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Given a random variable F regular enough in the sense of the Malliavin calculus, we are able to measure the distance between its law and any probability measure with a density function which is continuous, bounded, strictly positive on an interval in the real line and admits finite variance. The bounds are given in terms of the Malliavin derivative of F . Our approach is based on the theory of Itô diffusions and the stochastic calculus of variations. Several examples are considered in order to illustrate our general results.

Introduction

Let (Ω, F, P ) be a probability space and (W t ) t≥0 a Brownian motion on this space. Let F be a random variable defined on Ω which is differentiable in the sense of the Malliavin calculus. Then using the so-called Stein's method introduced by Nourdin and Peccati in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] (see also [START_REF] Nourdin | S tein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields[END_REF] and [START_REF] Nourdin | Stein's method meets Malliavin calculus: a short survey with new estimates[END_REF]), it is possible to measure the distance between the law of F and the standard normal law N (0, 1). This distance can be defined in several ways, e.g. the Kolmogorov distance, the Wasserstein distance, the total variation distance or the Fortet-Mourier distance. More precisely we have, if L(F ) denotes the law of F , d(L(F ), N (0, 1)) ≤ c E 1 -DF, D(-L) -1 F L 2 ([0,1]) 2 .

(

) 1 
Here D denotes the Malliavin derivative with respect to W , and L is the generator of the Ornstein-Uhlenbeck semigroup. We will explain in the next section how these operators are defined. The constant c in (1) depends on the distance considered: is equal to 1 in the case of the Kolmogorov distance as well as in the case of the Wasserstein distance, c = 2 for the total variation distance and c = 4 in the case of the Fortet-Mourier distance. The Stein's method related with Malliavin calculus has been generalized to Gamma and Pearson distributions (see [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] and [START_REF] Eden | General upper and lower tail estimates using Malliavin calculus and Stein's equations[END_REF]). Our purpose is to extend the above bound to a more general class of probability distributions. Actually, given a random variable F regular enough in the sense of the Malliavin calculus, we are able to measure the distance between its law and any probability measure with a density function which is continuous, bounded, strictly positive on an interval in the real line and admits finite variance. Our approach is based on the following idea. Consider a given probability density function p which is continuous, bounded, with finite variance, it is strictly positive on an interval (l, u) (-∞ ≤ l < u ≤ ∞) and it vanishes outside the interval (l, u). This class includes almost all the commonly used probability densities. Then we will construct an ergodic Itô diffusion which admits p as invariant density. The procedure to construct such a diffusion is explained in [START_REF] Bibby | Diffusion-type models with given marginals and auto-correlation function[END_REF] (see also [START_REF] Aït-Sahalia | Nonparametric pricing of interest rate derivative securities[END_REF] or [START_REF] Reinert | A short introduction to Stein's method[END_REF]) and it will be recalled in Section 3 in our paper. The diffusion associated with the density p (by associated with p, we mean that it admits p as invariant density) has the form dX t = -(X t -m)dt + a(X t )dW t where m is the mean of p, (W t ) t≥0 is a standard Wiener process and the diffusion coefficient a can be written explicitly in terms of the function p and of the constant m (see formula [START_REF] Eden | General upper and lower tail estimates using Malliavin calculus and Stein's equations[END_REF] in Section 3). Then we will consider the generator of the diffusion X above and we will use the properties of this operator and the integration by parts on Wiener space in the spirit of [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] in order to obtain a bound between the law of an arbitrary random variable F and the law with density p. This bound, that we will call Stein's bound, will involve the Malliavin derivative of F and it reduces to the results contained in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] and [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] in the particular cases of the Gaussian and Gamma laws.

We mention that there already exists a scientific literature relating Stein's method and Berry-Esséen bound to diffusion theory. We refer to the survey [START_REF] Reinert | A short introduction to Stein's method[END_REF] and the reference therein (see among others [START_REF] Barbour | Stein's method for diffusion approximations[END_REF], [START_REF] Ch | Approximate computation of expectations[END_REF]) or to the recent reference [START_REF] Eden | General upper and lower tail estimates using Malliavin calculus and Stein's equations[END_REF]. The novelty of our approach is related to the use of the Malliavin derivatives. This approach has several advantages. Firstly, it is unitary, in the sense the Stein's bound we give is available for several metrics between the laws of random variables. Secondly, it is rather complete since, as we explain in Section 3, it applies to almost every absolutely continuous probability distribution. And thirdly, it allows us to characterize the random variables with a given probability distribution in terms of its Malliavin derivatives (see Theorem 2).

Our paper is structured in the following way: Section 2 contains the basic notion on Malliavin calculus. In Section 3 we construct our general theory to derive the Berry-Esséen bound for the distance between an arbitrary random variable and a given probability measure. In Sections 4 and we consider several examples (the uniform distribution, the Pareto distribution, the Laplace distribution etc) used to illustrate our bound.

Preliminaries

This paragraph is devoted to introduce the elements from stochastic analysis that will be used in the paper. Consider H a real separable Hilbert space and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a probability space (Ω, A, P ), which is a centered Gaussian family of random variables such that E (B(ϕ)B(ψ)) = ϕ, ψ H . Denote I n the multiple stochastic integral with respect to B (see [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]). This I n is actually an isometry between the Hilbert space H ⊙n (symmetric tensor product) equipped with the scaled norm 1 √ n! • H ⊗n and the Wiener chaos of order n which is defined as the closed linear span of the random variables H n (B(ϕ)) where ϕ ∈ H, ϕ H = 1 and H n is the Hermite polynomial of degree n ≥ 1 given by

H n (x) = (-1) n n! exp x 2 2 d n dx n exp - x 2 2 , x ∈ R.
The isometry of multiple integrals can be written as: for m, n positive integers,

E (I n (f )I m (g)) = n! f , g H ⊗n if m = n, E (I n (f )I m (g)) = 0 if m = n. (2) 
It also holds that I n (f ) = I n f where f denotes the symmetrization of f defined by f (x 1 , . . . , x n ) =

1 n! σ∈Sn f (x σ(1) , . . . , x σ(n) ).
We recall that any square integrable random variable which is measurable with respect to the σ-algebra generated by B can be expanded into an orthogonal sum of multiple stochastic integrals

F = n≥0 I n (f n ) (3) 
where f n ∈ H ⊙n are (uniquely determined) symmetric functions and

I 0 (f 0 ) = E [F ].
Let L be the Ornstein-Uhlenbeck operator

LF = - n≥0 nI n (f n ) if F is given by (3) and it is such that ∞ n=1 n 2 n! f n
For p > 1 and α ∈ R we introduce the Sobolev-Watanabe space D α,p as the closure of the set of polynomial random variables with respect to the norm

F α,p = (I -L) α 2 F L p (Ω)
where I represents the identity. We denote by D the Malliavin derivative operator that acts on smooth functions of the form F = g(B(ϕ 1 ), . . . , B(ϕ n )) (g is a smooth function with compact support and ϕ i ∈ H)

