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Abstract

Given a random variable F regular enough in the sense of the Malliavin calculus, we
are able to measure the distance between its law and almost any continuous probability
law on the real line. The bounds are given in terms of the Malliavin derivative of F .
Our approach is based on the theory of Itô diffusions and the stochastic calculus of
variations. Several examples are considered in order to illustrate our general results.
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1 Introduction

Let (Ω,F , P ) be a probability space and (Wt)t≥0 a Brownian motion on this space. Let
F be a random variable defined on Ω which is differentiable in the sense of the Malliavin
calculus. Then using the so-called Stein’s method introduced by Nourdin and Peccati in
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Université de Panthéon-Sorbonne Paris 1. This work has been partially completed when the second author

has visited Keio University. He acknowledges generous support from Japan Society for the Promotion of

Science.

1



[6] (see also [7] and [8]), it is possible to measure the distance between the law of F and
the standard normal law N(0, 1). This distance can be defined in several ways, e.g. the
Kolmogorov distance, the Wasserstein distance, the total variation distance or the Fortet-
Mourier distance. More precisely we have, if L(F ) denotes the law of F ,

d(L(F ), N(0, 1)) ≤ c

√

E
(

1− 〈DF,D(−L)−1F 〉L2([0,1])

)2
. (1)

Here D denotes the Malliavin derivative with respect to W , and L is the generator of the
Ornstein-Uhlenbeck semigroup. We will explain in the next section how these operators are
defined. The constant c in (1) depends on the distance considered: is equal to 1 in the case
of the Kolmogorov distance as well as in the case of the Wasserstein distance, c = 2 for the
total variation distance and c = 4 in the case of the Fortet-Mourier distance.

The Stein’s method related with Malliavin calculus has been generalized to Gamma
and Pearson distributions (see [9] and [5]). Our purpose is to extend the above bound
to a more general class of probability distributions. Actually, given a random variable F
regular enough in the sense of the Malliavin calculus, we are able to measure the distance
between its law and almost any absolutely continuous probability law on the real line. Our
approach is based on the following idea. Consider a given probability density function p
which is continuous, bounded, with finite variance, it is strictly positive on an interval (l, u)
(−∞ ≤ l < u ≤ ∞) and it vanishes outside the interval (l, u). This class included almost all
the commonly used probability densities. Then we will construct an ergodic Itô diffusion
which admits p as invariant density. The procedure to construct such a diffusion is explained
in [4] (see also [2] or [12]) and it will be recalled in Section 3 in our paper. The diffusion
associated with the density p (by associated with p, we mean that it admits p as invariant
density) has the form

dXt = −(Xt −m)dt+
√

a(Xt)dWt

where m is the mean of p, (Wt)t≥0 is a standard Wiener process and the diffusion coefficient
a can be written explicitly in terms of the function p and of the constant m (see formula (5)
in Section 3). Then we will consider the generator of the diffusion X above and we will use
the properties of this operator and the integration by parts on Wiener space in the spirit of
[6] in order to obtain a bound between the law of an arbitrary random variable F and the
law with density p. This bound, that we will call Stein’s bound, will involve the Malliavin
derivative of F and it reduces to the results contained in [6] and [9] in the particular cases
of the Gaussian and Gamma laws.

We mention that there already exists a scientific literature relating Stein’s method
and Berry-Esséen bound to diffusion theory. We refer to the survey [12] and the reference
therein (see among others [1], [13]) or to the recent reference [5]. The novelty of our approach
is related to the use of the Malliavin derivatives. This approach has several advantages.
Firstly, it is unitary, in the sense the Stein’s bound we give is available for several metrics
between the laws of random variables. Secondly, it is rather complete since, as we explain
in Section 3, it applies to almost every absolutely continuous probability distribution. And
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thirdly, it allows to characterize the random variables with a given probability distribution
in terms of its Malliavin derivatives (see Theorem 2).

Our paper is structured in the following way: Section 2 contains the basic notion
on Malliavin calculus. In Section 3 we construct our general theory to derive the Berry-
Esséen bound for the distance between an arbitrary random variable and a given probability
measure. In Sections 4 and we consider several examples (the uniform distribution, the
Pareto distribution, the Laplace distribution etc) used to illustrate our bound.

2 Preliminaries

This paragraph is devoted to introduce the elements from stochastic analysis that will
be used in the paper. Consider H a real separable Hilbert space and (B(ϕ), ϕ ∈ H) an
isonormal Gaussian process on a probability space (Ω,A, P ), which is a centered Gaussian
family of random variables such that E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H. Denote In the multiple
stochastic integral with respect to B (see [11]). This In is actually an isometry between the
Hilbert space H⊙n(symmetric tensor product) equipped with the scaled norm 1√

n!
‖ · ‖H⊗n

and the Wiener chaos of order n which is defined as the closed linear span of the random
variables Hn(B(ϕ)) where ϕ ∈ H, ‖ϕ‖H = 1 and Hn is the Hermite polynomial of degree
n ≥ 1 given by

Hn(x) =
(−1)n

n!
exp

(

x2

2

)

dn

dxn

(

exp

(

−x
2

2

))

, x ∈ R.

The isometry of multiple integrals can be written as: for m,n positive integers,

E (In(f)Im(g)) = n!〈f̃ , g̃〉H⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n. (2)

It also holds that In(f) = In
(

f̃
)

where f̃ denotes the symmetrization of f defined by

f̃(x1, . . . , xn) =
1
n!

∑

σ∈Sn
f(xσ(1), . . . , xσ(n)).

We recall that any square integrable random variable which is measurable with respect
to the σ-algebra generated by B can be expanded into an orthogonal sum of multiple
stochastic integrals

F =
∑

n≥0

In(fn) (3)

where fn ∈ H⊙n are (uniquely determined) symmetric functions and I0(f0) = E [F ].

Let L be the Ornstein-Uhlenbeck operator

LF = −
∑

n≥0

nIn(fn)
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if F is given by (3) and it is such that
∑∞

n=1 n
2n!‖fn‖2H⊗n <∞.

For p > 1 and α ∈ R we introduce the Sobolev-Watanabe space D
α,p as the closure of

the set of polynomial random variables with respect to the norm

‖F‖α,p = ‖(I − L)
α
2 F‖Lp(Ω)

where I represents the identity. We denote by D the Malliavin derivative operator that acts
on smooth functions of the form F = g(B(ϕ1), . . . , B(ϕn)) (g is a smooth function with
compact support and ϕi ∈ H)

DF =

n
∑

i=1

∂g

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi.

The operator D is continuous from D
α,p into D

α−1,p (H) . The adjoint of D is denoted by
δ and is called the divergence (or Skorohod) integral. It is a continuous operator from
D
α−1,p (H) into D

α,p. The following key relation provides a connection between D,L and
δ and plays an important role in the so-called Stein’s method: for any centered random
variables F ∈ D

1,2 it holds that F = LL−1F = −δDL−1F

3 The general theory

3.1 Itô diffusion with given invariant measure

In this paragraph we will describe the construction of a diffusion process with given invariant
measure µ that admits a density p with respect to the Lebesque measure. We refer to [4] and
[2] for more details and proofs. Assume that the density p satisfies the following conditions:
it is continuous, bounded, admits finite variance and p is strictly positive on the interval
(l, u) (−∞ ≤ l < u ≤ ∞) and it is zero outside (l, u). Denote by m the expectation of µ
and consider the stochastic differential equation

dXt = −(Xt −m)dt+
√

a(Xt)dWt, t ≥ 0 (4)

where (Wt)t≥0 is a standard Brownian motion and the diffusion coefficient is defined by

a(x) =
2
∫ x

l
(m− y)p(y)dy

p(x)
=

2mF (x)− 2
∫ x

l
yp(y)dy

p(x)
, x ∈ (l, u) (5)

where F (x) =
∫ x

−∞ p(y)dy, x ∈ R is the distribution function associated with the density p.
Then the following holds (see Theorem 2.3 in [4]):

• The stochastic differential equation (4) with diffusion coefficient given by (5) has a
unique Markovian weak solution.
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• The diffusion coefficient a (5) is strictly positive for x ∈ (l, u) and satisfies

Ea(X) =

∫ u

l

a(x)p(x)dx <∞

where X ∼ µ (this notation means that the random variable X follows the law µ).

