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Abstract

The accurate simulation of polydisperse sprays undergoing coalescence in unsteady gaseous flows is a crucial
issue. In solid rocket motors, the internal flow depends strongly on the alumina droplet size distribution, which
spreads up with coalescence. Yet solving for unsteady two-phase flows with high accuracy on the droplet sizes
is a challenge for both modeling and scientific computing. As an alternative to Lagrangian approaches, a wide
range of Eulerian models have been recently developed to describe the disperse liquid phase at a lower cost, with
an easier coupling to the gaseous phase and with massively parallel codes. Among these models, the Multi-Fluid
model allows the detailed description of polydispersity and size/velocity correlations by separately solving fluids
of size-sorted droplets, the so-called sections. The existing one size moment description of the size distribution
in each section provides simple and fast resolution for coalescence. On the other hand, a two size moment
method has been suggested to reduce the number of sections but it lacks an efficient coalescence resolution
method. After describing a new strategy for two size moment coalescence, the two methods are compared on
various configurations in a research code and an industrial-oriented code, in order to conclude on computational
cost and accuracy. The paper aims at describing the most efficient configuration for multi-dimensional unsteady
and eventually coalescing rocket chamber simulations. Its objective is threefold : first, to validate the two size
moment method by comparing simulations to reference solutions and dedicated experimental measurements
conducted at ONERA, second to study the efficiency and robustness of both methods, third, to draw some firm
conclusions about the necessity to use one size moment or two size moment methods to simulate solid propellant
alumina sprays. We finally perform the first simulations of coalescence in realistic 2D boosters with a two size
moment Eulerian method.

Keywords: Polydisperse spray, High order Eulerian Multi-Fluid model, Adaptive quadrature for coalescence
integrals, Solid propellant combustion, Aluminum oxide droplets, CEDRE code

Introduction

Two-phase flows constituted of a gaseous phase carrying a disperse condensed phase play a key
role in many industrial and scientific applications : spray evaporation and combustion in Diesel engine
combustion chambers, fluidized beds, dynamics of planet formation in solar nebulae, etc. In all these
applications the disperse phase is composed of particles of various sizes that can eventually coalesce
or aggregate, break-up, evaporate and have their own inertia and size-conditioned dynamics. So the
importance of polydispersion is obvious for a comprehensive modeling of these phenomena.

In a solid rocket motor, aluminum powder is frequently used as solid propellant additive to increase
specific impulse. Unlike the other ingredients, aluminum particles can burn in a significant portion
of the chamber and finally produce a high mass fraction of alumina in a condensed liquid disperse
phase. This disperse phase encounters drag forces, coalescence and heat exchanges [22]. In the nozzle,
the droplets accelerate suddenly and cool down with the gas, eventually becoming solid and breaking
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up in such velocity gradients [21, 46, 4]. Thus, the disperse phase strongly interacts with the gaseous
flow field during its way throughout the engine. It contributes to the solid rocket motor performance
loss, first via a decrease in nozzle efficiency which penalizes specific impulse; second by modifying
the acoustic response of the system and therefore having a complex influence on combustion and
flow instability levels and frequencies; third some of the droplets, mainly the ones with high inertia,
which end up in the eventual aft-dome region around the submerged nozzle, induce sloshing motion
of this molten liquid slag and can lead to control problems and possible vehicle instability; fourth
droplets are the source of slag material that may remain in the engine during firing, causing insulation
erosion in high concentration zones. In such harsh conditions of pressure, temperature and velocity,
solid propulsion experiments consume high technology materials and offer poor measurement output,
especially on the disperse phase. The abundance of physical phenomena involved makes the models
difficult to scale [53]. Regarding the prohibitive cost of experiments, numerical simulation is the only
available tool for optimizing rocket engines. Until now, complete 3D computations were achieved at
the cost of drastic physics simplifications, allowing little self-reliance towards validation experiments.
Yet time has come for comprehensive simulations, including advanced gas/droplet/structure coupled
models, to give predictive answers. In this paper, we adopt a Direct Numerical Simulation (DNS)
point of view. Turbulent dispersion models [51] and sub-grid scale closure terms for both the gas and
the liquid phases can be found for Large Eddy simulation (LES) in [59, 55, 7, 40]. Yet, efficient DNS
is an incontrovertible starting point for disperse two-phase flow simulations and is discussed in this
paper while the adaptation of the model and methods to LES can be done later on as discussed in the
conclusion.

Focusing on the dynamics of the chemically inert alumina cloud in the motor is a first step to
evaluate specific impulse loss in the nozzle, slag material accumulation and acoustic response of the
system. Therefore solid propellant regression, aluminum particle combustion or structure coupling
are here neglected. We work with non-evaporating sprays throughout the paper, keeping in mind the
broad application fields related to the present study. By spray, we denote a disperse liquid phase
constituted of droplets carried by a gaseous phase. We consider the specific case of moderately dense
sprays [46, 43], corresponding to hypotheses that are realistic in a solid rocket motor : 1. the liquid
mass fraction is high enough to generate strong drag retrocoupling effects on the gas; 2. the liquid
volume fraction is high enough to get significant effects from droplet collisions; 3. but the liquid
volume fraction is still much smaller than one so that the gas can be solved as a single phase flow
with only source terms to ensure the coupling with the liquid phase. The study takes place in the
combustion chamber, where the main physical processes that must be accounted for are : transport
in real space, acceleration of droplets due to drag, conditioned by size, and coalescence, leading to
polydispersity. These processes are remarkably sensitive to size distribution. On the one hand, size
distribution impacts directly on droplet velocity through differences in the drag force. On the other
hand, velocity differences induce coalescence which impacts on polydispersity. So droplet size and ve-
locity are intimately intricated, which will be refered to as the size/velocity coupling, as shown in Fig. 1.
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Figure 1: Size/velocity coupling mechanism for a liquid spray.

We will therefore choose a model which is accurate as regards the size distribution. The retained
approach called “mesoscopic” -or sometimes “kinetic” in reference to the kinetic theory of gases-
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describes the droplets as a cloud of point particles for which the exchanges of mass, momentum and
heat are described using a statistical point of view, with eventual correlations : a finite set of global
properties such as a size parameter to describe spherical droplets, velocity of the center of mass,
temperature are explicitly included so that the total phase space is usually high-dimensional. More
details about the droplets, such as angular momentum, non-sphericity factors, can be predicted by
increasing the size of the phase space : it is established that refined droplet models can be used as long
as they do not include history terms [37]. The Williams-Boltzmann equation, a transport equation
based on kinetic theory, has proven to be useful for treating polydisperse, dilute and moderately dense
liquid sprays [57, 58]. Such an equation describes the evolution of the number density function or
NDF of the spray due to the drag force of the gaseous phase and the droplet-droplet interaction of
coalescence [34, 29, 38].

There are several strategies in order to solve the liquid phase and the major challenge in numerical
simulations is to account for the strong coupling between all the involved processes. A first choice is to
approximate the NDF by a sample of discrete numerical parcels of particles of various sizes through a
Lagrangian-Monte-Carlo approach [21, 46, 4, 29]. It is called Direct Simulation Monte-Carlo method
(DSMC) in [6] and is generally considered to be the most accurate for solving the Williams-Boltzmann
equation; it is specially suited for direct numerical simulations (DNS) since it does not introduce any
numerical diffusion, the particle trajectories in phase space being very accurately resolved. Its main
drawback is the coupling of a Eulerian description for the gaseous phase to a Lagrangian description
of the disperse phase, thus introducing spatial diffusion via projection steps on the Eulerian grid and
offering limited possibilities of vectorization/parallelization or implicitation. Moreover for unsteady
computations of polydisperse sprays, a large number of parcels in each cell of the computational
domain is generally needed, thus yielding large memory requirement and CPU cost.

As an alternative, the Eulerian Multi-Fluid model, furthered in [37] from the ideas developped in
[28], relies on the derivation of a semi-kinetic modeling from the Williams equation using a moment
method for velocity, but keeping the continuous size distribution function. This distribution function
is then discretized using a “finite volume approach” in size phase space that yields conservation
equations for mass, momentum (and eventually other properties such as number, energy) of droplets
belonging to fixed size intervals called sections. Each of them constitutes a different “fluid”. Please
note that integrating on a continuous size variable in each section is a key aspect : while most
Eulerian approaches, based on size sampling, consider discrete droplet sizes gathered into “classes”
which cannot account for the new droplet sizes created by coalescence (except scarce examples [54]),
continuous size approaches such as the Multi-Fluid method hereafter described are the only Eulerian
methods handling coalescence naturally and rigorously. After integration on the sections, the resulting
conservation equations are similar to those of the pressureless gas dynamics [8, 61] and lead to singular
behaviors such as delta shocks and vacuum zones. Well-suited numerical methods are thus required,
some specific schemes being presented in [12]. The model finally requires closure relations for the
phenomena accounted for by the Williams equation. We refer to [2, 52, 37] for detailed droplet models
for which the Multi-Fluid model can be easily extended. These extensions do not have any impact on
the conclusions of the present study.

The Eulerian Multi-Fluid model has proven its capability to simulate the size-conditioned dynam-
ics of polydisperse sprays including coalescence with a one size moment resolution method of the size
distribution in each section [37] even if the number of sections with the original method has to be
large for accuracy purposes. Two size moment methods are described in [36], that allow to reduce the
number of sections. A two size moment method using exponential size distributions in the sections,
introduced in [20] for evaporation, is considered in this paper. One and two size moment methods
are in fact particular cases of a general n moment method described in [42]. If the one size moment
method can solve coalescence [38] and if an attempt has been made to include it in the two size
moment method [19], the purpose of this paper is to extend the two size moment method to include
coalescence and to validate the approach as well as to prove its performances on industrial simulations.
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Nozzle D’Herbigny TEPTEU (SRM) LP10 (SRM)
Time dependence Steady Steady Steady Unsteady
Physical Space Pseudo 2D 1D 2D 2D
Phase space (size) 1D 1D 1D 1D

One size moment MF Research Research
Two size moment MF Research Research CEDRE CEDRE

Lagrangian Research CEDRE
Analytical Yes
Experiment Yes

Table 1: Summary of the cases studied in this paper and corresponding result media.

In this paper, the two size moment Eulerian Multi-Fluid method is reformulated. It rigorously
includes a droplet temperature and its treatment by coalescence. A detailed comparison to the one
size moment method is thoroughly discussed. We have then developped a complete numerical strategy,
efficient for implementation and practical use in industrial codes. The two size moment method specific
algorithms that are size distribution coefficient inversion and coalescence integral computation have
been carefully designed and implemented to ensure robustness, accuracy and computational efficiency.

We have then conducted a quantitative study of the validity and computational efficiency of the
method. For the purpose of this paper, the one size moment and two size moment methods have been
implemented in a research code developped at EM2C Laboratory solving coalescing dilute sprays in a
pseudo 2D nozzle1 with one-way coupling to the gaseous phase, a case which was introduced in [38].
This configuration is used to compare the two methods solving the dynamics and size evolution of
a lognormal distributed spray. It fully validates the two size moment method in coalescing cases by
providing detailed comparisons to Lagrangian and Multi-Fluid reference solutions. Then, an analytical
solution in a bimodal case brings more quantitative validation, especially proving enhanced accuracy
for the two size moment method. This test-case confirms the excellent robustness of the two size
moment Multi-Fluid method towards steep and monodisperse distributions that are usually difficult
to handle in a Eulerian formalism. The research code is then used to simulate the complete dynamics
of an experiment on coalescence [16] which had been designed at ONERA to validate collision efficiency
models. This work enhances the experiment exploitation and provides precious validation for such
two-phase flow models, which too often lack experimental back up. These validations globally show the
compliance of the two size moment Multi-Fluid method to the features required for solid rocket motor
simulations i.e. accuracy on polydispersity and dynamics, advanced coalescence models, robustness
and fast computation.