DF = n i=1 ∂g ∂x i (B(ϕ 1 ), . . . , B(ϕ n ))ϕ i .
The operator D is continuous from D α,p into D α-1,p (H) . The adjoint of D is denoted by δ and is called the divergence (or Skorohod) integral. It is a continuous operator from D α-1,p (H) into D α,p . The following key relation provides a connection between D, L and δ and plays an important role in the so-called Stein's method: for any centered random variables

F ∈ D 1,2 it holds that F = LL -1 F = -δDL -1 F
3 The general theory

Itô diffusion with given invariant measure

In this paragraph we will describe the construction of a diffusion process with given invariant measure µ that admits a density p with respect to the Lebesque measure. We refer to [START_REF] Bibby | Diffusion-type models with given marginals and auto-correlation function[END_REF] and [START_REF] Aït-Sahalia | Nonparametric pricing of interest rate derivative securities[END_REF] for more details and proofs. Assume that the density p satisfies the following conditions: it is continuous, bounded, admits finite variance and p is strictly positive on the interval (l, u) (-∞ ≤ l < u ≤ ∞) and it is zero outside (l, u). Denote by m the expectation of µ and consider the stochastic differential equation

dX t = -(X t -m)dt + a(X t )dW t , t ≥ 0 (4)
where (W t ) t≥0 is a standard Brownian motion and the diffusion coefficient is defined by

a(x) = 2 x l (m -y)p(y)dy p(x) = 2mF (x) -2 x l yp(y)dy p(x) , x ∈ (l, u) (5) 
where F (x) =

x -∞ p(y)dy, x ∈ R is the distribution function associated with the density p. Then the following holds (see Theorem 2.3 in [START_REF] Bibby | Diffusion-type models with given marginals and auto-correlation function[END_REF]):

• The stochastic differential equation ( 4) with diffusion coefficient given by (5) has a unique Markovian weak solution.

• The diffusion coefficient a (5) is strictly positive for x ∈ (l, u) and satisfies

Ea(X) = u l a(x)p(x)dx < ∞
where X ∼ µ (this notation means that the random variable X follows the law µ).

• The solution X to (4) is ergodic with invariant density p.

• If -∞ < l or u < ∞ then (4) is the only ergodic diffusion with drift -(x -m) and invariant density p. If the state space is the whole real line, then (4) is the only ergodic diffusion with drift -(x -m) and invariant density p such that u l a(x)p(x)dx < ∞. Table 1 in [START_REF] Bibby | Diffusion-type models with given marginals and auto-correlation function[END_REF] provided many examples of diffusion associated with a given density p. We will use some of them in our paper (the normal distribution, the Gamma distribution, the uniform distribution, the Beta distribution, the log-normal distribution, the Laplace distribution, the log-normal distribution) and we will recall the diffusion coefficients associated with this law.

Besides these examples, many others can be found in [START_REF] Bibby | Diffusion-type models with given marginals and auto-correlation function[END_REF] and the list is not exhaustive. In principle for any density that satisfies the rather general assumption described at the beginning of this section, one can associate a diffusion process. For some classes of distributions it is not possible to determine an explicit expression for the squared diffusion coefficient a similar to [START_REF] Eden | General upper and lower tail estimates using Malliavin calculus and Stein's equations[END_REF]. In this case, some approximation method can be applied (see Section 3 in [START_REF] Bibby | Diffusion-type models with given marginals and auto-correlation function[END_REF]).

Remark 1 The construction of the diffusion process presented above is a particular case of a more general result. That is, given a density p as above and given a drift coefficient b such that there exists a real number k ∈ (l, u) such that b(x) > 0 for x ∈ (l, k) and b(x) < 0 for x ∈ (k, u), bp is continuous and bounded on (l, u) and u l b(x)p(x)dx = 0 then the stochastic differential equation has a unique Markovian weak solution which is ergodic with invariant density p. This way is not the only one to construct a diffusion process with a given invariant density. Another method for constructing such a diffusion is given in [START_REF] Bibby | Simplified estimating functions for diffusion models with a high-dimensional parameter[END_REF].

dX t = b(X t )dt + a(X t )dW t , t ≥ 0 with a(x) =

Stein's method of invariant measures associated to one-dimensional second order differential operators

The purpose of this paragraph is to derive the bounds for the distance between the law of an arbitrary random variable Y and a given continuous probability distribution. We will situate ourselves in the general context described in Remark 1.

Let S be the interval (l, u) (-∞ ≤ l < u ≤ ∞) and µ be a probability measure on S with a density function p which is continuous, bounded, strictly positive on S, and admits finite variance. Consider a continuous function b on S such that there exists k ∈ (l, u) such that b(x) > 0 for x ∈ (l, k) and b(x) < 0 for x ∈ (k, u), bp is bounded on S and 

Then, the stochastic differential equation:

dX t = b(X t )dt + a(X t )dW t , t ≥ 0
has a unique Markovian weak solution, ergodic with invariant density p (see Remark 1).

In the next result we express the density p in terms of the coefficients a and b. The equation in the following proposition is same as the formula (6.22) on page 241 in [START_REF] Karlin | A second course on stochastic processes[END_REF].

Proposition 1 Take c ∈ S, then p(x) = p(c)a(c) a(x) e x c
2b(y) a(y) dy , x ∈ S.

Proof: Relation (7) implies that a(x)p(x) = 2

x l b(y)p(y)dy.

Note that the left-hand side of this equality is differentiable, since the right-hand side is differentiable. Differentiating both side, we have

d dx [a(x)p(x)] = 2b(x) a(x) a(x)p(x).
Hence, it holds that (log a(x)p(x)) ′ = 2b(x) a(x) .

By integrate both sides from c to x we have the assertion.

For f ∈ C 0 (S) (the set of continuous functions on S vanishing at the boundary of S), let m f := u l f (x)p(x)dx and define gf by, for every x ∈ S,

gf (x) := 2 a(x)p(x) x l (f (y) -m f )p(y)dy (8) = - 2 a(x)p(x) u x (f (y) -m f )p(y)dy. (9) 
Then, by Proposition 1 we have

gf (x) = x l 2(f (y) -m f ) a(y) exp - x y 2b(z) a(z) dz dy, x ∈ S. (10) 
Then, g f (x) :=

x 0 gf (y)dy satisfies that f -m f = Ag f and by the definition of m f we have

f (x) -E[f (X)] = 1 2 a(x)g ′ f (x) + b(x)g f (x) ( 11 
)
where X is a random variable with its law µ.

Remark 2 Relation ( 11) is called Stein's equation and it is a general extension of the Stein's equation for normal and Gamma distributions considered in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] or [START_REF] Reinert | A short introduction to Stein's method[END_REF]. Indeed, when the measure µ is the standard normal distribution N (0, 1), the state space is S = (-∞, ∞) and the coefficients of the associated operator are defined by a(x) = 2 and b(x) = -x. Therefore, (11) becomes, for X ∼ N (0, 1)

f (x) -Ef (X) = g′ f (x) -xg f (x), x ∈ R.
When we deal with the Kolmogorov distance and take

f (x) = 1 -(∞,z] (x) then gf (x) = e x 2 2 x -∞ 1 (-∞,z] (a) -Φ(z) e -a 2 2 da
which is the solution of the Stein's equation presented in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] or [START_REF] Reinert | A short introduction to Stein's method[END_REF] for example.