• The solution X to (4) is ergodic with invariant density p.

• If −∞ < l or u < ∞ then (4) is the only ergodic diffusion with drift −(x − m) and
invariant density p. If the state space is the whole real line, then (4) is the only ergodic
diffusion with drift −(x−m) and invariant density p such that

∫ u

l
a(x)p(x)dx <∞.

Table 1 in [4] provided many examples of diffusion associated with a given density p. We
will use some of them in our paper (the normal distribution, the Gamma distribution, the
uniform distribution, the Beta distribution, the log-normal distribution, the Laplace distri-
bution, the log-normal distribution) and we will recall the diffusion coefficients associated
with this law. Besides this examples, many others can be found in [4] and the list is not ex-
haustive. In principle for any density that satisfies the rather general assumption described
at the beginning of this section, one can associate a diffusion process. For some classes of
distributions it is not possible to determine an explicit expression for the squared diffusion
coefficient a similar to (5). In this case, some approximation method can be applied (see
Section 3 in [4]).

Remark 1 The construction of the diffusion process presented above is a particular case
of a more general result. That is, given a density p as above and given a drift coefficient b
such that there exists a real number k ∈ (l, u) such that b(x) > 0 for x ∈ (l, k) and b(x) < 0
for x ∈ (k, u), bp is continuous and bounded on (l, u) and

∫ u

l

b(x)p(x)dx = 0

then the stochastic differential equation

dXt = b(Xt)dt+
√

a(Xt)dWt, t ≥ 0

with a(x) =
2
∫ x

l
b(y)p(y)dy

p(x) has a unique Markovian weak solution which is ergodic with in-
variant density p.

This way is not the only one to construct a diffusion process with a given invariant density.
Another method for constructing such a diffusion is given in [3].

3.2 Stein’s method of invariant measures associated to one-dimensional
second order differential operators

The purpose of this paragraph is to derive the bounds for the distance between the law of
an arbitrary random variable Y and a given continuous probability distribution. We will
situate ourselves in the general context described in Remark 1.
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Let S be the interval (l, u) (−∞ ≤ l < u ≤ ∞) and µ be an probability measure on
S with a density function p which is strictly positive on S. Consider a continuous function
b on S such that there exist k ∈ (l, u) such that b(x) > 0 for x ∈ (l, k) and b(x) < 0 for
x ∈ (k, u), bp is bounded on S and

∫ u

l

b(x)p(x)dx = 0. (6)

Define

a(x) :=
2
∫ x

l
b(y)p(y)dy

p(x)
, x ∈ S. (7)

Then, the stochastic differential equation:

dXt = b(Xt)dt+
√

a(Xt)dWt, t ≥ 0

has a unique Markovian weak solution which is ergodic with invariant density p (see Remark
1).

In the next result we express the density p in terms of the coefficients a and b.

Proposition 1 Take c ∈ S, then

p(x) =
p(c)a(c)

a(x)
e
∫ x

c

2b(y)
a(y)

dy
, x ∈ S.

Proof: Relation (7) implies that

a(x)p(x) = 2

∫ x

l

b(y)p(y)dy.

Note that the left-hand side of this equality is differentiable, since the right-hand side is
differentiable. Differentiating both side, we have

d

dx
[a(x)p(x)] =

2b(x)

a(x)
a(x)p(x).

Hence, it holds that

(log a(x)p(x))′ =
2b(x)

a(x)
.

By integrate both side from c to x we have the assertion.

For f ∈ C0(S) (the set of continuous functions on S vanishing at the boundary of
S), let mf :=

∫ u

l
f(x)p(x)dx and define g̃f by, for every x ∈ S,

g̃f (x) :=
2

a(x)p(x)

∫ x

l

(f(y)−mf )p(y)dy (8)

= − 2

a(x)p(x)

∫ u

x

(f(y)−mf )p(y)dy. (9)
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Then, by Proposition 1 we have

g̃f (x) =

∫ x

l

2(f(y)−mf )

a(y)
exp

(

−
∫ x

y

2b(z)

a(z)
dz

)

dy, x ∈ S. (10)

Then, gf (x) :=
∫ x

0 g̃f (y)dy satisfies that f −mf = Agf and by the definition of mf we have

f(x)−E[f(X)] =
1

2
a(x)g̃′f (x) + b(x)g̃f (x) (11)

where X is a random variable with its law µ.

Remark 2 Relation (11) is called Stein’s equation and it is a general extension of the
Stein’s equation for normal and Gamma distributions considered in [6], [9] or [12]. Indeed,
when the measure µ is the standard normal distribution N(0, 1), the state space is S =
(−∞,∞) and the associated operators a and b are

a(x) = 2 and b(x) = −x.

Therefore, (11) becomes, for X ∼ N(0, 1)

f(x)−Ef(X) = g̃′f (x)− xg̃f (x), x ∈ R.

When we deal with the Kolmogorov distance and take f(x) = 1−(∞,z)(x) then

g̃f (x) = e
x2

2

∫ x

−∞

[

1(−∞,z](a)− Φ(z)
]

e−
a2

2 da

which is the solution of the Stein’s equation presented in [6] or [12] for example.
In the case when µ is the Gamma distribution Γ(a, λ) with parameters a, λ > 0 (and

with density f(x) = λa

Γ(a)x
a−1e−λx1(0,∞)(x), Γ(a) denoting the Gamma function) then the

corresponding coefficients are

a(x) =
2

λ
x and b(x) = −(x− a

λ
), x > 0.

The Stein’s equation (11) can be written as

f(x)−Ef(X) =
1

λ
g̃′f (x)− (x− a

λ
)g̃f (x), x > 0

if X ∼ Γ(a, λ). In the particular case λ = 1
2 , we can retrieve, after a translation, equation

(1.12) in [6], which is given in the case of the centered Gamma distribution.

Now we consider the bounds for the functions g̃f and g̃′f .
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Proposition 2 Assume that there exists l′, u′ ∈ (l, u) such that b is non-increasing on (l, l′)
and (u′, u). Consider f : S → R such that g̃f is well-defined and ‖f‖∞ := supx∈S |f(x)| <
∞. Then we have

||g̃f ||∞ ≤ C1||f ||∞
||ag̃′f ||∞ ≤ C2||f ||∞

where C1 and C2 are strictly positive constants.

Proof: Note that the condition imposed on b implies limx→u b(x) < 0 and limx→l b(x) > 0.
By (6), (9) and (7) we have

|g̃f (x)| =
∣

∣

∣

∣

∫ u

x
(f(y)−mf )p(y)dy
∫ u

x
b(y)p(y)dy

∣

∣

∣

∣

.

By L’Hôpital’s rule we have

lim
x→u

|g̃f (x)| ≤ lim
x→u

∣

∣

∣

∣

f(x)−mf

b(x)

∣

∣

∣

∣

≤ C+
1 ||f ||∞

where C+
1 is a strictly positive constant. Similarly we have

lim
x→l

|g̃f (x)| ≤ C−
1 ||f ||∞

where C−
1 is a constant. Hence, the continuity of g̃f yields the first assertion. In view of

(11), to show the second assertion, it is sufficient to prove

||bg̃f ||∞ ≤ C3||f ||∞. (12)

By (6), (7) and (9) we have

|b(x)g̃f (x)| ≤ 2||f ||∞
∣

∣

∣

∣

b(x)
∫ u

x
p(y)dy

∫ u

x
b(y)p(y)dy

∣

∣

∣

∣

.

Since b(x) is non-increasing on [u′, u), we have

b(x)

∫ u

x

p(y)dy ≥
∫ u

x

b(y)p(y)dy, x ∈ [u′, u).

Hence, since b is positive on (k, u), we have

lim
x→u

|b(x)g̃f (x)| ≤ 2||f ||∞.