In addition, we have extended the two size moment Multi-Fluid model implemented in CEDRE,
a multiphysics 3D industrial-oriented code developed at ONERA, to include coalescence with the
efficient algorithms that are described, tested and validated in this paper. The CEDRE code, which
provides fully coupled aero-thermochemical resolution for energetics problems, is used to perform two
solid rocket motor simulations with the two size moment Multi-Fluid method to achieve the validation
and the proof of efficiency of such models in a complex physical background. The first case provides
an ultimate validation to a reference Lagrangian simulation. The second case illustrates the ability of
the two size moment method to simulate in a reasonable time a complete solid propulsion unsteady
test-case. The importance of coalescence in solid propulsion physics is brought to light through its
influence on instability levels before concluding the study.

The paper is organized as follows. Section 1 is dedicated to the derivation of the Multi-Fluid
method as a theoretical framework. In section 2, we evaluate the accuracy/cost compromise provided
by the two Multi-Fluid methods implemented in the research code on a size/velocity coupling validation

1The configuration can almost be considered as 3D since it involves two space dimensions and one droplet size
dimension which have to be resolved.
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test-case. In section 3, we validate the two size moment Multi-Fluid method by comparing it to a
purposedly derived analytical formula, in a 1D bimodal configuration. The difficulty lies in handling
the bimodal size distributions, that are approximated by steep functions in our Eulerian formalism. In
section 4, implemented collision and coalescence efficiency models are challenged to a 1D coalescence
efficiency experiment that corresponds to the configuration simulated in the previous section. In
section 5, we give 2D numerical results in two modelled engines, both composed of a chamber and
a nozzle, using the CEDRE code. The different test-cases studied in sections 2, 3, 4 and 5, the
corresponding codes and validation resources used are recapitulated in Tab. 1.

1. Mesoscopic Eulerian spray modeling : two Multi-Fluid methods

In this section, we introduce the framework of our study : the kinetic description of the disperse
phase and the derivation of two Eulerian resolution methods. The separation between the two methods
appears when presuming the size distributions inside the sections. The origin and assumptions of the
corresponding coalescence models are detailed and an integration strategy is given to compute the
coalescence terms.

1.1. A kinetic description : the Williams equation

Let us define the number density function (NDF) fφ of the spray, where fφ(t,x,u, T, φ)dxdφdTdu
denotes the average number of droplets (in a statistical sense), at time t, in a volume of size dx around
a space location x, with a velocity in a du-neighborhood of u, with an internal temperature T in a
dT -neighborhood of T and with a size in a dφ-neighborhood of φ. When modeling the droplet with an
infinite conductivity hypothesis [2, 37], we can choose to parametrize the droplet internal state with
the only temperature variable. Its state function is then the enthalpy, which only depends on T and
reads h(T ) = href +

∫ T
Tref

cp(θ)dθ, where cp(T ) is the droplet heat capacity and the index “ref” denotes
a reference state.

When focusing on polydispersity, the size parameter φ of droplets is of primary importance but its
natural expression depends on the phenomena : volume v is relevant towards conservation of matter,
surface S towards evaporation and radius r towards impact parameters for instance. Since we assume
spherical droplets, the equivalence relation v = 4

3πr3 = 1
6
√

π
S

3
2 allows the size to be expressed in this

paper with notations chosen to be most comfortable. As for the size parameter conversions, we shall
keep in mind that f r(r)dr = fS(S)dS = f v(v)dv and use the implicit notation f .

The evolution of the NDF is described by a Boltzmann-like equation, the Williams transport
equation [57, 58]. Considering local momentum and heat transfer with the gas due to drag forces
and conducto-convective fluxes and considering collisions between droplets but no evaporation nor
break-up, it reads :

∂tf + u · ∂xf + ∂u · (Ff) + ∂T

(

H

cp(T )
f

)

= Γ (1)

where F is the drag force per unit mass, H is the heat transfer per unit mass and Γ is the collision
source term. These terms require models which should take into account physical phenomena at the
droplet scale. As an illustration, the Stokes law can model F when the particular Reynolds number is
moderate. This force per unit mass is due to the velocity difference with the gaseous phase :

F(t,x,u, S) =
U(t,x) − u

τu(S)
, τu(S) =

ρlS

18πµg

where U(t,x) is the gas velocity, µg its dynamic viscosity and ρl is the supposedly liquid droplet
material density. In the same conditions known as Stokes’ Regime, the heat transfer H per unit mass
reads [52] :

H(t,x, T, S) = cp(T )
T(t,x) − T

τT (S)
, τT (S) =

3

2
Pr

cp(T )

cg
p(t,x)

τu(S)
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where T(t,x) is the local gas temperature, cg
p(t,x) is the gas specific heat capacity and Pr is the

Prandtl number, ratio of the gaseous kinematic viscosity and heat diffusivity.
Finally, the kinetic modeling for the collision operator is taken from [30]. We then assume [38] :

[C1] We only take binary collisions into account.

[C2] The mean collision time is very small compared to the intercollision time.

[C3] Mass, momentum and droplet enthalpy are preserved during collisions.

[C4] Every collision leads to coalescence.

Hypotheses [C1] and [C2] result from the small liquid phase volume fraction in the context of mod-
erately dense sprays. Hypothesis [C3] is a classic conservation hypothesis for most types of collisions.
We assume that heat converted from relative kinetic energy by inelastic dissipation is neglected in
the enthalpy balance. Hypothesis [C4] is discussed in [9, 3, 29] since colliding droplets can bounce on
each other or separate by reflexion or stretching if the remaining internal kinetic energy of the new
droplet is too high. In this context, the CEDRE code provides the Brazier-Smith model (depending
on velocities, droplet material viscosity and surface tension, etc.) but it is not used in the following
simulations (though adaptations are straightforward) and is therefore not detailed any further. The
collision operator resulting from these hypotheses is developped as Γ = Q+ − Q− where Q+ and Q−

respectively correspond to the quadratic integral operators associated with creation and destruction
of droplets due to coalescence. Considering two precursor droplets of volumes v⋆ and v⋄ colliding to
form a new droplet of volume v, the kinetic coalescence operators read [30, 29]:

Q+ =
1

2

∫

T ⋆

∫∫

u
⋆,v⋆∈[0,v]
f(t,x,u⋄, T ⋄, v⋄)f(t,x,u⋆, T ⋆, v⋆)B(|u⋄ − u⋆|, v⋄, v⋆)Jdv⋆du⋆dT ⋆

Q− =

∫

T ⋆

∫∫

u
⋆,v⋆

f(t,x,u, T, v)f(t,x,u⋆, T ⋆, v⋆)B(|u − u⋆|, v, v⋆)dv⋆du⋆dT ⋆

(2)

where v⋄ = v − v⋆, v⋄u⋄ = vu− v⋆u⋆, v⋄h(T ⋄) = vh(T ) − v⋆h(T ⋆) are precollisional parameters, J is
the Jacobian of the mapping (v, T,u) → (v⋄, T ⋄,u⋄) : J = (v/v⋄)nd+1cp/c

⋄
p with nd the dimension of

the velocity phase space, cp = cp(T ) and c⋄p = cp(T
⋄) and B(|u−u⋆|, v, v⋆) is the collision/coalescence

probability kernel which reads :

B(|u − u⋆|, v, v⋆) =|u− u⋆| β(v, v⋆)E(|u − u⋆|, v, v⋆).

In this kernel, β(v, v⋆) = π (r + r⋆)2 is the impact parameter or geometric cross-section and E is the
collision efficiency. This efficiency accounts for the effects of the surrounding gas flow. Models can be
found in [35, 5] and are recalled in Appendix B.

1.2. Semi-kinetic model

The formalism and the associated assumptions needed to derive the Eulerian Multi-Fluid models
are introduced in [37]. We shall now recall the two main steps which are the semi-kinetic derivation
and the sectional integration in order to precisely introduce the coalescence terms.

In a first step we reduce the size of the phase space to the only droplet size variable. We only
consider moments in the velocity and temperature variables at a given time, a given position and
for a given droplet size that are the droplet number density n =

∫

fdudT , the average velocity
ū = n−1

∫

ufdudT and the average enthalpy h̄ = n−1
∫

h(T )fdudT . They indeed depend only on
(t,x, S). We can now define a notation for an effective temperature T̄ corresponding to h̄2. In order
to close the system, the following assumptions are introduced :

2But T̄ 6=
R

TfdudT a priori
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[HV1] For a given droplet size, at a given point (t,x), there is only one velocity ū(t,x, S).

[HV2] The velocity dispersion around ū(t,x, S) is zero in each direction, whatever the point (t,x, S).

[HT1] For a given droplet size, at a given point (t,x), there is only one temperature T̄ (t,x, S).

[HT2] The temperature dispersion around T̄ (t,x, S) is zero whatever the point (t,x, S).

It is equivalent to presume the following form of NDF :

f(t,x,u, T, S) = n(t,x, S)δ(u − ū(t,x, S))δ(T − T̄ (t,x, S)).

The set of hypotheses [HV1] and [HV2] known as the monokinetic hypothesis has been introduced in
[37] and is equivalent to reducing the velocity distribution support to a one dimensional submanifold
parameterized by droplet size. It is correct when τu(S) is small enough [14, 41, 13, 12]. Hypotheses
[HT1] and [HT2] are similarly introduced in [37] so that temperatures are locally correlated for droplets
of a given size. They are correct when τu(S) and τT (S) are small enough. This step leads to a system
of conservation equations called the semi-kinetic model, which reads :







∂tn + ∂x · (nū) = Q+
n − Q−

n

∂t(nū) + ∂x · (nū⊗ ū) = nF̄ + Q+
u − Q−

u

∂t(nh̄) + ∂x · (nh̄ū) = nH̄ + Q+
h − Q−

h

(3)

where one gets the average transfer terms nF̄ =
∫

FfdudT and nH̄ =
∫

HfdudT .
In the semi-kinetic framework, the coalescence operator yields the evolution rate of the zeroth and

first order moments of the velocity phase space. Coalescence phenomenon has no particular reason to
preserve the velocity and temperature distributions as Dirac δ-functions. To preserve the monokinetic
and zero-dispersion assumptions, these integrals have been evaluated with a formal dispersion which is
constrained to be zero (this projection step is detailed in [38]). The same demonstration can be done
for the temperature distribution. Both these projections are yet consistant with the size conditionned
relaxations induced by drag and heat transfers. So these terms finally read, when omitting the (t,x)
dependency :

Q+
n =

1

2

∫

v⋆∈[0,v]
n(v⋄)n(v⋆)β(v⋄, v⋆)I+

n dv⋆

Q−
n = n(v)

∫

v⋆∈[0,+∞[
n(v⋆)β(v, v⋆)I−n dv⋆

Q+
u =

1

2

∫

v⋆∈[0,v]
n(v⋆)n(v⋄)β(v⋆, v⋄)

v⋆ū(v⋆) + v⋄ū(v⋄)
v⋆ + v⋄

I+
n dv⋆

Q−
u = n(v)ū(v)

∫

v⋆∈[0,+∞[
n(v⋆)β(v, v⋆)I−n dv⋆

Q+
h =

1

2

∫

v⋆∈[0,v]
n(v⋆)n(v⋄)β(v⋆, v⋄)

v⋆h(T̄ (v⋆)) + v⋄h(T̄ (v⋄))
v⋆ + v⋄

I+
n dv⋆

Q−
h = n(v)h(T̄ (v))

∫

v⋆∈[0,+∞[
n(v⋆)β(v, v⋆)I−n dv⋆

(4)

where I−n and I+
n are the partial collisional integrals, computed with the size correlated velocities :

I+
n =|ū(v⋆) − ū(v⋄)| E(|ū(v⋆) − ū(v⋄)|, v⋆, v⋄)

I−n =|ū(v) − ū(v⋆)| E(|ū(v) − ū(v⋆)|, v, v⋆)

The phase space of the semi-kinetic system has too high a dimension to allow efficient deterministic
resolution and requires therefore further modeling. We choose the Multi-Fluid model, a finite volume
method on size moments that has proven to be efficient on polydisperse cases.
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1.3. Multi-Fluid model

The second modeling step is called the Eulerian Multi-Fluid model and is described in [37] and
extended to coalescence in [38]. It relies on the choice of a discretization 0 = S0 < S1 < · · · < SN = ∞
for the droplet size phase space and the averaging of the conservation law system over each fixed size
interval [Sk−1, Sk[, called section. The set of droplets in one section can be seen as a “fluid” for which
conservation equation are written, the sections exchanging mass, momentum and enthalpy. In order
to close the system, the following assumptions are introduced :

[H3] In each section, the velocity does not depend on the size of the droplets.