We also retrieve the results in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] in the case when µ is the Gamma distribution. We refer to Section 4 for details.

Now we consider the bounds for the functions gf and g′

f .

Proposition 2 Assume that there exist l ′ , u ′ ∈ (l, u) such that b is non-increasing on (l, l ′ ) and (u ′ , u). Consider f : S → R such that gf is well-defined and f ∞ := sup x∈S |f (x)| < ∞.
Then we have

||g f || ∞ ≤ C 1 ||f || ∞ and ||ag ′ f || ∞ ≤ C 2 ||f || ∞
where C 1 and C 2 are strictly positive constants.

Proof: Note that the condition imposed on b implies lim x→u b(x) < 0 and lim x→l b(x) > 0. By ( 6), ( 9) and ( 7) we have

|g f (x)| = u x (f (y) -m f )p(y)dy u x b(y)p(y)dy
.

By L'Hôpital's rule we have

lim x→u |g f (x)| ≤ lim x→u f (x) -m f b(x) ≤ C + 1 ||f || ∞
where C + 1 is a strictly positive constant. Similarly we have

lim x→l |g f (x)| ≤ C - 1 ||f || ∞
where C - 1 is a constant. Hence, the continuity of gf yields the first assertion. In view of [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF], to show the second assertion, it is sufficient to prove

||bg f || ∞ ≤ C 3 ||f || ∞ . (12) 
By ( 6), ( 7) and ( 9) we get

|b(x)g f (x)| ≤ 2||f || ∞ b(x) u x p(y)dy u x b(y)p(y)dy . Since b(x) is non-increasing on [u ′ , u), we have b(x) u x p(y)dy ≥ u x b(y)p(y)dy, x ∈ [u ′ , u).
Hence, since b is positive on (k, u), The estimates in Proposition 2 are sufficiently good when a is uniformly bounded and strictly positive. But, when a degenerates at the boundary of S, we need another estimate instead of the second estimate.

lim x→u |b(x)g f (x)| ≤ 2||f || ∞ . and similarly we have lim x→l |b(x)g f (x)| ≤ 2||f || ∞ . Therefore, ( 12 
)
Proposition 3 Assume that if u < ∞, there exists u ′ ∈ (l, u) such that b is non-decreasing and Lipschitz continuous on [u ′ , u) and lim x→u a(x)/(u -x) > 0; if u = ∞, there exists u ′ ∈ (l, u) such that b is non-decreasing on [u ′ , u) and lim x→u a(x) > 0.
Similarly, assume that if l > -∞, there exists l ′ ∈ (l, u) such that b is non-increasing and Lipschitz continuous on (l, l ′ ] and lim x→l a(x)/(x -l) > 0; if l = -∞, there exists l ′ ∈ (l, u) such that b is non-decreasing on (l, l ′ ] and lim x→l a(x) > 0. Then we have

||g ′ f || ∞ ≤ C 4 (||f || ∞ + ||f ′ || ∞ ) for f ∈ C 1 0 (S)
where C 4 is a constant.

Proof: When u = ∞, we have lim x→∞ |g ′ f (x)| ≤ C 2 ||f || ∞ by a similar argument to that in the proof of Proposition 2. Similarly, when l = -∞, we have lim x→-∞ |g ′ f (x)| ≤ C 2 ||f || ∞ . In view of continuity of g ′ f it is sufficient to show that lim x→u |g ′ f (x)| ≤ C 5 (||f || ∞ + ||f ′ || ∞ ), when u < ∞, (13) 
lim x→l |g ′ f (x)| ≤ C 5 (||f || ∞ + ||f ′ || ∞ ), when l > -∞, (14) 
where u). By ( 6), ( 7), ( 9) and ( 11), we have

C 5 is a constant. Consider the case that u < ∞. Choose ε > 0 such that b(x) < -ε for x ∈ [u ′ , u) and K > 0 such that |b(x) -b(y)| ≤ K|x -y| for x, y ∈ [u ′ ,
g′ f (x) = 2 a(x) (f (x) -m f ) - b(x) u x (f (y) -m f )p(y)dy u x b(y)p(y)dy . Hence, for x ∈ [u ′ , u) |g ′ f (x)| = 2 a(x) u x b(y)p(y)dy (f (x) -m f ) u x b(y)p(y)dy -(f (x) -m f )b(x) u x p(y)dy +(f (x) -m f )b(x) u x p(y)dy -b(x) u x (f (y) -m f )p(y)dy = 2 a(x) u x b(y)p(y)dy (f (x) -m f ) u x [b(y) -b(x)]p(y)dy + b(x) u x [f (x) -f (y)]p(y)dy ≤ 2 εa(x) u x p(y)dy 2K||f || ∞ (u -x) u x p(y)dy + b(x)||f ′ || ∞ (u -x) u x p(y)dy = 2(u -x) εa(x) 2K||f || ∞ + b(x)||f ′ || ∞ .
This estimate and the assumption on a implies (13) with a constant C 5 . When l > -∞, we can show ( 14) by similar argument.

There are many examples when our argument applies in Table 1 on Page 8 in [START_REF] Bibby | Diffusion-type models with given marginals and auto-correlation function[END_REF]. Several examples will be discussed in details in the next section. We make below just some general comments.

We are now able to derive the Stein's bound between the probability measure µ and the law of an arbitrary random variable Y . The following result extends the findings in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] in the case where µ is standard normal law and the Gamma law respectively. We mention that •, • H denotes the scalar product in H.

Theorem 1 Assume X ∼ µ and let Y be an S-valued random variable in D 1,2 with b(Y ) ∈ L 2 (Ω). Then for every f : S → R such that gf , g′ f are bounded,

|E[f (Y ) -f (X)]| ≤ ||g ′ f || ∞ E 1 2 a(Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , DY H +||g f || ∞ |E [b(Y )] |. ( 15 
)
and

|E[f (Y ) -f (X)]| ≤ ||g ′ f || ∞ E E 1 2 a(Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , DY H Y +||g f || ∞ |E [b(Y )] |. ( 16 
)
Proof: First, by ( 11)

E[f (Y ) -f (X)] = E 1 2 a(Y )g ′ f (Y ) + b(Y )g f (Y ) . ( 17 
) Recall that LF := -D * DF for F ∈ D 1,2 centered. Then, since (-L) -1 {b(Y )-E[b(Y )]} ∈ D 1,2 , E 1 2 a(Y )g ′ f (Y ) + b(Y )g f (Y ) = E 1 2 a(Y )g ′ f (Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , g′ f (Y )DY H + E [b(Y )] E [g f (Y )]
Hence, by ( 17)

|E[f (Y ) -f (X)]| = E g′ f (Y ) 1 2 a(Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , DY H + E[g f (Y )]E [b(Y )] (18) ≤ ||g ′ f || ∞ E 1 2 a(Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , DY H + ||g f || ∞ |E [b(Y )] |.
It is possible to give an alternative bound for the distance. Actually, the above calculation can be refined as follows.