Similarly we have
lim
x→l

|b(x)g̃f (x)| ≤ 2||f ||∞.

Therefore, (12) holds from the continuity of bg̃f .
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Remark 3 The hypotheses assumed on b are satisfied for all the distributions considered
throughout our paper. This is true because in all the examples the function b is of the form
b(x) = −(x−m), m being the expectation of the law µ.

The estimates in Proposition 2 are sufficiently good when a is uniformly bounded
and strictly positive. But, when a degenerates at the boundary of S, we need another
estimate instead of the second estimate.

Proposition 3 Assume that if u <∞, there exists u′ ∈ (l, u) such that b is non-decreasing
and Lipschitz continuous on [u′, u) and limx→u a(x)/(u − x) > 0; if u = ∞, there exists
u′ ∈ (l, u) such that b is non-decreasing on [u′, u) and limx→u a(x) > 0. Similarly, assume
that if l <∞, there exists l′ ∈ (l, u) such that b is non-increasing and Lipschitz continuous
on (l, l′] and limx→l a(x)/(x − l) > 0; if l = −∞, there exists l′ ∈ (l, u) such that b is
non-decreasing on (l, l′] and limx→l a(x) > 0. Then we have

||g̃′f ||∞ ≤ C4(||f ||∞ + ||f ′||∞)

for f ∈ C1
0 (S) where C4 is a constant.

Proof: When u = ∞, we have limx→∞ |g′f (x)| ≤ C2||f ||∞ by a similar argument to that

in the proof of Proposition 2. Similarly, when l = ∞, we have limx→−∞ |g′f (x)| ≤ C2||f ||∞.
In view of continuity of g′f it is sufficient to show that

lim
x→u

|g′f (x)| ≤ C5(||f ||∞ + ||f ′||∞), when u <∞, (13)

lim
x→l

|g′f (x)| ≤ C5(||f ||∞ + ||f ′||∞), when l > −∞, (14)

where C5 is a constant. Consider the case that u < ∞. Choose ε > 0 such that b(x) < −ε
for x ∈ [u′, u) and K > 0 such that |b(x) − b(y)| ≤ K|x− y| for x, y ∈ [u′, u). By (6), (7),
(9) and (11), we have

g̃′f (x) =
2

a(x)

{

(f(x)−mf )−
b(x)

∫ u

x
(f(y)−mf )p(y)dy
∫ u

x
b(y)p(y)dy

}

.

Hence, for x ∈ [u′, u)

|g̃′f (x)| =
2

a(x)
∣

∣

∫ u

x
b(y)p(y)dy

∣

∣

∣

∣

∣

∣

(f(x)−mf )

∫ u

x

b(y)p(y)dy − (f(x)−mf )b(x)

∫ u

x

p(y)dy

+(f(x)−mf )b(x)

∫ u

x

p(y)dy − b(x)

∫ u

x

(f(y)−mf )p(y)dy

∣

∣

∣

∣

=
2

a(x)
∣

∣

∫ u

x
b(y)p(y)dy

∣

∣

∣

∣

∣

∣

(f(x)−mf )

∫ u

x

[b(y)− b(x)]p(y)dy + b(x)

∫ u

x

[f(x)− f(y)]p(y)dy

∣

∣

∣

∣

≤ 2

εa(x)
∫ u

x
p(y)dy

[

2K||f ||∞(u− x)

∫ u

x

p(y)dy + b(x)||f ′||∞(u− x)

∫ u

x

p(y)dy

]

9



=
2(u− x)

εa(x)

[

2K||f ||∞ + b(x)||f ′||∞
]

.

This estimate and the assumption on a implies (13) with a constant C5. When l > −∞,
we can show (14) by similar argument.

Remark 4 There are many examples when our argument applies in Table 1 on Page 8 in
[4]. Several examples will be discussed in details in the next section. We make below just
some general comments. Consider one of the examples whose state space S is (−∞,∞). In
this case, Proposition 2 implies that

||g̃f ||∞ ≤ C1||f ||∞ and ||g̃′f ||∞ ≤ C2

inf
x∈(−∞,∞)

a(x)
||f ||∞

for f ∈ C0(−∞,∞).
When we consider one of the examples whose state space S is not (−∞,∞), we need

Proposition 3 to estimate ||g̃′f ||∞, and we have

||g̃f ||∞ ≤ C1||f ||∞ and ||g̃′f ||∞ ≤ C4(||f ||∞ + ||f ′||∞)

for f ∈ C1
0 (S).

We are now able to derive the Stein’s bound between the probability measure µ and
the law of an arbitrary random variable Y . The following result extends the findings in
[6], [9] in the case where µ is standard normal law and the Gamma law respectively. We
mention that 〈·, ·〉H denotes the scalar product in H.

Theorem 1 Assume X ∼ µ and let Y be an S-valued random variable in D
1,2 with b(Y ) ∈

D
1,2. Then for every f : S → R such that g̃f , g̃

′
f are bounded,

|E[f(Y )− f(X)]| ≤ ||g̃′f ||∞E

[∣

∣

∣

∣

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

]

+||g̃f ||∞|E [b(Y )] |. (15)

and

|E[f(Y )− f(X)]|

≤ ||g̃′f ||∞E

[∣

∣

∣

∣

E

[

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]

+||g̃f ||∞|E [b(Y )] |. (16)

Proof: First, by (11)

E[f(Y )− f(X)] = E

[

1

2
a(Y )g̃′f (Y ) + b(Y )g̃f (Y )

]

. (17)
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Recall that LF := −D∗DF for F ∈ D
1,2 centered . Then, since b(Y ) ∈ D

1,2

E

[

1

2
a(Y )g̃′f (Y ) + b(Y )g̃f (Y )

]

= E

[

1

2
a(Y )g̃′f (Y ) + 〈DL−1 {b(Y )−E[b(Y )]} , g̃′f (Y )DY 〉H

]

+E [b(Y )]E [g̃f (Y )]

Hence, by (17)

|E[f(Y )− f(X)]|

=

∣

∣

∣

∣

E

[

g̃′f (Y )

(

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

)]

+E[g̃f (Y )]E [b(Y )]

∣

∣

∣

∣

(18)

≤ ||g̃′f ||∞E

[∣

∣

∣

∣

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

]

+ ||g̃f ||∞|E [b(Y )] |.

It is possible to give an alternative bound for the distance. Actually, the above calculation
can be refined as follows.

E[f(Y )− f(X)]

= E

[

1

2
a(Y )g̃′f (Y ) + 〈DL−1 {b(Y )−E[b(Y )]} , g̃′f (Y )DY 〉H

]

+E [b(Y )]E [g̃f (Y )]

= E

[

g̃′f (Y )

(

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

)]

+E [b(Y )]E [g̃f (Y )]

= E

[

E

[

g̃′f (Y )

(

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

)∣

∣

∣

∣

Y

]]

+E [b(Y )]E [g̃f (Y )]

= E

[

g̃′f (Y )E

[(

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

)∣

∣

∣

∣

Y

]]

+E [b(Y )]E [g̃f (Y )]

and thus

|E[f(Y )− f(X)]|

≤ ||g̃′f ||∞E

[∣

∣

∣

∣

E

[

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]

+||g̃f ||∞|E [b(Y )] |.

Remark 5 Theorem 1 is applicable for functions f ∈ C1
0 (S). Also the hypothesis b(Y ) ∈

D
1,2 holds for b(x) = −(x−m) once Y ∈ D

1,2.

Example 1 In the case µ = N(0, 1) (recall a(x) = 2, b(x) = −x) we obtain from Proposi-
tion 2 that for a centered random variable Y ∈ D

1,2

sup
f∈C0(S)

|E[f(Y )− f(X)]| ≤ CE
[∣

∣1− 〈DL−1Y,DY 〉H
∣

∣

]

11



where C is a constant independent of Y . Notice that in this case we don’t need f ∈ C1
0 (S)

due to Proposition 2 and Remark 4 since infx∈R a(x) = 2. We mention also that is well
known from [13] that g̃f , g̃

′
f are bounded under different assumptions on f (see also Lemma

2.1 in [6]).

