages 1–18. Springer, 2008.

6. M. Bravetti and G. Zavattaro. Towards a unifying theory for choreography conformance and
contract compliance. In Proceedings of SC’07, LNCS 4829, pages 34–50. Springer, 2007.

7. M. Bravetti and G. Zavattaro. Contract compliance and choreography conformance in the
presence of message queues. In Proceedings of WS-FM’08, LNCS 5387, pages 37–54.
Springer, 2008.

8. L. Caires and H. T. Vieira. Conversation types. In Proceedings of ESOP’09, LNCS 5502,
pages 285–300. Springer, 2009.

9. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming
for web services. In Proceedings of ESOP’07, LNCS 4421, pages 2–17. Springer, 2007.

10. G. Castagna and L. Padovani. Contracts for mobile processes. In Proceedings of CON-
CUR’09, LNCS 5710, pages 211–228. Springer, 2009.

11. C. Chao and Q. Zongyan. An approach to check choreography with channel passing in
WS-CDL. In Proceedings of ICWS’08, pages 700–707. IEEE Computer Society, 2008.

12. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In Proceedings of
POPL’11, pages 435–446, 2011.

13. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On progress for structured commu-
nications. In Proceedings of TGC’07, LNCS 4912, pages 257–275. Springer, 2008.

14. B. Genest, A. Muscholl, and D. Peled. Message sequence charts. In Lectures on Concurrency
and Petri Nets, LNCS 3098, pages 537–558, 2003.

15. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disciplines for
structured communication-based programming. In Proceedings of ESOP’98, LNCS 1381,
pages 22–138. Springer, 1998.

16. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In Pro-
ceedings of POPL’08, pages 273–284. ACM, 2008.

17. R. Milner. A complete inference system for a class of regular behaviours. Journal of Com-
puter and System Sciences, 28(3):439–466, 1984.

18. R. J. Parikh. On context-free languages. Journal of the Association for Computing Machin-
ery, 13(4):570–581, 1966.

19. Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theoretical foundation of choreography.
In Proceedings WWW’07, pages 973–982. ACM, 2007.

20. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.
In Proceedings of PARLE’94, LNCS 817, pages 398–413. Springer, 1994.

21. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty session types.
In Proceedings of FOSSACS’10, LNCS 6014, pages 128–145, 2010.