E[f (Y ) -f (X)] = E 1 2 a(Y )g ′ f (Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , g′ f (Y )DY H + E [b(Y )] E [g f (Y )] = E g′ f (Y )E 1 2 a(Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , DY H Y + E [b(Y )] E [g f (Y )]
and thus

|E[f (Y ) -f (X)]| ≤ ||g ′ f || ∞ E E 1 2 a(Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , DY H Y + ||g f || ∞ |E [b(Y )] |. Remark 4 a) Theorem 1 is applicable for functions f ∈ C 1 0 (S). Also the hypothesis b(Y ) ∈ L 2 (Ω) holds for b(x) = -(x -m) once Y ∈ D 1,2 . b) In the case µ = N (0, 1) (recall a(x) = 2, b(x) = -x) we obtain from Proposition 2 that for a centered random variable Y ∈ D 1,2 sup f ∈C 0 (S) |E[f (Y ) -f (X)]| ≤ CE 1 -D(-L) -1 Y, DY H
where C is a constant independent of Y . Notice that in this case we don't need f ∈ C 1 0 (S) due to Proposition 2 and Remark 4 since inf x∈R a(x) = 2. We mention also that is well known from [START_REF] Ch | Approximate computation of expectations[END_REF] that gf , g′ f are bounded under different assumptions on f (see also Lemma 2.1 in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF]).

The Kolmogorov distance d K between the L(F ) and L(G) (the laws of the random variables F, G) is defined by

d K (L(F ), L(G)) := sup f ∈F K |E[f (F )] -E[f (G)]|.
where F K := {1 (l,z] ; z ∈ (l, u)}. For x ∈ S and f (x) = 1 (l,z] (x), we can choose f n ∈ C 0 (S) such that {f n } is an increasing sequence and f n (x) converges to f (x) for all x ∈ S. Hence, by the dominated convergence theorem it holds that

lim n→∞ |E[f n (F )] -E[f n (G)]| = |E[f (F )] -E[f (G)]|.
This implies the following estimate:

d K (L(F ), L(G)) ≤ sup f ∈C 0 (S); ||f ||∞≤1 |E[f (F )] -E[f (G)]|.
If inf x∈S a(x) > 0, then by this estimate, Theorem 1, and Proposition 2 we obtain an estimate for Kolmogorov distance between X and Y as follows:

d K (L(Y ), µ) ≤ CE 1 2 a(Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , DY H + C|E [b(Y )] |, ( 19 
)
where C is a positive constant. Note that if µ is the normal distribution, we can choose a(x) = 2 and b(x) = -x.

Generally, consider a distance between distributions of random variables F and G on S defined by

d H (L(F ), L(G)) := sup f ∈H |E[f (F )] -E[f (G)]|, ( 20 
)
where H is a set of functions on S. If for all f ∈ H there exists a sequence f n ∈ F such that f n converges to f in suitable sense, we have

d H (L(F ), L(G)) ≤ sup f ∈F |E[f (F )] -E[f (G)]|.
Hence, by this estimate and (15) we obtain an estimate for the distance between X and Y as follows:

d H (L(Y ), µ) ≤ sup f ∈F ||g ′ f || ∞ E 1 2 a(Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , DY H + sup f ∈F ||g f || ∞ |E [b(Y )] |. (21) 
There are many kind of distance between distributions defined by (20). In the case of the Wasserstein distance or the Fortet-Mourier distance, for all f ∈ H we can choose

F := {f ∈ C 1 0 (S); ||f ′ || ∞ ≤ 1}, because we can choose f n ∈ {f ∈ C 1 0 ; ||f ′ || ∞ ≤ 1}
such that f n converges to f uniformly in every compact set. Hence, (21), Theorem 1 and Proposition 3 implies that

d H (L(Y ), µ) ≤ CE 1 2 a(Y ) + D(-L) -1 {b(Y ) -E[b(Y )]} , DY H + C|E [b(Y )] |,
where C is a positive constant. Note that we do not assume inf x∈S a(x) > 0 in this case. This means that, even if µ has the Gamma distribution, the Wasserstein distance and the Fortet-Mourier distance are dominated.

In the case of the total variation distance, we choose F := C 0 (S), because we can choose f n ∈ C 0 (S) uniformly bounded and such that f n (x) converges to f (x) for each x ∈ S. Hence, the similar argument to the case of the Kolmogorov distance is available, and if inf x∈S a(x) > 0 we obtain the same estimate (19) for the total variation distance.

We will discuss in the next section the significance of the bound given by ( 15) and ( 16). The above computation leads to an interesting characterization of the random variations whose distribution is the invariant measure µ of the semigroup associated with the operator A.

Theorem 2 A random variable Y ∈ D 1,2 with its values on S has probability distribution µ and satisfies that b(Y

) ∈ L 2 (Ω) if and only if E[b(Y )] = 0 and E 1 2 a(Y ) + D(-L) -1 b(Y ), DY H Y = 0. (22) 
Proof: Suppose that E[b(Y )] = 0 and (22) holds. Then, due to [START_REF] Tudor | Asymptotic Cramér theorem and analysis on Wiener space[END_REF], the distance between the law of Y and µ is zero and then Y ∼ µ. Suppose now that Y ∼ µ. [START_REF] Karlin | A second course on stochastic processes[END_REF] implies that

E[b(Y )] = 0. Let h ∈ C ∞ K (S). Define f (x) := 1 2p(x) d dx [a(x)p(x)h(x)] , x ∈ S.
Note that [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] implies that ap ∈ C 1 (S). Since h has compact support in S, we have f ∈ C 0 (S) and m f := u l f (x)p(x)dx = 0. Hence, the definition of f and (8) implies that h = g′ f where g f defined by gf with replacing f by f . This argument yields that for h ∈ C ∞ K (S) there exists f ∈ C 0 (S) such that h = g′ f . Thus, (18) implies

E h(Y )E 1 2 a(Y ) + D(-L) -1 b(Y ), DY H Y = 0, h ∈ C ∞ K (S).
This finishes the proof, because C ∞ K (S) is dense in C 0 (S) and the functions in C 0 (S) approximate the indicator functions.

Remark 5 a) The same result has been obtained in [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF] or [START_REF] Tudor | Asymptotic Cramér theorem and analysis on Wiener space[END_REF] in the case of the Gaussian distribution.

b) When the random variable DY, D(-L) -1 (b(Y ) -Eb(Y )) H is measurable with respect to the sigma algebra generated by Y the bound (15) and ( 16) coincide. But, as it can be seen in the sequel, this is not always the case.

Significance of the bound

The purpose of the section is to check the significance of the bound [START_REF] Tudor | Asymptotic Cramér theorem and analysis on Wiener space[END_REF]. By "significance of the bound" we mean the following: given a random variable whose probability law is the invariant measure X, then the distance between its law and X is zero. We will prove that this is true in the case of several continuous probability distributions: the uniform distribution, the log-normal distribution and the Pareto distribution. But it fails in the case of the Laplace distribution. That means, for an explicit random variable Y which follows the Laplace distribution, we will prove that the right hand side of (15) does not vanish almost surely. On the other hand, as we have showed in Theorem 2, the right hand side of ( 16) vanishes surely. This fact can be interpreted as follows: when the random variable DY, D(-L) -1 b(Y ) is not measurable with respect to the sigma-algebra generated by Y , the correct Stein's bound is the inequality [START_REF] Viens | Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent[END_REF].