The Kolmogorov distance dK between the L(F ) and L(G) (the laws of the random
variables F,G) is defined by

dK(L(F ),L(G)) := sup
f∈FK

|E[f(F )]−E[f(G)]|.

where FK := {1(l,z]; z ∈ (l, u)}. For x ∈ S and f(x) = 1(l,z](x), we can choose fn ∈ C0(S)
such that {fn} is an increasing sequence and fn(x) converges to f(x) for all x ∈ S. Hence,
by the dominated convergence theorem it holds that

lim
n→∞

|E[fn(F )]−E[fn(G)]| = |E[f(F )]−E[f(G)]|

This implies the following estimate:

dK(L(F ),L(G)) ≤ sup
f∈C0(S); ||f ||∞≤1

|E[f(F )]−E[f(G)]|.

If infx∈S a(x) > 0, then by this estimate, Theorem 1, and Proposition 2 we obtain an
estimate for Kolmogorov distance between X and Y as follows:

dK(L(Y ), µ)

≤ CE

[∣

∣

∣

∣

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

]

+ C|E [b(Y )] |, (19)

where C is a positive constant. Note that if µ is the normal distribution, we can choose
a(x) = 2 and b(x) = −x.

Generally, consider a distance between distributions of random variables F and G
on S defined by

dH(L(F ),L(G)) := sup
f∈H

|E[f(F )]−EE[f(G)]|, (20)

where H is a set of functions on S. If for all f ∈ H there exists a sequence fn ∈ F such
that fn converges to f in suitable sense, we have

dH(L(F ),L(G)) ≤ sup
f∈F

|E[f(F )]−E[f(G)]|.

Hence, by this estimate and (15) we obtain an estimate for the distance between X and Y
as follows:

dH(L(Y ), µ) ≤ sup
f∈F

||g̃′f ||∞E

[∣

∣

∣

∣

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

]

+ sup
f∈F

||g̃f ||∞|E [b(Y )] |. (21)

12



There are many kind of distance between distributions defined by (20). For example,
by taking H = {f : ||f ||L ≤ 1}, where || · ||L denotes the usual Lipschitz seminorm,
one obtains the Wasserstein (or Kantorovich-Wasserstein) distance; by taking H = {f :
||f ||BL ≤ 1}, where || · ||BL = || · ||L + || · ||∞, one obtains the Fortet-Mourier (or bounded
Wasserstein) distance; by taking H equal to the collection of all indicators 1B of Borel sets,
one obtains the total variation distance.

In the case of the Wasserstein distance or the Fortet-Mourier distance, for all f ∈ H
we can choose F := {f ∈ C1

0 (S); ||f ′||∞ ≤ 1}, because we can choose fn ∈ {f ∈ C1
0 ; ||f ′||∞ ≤

1} such that fn converges to f uniformly in every compact set. Hence, (21), Theorem 1
and Proposition 3 implies that

dH(L(Y ), µ)

≤ CE

[∣

∣

∣

∣

1

2
a(Y ) + 〈DL−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

]

+ C|E [b(Y )] |,

where C is a positive constant. Note that we do not assume infx∈S a(x) > 0 in this case.
This means that, even if µ has the Gamma distribution, the Wasserstein distance and the
Fortet-Mourier distance are dominated.

In the case of the total variation distance, we choose F := C0(S), because we can
choose fn ∈ C0(S) uniformly bounded and such that fn(x) converges to f(x) for each
x ∈ S. Hence, the similar argument to the case of the Kolmogorov distance is available,
and if infx∈S a(x) > 0 we obtain the same estimate (19) for the total variation distance.

We will discuss in the next section the significance of the bound given by (15)
and (16). The above computation leads to an interesting characterization of the random
variations whose distribution is the invariant measure µ of the semigroup associated with
the operator A.

Theorem 2 A random variable Y ∈ D
1,2 with its values on S has probability distribution

µ if and only if E[b(Y )] = 0 and

E

[

1

2
a(Y ) + 〈DL−1b(Y ),DY 〉H

∣

∣

∣

∣

Y

]

= 0. (22)

Proof: Suppose that E[b(Y )] = 0 and (22) holds. Then, due to (15), the distance between
the law of Y and µ is zero and then Y ∼ µ. Suppose now that Y ∼ µ. (6) implies that
E[b(Y )] = 0. Let h ∈ C∞

K (S). Define

f̃(x) :=
1

2p(x)

d

dx
[a(x)p(x)h(x)] , x ∈ S.

Note that (7) implies that ap ∈ C1(S). Since h has compact support in S, we have f̃ ∈ C0(S)
and

m
f̃
:=

∫ u

l

f̃(x)p(x)dx = 0.

13



Hence, the definition of f̃ and (8) implies that h = g̃′
f̃
where g̃

f̃
defined by g̃f with replacing

f by f̃ . This argument yields that for h ∈ C∞
K (S) there exists f ∈ C0(S) such that h = g̃′

f̃
.

Thus, (18) implies

E

[

h(Y )E

[

1

2
a(Y ) + 〈DL−1b(Y ),DY 〉H

∣

∣

∣

∣

Y

]]

= 0, h ∈ C∞
K (S).

This finishes the proof, because C∞
K (S) is dense in C0(S) and the functions in C0(S) ap-

proximate the indicator functions.

Remark 6 The same result has been obtained in [10] or [14] in the case of the Gaussian
distribution.

Remark 7 When the random variable 〈DY,D(−L)−1(b(Y )−Eb(Y ))〉H is measurable with
respect to the sigma algebra generated by Y the bound (15) and (16) coincide. But, as it
can be seen in the sequel, this is not always the case.

4 Significance of the bound

The purpose of the section is to check the significant of the bound (15). By ”significance
of the bound” we mean the following: given a random variable whose probability law is
the invariant measure X, then the distance between its law and X is zero. We will prove
that this is true in the case of several continuous probability distributions: the uniform
distribution, the log-normal distribution and the Pareto distribution. But it fails in the
case of the Laplace distribution. That means, for an explicit random variable Y which
follows the Laplace distribution, we will prove that the right hand side of (15) does not
vanish almost surely. On the other hand, as we have showed in Theorem 2, the right hand
side of (16) vanishes almost surely. This fact can be interpreted as follows: when the random
variable 〈DY,D(−L)−1b(Y )〉 is not measurable with respect to the sigma-algebra generated
by Y , the correct Stein’s bound is the inequality (16).

In order to compute the right hand side of (15) we need to calculate the random
variable 〈DY,D(−L)−1b(Y )〉. This random variable (and its conditional expectation given
Y ) appears in several works related to Malliavin calculus and Stein’s method (see [6], [14],
[15]). In general, it is difficult to find an explicit expression for it Y for general Y . But in
the case when Y is a function of a Gaussian vector we have a very useful formula proved
in [10]: if Y = h(N) − Eh(N) where h : Rn → R is a function of class C1 with bounded
derivatives and N = (N1, ..., Nn) is a Gaussian vector with zero mean and covariance matrix
K = (Ki,j)i,j=1,..,n then (we will omit in the sequel the index H for the scalar product)

〈D(−L)−1(Y −EY ),DY 〉

=

∫ ∞

0
e−uduE′

n
∑

i,j=1

Ki,j
∂h

∂xi
(N)

∂h

∂xj
(e−uN +

√

1− e−2uN ′). (23)

14



Here N ′ denotes and independent copy of N and we assume that N,N ′ are defined on
a product probability space (Ω× Ω′,F ⊗ F , P × P ′) and E′ denotes the expectation with
respect to the probability measure P ′. Formula (23) is a consequence of the Mehler formula
(see e.g. [11]) and it has been proved in [10], subsection 3.2.1. In the rest of this section
the following context will prevail: (Wt)t∈[0,T ] will denotes a standard Wiener process on
(Ω,F , P ), by W (h) we will denote the Wiener integral of h ∈ L2([0, T ]) with respect to W
and W ′ will be an independent Wiener process on a probability space (Ω′,F ′, P ′).