[HT3] In each section, the temperature does not depend on the size of the droplets.

[H4] In each section, the form of n as a function of S is presumed.

We choose for assumption [H3] the notation ū(t,x, S) = ūk(t,x) to designate the constant velocity
distribution in section k. Hypothesis [HT3] is similarly introduced here and is equivalent to presum-
ing h(T (t,x, S)) = h̄k(t,x) = h(T̄k(t,x)) as a constant enthalpy distribution in section k, and the
corresponding effective temperature T̄k(t,x) which allows to define the sectional specific heat capacity
c̄k = cp(T̄k). As for [H4], it allows to reduce the size distribution information in each section at (t,x)
to a set of moments of S, the number of which depends on the choice of the (κk)k set of size presumed
form functions.

Let us now consider two methods based on different forms of presumed functions for [H4]. In the
one size moment method, a one parameter function in each section decouples size dependence 1κk(S)
and space-time dependence mk(t,x), yielding a first order granulometry convergence with the number
of sections. This is the classical Multi-Fluid method which has been developped and validated for
evaporating cases [37] and in coalescing cases [38]. We then introduce a two size moment method using
a two-coefficient 2κk(t,x, S) function which yields a second order granulometry convergence [36]. Both
methods then solve for size moments calculated on the sections, the equations of which are derived by
integrating the semi-kinetic system (3). Please note that the more parameters the presumed function
has, the more moments one needs. The choice of refining the size distribution description with a high
order moment method for a finer resolution of polydispersity therefore increases the computational
cost. In the context of evaporation, the generalization to more moments can allow to reduce the
number of sections to one [31, 42, 33]. Regarding coalescence, only the one size moment method has
been validated so far [37].

1.4. One size moment Multi-Fluid method

The one size moment Multi-Fluid method assumes a fixed size profile in each section, decoupling
size and space dependency. The following notation therefore specifies [H4] in each section k :

n(t,x, S) = mk(t,x)1κk(S)

where mk is the mass concentration of droplets in the kth section, in such a way that :

∫ Sk

Sk−1

1κk(S)
ρl

6
√

π
S3/2dS = 1.

Such an approach only focuses on one moment of the distribution in the size variable : the moment in
terms of mass is chosen because it is conserved by coalescence. Please note that the distribution on
the last section is a decreasing exponential with a fixed coefficient. This choice allows the final section
to treat the bigger droplets but requires not to host a significant part of the mass for the sake of
accuracy. It is well suited for evaporating sprays, the size support of which never extends [37]. This is
though a major limitation when coalescence occurs since bigger droplets are generated. Comparisons
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to results provided by the two size moment method when this final, unbounded section is “active” are
discussed in section 2.

The conservation equations for the kth section result from the integration of the mass moment of
the semi-kinetic system (3) in each section k and reads :







∂tmk +∂x ·(mkūk)=
1Cm+

k −1Cm−
k

∂t(mkūk)+∂x ·(mkūk⊗ūk)=mk
1F̄k+

1Cmu+
k −1Cmu−

k

∂t(mkh̄k)+∂x ·(mkh̄kūk)=mk
1H̄k+

1Cmh+
k −1Cmh−

k

(5)

where 1F̄k is the “classical” average drag force per unit mass on a section and 1H̄k is the average heat
transfer per unit mass on a section :

1F̄k =
U− ūk

1τu
k

,
1

1τu
k

=

∫ Sk

Sk−1

1κk(S)S3/2

τu(S) dS
∫ Sk

Sk−1

1κk(S)S3/2dS
, 1H̄k = c̄k

T − T̄k

1τT
k

,
1

1τT
k

=

∫ Sk

Sk−1

1κk(S)S3/2

τT (S)
dS

∫ Sk

Sk−1

1κk(S)S3/2dS
.

The total system thus counts nd + 2 times more equations to be solved on the space domain than the
number of sections with nd the dimension of the physical space.

0 v⋆

v⋄

vi vi+1

vj

vj+1

k
strip

lower limit

k
strip

upper limit

v⋆ + v⋄ = vk

-

v⋆ + v⋄ = vk+1

-

Q
QQDijk

Figure 2: Domains Dijk on which coalescence terms are integrated.

For each section k, the coalescence creation terms result from a double integration : on the whole
colliding partner size space at the kinetic level in Eq. (2) and on the concerned section at the Multi-
Fluid level. Yet the second dependency will not coincide with the section after mapping the natural
variables of the two precursor colliding partners i and j. When splitting the integration domain thanks
to the continuity of section partitioning, one gets elementary integrals Qijk, triply indexed with the
two precursor section numbers i and j and the destination section number k. The corresponding
elementary integration domains are illustrated in Fig. 2 and defined as :

Dijk =
{

r⋆, r⋄
∥

∥

∥
ri−1 < r⋆ < ri ; rj−1 < r⋄ < rj ; r3

k−1 < r⋆3 + r⋄3 < r3
k

}

In the particular case of the one size moment method, considering [HV2] and assuming E = 1 [37],
the coalescence integrals Qijk take the following form after factorizing the mass moments mi and mj :

1Q⋆
ijk =

∫∫

Dijk

1κi(r
⋆)1κj(r

⋄)π(r⋆+ r⋄)2
4

3
πρlr

⋆3dr⋆dr⋄

1Q⋄
ijk =

∫∫

Dijk

1κi(r
⋆)1κj(r

⋄)π(r⋆+ r⋄)2
4

3
πρlr

⋄3dr⋆dr⋄
(6)

As for the disappearance terms, they can also be computed as sums of the elementary creation
integrals and must be so to ensure the conservation of matter. After some algebra, the coalescence
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terms 1Cm+
k , 1Cm−

k , 1Cmu+
k , 1Cmu−

k , 1Cmh+
k and 1Cmh−

k read [38] :

1Cm+
k =

k
∑

i=1

mimj

i−1
∑

j=1

|ūi − ūj| (1Q⋆
ijk+ 1Q⋄

ijk)
1Cm−

k = mk

N
∑

j=1

mj |ūj − ūk|
N

∑

i=1

1Q⋆
kji

1Cmu+
k =

k
∑

i=1

mimj

i−1
∑

j=1

|ūi − ūj| (ūi
1Q⋆

ijk+ ūj
1Q⋄

ijk)
1Cmu−

k = mkūk

N
∑

j=1

mj |ūj − ūk|
N

∑

i=1

1Q⋆
kji

1Cmh+
k =

k
∑

i=1

mimj

i−1
∑

j=1

|ūi − ūj| (h̄i
1Q⋆

ijk+ h̄j
1Q⋄

ijk)
1Cmh−

k = mkh̄k

N
∑

j=1

mj |ūj − ūk|
N

∑

i=1

1Q⋆
kji

(7)

The integrands of the Qijk integrals depend only on size parameters r,r⋆ and r⋄ thanks to [H4]. This
allows the Qijk integrals to be pre-calculated as soon as the section limits and the (1κk)k are given,
i.e. once and for all at the beginning of a simulation, the advantages and limits of which are discussed
in section 1.6.

1.5. Two size moment Multi-Fluid method

The two size moment Multi-Fluid model is based on a two-coefficient exponential approximation
of the size distribution in each section [19, 20]. This means that [H4] reads, for S ∈ [Sk−1, Sk[ :

2κk(t,x, S) = ak(t,x) exp(−bk(t,x)S)

where (ak(t,x), bk(t,x))k yields two moments per section (nk(t,x),mk(t,x))k :


















∫ Sk

Sk−1

2κk(t,x, S)dS = nk(t,x)

∫ Sk

Sk−1

2κk(t,x, S)
ρl

6
√

π
S3/2dS = mk(t,x)

The choice of an exponential function ensures the positivity of the distribution function. It also
aims at reducing the number of sections and is well suited for evaporation, which requires mass flux
information at the section boundary. On the other hand, a problem known as realizability emerges
from the fact that the transported quantities are the (nk,mk)k while all source terms are computed
by integration of 2κk(t,x, S) on S, therefore requiring (ak, bk)k. The inversion of the previous system
as well as all PDE resolution and integration numerical methods must respect realizability conditions
on the sections. Practically, (mk/nk)k ratios are conditioned by the kth section boundaries since they
drive information on average droplet volume. The (ak, bk)k inversion algorithm was improved to reduce
its cost and to increase its reliability. The details are provided in Appendix A.

The conservation equations for the kth section now read :














∂tnk +∂x ·(nkūk)=
2Cn+

k −2Cn−
k

∂tmk +∂x ·(mkūk)=
2Cm+

k −2Cm−
k

∂t(mkūk)+∂x ·(mkūk⊗ūk)=mk
2F̄k+

2Cmu+
k −2Cmu−

k

∂t(mkh̄k)+∂x ·(mkh̄kūk)=mk
2H̄k+

2Cmh+
k −2Cmh−

k

(8)

where the heat and momentum source terms 2F̄k and 2H̄k are integrated similarly as for the one size
moment method but with 2κk(S). The characteristic times 2τu

k and 2τT
k can now vary in space and time,

depending on the reconstruction coefficients. The total system counts nd + 3 times more equations
than the number of sections with nd the dimension of the physical space.