In order to compute the right hand side of ( 15) we need to calculate the random variable DY, D(-L) -1 b(Y ) . This random variable (and its conditional expectation given Y ) appears in several works related to Malliavin calculus and Stein's method (see [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], [START_REF] Tudor | Asymptotic Cramér theorem and analysis on Wiener space[END_REF], [START_REF] Viens | Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent[END_REF]). In general, it is difficult to find an explicit expression for it Y for general Y . But in the case when Y is a function of a Gaussian vector we have a very useful formula proved in [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF]: if Y = h(N ) -Eh(N ) where h : R n → R is a function of class C 1 with bounded derivatives and N = (N 1 , ..., N n ) is a Gaussian vector with zero mean and covariance matrix K = (K i,j ) i,j=1,..,n then (we will omit in the sequel the index H for the scalar product)

D(-L) -1 (Y -EY ), DY = ∞ 0 e -u duE ′ n i,j=1 K i,j ∂h ∂x i (N ) ∂h ∂x j (e -u N + 1 -e -2u N ′ ). ( 23 
)
Here N ′ denotes and independent copy of N and we assume that N, N ′ are defined on a product probability space (Ω × Ω ′ , F ⊗ F, P × P ′ ) and E ′ denotes the expectation with respect to the probability measure P ′ . Formula (23) is a consequence of the Mehler formula (see e.g. [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]) and it has been proved in [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF], subsection 3.2.1. In the rest of this section the following context will prevail: (W t ) t∈[0,T ] will denotes a standard Wiener process on (Ω, F, P ), by W (h) we will denote the Wiener integral of h ∈ L 2 ([0, T ]) with respect to W and W ′ will be an independent Wiener process on a probability space (Ω ′ , F ′ , P ′ ).

The Gamma distribution

The case of the Gamma distribution is already known. The Stein's bound [START_REF] Tudor | Asymptotic Cramér theorem and analysis on Wiener space[END_REF] has been obtained in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] and already discussed in Section 3. We prefer to discuss it further in order to compare the bounds ( 15) and ( 16). We will consider the random variable

Y = W (h) 2
which has Gamma distribution with parameters a = 1 2 and λ = 1 2 . This is actually the chi-square distribution and its associated coefficient are a(x) = 4x and b(x) = -(x -1). Proposition 3 implies that (note the assumptions are satisfied by the functions a, b above defined on the state space (0, ∞)

|Ef (X) -Ef (Y )| ≤ C(||f || ∞ + ||f ′ || ∞ )E 2Y -DY, D(-L) -1 (Y -1) + |EY -1| (24)
for any f ∈ C 1 0 (0, ∞). Note that EY = 1 for our choice of Y .

Remark 6

The bound ( 24) is a variant of inequalities (3.48), (3.49) in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] which are stated for the centered Gamma law and different classes of functions instead of C 1 0 (0, ∞).

We can easily compute the scalar product DY, D(-L) -1 (Y -1) using (23

) with h(x) = x 2 . DY, D(-L) -1 (Y -1) = 2W (x) 1 0 da2E ′ aW (h) + 1 -a 2 W ′ (h) = 4W (h) 2 1 0 ada = 2W (h) 2 = 2Y.
We can notice that the random variable DY, D(-L) -1 (Y -1) is measurable with respect to the sigma algebra generated by Y . Therefore the bound ( 15) and ( 16) coincide and Theorem 2 provide an interesting characterization of the chi-square distribution random variables in terms of the Malliavin derivatives: that is, a random variable Y has chi-square distribution (with one degree of freedom) if and only if DY, D(-L) -1 (Y -1) = 2Y almost surely.

The Uniform distribution

We will discuss the case of the uniform distribution

U ([a, b]) with ∞ < a < b < ∞. The density of this law is p a,b (x) = 1 b-a 1 [a,b] (x)
and the mean of p a,b is a+b 2 . We will actually restrict to the particular case a = 0, b = 1 and let p(x) := p 0,1 (x) = 1 [0,1] (x). This density is associated with the stochastic differential equation

dX t = -(X t - 1 2 )dt + X t (1 -X t )dW t
in the sense that the solution X to the above equation is ergodic with invariant measure µ ∼ U ([0, 1]). The diffusion coefficients a and b are in this case defined on (0, 1) and given by (see Table 1 in [START_REF] Bibby | Diffusion-type models with given marginals and auto-correlation function[END_REF])

a(x) = x(1 -x) and b(x) = -(x - 1 2 ). ( 25 
)
Let Y be a random variable in the space D 1,2 such that

EY = EU [0, 1] = 1 2 .
In this case the Stein's bound [START_REF] Tudor | Asymptotic Cramér theorem and analysis on Wiener space[END_REF] becomes, for any function f ∈ C 1 0 ([0, 1]) (we mention that a satisfies the assumptions in Proposition 3 since lim x→1 a(x)

1-x = lim x→0 a(x) x = 1) |Ef (Y ) -Ef (U [0, 1])| ≤ C E 1 2 a(Y ) -D(-L) -1 (Y - 1 2 ), DY = C E 1 2 Y (1 -Y ) -E D(-L) -1 (Y - 1 2 ), DY .
Let us check "how good" is this bound on an example. Let f, g ∈ L 2 ([0, T ]) such that

f L 2 ([0,T ]) = g L 2 ([0,T ]) = 1 and f, g L 2 ([0,T ]) = 0.
Then W (f ) and W (g) are independent standard normal random variables. Define the random variable Y by

Y = e -1 2 (W (f ) 2 +W (g) 2 ) . ( 26 
)
Then it is well-known that Y has uniform distribution U ([0, 1]) since the random variable -1 2 W (f ) 2 + W (g) 2 has exponential distribution with parameter 1. It is also clear that Y ∈ D 1,2 . Note also that Y can be expressed as a function of the Gaussian vector (W (f ), W (g)) whose covariance matrix is the identity matrix

I 2 . Indeed, Y = h(W (f ), W (g)) with h : R 2 → R, h(x, y) = e -1 2 (x 2 +y 2 ) .
The function h satisfies the assumption in order to apply (23). Applying this formula to the random variable (26) we get

D(-L) -1 (Y - 1 2 ), DY = W (f )e -1 2 (W (f ) 2 +W (g) 2 ) E ′ ∞ 0 e -u du(e -u W (f ) + 1 -e -2u W ′ (f )) ×e -1 2 [(e -u W (f )+ √ 1-e -2u W ′ (f )) 2 +(e -u W (g)+ √ 1-e -2u W ′ (g)) 2 ] +W (g)e -1 2 (W (f ) 2 +W (g) 2 ) E ′ ∞ 0 e -u du(e -u W (g) + 1 -e -2u W ′ (g)) ×e -1 2 [(e -u W (f )+ √ 1-e -2u W ′ (f )) 2 +(e -u W (g)+ √ 1-e -2u W ′ (g)) 2 ] .
We made the change of variable e -u = a and then

D(-L) -1 (Y - 1 2 ), DY = W (f )e -1 2 (W (f ) 2 +W (g) 2 ) E ′ 1 0 da(aW (f ) + 1 -a 2 W ′ (f )) ×e -1 2 [(aW (f )+ √ 1-a 2 W ′ (f )) 2 +(aW (g)+ √ 1-a 2 W ′ (g)) 2 ] +W (g)e -1 2 (W (f ) 2 +W (g) 2 ) E ′ 1 0 da(aW (g) + 1 -a 2 W ′ (g)) ×e -1 2 [(aW (f )+ √ 1-a 2 W ′ (f )) 2 +(aW (g)+ √ 1-a 2 W ′ (g)) 2 ] . (27) 
At this point we need the following lemma. It will be widely used throughout the paper.