4.1 The Gamma distribution

The case of the Gamma distribution is already known. The Stein’s bound (15) has been
obtained in [6], [9] and already discussed in Section 3. We prefer to discuss it further in
order to compare the bounds (15) and (16). We will consider the random variable

Y =W (h)2

which has Gamma distribution with parameters a = 1
2 and λ = 1

2 . This is actually the
chi-square distribution and its associated coefficient are

a(x) = 4x and b(x) = −(x− 1).

Proposition 3 implies that (note the assumptions are satisfied by the functions a, b above
defined on the state space (0,∞)

|Ef(X)−Ef(Y )| ≤ C(||f ||∞ + ||f ′||∞)E
∣

∣2Y − 〈DY,D(−L)−1(Y − 1)〉
∣

∣+ |EY − 1| (24)

for any f ∈ C1
0 (0,∞). Note that EY = 1 for our choice of Y .

Remark 8 The bound (24) is a variant of inequalities (3.48), (3.49) in [6] which are stated
for the centered Gamma law and different classes of functions instead of C1

0 (0,∞).

We can easily compute the scalar product 〈DY,D(−L)−1(Y −1)〉 using (23) with h(x) = x2.
We have

〈DY,D(−L)−1(Y − 1)〉 = 2W (x)

∫ 1

0
da2E′

[

aW (h) +
√

1− a2W ′(h)
]

= 4W (h)2
∫ 1

0
ada = 2W (h)2 = 2Y.

We can notice that the random variable 〈DY,D(−L)−1(Y − 1)〉 is measurable with respect
to the sigma algebra generated by Y . Therefore the bound (15) and (16) coincide and
Theorem 2 provide an interesting characterization of the chi-square distribution random
variables in terms of the Malliavin derivatives: that is, a random variable Y has chi-square
distribution (with one degree of freedom) if and only if 〈DY,D(−L)−1(Y −1)〉 = 2Y almost
surely.
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4.2 The Uniform distribution

We will discuss the case of the uniform distribution U([a, b]) with ∞ < a < b < ∞. The
density of this law is fa,b(x) = 1

b−a
1[a,b](x) and the mean of fa,b is a+b

2 . We will actually
restrict to the particular case a = 0, b = 1 and let f(x) := f0,1(x) = 1[0,1]. This density is
associated with the stochastic differential equation

dXt = −(Xt −
1

2
)dt+

√

Xt(1−Xt)dWt

in the sense that the solution X to the above equation is ergodic with invariant measure
µ ∼ U([0, 1]). The diffusion coefficients a and b are in this case defined on (0, 1) and given
by (see Table 1 in [4])

a(x) = x(1− x) and b(x) = −(x− 1

2
). (25)

Let Y be a random variable in the space D
1,2 such that

EY = EU [0, 1] =
1

2
.

In this case the Stein’s bound (15) becomes, for any function f ∈ C1
0 ([0, 1]) (we mention

that a satisfies the assumptions in Proposition 3 since limx→1
a(x)
1−x

= limx→0
a(x)
x

= 1)

|Ef(Y )−Ef(U [0, 1])| ≤ C

∣

∣

∣

∣

E
1

2
a(Y )− 〈D(−L)−1(Y − 1

2
),DY 〉

∣

∣

∣

∣

= C

∣

∣

∣

∣

E
1

2
Y (1− Y )−E〈D(−L)−1(Y − 1

2
),DY 〉

∣

∣

∣

∣

.

Let us check ”how good” is this bound on an example. Let f, g ∈ L2([0, T ]) such that

‖f‖L2([0,T ]) = ‖g‖L2([0,T ]) = 1 and 〈f, g〉L2([0,T ]) = 0.

Then W (f) and W (g) are independent standard normal random variables. Define the
random variable Y by

Y = e−
1
2(W (f)2+W (g)2). (26)

Then it is well-known that Y has uniform distribution U([0, 1]) since the random vari-
able −1

2

(

W (f)2 +W (g)2
)

has exponential distribution with parameter 1. It is also clear
that Y ∈ D

1,2. Note also that Y can be expressed as a function of the Gaussian vector
(W (f),W (g)) whose covariance matrix is the identity matrix I2. Indeed, Y = h(W (f),W (g))
with

h : R2 → R, h(x, y) = e−
1
2
(x2+y2).
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The function h satisfies the assumption in order to apply (23). Applying this formula to
the random variable (26) we get

〈D(−L)−1(Y − 1

2
),DY 〉

= W (f)e−
1
2
(W (f)2+W (g)2)E′

∫ ∞

0
e−udu(e−uW (f) +

√

1− e−2uW ′(f))

×e− 1
2 [(e

−uW (f)+
√
1−e−2uW ′(f))2+(e−uW (g)+

√
1−e−2uW ′(g))2]

+W (g)e−
1
2
(W (f)2+W (g)2)E′

∫ ∞

0
e−udu(e−uW (g) +

√

1− e−2uW ′(g))

×e− 1
2 [(e

−uW (f)+
√
1−e−2uW ′(f))2+(e−uW (g)+

√
1−e−2uW ′(g))2].

We made the change of variable e−u = a and then

〈D(−L)−1(Y − 1

2
),DY 〉 = W (f)e−

1
2
(W (f)2+W (g)2)E′

∫ 1

0
da(aW (f) +

√

1− a2W ′(f))

×e− 1
2 [(aW (f)+

√
1−a2W ′(f))2+(aW (g)+

√
1−a2W ′(g))2]

+W (g)e−
1
2
(W (f)2+W (g)2)E′

∫ 1

0
da(aW (g) +

√

1− a2W ′(g))

×e− 1
2 [(aW (f)+

√
1−a2W ′(f))2+(aW (g)+

√
1−a2W ′(g))2]. (27)

At this point we need the following lemmas. They will be widely used throughout the paper.

Lemma 1 Let K ≥ −1, C ∈ R and a ∈ (0, 1). Suppose Z ∼ N(0, 1). Then

Ee−K(C+
√
1−a2Z)2 =

1
√

1 + 2K(1− a2)
e
−C2K 1

1+2K(1−a2) .

Proof: We have

Ee−K(C+
√
1−a2Z)2 =

1√
2π

∫

R

e−K(C+
√
1−a2x)2e−

x2

2 dx

=
1√
2π
e−KC2

e
2K2C2(1−a2)

1+2K(1−a2)

∫

R

e
− 1

2(1+2K(1−a2))
(

x+ 2KC
√

1−a2

1+2K(1−a2)

)2

dx

=
1√
2π
e−KC2

e
2K2C2(1−a2)

1+2K(1−a2)

∫

R

e−
1
2(1+2K(1−a2))y2dy

=
1

√

1 + 2K(1− a2)
e
−C2K 1

1+2K(1−a2)

where we used successively the change of variables
(

x− 2KC
√
1−a2

1+2K(1−a2)

)

= y and
(

1 + 2K(1− a2)
)

y2 =

z.
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Lemma 2 Let K ≥ −1, C ∈ R and a ∈ (0, 1). Suppose Z ∼ N(0, 1). Then

E
(

C +
√

1− a2Z
)

e−K(C+
√
1−a2Z)2 =

C

(1 + 2K(1− a2))
3
2

e
−C2K 1

1+2K(1−a2) .

Proof: As before

E
(

C +
√

1− a2Z
)

e−K(C+
√
1−a2Z)2

=
1√
2π

∫

R

(C +
√

1− a2x)e−K(C+
√
1−a2x)2e−

x2

2 dx

=
1√
2π
e−KC2

e
2K2C2(1−a2)

1+2K(1−a2)

∫

R

(C +
√

1− a2x)e
− 1

2(1+2K(1−a2))
(

x+ 2KC
√

1−a2

1+2K(1−a2)

)2

dx

=
1√
2π
e−KC2

e
2K2C2(1−a2)

1+2K(1−a2)

×
∫

R

(

C +
√

1− a2y − 2KC(1− a2)

1 + 2K(1− a2)

)

e−
1
2(1+2K(1−a2))y2dy

=
1

√

1 + 2K(1 − a2)

(

C − 2KC(1− a2)

1 + 2K(1− a2)

)

e
−C2K 1

1+2K(1−a2)

=
C

(1 + 2K(1− a2))
3
2

e
−C2K 1

1+2K(1−a2) .