Since the time and space dependency of the size-distribution functions 2κk(t,x, S) is no longer
factorizable as was mk in the one size moment method, the Qijk integrals must be computed at each
time step in each cell on Dijk. Let us introduce the notation :

Ψij(t,x, r⋆, r⋄, |u⋄ − u⋆|) = 2κi(t,x, S(r⋆))2κj(t,x, S(r⋄))π(r⋆ + r⋄)2 |ūi − ūj| E(r⋆, r⋄, |u⋄ − u⋆|)
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The coalescence integrals have a different homogeneity than in the one size moment method. They
now include the number or mass information and read :

2Qn
ijk =

∫∫

Dijk

Ψij(t,x, r⋆, r⋄, |u⋄ − u⋆|)dr⋆dr⋄

2Q⋆
ijk =

∫∫

Dijk

Ψij(t,x, r⋆, r⋄, |u⋄ − u⋆|)4
3
πρlr

⋆3dr⋆dr⋄

2Q⋄
ijk =

∫∫

Dijk

Ψij(t,x, r⋆, r⋄, |u⋄ − u⋆|)4
3
πρlr

⋄3dr⋆dr⋄

(9)

The coalescence source terms 2Cn+
k , 2Cn−

k , 2Cm+
k , 2Cm−

k , 2Cmu+
k , 2Cmu−

k , 2Cmh+
k and 2Cmh−

k are still written
as direct sums of the “(i, j, k) integrals” but therefore read :

2Cn+
k =

k
∑

i=1

i−1
∑

j=1

2Qn
ijk

2Cn−
k =

N
∑

i=1

N
∑

j=1

2Qn
kji

2Cm+
k =

k
∑

i=1

i−1
∑

j=1

(2Q⋆
ijk+ 2Q⋄

ijk)
2Cm−

k =
N

∑

i=1

N
∑

j=1

(2Q⋆
kji+

2Q⋄
kji)

2Cmu+
k =

k
∑

i=1

i−1
∑

j=1

(ūi
2Q⋆

ijk+ ūj
2Q⋄

ijk)
2Cmu−

k = ūk . 2Cm−
k

2Cmh+
k =

k
∑

i=1

i−1
∑

j=1

(h̄i
2Q⋆

ijk+ h̄j
2Q⋄

ijk)
2Cmh−

k = h̄k . 2Cm−
k

(10)

As shown in systems (5) and (8), drag, heat transfers and coalescence yield spatially located source
terms in the Multi-Fluid equations, analoguous to chemical source terms for instance. In the two
size moment method, these source terms must be evaluated by relevantly accurate integrations on the
size distribution inside each section. A key issue for the two size moment method is to compute the
coalescence source terms for each section, in each cell and at each time step with a good cost over
accuracy compromise.

1.6. Numerical strategy for the coalescence integral computation

The one size moment expressions given in (6) are double integrals on size variables and their
integrands are space and time independent when assuming E = 1. The time/space dependency
mi(t, x) has indeed been factorized. Precalculating the integrals 1Q⋆

ijk and 1Q⋄
ijk once for all allows

to compute the coalescence terms as quadratic combinations (7). The two size moment expressions
2Qn

ijk,
2Q⋆

ijk and 2Q⋄
ijk given in (9) are size double integrals that can not be precalculated so they

are more costful. Since the integration 2D domain Dijk is a non trivial polygon in volume variables
(Fig. 2), we suggest two strategies based on pointwise evaluations of the integrand. The first strategy
is an equidistributed quadrature using Newton-Cotes formula. The second strategy is an adaptive
quadrature based on the moments of exponential kernels.

The 1D n-node Newton-Cotes formula approximates integrals as a sum of n pointwise evaluations
of the integrand at n predefined abscissae. The method for 2D integrals, based on an n-node equidis-
tributed quadrature and referred to as (NC n), imposes a cost mainly consisting in n2 evaluations of
the integrand Ψij per source term through the formula :

∫∫

ΨijdS⋆dS⋄ ≃
n−1
∑

l=0

wl

n−1
∑

m=0

wmΨij(Sil, Sjm) (11)

where Sil = Si−1 + lSi−Si−1

n−1 and the wl are tabulated coefficients [1]. This achieves a polynomial
interpolation which is a priori not suited for exponential distributions.
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An original solution is to use adaptive n-node quadratures (Ad n). They presumably better
account for steep distributions i.e. where b is far from zero. Indeed, we aim at handling cases
where droplets can be concentrated at an edge of the section so that computing the integrals with
quadrature points evaluated at adapted abscissae is natural. We re-write the 2D integrand as Ψij =
2κi(S

⋆)2κj(S
⋄)Φ(S⋆, S⋄) and we assume that the Φ part varies smoothly with the two size variables.

The 2D quadrature formula keeps only the smooth part and reads :

∫∫

ΨijdS⋆dS⋄ ≃
n−1
∑

l=0

wil

n−1
∑

m=0

wjmΦ(Sil, Sjm) (12)

The exponential part is included in the quadrature kernel as follows. The moments of the i exponential
kernel Mp

i =
∫

2κi(t,x, S)SpdS for p from 0 to 2n− 1 are computed analytically since p is an integer.
One then determines the abscissae Sil and weights wil by inverting a linear system ensuring that the
moments of order p can be reconstructed as Mp

i =
∑n−1

l=0 wilS
p
il for p from 0 to 2n − 1. The same

calculations are performed for the Sjm and wjm required to integrate on the second dimension. The
quadrature is called adaptive since the abscissae and weights are integrated on 2κi and 2κj which
depend on (t,x).

Regarding accuracy, each adaptive quadrature achieves a 2nth order integration so we can use less
nodes compared to the equidistributed quadrature. Regarding computational cost, it mainly consists
in determining the eigenvectors of two linear systems of size 2n each to find the abscissae and weights.
Yet analytical expressions for the 2 node case abscissae and weights [15] allow to significantly reduce
this cost.
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Figure 3: Comparison of quadrature errors (left : absolute; right : relative) on the test integral I(β) with S1 = 1,
S2 = 2 and S⋆ = 0.75 – � : NC5; ◦ : NC9; ∆ : Ad2; ∇ : Ad3; Black : Reference.

We now perform a comparison of the suggested quadrature methods on their ability to compute
the following integral I(β) :

I(β) =

∫ s2

s1

S
3
2 (
√

S⋆ +
√

S)2 exp(−βS)dS.

This function represents a typical coalescence partial 1D integral parametrized by β, which accounts for
the exponential coefficient that causes integration stiffness. After normalizing I(β) by

∫ s2

s1
exp(−βS)dS

and taking arbitrary numerical values for the integration bounds and the second droplet surface
parameter, we show in Fig. 3 results compared to a reference integral computed with a 15-stage
Romberg method. This proves the failure of polynomial quadratures for moderate to large values
of the exponential coefficient. The adaptive quadratures behave extremely well, always achieving a
precision better than 10−10 with 2 nodes. In the following, we therefore use an adaptive quadrature
with 2 nodes (Ad2).
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2. Two size moment method validation on an academic nozzle configuration featuring
size/velocity coupling

In this section, we validate the two size moment method by comparing the two Multi-Fluid meth-
ods on their ability to describe the dynamics of a coalescing cloud in a size-velocity coupled case.
Considering the size/velocity coupling (Fig. 1), we need a well-suited test-case, inducing coalescence
as well as size-conditioned dynamics and difficult enough to highlight the limitations of the methods.
We therefore use the nozzle test-case introduced in [38] to challenge the two size moment method and
determine for both methods :

• the convergence rate on mass density prediction regarding size discretization,

• the minimum number of sections to capture the physics of size/velocity coupling,

• the usefullnes of a two size moment approach in the semi-infinite last section.

0

r

z

v(z0)

z00

r

z

v(z0)

z00

r

z

v(z0)

z00

r

z

v(z0)

z0

Figure 4: Conical 2D autosimilar diverging nozzle.

But first, let us describe the test-case and the numerical strategy developped in the research code
for its resolution. The geometry is a 2D axisymmetrical diverging cone nozzle (Fig. 4). Numerically
speaking, the chosen configuration is stationary, 2D axisymmetrical in space and 1D in droplet size. It
is described in detail in [38]. Hence, only its essential characteristics are given here. For the problem to
be simpler, an incompressible gas flow with straight streamlines is considered. The particles are one-
way coupled and injected with velocities that are aligned to the gas streamlines so their trajectories
are straight. This leads to the following expressions for the gaseous axial velocity Uz and the reduced
radial velocity Ur/r, for z ≥ z0 :

Uz = U(z) =
z2
0U(z0)

z2
,

Ur

r
=

Uz

z
=

z2
0U(z0)

z3

where z0 > 0 is the coordinate of the nozzle entrance and the axial velocity U(z0) at the entrance is
fixed. The droplet trajectories are also assumed to be straight since their injection velocity is co-linear
to the one of the gas. This assumption is only valid when no coalescence occurs. However, even in
the case of coalescence, it remains valid in the neighborhood of the centerline [38]. The droplets slow
down because of the deceleration of the gas flow in the conical nozzle, however at a rate depending on
their size and inertia. This will induce coalescence. The deceleration rate at the entrance of our nozzle
a(z0) = −2U(z0)/z0 depends on the injection velocity because of the geometry and the incompressible
hypothesis; this velocity is chosen to adjust coalescence intensity to a typical solid rocket motor case3.

3A precise evaluation of coalescence intensity can be achieved by considering a coalescing Knudsen number that
depends on particle residence times and velocity differences. In real nozzles, the gas accelerates from subsonic to
supersonic regime on a very short distance, yielding high velocity differences but the residence time is small enough to
keep coalescence intensity moderate.
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Figure 5: Injected droplet mass distribution (lognormal distribution with SLN = 1600µm2 and σLN = 1.5).

We take U(z0) = 5m.s−1, z0 = 5cm and zmax = 25cm : these values generate a strong coupling
between coalescence and droplet dynamics, which means that the liquid mass density along the nozzle
is completely different whether coalescence is considered or not. These severe conditions make the
test-case under consideration a very efficient tool for numerical qualification of the two Eulerian models.

The droplets are constituted of alumina, their initial velocity is the one of the gas, their initial
temperature, fixed at the one of the gas, is Tk = 3600K and does not change along the trajectories.
Since alumina is liquid, droplets can coalesce. No efficiency law is required in this section (E = 1) since
we validate the method with comparisons to other numerical methods. The lognormal size distribution
is considered at injection since it is often used to characterize alumina particle size distributions in a
solid rocket motor [49]. When parametrized in droplet surface variable, it reads :

LN(S, SLN, σLN) =
1

S
√

2π log(σLN)
exp

[

−1

2

(

log(S) − log(SLN)

log(σLN)

)2
]

(13)

where SLN is the geometric average surface and σLN is the geometric standard deviation. These
parameters must not be mistaken for the usual moments of a distribution since they are of empirical
use. We choose a lognormal distribution on the surface variable, without loss of generality. We perform
simulations on two different configurations :

• the first configuration studies the accuracy of the methods on coalescence in the case of a
small granulometry shift. So the total injected mass, which conditions coalescence intensity, is
m0 = 1.06kg.m−3 to keep the average size increase small compared to the average size;

• the second configuration assumes a strong average size increase to study the additional benefit of
using two size moments in a final, unbounded section. The total injected mass, injection velocity
and nozzle length are higher, increasing coalescence intensity.

Now that we have described the Nozzle test-case, we shall give details on the numerical strategy
which is used. The pseudo 2D steady equations describing this configuration, assuming a Stokes Law
and for a one size moment Multi-Fluid model, read for section k :











dz(mkūk) +
2mkūk

z
= 1Cm+

k − 1Cm−
k

dz(mkū
2
k) +

2mkū
2
k

z
= mk

U(z) − ūk
1τu

k

+ 1Cmu+
k − 1Cmu−

k ,
(14)
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and for a two size moment Multi-Fluid model :


























dz(nkūk) +
2nkūk

z
= 2Cn+

k − 2Cn−
k

dz(mkūk) +
2mkūk

z
= 2Cm+

k − 2Cm−
k

dz(mkū
2
k) +

2mkū
2
k

z
= mk

U(z) − ūk
2τu

k

+ 2Cmu+
k − 2Cmu−

k .

(15)

These systems are ordinary differential equation (ODE) systems which we integrate with an error
smaller than 2.10−4. This error is defined with the L∞ norm of the difference on mass concentration
repartition to a reference solution with 1000 sections.

2.1. Asymptotic study

For the sake of the one size moment method accuracy, we define a configuration where coalescence
brings negligible mass in the last section. The initial injected mass concentration is therefore taken
as m0 = 1.06kg.m−3. For the same reason, the lognormal parameters are set to SLN = 1600µm2 and
σLN = 1.5 which corresponds to a sharp distribution centered on a radius of 11.3µm as shown in Fig. 5.
We give in Fig. 6 the maximum error on mass density along the nozzle depending on the sectional
discretization. This proves the convergence rate of both methods to be of order two. The one size
moment method has a slightly better convergence constant.