Lemma 1 Let K ≥ -1, C ∈ R and a ∈ (0, 1). Suppose Z ∼ N (0, 1). Then

Ee -K(C+ √ 1-a 2 Z) 2 = 1 1 + 2K(1 -a 2 ) e -C 2 K 1 1+2K(1-a 2 ) and E C + 1 -a 2 Z e -K(C+ √ 1-a 2 Z) 2 = C (1 + 2K(1 -a 2 )) 3 2 e -C 2 K 1 1+2K(1-a 2 )
.

Proof: The proofs for the two equations are almost same. We only show the second one.

E C + 1 -a 2 Z e -K(C+ √ 1-a 2 Z) 2 = 1 √ 2π R (C + 1 -a 2 x)e -K(C+ √ 1-a 2 x) 2 e -x 2 2 dx = 1 √ 2π e -KC 2 e 2K 2 C 2 (1-a 2 ) 1+2K(1-a 2 ) R (C + 1 -a 2 x)e -1 2 (1+2K(1-a 2 )) x+ 2KC √ 1-a 2 1+2K(1-a 2 ) 2 dx = 1 1 + 2K(1 -a 2 ) C - 2KC(1 -a 2 ) 1 + 2K(1 -a 2 ) e -C 2 K 1 1+2K(1-a 2 ) = C (1 + 2K(1 -a 2 )) 3 2 e -C 2 K 1 1+2K(1-a 2 ) .
Now, using Lemma 1, we have

E ′ e -1 2 (aW (g)+ √ 1-a 2 W ′ (g)) 2 = e -1 2 a 2 W (g) 2 (2-a 2 ) (2 -a 2 ) -1 2 E ′ (aW (f ) + √ 1 -a 2 W ′ (f ))e -1 2 (aW (f )+ √ 1-a 2 W ′ (f )) 2 = W (f )e -1 2 
a 2 W (f ) 2 (2-a 2 ) (2 -a 2 ) -3 2 a.
By inserting the above two identities in (27) we obtain

D(-L) -1 (Y - 1 2 ), DY = (W (f ) 2 + W (g) 2 ) 1 0 e -1 2 (W (f ) 2 +W (g) 2 ) 2 2-a 2 (2 -a 2 ) -2 ada.
Since for any constant c d da e

c 1 2-a 2 = e c 1 2-a 2 2ac (2 -a 2 ) 2 we get (with c = -(W (f ) 2 + W (g) 2 )) D(-L) -1 (Y - 1 2 ), DY = 1 2 e -1 2 (W (f ) 2 +W (g) 2 ) -e -(W (f ) 2 +W (g) 2 ) . (28) 
On the other hand, using (25),

a(Y ) = Y (1 -Y ) (29) 
and by ( 28) and (29) we concluded that the right hand side of ( 15) is zero.

Remark 7 It is interesting to note that 1 2 a(Y ) -D(-L) -1 (Y -1 2 )
, DY is zero and not only the expectation of its absolute value. That is, this quantity is zero for every ω ∈ Ω. We will also mention that in this case the random variable D(-L) -1 (Y -1

2 ), DY is measurable with respect to the sigma-algebra generated by Y . Therefore the bounds ( 15) and ( 16) coincide.

The Beta distribution

Using the computations in the previous paragraph, it is immediate to treat the case of the beta distribution with a particular choice of its parameters. Recall that the density of the beta distribution with parameters α, β > 0 is p α,β (x) = Γ(α+β) Γ(α)Γ(β) x α-1 (1 -x) β-1 1 (0,1) (x). The mean of this law is α α+β while the coefficient of the diffusion associated with the beta law are a(x) = 2 α+β x(1 -x) and b(x) = -(x -α α+β ). Similarly to the case of the unform distribution we can check that a and b satisfies the hypothesis of Proposition (3). We will restrict here to the special case α

= 1 2 , β = 1. The distribution β( 1 2 , 1) is a power-function distribution. It is well-known that if X ∼ U [0, 1] then X 2 ∼ β( 1 2 , 1). Consider the random variable Y = e -(W (f ) 2 +W (g) 2 )
. Then obviously Y ∼ β( 12 , 1). Using formula (23) with h(x, y) = e -x 2 +y 2 , Lemma 1 we get

DY, D(-L) -1 (Y - 1 3 ) = 1 2 a(Y ).
Again the random variable DY, D(-L) -1 (Y -1 3 ) is measurable with respect to Y .

The log-normal distribution

We analyze here the case of the lognormal distribution. Let us first review some basic properties of this probability distribution. A random variable Y has lognormal distribution with parameters δ and σ 2 if log Y has normal distribution with mean δ and variance σ 2 . The density of the log-normal distribution with parameters δ and σ 2 > 0 is

1 √ 2πσ 2 x e -1 2σ 2 (log x-δ) 2 1 (0,∞) (x) (30) 
and the coefficients of the associated diffusion are defined on (0, ∞) and given by b(x) = -(x -e δ+ 1 2 σ 2 ) and

a(x) = 2 p(x) Φ log x -δ σ -Φ log x -δ σ -σ (31) 
(see [START_REF] Bibby | Diffusion-type models with given marginals and auto-correlation function[END_REF], page 8)), where Φ denotes the cumulative distribution function of the standard normal law, p is given by (30). We check the significance of the bound in the case of the lognormal distribution with parameters δ = 0 and σ = 1. The function a satisfies lim x→∞ a(x) = ∞ and a(x)

x = 2e Using formula (23) we get

DY, D(-L) -1 (Y -e 1 2 ) = ∞ 0 due -u e W (h) E ′ e e -u W (h)+ √ 1-e -2u W ′ (h) = e W (h) 1 0 daE ′ e aW (h)+ √ 1-a 2 W ′ (h)
where W ′ (h) denotes an independent copy of W (h). Since

E ′ e aW (h)+ √ 1-a 2 W ′ (h) = e aW (h) e 1 2 (1-a 2 ) ,
we obtain

DY, D(-L) -1 (Y -e 1 2 ) = e W (h) 1 0 dae aW (h) e 1 2 (1-a 2 ) = e W (h) e 1 2 e W (h) 2 2 1 0 dae -1 2 (a-W (h)) 2 = e W (h) e 1 2 e W (h) 2 2 W (h) W (h)-1 e -x 2 2 dx
where we used the change of variables W (h) -a = x. Let us now compute

1 2 a(Y ) = e 1 2 p(Y ) -1 (Φ(log(Y )) -Φ(log(Y ) -1)) = e 1 2 Y e log(Y ) 2 2 log(Y ) log(Y )-1 e -x 2 2 dx = e 1 2 e W (h) e W (h) 2 2 W (h) W (h)-1 e -x 2 2 dx
where we use the formula (30) for the density of the lognormal distribution and the expression of the operator a. We can see that ) is measurable with respect to the sigma algebra generated by Y .