Now, using Lemmas (1) and (2)

E′e−
1
2
(aW (g)+

√
1−a2W ′(g))2 = e

− 1
2

a2W (g)2

(2−a2) (2− a2)−
1
2

and

E′(aW (f) +
√

1− a2W ′(f))e−
1
2
(aW (f)+

√
1−a2W ′(f))2

= W (f)e
− 1

2
a2W (f)2

(2−a2) (2− a2)−
3
2 a.

By inserting the above two identities in (27) we obtain

〈D(−L)−1(Y − 1

2
),DY 〉

= (W (f)2 +W (g)2)e−
1
2
(W (f)2+W (g)2)

∫ 1

0
da(2− a2)−2e

− 1
2
(W (f)2+W (g)2) a2

2−a2 a

= (W (f)2 +W (g)2)

∫ 1

0
e
− 1

2
(W (f)2+W (g)2) 2

2−a2 (2− a2)−2ada (28)
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Since for any constant c
d

da
e
c 1
2−a2 = e

c 1
2−a2

2ac

(2− a2)2

we get (with c = −(W (f)2 +W (g)2))

〈D(−L)−1(Y − 1

2
),DY 〉

= −1

2

[

e
−(W (f)2+W (g)2) 1

2−a2

]a=1

a=0
=

1

2

(

e−
1
2
(W (f)2+W (g)2) − e−(W (f)2+W (g)2)

)

. (29)

On the other hand, using (25),
a(Y ) = Y (1− Y ) (30)

and by (29) and (30) we concluded that the right hand side of (15) is zero.

Remark 9 It is interesting to note that 1
2a(Y ) − 〈D(−L)−1(Y − 1

2),DY 〉 is zero and not
only the expectation of its absolute value. That is, this quantity is zero for every ω ∈ Ω. We
will also mention that in this case the random variable 〈D(−L)−1(Y − 1

2),DY 〉 is measurable
with respect to the sigma-algebra generated by Y . That means that the the bounds (15) and
(16) coincide.

4.3 The Beta distribution

Using the computations in the previous paragraph, it is immediate to treat the case of the
beta distribution with a particular choice of its parameters. Recall that the density of the
beta distribution with parameters α, β > 0 is

fα,β(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−11(0,1)(x).

The mean of this law is α
α+β

while the coefficient of the diffusion associated with the beta
law are

a(x) =
2

α+ β
x(1− x) and b(x) = −(x− α

α+ β
).

Similarly to the case of the unform distribution we can check that a and b satisfies the
hypothesis of Proposition (3). We will restrict here to the special case α = 1

2 , β = 1. The
distribution β(12 , 1) is a power-function distribution. It is well-known that if X ∼ U [0, 1]
then X2 ∼ β(12 , 1). Consider the random variable

Y = e−(W (f)2+W (g)2).
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Then obviously Y ∼ β(12 , 1). Using formula (23) with h(x, y) = e−x2+y2 , Lemmas 1 and 2
we get

〈DY,D(−L)−1(Y − 1

3
)〉 = 4

(

W (f)2 +W (g)2
)

∫ 1

0
daa(3− 2a2)−2e

− 3−a2

3−2a2
(W (f)2+W (g)2)

= −
[

2

3
e
− 3−a2

3−2a2
(W (f)2+W (g)2)

]a=1

a=0

=
2

3

(

e−(W (f)2+W (g)2) − e−2(W (f)2+W (g)2)
)

=
1

2
a(Y ).

Again the random variable 〈DY,D(−L)−1(Y − 1
3 )〉 is measurable with respect to Y .

4.4 The log-normal distribution

We analyze here the case of the lognormal distribution. Let us first review some basic
properties of this probability distribution. A random variable Y has lognormal distribution
with parameters δ and σ2 if log Y has normal distribution with mean δ and variance σ2.
The density of the log-normal distribution with parameters δ and σ2 > 0 is

1√
2πσ2x

e−
1

2σ2 (log x−δ)21(0,∞)(x) (31)

and the coefficients of the associated diffusion are defined on (0,∞) and given by

b(x) = −(x− eδ+
1
2
σ2
)

and

a(x) =
2

f(x)

(

Φ

(

log x− δ

σ

)

− Φ

(

log x− δ

σ
− σ

))

(32)

(see [4], page 8)), where Φ denotes the cumulative distribution function of the standard
normal law, f is given by (31). We check the significance of the bound in the case of
the lognormal distribution with parameters δ = 0 and σ = 1. The function a satisfies

limx→∞ a(x) = ∞ and a(x)
x

= 2e
1
2
(log x)2

∫ log x
log x−1 e

−u2

2 du ≥ 2.
Let us consider the random variable

Y = eW (h)

where h ∈ L2([0, T ]) has L2 norm equal to 1. Then obviously Y follows a lognormal law
with mean δ = 0 and variance σ = 1. Let us first compute the scalar product

〈DY,D(−L)−1(b(Y )− Eb(Y ))〉 = −〈DY,D(−L)−1(Y − e
1
2 )〉.

Using formula (23) we get

〈DY,D(−L)−1(Y − e
1
2 )〉 =

∫ ∞

0
due−ueW (h)E′

[

ee
−uW (h)+

√
1−e−2uW ′(h)

]

= eW (h)

∫ 1

0
daE′

[

eaW (h)+
√
1−a2W ′(h)

]
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where W ′(h) denotes an independent copy of W (h). Since

E′
[

eaW (h)+
√
1−a2W ′(h)

]

= eaW (h)E′e
√
1−a2W ′(h) = eaW (h)e

1
2
(1−a2)

we obtain

〈DY,D(−L)−1(Y − e
1
2 )〉 = eW (h)

∫ 1

0
daeaW (h)e

1
2
(1−a2)

= eW (h)e
1
2 e

W (h)2

2

∫ 1

0
dae−

1
2
(a−W (h))2 = eW (h)e

1
2 e

W (h)2

2

∫ W (h)

W (h)−1
e−

x2

2 dx

where we used the change of variables W (h)− a = x. Let us now compute

1

2
a(Y ) = e

1
2 f(Y )−1 (Φ(log(Y ))−Φ(log(Y )− 1))

= e
1
2Y e

log(Y )2

2

∫ log(Y )

log(Y )−1
e−

x2

2 dx = e
1
2 eW (h)e

W (h)2

2

∫ W (h)

W (h)−1
e−

x2

2 dx

where we use the formula (31) for the density of the lognormal distribution and the expres-
sion of the operator a. We can see that

1

2
a(Y )− 〈DY,D(−L)−1(Y − e

1
2 ) = 0.

Remark 10 Again the quantity 1
2a(Y )−〈DY,D(−L)−1(Y −e 1

2 )〉 vanishes and not only its

expectation. Also 〈DY,D(−L)−1(Y − e
1
2 )〉 is measurable with respect to the sigma algebra

generated by Y .

4.5 The Pareto distribution

Let us recall some basic properties of the Pareto distribution with parameter α > 1 (denoted
in the following by Pareto(α)). The probability density function of this law is

f(x) = α(1 + x)−α−1

and its expectation is m = 1
α−1 . The functions a and b associated to the diffusion equation

whose invariant measure is Pareto(α) are given by

a(x) =
2

α− 1
x(1 + x) and b(x) = −(x− 1

α− 1
), x ∈ (0,∞).

It is standard to see that a, b verifies the statement of Proposition 3.
We recall a well-known fact: if the random variable X follows a Pareto distribution

with parameter α > 1 then
log(Y + 1) ∼ Exp(α).
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Let us consider the same context as in the previous examples. That is, we are on a proba-
bility space (Ω,F , P ) and let (Wt)t∈[0,T ] be a Wiener process on this space. Consider two
orthonormal elements h1, h2 ∈ L2([0, T ]). Then W (h1),W (h2) are independent standard
normal random variables and

W (h1)
2 +W (h2)

2 ∼ Exp(
1

2
) = Γ(1,

1

2
).