From an applicative point of view, it is crucial to consider the performance of both methods for
coarse size discretizations, say below 5 sections. With such a small number of sections, the one size
moment method can yield error above 10%. Yet, the two size moment method achieves remarkably
accurate computations with always less than 3% relative error on total mass. This applicative advan-
tage of the two size moment method is studied deeply in the following and is the key issue for practical
computations.

2.2. Minimizing the number of sections for practical applications

In the context of industrial codes, we want to use as few sections as possible. We therefore exten-
sively compare both methods on coarse discretization cases regarding their accuracy on granulometry
evolution prediction and mass concentration repartition. For the sake of the one size moment method
accuracy, we still do not want to transfer too much mass in the last section so we keep the same initial
distribution than previously (Fig. 5).

We choose the tested numbers of sections : a 5 section test-case illustrates what happens with a
coarse discretization. A 13 section and a 25 section test-cases illustrate the convergence of the method.
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They are compared to a 53 section one size moment run which we use as a reference solution.

These six simulations are succesively compared to the reference solution regarding three data sets :
the output size distribution at first, the total mass and number density along the nozzle axis at second
and mass and number in 5 size intervals (or section groupings 2) along the nozzle at third.

The correct treatment of the distribution gives a first indication on the method’s accuracy. We
therefore compare the mass concentration distributions at the nozzle output computed with the two
methods and with 5, 13 and 25 sections and computed with the 53 section reference test-case in Fig. 7.
With 5 sections, the one size moment method strongly overestimates the size growth while the two
size moment underestimates it. With 13 sections, the trend is the same but the error is smaller.
Finally for 25 sections, we consider both methods are roughly converged. The growth overestimation
of the one size moment method for coarse size discretization brings about major consequences for the
spray dynamics since the gap of average Stokes number between the bounded sections and the final
unbounded section. The spray dynamic behaviour is discussed hereafter.
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Figure 7: Mass concentration distribution at the nozzle’s end (z = 0.25m) computed with the one size moment
method (empty symbols) and two size moment method (solid symbols) with 5, 13 and 25 sections and reference
(solid line).

Second, let us quantify the influence of the treatment of polydispersion on dynamics. Fig. 8 shows
the evolution of mass and number total concentrations along the centerline of the nozzle computed
with both Eulerian methods (5, 13, 25 sections) compared to the reference solutions (53 section one
size moment method and Lagrangian reference test-case). For the one size moment case, number
concentrations are computed considering section average droplet volumes given by integration of the
(1κk)k functions : data are therefore redundant with mass concentration data. We emphasize the
fact that good convergence is achieved by the two methods with 25 sections as we can see in Fig. 8,
bottom, which is a zoom on the end of the nozzle and on a very small interval of the Y-coordinate.
The convergence is proven by comparison to a 53 section case performed with the same research code
and to a Lagrangian simulation result performed with another EM2C code.

To compare precisely the effect of polydispersion on dynamics, let us finally consider the evolution
of mass and number along the nozzle for five size intervals. These intervals do match with the sections
in the 5 section case but correspond to section groupings in the other cases as illustrated in Tab. 2.
The evolution of the mass concentration of these groupings along the nozzle is given in Fig. 9. It is
there obvious that the 5 section one size moment error on coalescence is severe, especially in the fifth
and last grouping G5 where little mass should be found, as prescribed. The 5 section two size moment
underestimation of size occurs in groups G3 and G4 and is more visible here than in Fig. 7. Yet it
has moderate consequences on the total mass evolution as shown in Fig. 8 because these sections have
Stokes numbers that are close enough.

As a conclusion this study validates the two size moment Multi-Fluid method. It also shows that
the two size moment method converges to the reference solution with a second order slope as does the
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Figure 8: Top : Mass and number concentrations along nozzle – Bottom : zoom on the nozzle’s end.

Groups (µm) 5 section case 13 section case 25 section case

G1=[0, 12.5] 1 1 to 3 1 to 6

G2=[12.5, 25] 2 4 to 6 7 to 12

G3=[25, 37.5] 3 7 to 9 13 to 18

G4=[37.5, 50] 4 10 to 12 19 to 24

G5 (> 50µm) 5 13 25

Table 2: Composition of the five section groupings

one size moment method but reveals to have, in this configuration, much smaller error when using few
sections. Since the error on mass never exceeds 3% with the two size moment method, this method
yields acceptable dynamical response with as few as 2 sections which is most appreciated for industrial
simulations.

Yet the test-case was limited to bounded sections in order to facilitate comparisons to the one size
moment method. In the next paragraph, we evaluate the benefit of using two size moments in the
final, unbounded section.

2.3. Two size moment method for the unbounded section

We shall now evaluate the impact of using a two size moment method on an unbounded final
section. We therefore change the injection conditions to intensify coalescence. The initial injected
mass concentration is increased to m0 = 2kg.m−3, the injection velocity is now U(z0) = 500m/s.
In these new conditions, the size distribution shifts much more as shown in Fig. 10. The lognormal
parameters are now set to SLN = 1600µm2 and σLN = 1.3

The mass and Sauter Mean Radius (SMR) in the new conditions are given in Fig. 11 and com-
mented in Tab. 3. They allow us to conclude on the versatility of the two size moment method to
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Figure 9: Evolution of mass concentration in the four bounded section groupings and in the last section for 5,
13 and 25 sections.
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Figure 10: Mass concentration distribution at different nozzle abscissae – Solid : 13 section one size moment;
Dashed : 7 section two size moment; Histogram : reference).
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Figure 11: Mass concentration and Sauter Mean Radius along the nozzle.

capture an initially sharp distribution which shifts far from its initial average radius. The SMR failure
occurs when too much mass is in the last section : the one size moment method requires less than
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a few percents mass in the last section while the two size moment method allows the SMR to come
quite close to the last section lower bound as shown by the SMR plateaus in Fig. 11.

Legend Order Sections r(nsec) Mass failure absc. SMR failure absc.

Solid — 1 101 200µm reference reference
Empty ∆ 1 13 100µm 0.20m 0.20m

Solid � 2 7 80µm 0.50m 0.70m
Solid ∆ 2 13 80µm 0.60m 0.70m
Dashed - - 2 23 80µm 0.80m 0.70m

Table 3: Nozzle configurations and result comments.

The conclusion of this additional study is that a two size moment method implemented in the
final unbounded section strongly extends the allowed range for the size distribution which proves to
be useful to reduce the number of sections.

2.4. Remarks on computational time

1 size moment 2 size moments
(precalculation) Ad2 Ad3 NC5 NC9

5 sections 0.05s (0.01s) 4.8s 13.2s 5.6s 10.0s
13 sections 0.18s (0.06s) 20.7s 88.0s 26.3s 56.6s
25 sections 0.50s (0.20s) 80.5s 356.3s 100.1s 220.3s

Table 4: Computational time on a 2.66GHz Intel Core 2 Duo CPU.

To complete the bounded section study with practical computational information, Tab. 4 reca-
pitulates the duration of runs using different computation methods. First, (Ad2) reveals to be the
fastest among the two size moment quadrature methods. Moreover the quadrature cost has no reason
to depend on the test-case. Since validations performed all along this paper show that (Ad2) brings
satisfactory results, this quadrature method is naturally preferred for the two size moment method.

Second, it is obvious that the one size moment method is much faster on the nozzle test-case,
thanks to coalescence integral pre-calculation. For the same number of sections, there are two orders
of magnitude of difference on computational cost. For the same level of accuracy, consider the 5 section
two size moment simulation and compare it to the 25 section one size moment simulation which yields
comparable error on mass repartition : the two size moment method is 10 times slower than the one
size moment method though having 5 times less sections. No firm conclusion can however be drawn
from these numbers since the computational cost of spatial transport in multi-D configurations has
to be taken into account and is severely reduced when using less sections. The final cost discussion is
thus postponed to section 5.”

3. Suitability of the two size moment method for steep size distributions

We now perform a validation of the two size moment Multi-Fluid method on a 1D configuration
called the “D’Herbigny” case. This configuration considers the average radius growth of a big droplet
falling in a fog of small droplets. The corresponding experiment is described in [16] and in section
4 and all the hypotheses are chosen to fit with the experiment conditions. We here consolidate the
validation by comparing the computed big droplet distribution to a purposedly derived analytical
distribution. We show that the two size moment method achieves higher accuracy than the one size
moment method.
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This configuration provides tough testing for Eulerian models because it deals with bimodal size
distributions, which are rather suited for the Lagrangian point of view since they are trivial to sample
while their steepness remains troublesome in Eulerian modeling. The results provided here illustrate
therefore the robustness of the two size moment Multi-Fluid method and its ability to remain accurate
when dealing with non-smooth size distributions.

3.1. Modal analytical resolution

We derive an original analytical approximation of the semi-kinetic system (3) in the particular
D’Herbigny case in order to calculate the mean volume and volume standard deviation of the big
droplet distribution. The main idea is to take advantage of the fog droplet monodispersity to foretell
the big droplet discrete accessible sizes and to project their NDF on these sizes, thus reducing the
phase space dimension by discretizing on size “modes”.

Since the droplets belonging to the fog have a constant volume (v = vs) and the bigger droplets
can only grow by coalescence (v ≥ vb), let us first split the semi-kinetic NDF n(t, z, v) regarding the
size support as follows :

ns(t, z, v) = n(t, z, v = vs)
nb(t, z, v) = n(t, z, v ≥ vs)

where z is the 1D space coordinate. Of course, n = ns+nb. We now make the fundamental hypothesis :

[He1] nb is much smaller than ns.

This allows us to separate the different scales of the semi-kinetic system (3). Naturally, the two size
moment terms involving (nb, nb) (coalescence of big droplets) are too small to be taken into account.
The two one size moment equations read :

Order 0

{

∂tns + ∂z · (nsū) = ������
Q+

n (ns, ns) −������
Q−

n (ns, ns)

∂t(nsū) + ∂z · (nsū⊗ ū) = nsF̄ +������
Q+

u (ns, ns) −������
Q−

u (ns, ns)
(16)

Order 1

{

∂tnb + ∂z · (nbū) = Q+
n (ns, nb) + Q+

n (nb, ns) − Q−
n (ns, nb) − Q−

n (nb, ns)
∂t(nbū) + ∂z · (nbū⊗ ū) = nbF̄ + Q+

u (ns, nb) + Q+
u (nb, ns) − Q−

u (ns, nb) − Q−
u (nb, ns)

(17)
Please note that coalescence terms involving (ns, ns) vanish since small droplets all have the same
velocity, thanks to the monokinetic hypothesis [HV1]. The term F̄ stands here for the sum of the
forces on droplets i.e. drag and gravity. Considering negligible forces in the zeroth order momentum
equation i.e. neglecting gravity for the fog which sediments too slowly, the small droplet velocity is
constant. Choosing the fog as the reference frame, we have ū(vs) = 0. Finally the zeroth order mass
equation shows that small droplets have a constant concentration which makes the problem steady as
long as the injection conditions are. We shall therefore consider :

ns(t, z, v) = αsδ(v − vs)

The one size moment equations describe the big droplet evolution. The term Q−
n (ns, nb) vanishes

on the big droplet size support. Moreover, Q+
n (nb, ns) = Q+

n (ns, nb) and Q+
u (nb, ns) = Q+

u (ns, nb) so
that :

{

∂z · (nbū) = 2.Q+
n (ns, nb) − Q−

n (nb, ns)
∂z · (nbū⊗ ū) = nbF̄ + 2.Q+

u (ns, nb) − Q−
u (nb, ns)

(18)

With the previous hypotheses on the fog features, one can easily calculate the remaining coalescence
terms, where we have considered E = 1 :

Q+
n (ns, nb) = αsnb(z, v − vs)β(v − vs, vs) |ū(v − vs)| /2

Q−
n (nb, ns) = αsnb(z, v)β(v, vs) |ū(v)|

Q+
u (ns, nb) = αsnb(z, v − vs)β(v − vs, vs)ū(v − vs) |ū(v − vs)| (v − vs)/(2v)

Q−
u (nb, ns) = αsnb(z, v)β(v, vs)ū(v) |ū(v)|
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We now make a continuity assumption on velocities so that, considering the very small size of the fog
droplets (vs ≪ vb), we have :

[He2] ū(v − vs) ≈ ū(v) for v ≥ vs.