The Pareto distribution

Let us recall some basic properties of the Pareto distribution with parameter α > 1 (denoted in the following by P areto(α)). The probability density function of this law is

p(x) = α(1 + x) -α-1
and its expectation is m = 1 α-1 . The functions a and b associated to the diffusion equation whose invariant measure is P areto(α) are given by

a(x) = 2 α -1 x(1 + x) and b(x) = -(x - 1 α -1 ), x ∈ (0, ∞).
It is standard to see that a, b verifies the statement of Proposition 3. We recall a well-known fact: if the random variable X follows a Pareto distribution with parameter α > 1 then log(Y + 1) ∼ Exp(α).

Let us consider the same context as in the previous examples. That is, we are on a probability space (Ω, F, P ) and let (W t ) t∈[0,T ] be a Wiener process on this space. Consider two orthonormal elements h 1 , h 2 ∈ L 2 ([0, T ]). Then W (h 1 ), W (h 2 ) are independent standard normal random variables and

W (h 1 ) 2 + W (h 2 ) 2 ∼ Exp( 1 2 ) = Γ(1, 1 2 ). 
Consider the random variable

Y = e 1 4 (W (h 1 ) 2 +W (h 2 ) 2 ) -1.
Then, since 1 4 (W (h

1 ) 2 + W (h 2 ) 2 ) ∼ Γ(1, 2) = Exp(2)
, we can see that Y follows a Pareto distribution with parameter α = 2. Clearly, we have

1 2 a(Y ) = Y (1 + Y ) = e 1 2 (W (h 1 ) 2 +W (h 2 ) 2 ) -e 1 4 (W (h 1 ) 2 +W (h 2 ) 2 ) .
Using (23) with h(x, y) = e 1 4 (x 2 +y 2 ) -1 we will get (we recall that W ′ is an independent copy of W , see the beginning of this section)

DY, D(-L) -1 (Y -1) = 1 2 W (h 1 )e 1 4 (W (h 1 ) 2 +W (h 2 ) 2 ) 1 0 da 1 2 E ′ (aW (h 1 ) + 1 -a 2 W ′ (h 1 ))e 1 4 ((aW (h 1 )+ √ 1-a 2 W ′ (h 1 )) 2 +(aW (h 2 )+ √ 1-a 2 W ′ (h 2 )) 2 ) + 1 2 W (h 1 )e 1 4 (W (h 1 ) 2 +W (h 2 ) 2 ) 1 0 da 1 2 E ′ (aW (h 2 ) + 1 -a 2 W ′ (h 2 )e 1 4 ((aW (h 1 )+ √ 1-a 2 W ′ (h 1 )) 2 +(aW (h 2 )+ √ 1-a 2 W ′ (h 2 )) 2 )
and by Lemma 1 with K = -1 4 and C = aW (h 1 ), aW (h 2 ) respectively, we can write

DY, D(-L) -1 (Y -1) = Y (1 + Y ) = 1 2 a(Y ).
4.6 The Laplace distribution: Failure of the bound (15)

The Laplace distribution with parameter α > 0 (denoted by Laplace(α)) is a continuous probability distribution with density p α (x) = α 2 e -α|x| , for every x ∈ R. The mean of the law is m = 0 and the diffusion coefficients (5) are

a(x) = 2 α 2 (1 + α|x|), b(x) = -x. (32) 
Is is known that if X 1 , X 2 are two independent random variables such that X

1 ∼ Exp(α), X 2 ∼ Exp(α) then X 1 -X 2 ∼ Laplace(α).
Let us analyze the case of the Laplace distribution with parameter α = 1. In this case, (32) reduces to b(x) = -x and a(x) = 2(1 + |x|).

Here the state space is whole real line (-∞, ∞) and we can apply Proposition 2 in order to obtain the Stein's bound. Consider the random variable

Y = 1 2 W (h 1 ) 2 + W (h 2 ) 2 -W (h 3 ) 2 -W (h 4 ) 2
where as above h i (i = 1, .., 4) are orthonormal functions in L 2 ([0, T ]). Since

1 2 W (h 1 ) 2 + W (h 2 ) 2 ∼ Exp(1) and 1 2 W (h 3 ) 2 + W (h 4 ) 2 ∼ Exp(1)
it can be easily seen that Y ∼ Laplace(1). It is easy to compute the quantity DY, D(-L) -1 b(Y ) using formula (23). We obtain,

DY, D(-L) -1 b(Y ) = -DY, D(-L) -1 Y = - 1 2 W (h 1 ) 2 + W (h 2 ) 2 + W (h 3 ) 2 + W (h 4 ) 2 . (33) 
It is obvious that is this case the difference 1 2 a(Y )+ DY, D(-L) -1 b(Y ) does not vanish almost surely. This signifies that the bound given by inequality [START_REF] Tudor | Asymptotic Cramér theorem and analysis on Wiener space[END_REF] is not good in this case and it has to replaced by [START_REF] Viens | Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent[END_REF]. Theorem 2 ensures that the right hand side of ( 16) vanishes almost surely. The reason why the bound (15) fails is given by the fact that the random variable DY, D(-L) -1 b(Y ) is not measurable with respect to the sigma-algebra generated by Y .

The case of the Laplace distribution can be discussed on an other examples. Consider four independent standard normal random variables W (h 1 ), W (h 2 ), W (h 3 ), W (h 4 ) and define

Y 1 = W (h 1 )W (h 2 ) + W (h 3 )W (h 4 ).
Then again Y 1 follows a Laplace distribution with mean zero and variance 1. And we can see that again the expression (33) holds for the random variable Y 1 . Then

1 2 a(Y 1 ) + DY 1 , D(-L) -1 b(Y 1 ) = 1 + |W (h 1 )W (h 2 ) + W (h 3 )W (h 4 )| - 1 2 W (h 1 ) 2 + W (h 2 ) 2 + W (h 3 ) 2 + W (h 4 ) 2
and this does not vanish. On the other hand, we know from Theorem 2 that

E 1 2 a(Y 1 ) + DY, D(-L) -1 b(Y 1 ) Y 1 = 0.
20 in this way we will obtain some interesting (and somehow unexpected) identities for functions of the Brownian motion, which are difficult to be proven directly. That is

E 1 2 W (h 1 ) 2 + W (h 2 ) 2 + W (h 3 ) 2 + W (h 4 ) 2 W (h 1 )W (h 2 ) + W (h 3 )W (h 4 ) = 1 + |W (h 1 )W (h 2 ) + W (h 3 )W (h 4 )| and E 1 2 W (h 1 ) 2 + W (h 2 ) 2 + W (h 3 ) 2 + W (h 4 ) 2 1 2 W (h 1 ) 2 + W (h 2 ) 2 -W (h 3 ) 2 -W (h 4 ) 2 = 1 + 1 2 W (h 1 ) 2 + W (h 2 ) 2 -W (h 3 ) 2 -W (h 4 ) 2 .