Consider the random variable

Y = e
1
4
(W (h1)2+W (h2)2) − 1.

Then, since 1
4(W (h1)

2 +W (h2)
2) ∼ Γ(1, 2) = Exp(2), we can see that Y follows a Pareto

distribution with parameter α = 2. Clearly, we have

1

2
a(Y ) = Y (1 + Y ) =

(

e
1
4
(W (h1)2+W (h2)2) − 1

)

e
1
4
(W (h1)2+W (h2)2)

= e
1
2
(W (h1)2+W (h2)2) − e

1
4
(W (h1)2+W (h2)2).

Using (23) with h(x, y) = e
1
4
(x2+y2) − 1 we will get (we recall that W ′ is an independent

copy of W , see the beginning of this section)

〈DY,D(−L)−1(Y − 1)〉

=
1

2
W (h1)e

1
4
(W (h1)2+W (h2)2)

∫ 1

0
da

1

2

E′
[

(aW (h1) +
√

1− a2W ′(h1))e
1
4((aW (h1)+

√
1−a2W ′(h1))2+(aW (h2)+

√
1−a2W ′(h2))2)

]

+
1

2
W (h1)e

1
4
(W (h1)2+W (h2)2)

∫ 1

0
da

1

2

E′
[

(aW (h2) +
√

1− a2W ′(h2)e
1
4((aW (h1)+

√
1−a2W ′(h1))2+(aW (h2)+

√
1−a2W ′(h2))2)

]

and by Lemmas 1, 2 with K = −1
4 and C = aW (h1), aW (h2) respectively, we can write

〈DY,D(−L)−1(Y − 1)〉

=
1

4
W (h1)

2e
1
4
(W (h1)2+W (h2)2)

∫ 1

0
daa

1

(1− 1
2(1− a2))2

e
1
4

a2(W (h1)
2+W (h2)

2)

1− 1
2 (1−a2)

+
1

4
W (h2)

2e
1
4
(W (h1)2+W (h2)2)

∫ 1

0
daa

1

(1− 1
2(1− a2))2

e
1
4

a2(W (h1)
2+W (h2)

2)

1− 1
2 (1−a2)

=
1

4
(W (h1)

2 +W (h2)
2)

∫ 1

0
daa

1

(1 − 1
2(1− a2))2

e
1
4
(W (h1)2+W (h2)2)

(

1+ a2

1− 1
2 (1−a2)

)

= −
[

e
1
4
(W (h1)2+W (h2)2)

(

1+ a2

1− 1
2 (1−a2)

)

]a=1

a=0

= −e 1
4
(W (h1)2+W (h2)2) + e

1
2
(W (h1)2+W (h2)2) = Y (1 + Y ) =

1

2
a(Y ).
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4.6 The Laplace distribution: Failure of the bound (15)

The Laplace distribution with parameter α > 0 (denoted by Laplace(α)) is a continuous
probability distribution with density

fα(x) =
α

2
e−α|x|, for every x ∈ R.

The mean of the law is m = 0 and the diffusion coefficients (5) are

a(x) =
2

α2
(1 + α|x|), b(x) = −x. (33)

Is is known that ifX1,X2 are two independent random variables such thatX1 ∼ Exp(α),X2 ∼
Exp(α) then X1 −X2 ∼ Laplace(α).

Let us analyze the case of the Laplace distribution with parameter α = 1. In this
case, (33) reduces to

b(x) = −x and a(x) = 2(1 + |x|).
Here the state space is whole real line (−∞,∞) and we can apply Proposition 2 in order to
obtain the Stein’s bound. Consider the random variable

Y =
1

2

(

W (h1)
2 +W (h2)

2 −W (h3)
2 −W (h4)

2
)

where as above hi (i = 1, .., 4) are orthonormal functions in L2([0, T ]). Since

1

2

(

W (h1)
2 +W (h2)

2
)

∼ Exp(1) and
1

2

(

W (h3)
2 +W (h4)

2
)

∼ Exp(1)

it can be easily seen that Y ∼ Laplace(1). It is easy to compute the quantity 〈DY,D(−L)−1b(Y )〉
using formula (23). We obtain,

〈DY,D(−L)−1b(Y )〉 = −〈DY,D(−L)−1Y 〉

= −1

2

(

W (h1)
2 +W (h2)

2 +W (h3)
2 +W (h4)

2
)

. (34)

It is obvious that is this case the difference 1
2a(Y ) + 〈DY,D(−L)−1b(Y )〉 does not vanish

almost surely. This signifies that the bound given by inequality (15) is not good in this
case and it has to replaced by (16). Theorem 2 ensures that the right hand side of (16)
vanishes almost surely. The reason why the bound (15) fails is given by the fact that the
random variable 〈DY,D(−L)−1b(Y )〉 is not measurable with respect to the sigma-algebra
generated by Y .

The case of the Laplace distribution can be discussed on an other examples. Con-
sider four independent standard normal random variablesW (h1),W (h2),W (h3),W (h4) and
define

Y1 =W (h1)W (h2) +W (h3)W (h4).
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Then again Y1 follows a Laplace distribution with mean zero and variance 1. And we can
see that again the expression (34) holds for the random variable Y1. Then

1

2
a(Y1) + 〈DY1,D(−L)−1b(Y1)〉

= 1 + |W (h1)W (h2) +W (h3)W (h4)| −
1

2

(

W (h1)
2 +W (h2)

2 +W (h3)
2 +W (h4)

2
)

and this does not vanish. On the other hand, we know from Theorem 2 that

E

(

1

2
a(Y1) + 〈DY,D(−L)−1b(Y1)〉/Y1

)

= 0.

in this way we will obtain some interesting (and somehow unexpected) identities for func-
tions of the Brownian motion, which are difficult to be proven directly. That is

E

(

1

2

(

W (h1)
2 +W (h2)

2 +W (h3)
2 +W (h4)

2
)

/W (h1)W (h2) +W (h3)W (h4)

)

= 1 + |W (h1)W (h2) +W (h3)W (h4)|

and

E

(

1

2

(

W (h1)
2 +W (h2)

2 +W (h3)
2 +W (h4)

2
)

/
1

2

(

W (h1)
2 +W (h2)

2 −W (h3)
2 −W (h4)

2
)

)

= 1 +

∣

∣

∣

∣

1

2

(

W (h1)
2 +W (h2)

2 −W (h3)
2 −W (h4)

2
)

∣

∣

∣

∣

.

5 Examples and applications

We will illustrate the bound obtained via Steins method through an example. Consider
(hi)i≥0 a sequence of orthonormal elements of L2([0, T ]) and define for every i ≥ 1

Xi = e−(W (hi)
2−1) (35)

(the minus sign is added in order to have finite expectation) and

YN = (X1....XN )
1√
2N = e

− 1√
2N

∑N
i=1(W (hi)2−1)

. (36)

Then YN converges in distribution, as N → ∞, to the lognormal distribution with mean
zero and variance equal to 1. Indeed,

log(YN ) = − 1√
2N

N
∑

i=1

(W (hi)
2 − 1)
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converges in law to the standard normal law, by the central limit theorem. Let us compute
the bound given by the right hand side of (15) and (16). Define a, b and f same as in
Section 4.4. In this case we have

|Ef(YN )− Ef(X)| ≤ CE

∣

∣

∣

∣

1

2
a(YN )− 〈DYN ,D(−L)−1

(

YN − e
1
2

)

〉
∣

∣

∣

∣

+ C ′
∣

∣

∣
E(YN − e

1
2 )
∣

∣

∣
.