Replacing the momentum equation by a linear combination of the two equations in (18), the big
droplet evolution system is finally composed of number and velocity equations that are decoupled :

{

∂znb(z, v) = αs[β(v − vs, vs)nb(z, v − vs) − β(v, vs)nb(z, v)]

(((((((((
nbū(z, v)∂z ū(z, v) = nb(z, v)F̄ − αsβ(v − vs, vs)ū(z, v) |ū(z, v)| nb(z, v − vs)

vs

v

(19)

with the boundary condition :
{

nb(z = 0, v) = αbδ(v − vb)
ū(z = 0, v = vb) = ū0

where αb is the big droplet number density and ū0 their velocity at the boundary. Let us rewrite
the decoupled momentum equation in (19) to enlight the bigger droplet behaviour in the D’Herbigny
conditions :

nb(z, v)F̄ = αsβ(v − vs, vs)ū(z, v) |ū(z, v)| nb(z, v − vs)
vs

v

The rhs models the effect of coalescence with the static fog droplets. Absorbing static mass induces
a momentum dilution i.e. a slow down. When neglecting this effect, this equation reduces to a
classic dynamic balance (F̄ = 0) which, in our case, means that the drag force compounds the weight.
Therefore, droplets do reach a terminal velocity but this limit velocity increases with the droplet size
since the Stokes number depends on the size. To illustrate this fact, Fig. 12 shows the evolution of the
big droplet velocity in the D’Herbigny configuration computed with the two size moment Multi-Fluid
method, supposing that droplets are injected with an initial velocity of 3m/s. The black curve is
the dynamic equilibrium solution (F̄ = 0) for the corresponding droplet Sauter mean radius : they
both increase. Finally, the slight overestimation yielded by the terminal velocity approach comes from
neglecting the so-called momentum dilution. This difference is no longer negligible when coalescence
becomes intense. See the case in Fig. 12, right of a Cv = αsvs = 60ppm fog where the terminal velocity
is 45% overestimated.
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Now that we have discussed the evolution of velocity, confirming that the big droplet distribution
remains monokinetic and slowly increases with size, let us solve the mass equation by projecting it on
size modes. A remarkable point in the bimodal limit condition is that it yields size modes since the
volume increment is quantified by the small droplet volume vs. Therefore the big droplet volume v
can only take the following values :

vk = vb + kvs ; k ∈ N

This observation allows us to exactly project the mass equation from system (19) on the size modes.
Let us rewrite the big droplet size distribution :

nb(z, v) =

+∞
∑

k=0

nk(z)δ(v − vk).

The mass equation becomes a system of ODEs with the boundary conditions n0(0) = αb and nk(0) =

0, k ≥ 1. Defining ǫ = vs
vb

, bk = [(1 + kǫ)
1
3 + ǫ

1
3 ]

2
3 and z̃−1 = αsπ

(

3vb
4π

)

2
3 , it reads :































dzn0(z) = −1

z̃
b0n0(z)

dzn1(z) =
1

z̃
[b0n0(z) − b1n1(z)]

..
.

dznk(z) =
1

z̃
[bk−1nk−1(z) − bknk(z)]

(20)

We highlight that the z̃/bk are lengths that define the typical coalescence lengths or mean coalescing
free paths for droplets nk. Consider now another length criterion, that evaluates the importance of
volume growth for the initial class of big droplets :

Lc =
vb

vs

z̃

b0
.

If z̃/b0 is the typical travel length of a big droplet between two coalescing collisions with a fog droplet
that is a mean free path regarding coalescence, we need vb/vs times more distance for a big droplet
to absorb enough matter to double her own volume. Length Lc gives the length after which the big
droplet average volume has significantly changed because of coalescence. To solve system (20), we
consider two modelings whether z is small or big compared to Lc which allows us to approximate β
constant or not.

3.2. Approached and exact analytical formulae for bimodal coalescence

As a first estimation, we assume that bi = b0 and the collision lengths are all equal to z0. We
formalize this temporary hypothesis :

[He3] the collision lengths z̃/bk are all equal to z0 = z̃/b0.

This is equivalent to assuming the cross-section β(vk, vs) = β(vb, vs) = β constant so [He3] is valid
only when the big droplet size does not vary too much i.e. z ≪ Lc. System (20) can now be integrated
recursively, yielding the following modal densities :

nk(z) = αb
1

k!

(

z

z0

)k

exp(−z/z0) (21)

In fact, the modal densities follow Poisson’s law with z/z0 being the law parameter. This means that
after traveling a z = kz0 distance in the fog, the most probable droplet size is vk = vb + kvs which
corresponds exactly to k coalescence events.

We now want to compare formula (21) to simulations. In all the following bimodal simulations i.e.
in sections 3 and 4 of the paper, we enable the size discretization of the big droplet ditribution to be as
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fine as possible so we choose non equidistributed section bounds : the first section encloses the entire
small droplet distribution; a dummy section accounts for the gap; the big droplet distribution lives in
all the remaining sections, that are of constant width in radius. The number of sections given to precise
the discretization of the following simulations is therefore the one of the big droplets that is sections
above rb. A comparison of formula (21) with a fine section grid two size moment Eulerian Multi-Fluid
simulation in the case of few collisions is given in Fig. 13 to illustrate the relevance of the analytical
model. In this configuration, [He3] is perfectly valid since ǫz/z0 = vb/vsz/z0 = (50)−3z/z0 ≪ 1. We
also note that Poisson’s law can be approximated with a normal distribution with very good match
as soon as z/z0 > 5 which is clear in Fig. 13, bottom. This fact eases computations for high z. Let us
add that the modal i.e. discrete nature of the exact distribution is obvious in Fig. 13 and is correctly
captured in our two size moment Multi-Fluid simulations. Yet, the number of modes increases with
z/z0 and the corresponding number of sections required becomes unsustainable. To explore higher z,
we now consider simulations that are modally unresolved because of “coarse” section discretizations,
the big droplet distribution being then computed as continuous.
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Figure 13: Poisson’s law (+) compared to Normal law (line) and 200 section Eulerian Multi-Fluid mass density
distribution (histogram) and total mass per mode (∆) for z/z0 = 3.8 (top) and z/z0 = 19.2 (bottom). For
analytical validation purpose, this case specifically features a strictly monodisperse fog with rs = 10µm.

In this first modeling, with β constant, we can analytically evaluate the moments of the distribution
nb(z, v) =

∑

nk(z)δ(v − vk) by direct summation of the analytical number density (21). The average
volume reads :

v(z) =

∫

vnb(z, v)dv
∫

nb(z, v)dv
= vb + vs

z

z0
(22)

and the granulometry standard deviation reads :

σ2(z) =

∫

(v − v)2nb(z, v)dv
∫

nb(z, v)dv
= v2

s

z

z0
(23)

The model validity domain is limited to small deviations of z̃/bk from z0 i.e. v(z) ≈ vb. This
corresponds to a coalescence number criterion kvs ≪ vb which retrieves the condition on coalescing
length :

z ≪ Lc

This first model yields an increasing size dispersion for the big droplets. This dispersion is intrinsic
to the way droplets grow, independantly of any velocity or cross-section variations. Moreover, the

23



resulting distribution is, as said previously, fairly gaussian as it is a Poisson law with a high parameter.
This invalidates any monodisperse approach for the D’Herbigny configuration.

The results of the β constant model are a first step that confirms the validity of our approach.
Yet in the D’Herbigny conditions, one has z/z0 ≈ 2.105 when Cv = 60ppm while vb

vs
≈ 105 so that the

coalescence number criterion is not fullfilled. This discrepancy is obvious when comparing the analyt-
ical and simulation-derived growth laws. Indeed the analytical formula (22) gives a linear increase of
average volume with Cv, which does not match with the linear radius increase enlighted numerically
and experimentally in Fig. 16. The constant β model is not satifactory in the D’Herbigny conditions.

As a second and broader modeling, we now solve system (20) with the exact i.e. variable β(vk, vs)
coefficients. We thus remove hypothesis [He3]. We still have n0(z) = αb exp(−s0

z
z̃ ) and we can prove

by induction that :

nk(z) = αb

k−1
∑

i=0

bk−1

bk − bi
λik−1[exp(−bi

z

z̃
) − exp(−bk

z

z̃
)] with λik =

k−1
∏

j=0

bj

k
∏

j=0
j 6=i

(bj − bi)

(24)

No further analytical expression has been derived from this formula, which has to be computed directly
or at least approximated as done in the following.

3.3. Confrontation of simulations to the analytical model

We now consider a particular case where the fog volume concentration goes from 10ppm to 60ppm
and the travelled distance is z = 2m. We therefore have z ≫ Lc. Let us compare the different model
and simulation results. The one size moment simulations are performed with 200 sections while using
80 sections for the two size moment ones. The different NDF are given in Fig. 14 for the one size
moment, two size moment, constant β and variable β models.

First, we note that the predicted average radii are close except with the constant β model. The
constant β model fails, as expected, because z ≫ Lc invalidates [He3] which is equivalent to saying
that the big droplet radius variation is too important and requires to reevaluate the impact parameter.
The other three models well agree on the radius growth. They predict an average radius growth ∆rb

that is linearly dependent on Cv and is confirmed in Fig. 16 in section 4. In contrast, the constant
β model predicts a volume growth linearly dependent on fog concentration, which is natural since
coalescence intensity is in this case only dependent on Cv.
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Second, there is a strong difference in Fig. 14 between a refined one size moment simulation
where the size distribution is extremely widespreaded, and a coarser two size moment simulation
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where the size support remains narrow. The peak widening effect featured by the one size moment
method increases with fog concentration as visible in Fig. 14. This widening effect increases also
with z. In general, steep distributions are abnormally widespreaded along their way in the size phase
space : this is comparable to numerical diffusion in the size phase space. We refer to this effect as
numerical diffusion though it results from numerical errors on source terms and not on fluxes. It is
remarkable that these test-cases are performed with a high number of sections so the one size moment
numerical diffusion is unacceptable since it will be even more penalizing in practical cases where size
discretizations are coarse. In contrast, the two size moment method brings moderate diffusion in
size phase space as shown in Fig. 14 since widening is smaller to that due to physical size dispersion
quantified in our analytical models. The two size moment method handles correctly the D’Herbigny
case regarding average size and size dispersion.

As a conclusion, the two size moment Multi-Fluid method, here proven to be robust and validated,
is as accurate and far less diffusive than the one size moment method when dealing with coalescing
steep size distributions. This feature is relevant for solid rocket motor applications where the alumina
cloud is sometimes modelled as bimodal [47].