Example

We will illustrate the bound obtained via Stein's method through an example. Consider (h i ) i≥0 a sequence of orthonormal elements of L 2 ([0, T ]) and define for every i ≥ 1

X i = e -(W (h i ) 2 -1) (34) 
(the minus sign is added in order to have finite expectation) and

Y N = (X 1 ....X N ) 1 √ 2N = e -1 √ 2N N i=1 (W (h i ) 2 -1) . (35) 
Then, applying the central limit theorem to 1

√ 2N N i=1 (W (h i ) 2 -1)
, we have that Y N converges in distribution, as N → ∞, to the log-normal distribution with mean zero and variance equal to 1. Let us compute the bound given by the right hand side of ( 15) and [START_REF] Viens | Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent[END_REF]. Define a, b and p same as in Section 4.4. In this case we have 2 ) .

|Ef (Y N ) -Ef (X)| ≤ CE 1 2 a(Y N ) -DY N , D(-L) -1 Y N -e 1 2 + C ′ E(Y N -e 1 
Since, with Z ∼ N (0, 1)

EY N = e N 2 Ee -1 √ 2N Z 2 N = e N 2 1 + 2 √ 2N -N
we can see, by studying the asymptotic behavior as N → ∞ of the above sequence, that √ N Eb(Y N ) → N →∞ C with C a strictly negative constant. We compute now a(Y N ) where a is the function given by (31) with µ = e 

da 2 N E ′ aW (h i ) + 1 -a 2 W ′ (h i ) e -1 √ 2N [ N i=1 (aW (h i )+ √ 1-a 2 W ′ (h i )) 2 -1] = N i=1 2 N W (h i )e -Z N × 1 0 da 2 N E ′ aW (h i ) + 1 -a 2 W ′ (h i ) e -1 √ 2N [(aW (h i )+ √ 1-a 2 W ′ (h i )) 2 -1] ×   N j=1;j =i E ′ e -1 √ 2N [(aW (h j )+ √ 1-a 2 W ′ (h j )) 2 -1]   . (37) 
E ′ aW (h i ) + 1 -a 2 W ′ (h i ) e -1 √ 2N (aW (h i )+ √ 1-a 2 W ′ (h i )) 2 = aW (h i ) 1 + 2 √ 2N (1 -a 2 ) 3 2 e -a 2 W (h i ) 2 1 √ 2N 1 1+ 2 √ 2N
(1-a 2 ) .

Using the above two identities and (37)

DY N , D(-L) -1 Y N -e 1 2 = 2 N N i=1 W (h i ) 2 e -Z N e N 2 1 0 daa N i=1 e -a 2 W (h i ) 2 1 √ 2N 1 1+ 2 √ 2N (1-a 2 ) 1 + 2 N (1 -a 2 ) -N+2 2 = 2 N S N e -Z N e N 2 1 0 daae -a 2 1 √ 2N S N 1 1+ 2 √ 2N (1-a 2 ) 1 + 2 N (1 -a 2 ) -N+2 2 = ( 2 √ 2 √ N Z N + 2) 1 0 daae -Z N (1+a 2 1 1+ 2 √ 2N (1-a 2 )
) e

(1-

a 2 1+ 2 √ 2N (1-a 2 ) ) N 2 1 + 2 N (1 -a 2 ) -N+2 2 . Since log 1 + 2 N (1 -a 2 ) = 2 N (1 -a 2 ) - 1 2 2 N (1 -a 2 ) 2 + o(N -1 )
where o(N -1 ) is of Landau notation, and hence

1 + 2 N (1 -a 2 ) -N+2 2 = e -N+2 2 ( 2 N (1-a 2 )-1 2 2
N (1-a 2 ) 2 +o(N -1 )) ,

we will have

DY N , D(-L) -1 Y N -e 1 2 = 2 √ 2 √ N Z N + 2) 1 0 daae -Z N (1+a 2 1 1+ 2 √ 2N (1-a 2 )
)

×e

(1- a 2 1+ 2 √ 2N (1-a 2 ) ) N 2 e -N+2 2 ( 2 N (1-a 2 )-1 2 2 N (1-a 2 ) 2 +o(N -1 )) = A N + B N ,
where

A N := 2 √ 2 √ N Z N 1 0 daae -Z N (1+a 2 1 1+ 2 √ 2N (1-a 2 )
) e

(1- 

a 2 1+ 2 √ 2N (1-a 2 ) ) N 2 -N+2 2 ( 2 N (1-a 2 )-

Remark 3

 3 holds from the continuity of bg f . The hypotheses assumed on b are satisfied for all the distributions considered throughout our paper. This is true because in all the examples the function b is of the form b(x) = -(x -m), m being the expectation of the law µ.

  For example, by taking H = {f : ||f || L ≤ 1}, where || • || L denotes the usual Lipschitz seminorm, one obtains the Wasserstein (or Kantorovich-Wasserstein) distance; by taking H = {f : ||f || BL ≤ 1}, where || • || BL = || • || L + || • || ∞ , one obtains the Fortet-Mourier (or bounded Wasserstein) distance; by taking H equal to the collection of all indicators 1 B of Borel sets, one obtains the total variation distance.

1 2 (

 2 log x) 2 log x log x-1 e -u 2 2 du ≥ 2. Let us consider the random variable Y = e W (h) where h ∈ L 2 ([0, T ]) has L 2 norm equal to 1. Then obviously Y follows a lognormal law with mean δ = 0 and variance σ = 1. Let us first compute the scalar product DY, D(-L) -1 (b(Y ) -Eb(Y )) = -DY, D(-L) -1 (Y -e 1 2 ) .

Remark 8 1 2)

 81 Again the quantity 1 2 a(Y ) -DY, D(-L) -1 (Y -e vanishes and not only its expectation. Also DY, D(-L) -1 (Y -e 1 2

1 √Ni=1 (x 2 i - 1 )

 121 (23) with h(x 1 , ..., x N ) = e -2N we can writeDY N , D(-L) -1 (b(Y N ) -Eb(Y N )) = DY N , D(-L) -1 Y N -e

By applying Lemma 1 with K = 1 √ 1 √ 2 = 1 1 + 2 √2N ( 1 -a 2 )e-a 2 W

 11212122 2N and C = aW (h i ) we obtainE ′ e -2N (aW (h j )+ √ 1-a 2 W ′ (h j )) (h j )

1 2 2 N ( 1 -a 2 ) 2 N ( 1 -a 2 ) 1 0

 2122121 2 +o(N -1 )) 2 +o(N -1 )) .We will first show thatE √ N A N → N →∞ C 0where C 0 is a strictly positive constant. We can write, using the change of variables a 2 = b with 2ada = db dbe -Z N (1+b) e b(1-b) e g N (b)

H ⊗n < ∞.
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Since Z N converges in law to N (0, 1), the first summand above converges as N → ∞ to

while the second summand converges to zero as N → ∞ by the dominated convergence theorem. Let us handle the summand denoted by B N . Actually, we will prove that

with D 0 a strictly positive constant. First, we write

N + B

(2) N and the limit (38) follows since (see (36)) B

N = 1 2 a(Y N ) and for N large,

As a conclusion of the computations contained in this section, the distance between the law of Y N given (35) by and the log-normal distribution with mean 0 and variance 1 is of order of