Since, with Z ∼ N(0, 1)

EYN = e

√

N
2

(

Ee
− 1√

2N
Z2
)N

= e

√

N
2

(√

1 +
2√
2N

)−N

we can see, by studying the asymptotic behavior as N → ∞ of the above sequence, that

√
NEb(YN ) →N→∞ C

with C a strictly negative constant.
We compute now a(YN ) where a is the function given by (32) with µ = e

1
2 , δ = 0

and σ = 1. Denote by

SN =
N
∑

i=1

W (hi)
2 (37)

and by

ZN =
1√
2N

N
∑

i=1

(W (hi)
2 − 1). (38)

We will have

1

2
a(YN ) =

µ

f(YN )

∫ log YN

log YN−1

1√
2π
e−

x2

2 dx = e
1
2 e−ZN e

1
2
Z2
N

∫ −ZN

−ZN−1
e−

x2

2 dx

= e
1
2
[ZN−1]2

∫ −ZN

−ZN−1
e−

x2

2 dx = e
1
2
[ZN−1]2

∫ ZN+1

ZN

e−
x2

2 dx. (39)
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Now, using (23) with h(x1, ..., xN ) = e
− 1√

2N

∑N
i=1(x

2
i−1)

we can write

〈DYN ,D(−L)−1 (b(YN )−Eb(YN ))〉 = 〈DYN ,D(−L)−1
(

YN − e
1
2

)

〉

=

N
∑

i=1

√

2

N
W (hi)e

−ZN

×
∫ 1

0
da

√

2

N
E′
(

aW (hi) +
√

1− a2W ′(hi)
)

e
− 1√

2N
[
∑N

i=1(aW (hi)+
√
1−a2W ′(hi))2−1]

=

N
∑

i=1

√

2

N
W (hi)e

−ZN

×
∫ 1

0
da

√

2

N
E′
(

aW (hi) +
√

1− a2W ′(hi)
)

e
− 1√

2N
[(aW (hi)+

√
1−a2W ′(hi))2−1]





N
∏

j=1;j 6=i

E′e
− 1√

2N
[(aW (hj)+

√
1−a2W ′(hj))2−1]



 . (40)

By applying Lemma 1 with K = 1√
2N

and C = aW (hi) we obtain

E′e
− 1√

2N
(aW (hj)+

√
1−a2W ′(hj))2

=
1

√

1 + 2√
2N

(1− a2)
e
−a2W (hj)

2 1√
2N

1

1+ 2√
2N

(1−a2)

and by Lemma 2 with K = 1√
2N

and C = aW (hi)

E′
(

aW (hi) +
√

1− a2W ′(hi)
)

e
− 1√

2N
(aW (hi)+

√
1−a2W ′(hi))2

=
aW (hi)

(

1 + 2√
2N

(1− a2)
) 3

2

e
−a2W (hi)

2 1√
2N

1

1+ 2√
2N

(1−a2)
.

Using the above two identities and (40)

〈DYN ,D(−L)−1
(

YN − e
1
2

)

〉

=
2

N

N
∑

i=1

W (hi)
2e−ZN e

√

N
2

∫ 1

0
daa

(

N
∏

i=1

e
−a2W (hi)2

1√
2N

1

1+ 2√
2N

(1−a2)

)(

1 +

√

2

N
(1− a2)

)−N+2
2

=
2

N
SNe

−ZN e

√

N
2

∫ 1

0
daae

−a2 1√
2N

SN
1

1+ 2√
2N

(1−a2)

(

1 +

√

2

N
(1− a2)

)−N+2
2

26



where SN is defined by (37). Since

SN =
√
2NZN +N

where ZN is given by (38), we obtain

〈DYN ,D(−L)−1
(

YN − e
1
2

)

〉 = (
2
√
2√
N
ZN + 2)

∫ 1

0
daae

−ZN (1+a2 1

1+ 2√
2N

(1−a2)
)

×e
(1− a2

1+ 2√
2N

(1−a2)
)
√

N
2

(

1 +

√

2

N
(1− a2)

)−N+2
2

.

Since

log

(

1 +

√

2

N
(1− a2)

)

=

√

2

N
(1− a2)− 1

2

2

N
(1− a2)2 + o(N−1),

where o(N−1) is of Landau notation and hence

(

1 +

√

2

N
(1− a2)

)−N+2
2

= e
−N+2

2
(
√

2
N
(1−a2)− 1

2
2
N
(1−a2)2+o(N−1))

we will have

〈DYN ,D(−L)−1
(

YN − e
1
2

)

〉 = (
2
√
2√
N
ZN + 2)

∫ 1

0
daae

−ZN (1+a2 1

1+ 2√
2N

(1−a2)
)

×e
(1− a2

1+ 2√
2N

(1−a2)
)
√

N
2

e
−N+2

2
(
√

2
N
(1−a2)− 1

2
2
N
(1−a2)2+o(N−1))

= AN +BN ,

where

AN :=
2
√
2√
N
ZN

∫ 1

0
daae

−ZN (1+a2 1

1+ 2√
2N

(1−a2)
)

×e
(1− a2

1+ 2√
2N

(1−a2)
)
√

N
2

e
−N+2

2
(
√

2
N
(1−a2)− 1

2
2
N
(1−a2)2+o(N−1))

BN := 2

∫ 1

0
daae

−ZN (1+a2 1

1+ 2√
2N

(1−a2)
)

×e
(1− a2

1+ 2√
2N

(1−a2)
)
√

N
2

e
−N+2

2
(
√

2
N
(1−a2)− 1

2
2
N
(1−a2)2+o(N−1))

.

We will first show that
E

∣

∣

∣

√
NAN

∣

∣

∣
→N→∞ C0
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where C0 is a strictly positive constant. We can write, using the change of variables a2 = b
with 2ada = db

E

∣

∣

∣

√
NAN

∣

∣

∣
=

√
2E|ZN |

∫ 1

0
dbe

−ZN (1+b 1

1+
√

2
N

(1−b)
)

e

√

N
2

[

1−b 1

1+
√

2
N

(1−b)
−(1−b)

]

egN (b)

where
gN (b) = e

1
2
(1−b)2+o(1).

Therefore

E

∣

∣

∣

√
NAN

∣

∣

∣
=

√
2E|ZN |

∫ 1

0
dbe−ZN (1+b)eb(1−b)egN (b)

+
√
2






E|ZN |

∫ 1

0
dbe

−ZN (1+b 1

1+
√

2
N

(1−b)
)

e

√

N
2

[

1−b 1

1+
√

2
N

(1−b)
−(1−b)

]

egN (b)

−E|ZN |
∫ 1

0
dbe−ZN (1+b)eb(1−b)egN (b)

)

Since ZN converges in distribution to N(0, 1), the first summand above converges as N → ∞
to

C0 =
√
2e−1E |Z|

∫ 1

0
dbe−Z(1+b)eb(1−b)e

1
2
(1−b)2

while the second summand converges to zero as N → ∞ by the dominated convergence
theorem.

Let us handle the summand denoted by BN . Actually, we will prove that

√
NE

∣

∣

∣

∣

BN − 1

2
a(YN )

∣

∣

∣

∣

→N→∞ D0 (41)

with D0 a strictly positive constant. First, we write

BN =

∫ 1

0
dbe

−ZN (1+b 1

1+
√

2
N

(1−b)
)

e

√

N
2

[

1−b 1

1+
√

2
N

(1−b)
−(1−b)

]

egN (b)

=

∫ 1

0
dbe−ZN (1+b)eb(1−b)e

1
2
(1−b)2

+

∫ 1

0
db






e
−ZN (1+b 1

1+
√

2
N

(1−b)
)

e

√

N
2

[

1−b 1

1+
√

2
N

(1−b)
−(1−b)

]

egN (b) − e−ZN (1+b)eb(1−b)e
1
2
(1−b)2







:= B
(1)
N +B

(2)
N
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and the limit (41) follows since (see (39))

B
(1)
N =

1

2
a(YN )

and for N large,

1− b
1

1 +
√

2
N
(1− b)

− (1− b) = b(1− b)

√

2

N
+ o(

1√
N

)

and
∣

∣

∣

∣

∣

e
−ZN (1+b 1

1+
√

2
N

(1−b)
)

− e−ZN (1+b)

∣

∣

∣

∣

∣

≤ c
|ZN |√
N
.

As a conclusion of the computations contained in this section, the distance between the law
of YN given (36) by and the lognormal distribution with mean 0 and variance 1 is of order
of 1√

N
.
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