4. An experimental validation showing the importance of collision efficiency modeling

In this section, we validate the two size moment Multi-Fluid method by referring to a 1D coales-
cence experiment which was conducted at ONERA by F.-X. D’Herbigny [16]. This experiment can be
simulated with the configuration described in section 3. The importance of modeling collision local
phenomena is here highlighted and the two size moment method proves to capture the physics of such
a configuration.

4.1. The D’Herbigny collision efficiency experiment

The D’Herbigny experiment consists in the growth of a big droplet falling through a fog of smaller
droplets. The main features are summed up in Fig. 15. Details about the experimental device
can be found in [16]. We only precise that the average injection radius of the bigger droplets is
rb = 150µm and their initial velocity us = 3m/s thanks to a piezoelectric injector. The fog droplet
radius rs ∈ [2µm, 4µm] is much smaller. These conditions bring the efficiency law parameters Rep and
k close to typical solid rocket motor ones.
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Figure 15: D’Herbigny experimental device (ONERA).

We perform simulations with the two size moment Multi-Fluid method in the experiment condi-
tions, though testing six fog droplet concentration values, with Cv from 10ppm to 60ppm. We use the
three collision efficiency laws described in Appendix B i.e. E = 1, Langmuir-Blodgett law from eq.
(B.1) and Beard-Grover law from eq. (B.2). The measurements and computations of the average big
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droplet radius after 5m in the fog, depending on its concentration, are given in Fig. 16. The simula-
tions show a linear dependency of radius growth on fog concentration. This allows us to determine
an average collision efficiency coefficient Ē. This coefficient is given in Tab. 5 for the three laws.
The simulation results also show that collision efficiency laws have a dramatic effect on radius growth,
undermining it up to 72% in the Langmuir-Blodgett case.
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Two size moment Multi-Fluid simulation Experiment

Langmuir-Blodgett Beard-Grover
Average efficiency ĒLB = 0.28 ĒBG = 0.46 ĒXP = 0.21

Table 5: Average collision efficiency values in the D’Herbigny configuration

As for the experiment results, they corroborate the linear dependency of radius growth on fog
concentration that was proven in section 3. They also confirm the dramatic undermining of coalescence
by the collision efficiency factor, tending to designate the Langmuir-Blodgett law eventhough the
experimental average collision efficiency is even smaller than the model forecast. We therefore conclude
that coalescence simulations in solid rocket motor conditions should take a collision efficiency law into
account.

As a conclusion, the D’Herbigny experiment underlines the importance of collision efficiency model.
Moreover, though the experimental results are shadowed by uncertainity on collision efficiencies, local
fog concentrations and size measurements, their comparison to simulations still provides an ultimate
validation of the two size moment Multi-Fluid method, regarding the linear dependence of growth on
fog concentration.

4.2. Conclusion on the model and methods

The previous results in sections 2, 3 and in the present section confirm that Eulerian Multi-Fluid
methods can be used to simulate accurately the size distribution evolution of a coalescing spray and
its size-conditioned dynamics. When collision efficiency is taken equal to one, the one size moment
method provides, with a reasonable number of sections (more than 10), extremely fast results since
the coalescence term computations are reduced to quadratic combinations of section masses. The two
size moment Multi-Fluid method provides good results with a very coarse size-space discretization (as
few as 5 sections) and is far less “diffusive” in size phase space for steep size distributions.

But section 3 proves the importance of modeling the collision efficiency factor. The two size
moment method features any such modeling for no additional cost. A general form for coalescence
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efficiency formulae to be suitable for a pre-calculated one size moment method are suggested in [38]
but no classical collision efficiency models can be easily implemented since they require local gas
parameters. The one size moment method can therefore no longer benefit from precalculation when
including such models.

5. Validation and feasibility on Solid rocket motor configurations

In this section, we conclude the study by achieving two 2D simulations with an industrial-oriented
code in which we have implemented the two size moment Multi-Fluid method featuring efficiency
models :

1. a simplified steady configuration allows us to compare our Eulerian Multi-Fluid coalescence
method to a Lagrangian reference method

2. a realistic geometry of a solid rocket motor model allows us to challenge the new method on a
complex unsteady case by capturing acoustic chamber modes and vortex shedding.

Both simulations are two-way coupled. The Langmuir-Blodgett collision efficiency law is enabled for
feasibility demonstration purpose. These simulations also illustrate the impact of coalescence in solid
propulsion.

5.1. The CEDRE code

The CEDRE code is a multi-physics platform on general unstructured grids, for both research and
industrial applications, in the fields of energetics and propulsion [48, 50]. The software architecture
follows a multi-domain, multi-solver approach. Solvers are considered for each physical system :
gas phase, dispersed phase, thermal fields in solids and radiation. These solvers share the CEDRE
architecture and libraries, and can be coupled to perform a multiphysics computation or be operated
alone. They tackle subjects as varied as multiphase flows, multispecies chemistry, thermal conduction,
radiation, wall-film models, advanced thermodynamics, etc. The coupling can be one-way or two-way
[23]. As for the disperse phase, CEDRE includes a Lagrangian and two Eulerian methods i.e. a
multi-class or sampling method and the two size moment Multi-Fluid method studied and extended
here [45]. Only the Lagrangian and the Multi-Fluid methods provide coalescence resolution, the latter
being coded and validated in this paper.

5.2. A simplified steady validation : the TEPTEU case

The first solid rocket motor simulation is performed on a 2D simplified configuration, yet featuring
the main difficulties of solid propulsion typical flows i.e. parietal injection and a supersonic nozzle. The
configuration may generate coalescence : it is based on the meeting of a parietally injected two-phase
flow carrying small alumina droplets resulting from the combustion of the propellant and an axial
two-phase flow carrying bigger droplets supposedly coming from priorly injected, burnt and coalesced
particles (see Fig. 17). The upper part of the chamber generating these bigger droplets is not solved
so that the mesh is significantly shortened.

The simulation takes place on a deformed-structured 1500 cell mesh (Fig. 17). When seeking a
two-phase stationary flow solution, one usually takes a converged gas flow field as an initial state.
With a total rate of flow of 10kg.s−1.m−2 from the wall (propellant combustion) and the head end
(upstream flow), this gas flow involves extemely high velocity gradients in the nozzle (Fig. 18, top),
which will induce size-conditioned droplet dynamics as studied in section 2.

The two-phase simulation strictly speaking starts when injecting the disperse phase : a monomodal
5µm radius wall injection represents the droplets resulting from recently burnt aluminum particles,
directly expelled from the propellant grain, and another roughly monomodal distribution around
20µm is injected on the axis to model the previously coalesced droplets [24]. For the purpose of our
simulation, the injected volume fractions approximate correctly typical solid rocket motor chamber
conditions and preserve the dilute spray hypothesis. For the disperse phase, we choose a 5 section
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Figure 17: TEPTEU : a deformed-structured 1500 cell mesh (Arrows : injection zones).

discretization (0, 12.5, 21, 25 and 30 µm) as in section 2. A 10−2s time interval is required to allow the
first droplets to reach the end of the nozzle. With a 10−6s time step (10, 000 iterations), we perform a
1h single processor AIX platform computation which corresponds to 360ms per cycle (about 50% more
than without coalescence). The gaseous Mach number field, once the permanent two-phase regime is
reached, is given in Fig. 18, bottom; the stationary volume fractions for the five sections are displayed
in Fig. 19.

2.2
2.06
1.92
1.78
1.64
1.5
0.95
0.2

Figure 18: Gaseous Mach number without particles (top) and with a disperse phase computed with the two size
moment Eulerian Multi-Fluid method (bottom).

First, the disperse phase has an impact on the gas flow since we perform a two-way coupling
simulation. Specific impulse loss can indeed be observed with the nozzle Mach number decrease in
Fig. 18, bottom. Second, we do note bigger particle creation in Fig. 19 : coalescence occurs as soon
as the two injected types of droplets meet since the third section gets filled with a significant volume
fraction in the chamber. Third, bigger droplets are created in the nozzle eventhough acceleration there
induces a strong volume fraction dilution.
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Figure 19: Dispersed phase volume fractions per section (m3/m3).

The Lagrangian reference computation, also performed with the CEDRE code, takes 6h on the
same platform. Fig. 20 shows a mean diameter (d30) with both simulations : its evolution is correctly
predicted by the Eulerian Multi-Fluid method as implemented in CEDRE.

The main difference occurs on the axis where the Eulerian model undermines coalescence. Indeed
momentum is averaged on each section because of the monokinetic hypothesis [H3] and thus the
Eulerian model is unable to account for particle trajectory crossing (PTC) among the sections. This
effect is also visible close to the wall where streamlines become tangential. On the contrary, the
Lagrangian framework naturally handles PTC and can feature any wall rebound model, which allows
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Figure 20: Overall average droplet diameter (d30) and particle streamlines in Eulerian and Lagrangian compu-
tations.

the particle streamlines to avoid the wall.
Another difference is visible in the nozzle : there are no particles far from the axis in the La-

grangian simulation (see the first section volume fraction in Fig. 19, dark blue convention in Fig. 20).
On the contrary, particles are present almost everywhere in the nozzle with the Eulerian simulation.
This reveals that the Eulerian transport scheme is spatially diffusive. This also appears on the size
gradient at the rear of the chamber, which is smoothened. Yet spatial diffusion is rather a matter of
numerical method and can be easily improved [12] but this is not the point of this paper.
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Figure 21: Eulerian relative difference to the Lagrangian simulation on the Mach number field (%).

Fig. 21 shows the relative error on the Mach Number field compared to the reference Lagrangian
simulation. Mach number is important to quantify the total specific impulse loss in the nozzle. The
defects of the Eulerian Multi-Fluid method, previously commented on the d10 evolution, appear here
too. Size and velocity prediction errors on the axis imply an overestimation of the Mach number at
the rear end. In the nozzle, particle trajectories are axiparallel and close to the axis, still because of
Eulerian momentum averaging, so that the Mach number is overestimated up to 10% in the near-axis
zone. Finally, small particle Eulerian diffusion increases flow inertia close to the wall so that the Mach
number is slightly underestimated (5%).

To conclude this 2D complex validation, we observe on the one hand that computational time is
dramatically cut down with the Eulerian method, which is six time faster and on the other hand, that
monokinetic hypothesis and numerical diffusion generate small discrepancy of the Eulerian momentum
and volume fraction, having up to 10% repercussions on the Mach number in our current configuration.

5.3. Complex unsteady configuration : the LP10 case

The second solid rocket motor simulation is performed on a 2D representation of a real subscale
motor called LP10. To be more precise, the simulation takes place at a time when one has observed
the most intense instabilities. The simulated time is long enough to perform a harmonic study of the
instabilities. At that time, the star shaped grain has totally burnt so that no flow comes from the
front end. Droplets are only injected from the two segment walls (Fig. 22) with the same lognormal
distribution : coalescence occurs only because of the droplet size dispersion4.

4Droplet size dispersion can be induced by the propellant combustion for instance
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The configuration still features parietal injection and a supersonic nozzle but has a more realistic
geometry and we aim at capturing flow instability. The test-case is therefore more complex and
numerically costful. The simulation now takes place on a deformed-structured 27000 cell mesh showed
in Fig. 22.

wall injection (lognormal)

??????????????
wall injection (lognormal)

?????????????

Figure 22: LP10 : Deformed-structured 27000 cell mesh (Arrows : injection zones).

The case is fully solved on a 300ms time interval with a 1µs time step in order to capture unsteady
pressure signals and perform modal frequency analysis. The disperse phase granulometry is solved
with a 3 section two size moment Multi-Fluid method where the section lower bounds are : 3.33, 6.66
and 10µm. The 300, 000 iterations are performed with a 32 CPU NEHALEM platform in 10 hours.
This corresponds to 800ms per cycle (25% more than without coalescence). Regarding coalescence
intensity, particles from section three have an average d30 diameter of 14.1µm when crossing the
nozzle throat on the centerline. Since they were all injected with a 12.83µm diameter, they encounter
an increase of 1.3µm due to coalescence in the chamber. Results not presented here show that the
diameter increase reaches 1.8µm when the collision efficiency is set to one. As expected, not using
collision efficiency modeling results in an overestimation of coalescence intensity. So it is demonstrated
here on a practical case that advanced collision efficiency modeling plays a sensitive role.
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Figure 23: Gaseous phase vorticity module (s−1).

To illustrate the configuration unsteadiness, let us consider the gaseous vorticity field in Fig. 23
which is typical of Parietal Vortex Shedding (PVS) instabilities [39]. These instabilities occur in
long, segmented motors and are strongly coupled to the disperse phase. The instantaneous volume
fractions for the three sections and the third section mean diameter (d30) are displayed in Fig. 24. As
expected, the three droplet sizes react differently to the gaseous vortices described in Fig. 23. The
third section is mostly segregated, since its characteristic time is close to the vortices’ one (St = 1).
One also notices that the aft-dome cavity filling depends strongly on droplet size. These phenomena,
along with specific impulse loss conditioned by size (illustrated in Fig. 21), are among the main
issues motivating polydisperse two-phase solid rocket motor studies as exposed in our introduction.
Therefore, the importance of accurately capturing polydispersion becomes obvious.

14.1
13.8
13.6
13.3
13.0
12.8
12.5

1.00x10-04

3.47x10-05

1.20x10-05

4.16x10-06

1.44x10-06

5.00x10-07

Figure 24: Top to bottom : Volume fraction (m3/m3) of section 1, 2 and 3 and d30 mean diameter (µm) of
section 3.
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Pressure signal spectrum is displayed as a log-log diagram in Fig. 25. The first harmonic has a
level 20% lower than in a polydisperse non-coalescing simulation. This gives quantitative evidence
that coalescence modeling is a crucial issue in solid rocket motor simulation to capture instability
levels. A numerical study on instability levels depending on polydispersity and coalescence can be
found in [17].
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Figure 25: FFT of pressure sensor signals (log-log diagram).

5.4. Computational cost of coalescence in the two size moment method with CEDRE

The numerical features of the 2D solid rocket motor simulations and the computational times with
and without coalescence are gathered in Tab. 6 and compared to the Lagrangian computational time.

TEPTEU LP10
(explicit, 1500 cells, 5 sections) (implicit, 27000 cells, 3 sections)

Eulerian monodisperse 30ms 12800ms
Eulerian wo. coalescence 180ms 22000ms
Eulerian w. coalescence 360ms 26000ms
Lagrangian 2160ms NA

Table 6: Computational cost per iteration (time per cycle × number of CPUs).

Accounting for coalescence is nonetheless proven to be necessary, but we show here that it is
numerically accessible in the Eulerian Multi-Fluid framework, yielding at most a doubling of the
numerical cost for 5 sections with the two size moment method. The dramatic increase of the cost of
the two size moment method with the number of sections on a complex, practical case is visible here.

So why have we not used the one size moment method since we have proven in section 2 that the
one size moment method is much cheaper on the nozzle test-case (Tab. 4)? First, it is not possible
to meet the high computational speed of the one size moment method on the nozzle test-case if
we abandon precalculation to include specific collision/coalescence laws, which are indeed required
(section 3). Second, the two size moment coalescence integral computations, which are local, are
significantly accelerated on parallel architectures with many-core CPUs so these architectures are well
adapted to the two size moment method. Third, for a given level of accuracy, the one size moment
method requires more sections than the two size moment method. For typical solid rocket motor
simulations, each section requires the resolution of an unsteady 3D pressureless Euler-type system. So
that increasing the number of sections is a costly operation, thus limiting the profit yielded by the one
size moment method. This fact can be seen on the computational times of Tab. 6 where solving for
coalescence represents half of the total cost while it represented almost the whole cost for the nozzle
case (Tab. 4).
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5.5. Conclusion on the feasibility of solid rocket motor simulation

The necessity to use two size moments to capture coalescence with Eulerian methods is proven
through the accuracy and feasibility studies of this paper. The ability of the two size moment Eulerian
Multi-Fluid method as implemented in CEDRE to simulate unsteady polydisperse sprays encountering
coalescence in a complex geometry at a reasonable computational cost is proven by the final simu-
lations. It is the only method that is able to capture size/velocity coupling with such a coarse size
discretization. Higher order size moment methods with advanced velocity reconstruction are promis-
ing regarding computational cost reduction [56] but their compatibility with coalescence modeling has
not been addressed for now.

Our DNS approach is suitable and ready for tackling the first issue in solid propellant combustion
among four considered in the introduction : hydrodynamic and acoustic instabilities. The quantitative
study of this problematic on the LP10 subscale motor is fully discussed in [17]. For other studies
involving smaller droplets (typically micronic), the modeling is compatible with two-way coupling but
the numerical strategy is to be improved to prevent the use of very small timesteps : this question is
tackled in [18] where a highly tunable splitting strategy adapted to the stiffness of moderately dense
polydisperse spray Eulerian systems is described and quantitatively evaluated. Finally, this DNS
approach is a required basis before including further modeling.

The extension of spray modeling to LES configurations requires to remove hypothesis [HV2], which
is uncompatible with subgrid scale effects [7, 11]. Other velocity closures (e.g. gaussian) yield turbulent
transport terms [51, 40], turbulent collision kernels [25, 59] and turbulent coalescence kernels [60]. The
context of submicronic droplets also brings subgrid scale closures into play. Classical modeling [27]
has to be adapted to account for brownian agglomeration and out-of-equilibrium transport.

For most droplet size ranges in a solid rocket motor, drag is strong enough to locally correlate
velocities to size, allowing to consider our method as valid. In specific cases however, the Stokes number
is high enough for droplets not to track the flow [14, 41, 13, 12] and PTC can occur. Hypothesis [HV1]
impedes to account for same size droplet PTC since it locally averages velocities for a given size. For
instance droplet crossings should occur on the centerline of our simulation but we have instead a droplet
accumulation artifact due to the momentum averaging on the symmetry axis. High-inertia droplets
ejected from vortices and from the solid propellant surface need a specific multivelocity treatment
such as quadrature methods [15], and high order velocity moment methods [10, 32]. Multivelocity
approaches are yet rarely extended to coalescence except in [26].

Other issues in solid rocket motor modeling are close to being accessible to Eulerian Multi-Fluid
simulation in CEDRE. First, to quantify specific impulse loss in the nozzle, secondary break up
modeling has to be added. Indeed high velocity gradients in the nozzle induce droplet secondary break-
up which strongly undermines droplet growth. Models that are compatible with the Eulerian Multi-
Fluid approach [19] have recently been implemented in the CEDRE code and are used in practical cases
in [44]. Second aluminum combustion, moving meshes, bi-species droplet and evaporation modeling
are still to be implemented in CEDRE to tackle combustion instabilities in burst regime. They are
also compatible with the Eulerian formalism.

Conclusion

In this paper, we provide a comprehensive validation of a Eulerian two size moment method for
solving two-phase polydisperse coalescing flows. The conclusion of this study is that the new method
is able to simulate accurately the dynamics of such flows with very few sections as demonstrated in
section 2. Reducing the number of required sections is profitable to reduce the computational cost of
complex simulations. The two size moment method is the only Eulerian Multi-Fluid method including
validated advanced collision efficiency models, which are crucial for solid rocket motor studies. Finally,
the method is practically efficient in solid rocket motor simulation contexts to predict the level of
hydrodynamic and acoustic instabilities, which is one of the main issues.
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Appendix A. Reconstruction algorithm for two size moments

The two size moment Eulerian Multi-Fluid method transports two size moments for section k but

the properties that have to be averaged on section [S
3/2
k−1, S

3/2
k ] are computed assuming a two coefficient

exponential reconstruction for (nk,mk). This requires to compute the reconstruction coefficients as
follows :
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No analytical expression can be derived for its reciprocal function so that gk is inverted with Rid-
ders’ method. This requires to compute gk several times, usually around ten times for the required
accuracy. The gk function is explicitly computable with an expression featuring the error function or
Dawson function. We consider this method as too costful so we use the adaptive quadrature intro-
duced in 1.6 to compute the 3/2 order moment integration. The accuracy of the adaptive quadrature
in this case is presented in Fig. A.26 and is better than 10−4 for (Ad2).
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Figure A.26: Left : The gk inverse function with its limiters – Right : Relative error on gk(b) – ∆ : Ad2; ∇ : Ad3;
Reference : analytic

To avoid overflow, a constant slope limiter is used in the exponential part of the NDF reconstruc-
tions that imposes | bk∆S |< Klim. Its effect on the accuracy of size distribution reconstructions has
been evaluated as very moderate. The shape of the reciprocal function once limited is presented in
Fig. A.26.
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Appendix B. Collision efficiency models

Collision efficiency E has been introduced in the coalescence terms of Eq. (2). It is a probability
factor modeling the correlation of droplet velocities immediately before a collision. It is equivalent to
consider that droplets may dodge each other due to the gas flow surrounding them. Collision efficiency
laws thus require knowledge of local gas parameters such as density ρg or viscosity µg. In the case of
unbalanced droplet sizes, two collision efficiency models are suggested [16] : the Langmuir-Blodgett
model, and the Beard-Grover model [29, 3]. These laws strongly depend on the bigger droplet Reynolds
number and on a dimensionless number k which read, when taking rs the smaller radius and rb the
bigger radius :

Re =
2ρgrb

µg
| U− ub | , k = 2ρlr

2
s |ub−us|
9µgrb

.

The number k is the ratio of the smaller droplet relaxation time τr = 2ρlr
2
s

9µg
to its residence time in the

bigger droplet influence zone τh = rb
|ub−us| .

In the case of low Reynolds numbers, Langmuir and Blodgett [35] numerically get the following
expression :

{

E1(k) = 0, if k ≤ 1.214

E1(k) =
(

1 + 3 ln(2k)
2(k−1.214)

)−2
, otherwise

whereas for high Reynolds, they get :

{

E2(k) = 0, if k ≤ 0.0833

E2(k) = k2

(k+0.5)2
, otherwise.

For intermediate cases they assume the following interpolation :

ELB(k,Re) =
E1(k)

1 + Re/60
+

(Re/60)E2(k)

1 + Re/60
. (B.1)
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Figure B.27: Two collision laws selected for solid rocket motor applications with rb = 150µm (Solid : rs = 2µm,
Dashed : rs = 3µm; Dotted : rs = 4µm)

Beard and Grover [5] suggest to increase the accuracy of formula (B.1) which results from a
simple interpolation between two limits. For this purpose, they use a numerical solution of the
incompressible Navier-Stokes equations in order to determine the gaseous flow surrounding the bigger
droplet depending on the Reynolds number. They can therefore evaluate precisely the forces on the
smaller droplet and compute its trajectory. For Re ∈ [0, 400] and rb < rs, it yields:

EBG(k,Re) =
4

π2
[arctan(max(H(k,Re), 0))]2 (B.2)
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where
H = 0.1465 + 1.302Z − 0.607Z2 + 0.293Z3

Z = ln(k/k0)
k0 = exp(−0.1007 − 0.358 ln(Re) + 0.0261[ln(Re)]2).

Typical collision efficiency values with these two laws are given in Fig. B.27.
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[40] E. Masi. Étude théorique et numérique de la modélisation instationnaire des écoulements turbulents anisothermes
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