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Abstract

In this paper, we present recent developments erHiliM-
based acoustic-to-articulatory inversion approclat thve
develop for a “visual articulatory feedback” systeim this
approach, multi-stream phoneme HMMs are traineatlypion
synchronous streams of acoustic and articulatorya, da
acquired by electromagnetic articulography (EMAZ0Astic-
to-articulatory inversion is achieved in two stephonetic and
state decoding is first performed. Then articulatoajectories
are inferred from the decoded phone and state sequesing
the maximum-likelihood parameter generation aldonit
(MLPG). We introduce here a new procedure for the r
estimation of the HMM parameters, based on the fdlimn
Generation Error criterion (MGE). We also investigthe use
of model adaptation techniques based on maximuefiti&kod
linear regression (MLLR), as a first step toward altim
speaker visual articulatory feedback system.

Index Terms: Acoustic-articulatory inversion,
ElectroMagnetic Articulography (EMA), Hidden Markov
Model (HMM), Minimum Generation Error (MGE), Speake
adaptation, Maximum Likelihood Linear Regression (\R).

1. Introduction

Systems of visual articulatory feedback aim at g the
speaker with visual information about his/her owticalation.
Several studies show that this kind of system @andeful for
both speech therapy and Computer Aided Pronunciation
Training (CAPT) [1]. The visual articulatory feedlzagystem
developed at GIPSA-lab is based on a 3D talkingl hesed in
an augmented speech scenaiie, it displays all speech
articulators including usually non visible articides such as
the tongue. In this system, the talking head ismated
automatically from the audio speech signal, usicmuatic-to-
articulatory inversion. For this purpose, we depekb
different inversion methods based on the joint nfindeof
acoustic and articulatory data (acquired by electrgnetic
articulography - EMA), using statistical models Isuas
Gaussian Mixture Models (GMM) and Hidden Markov
Models (HMM) [2].

The use of supervised machine learning technigqoes f
acoustic-to-articulatory inversion has already bgeposed in
the literature. HMMs trained on parallel acoustioda
articulatory speech data segmented at the pholestt, have
been used in [3], [4], [5] and [2]. GMMs have beesed in [2]
and [6]. Artificial neural network (ANN) and Suppdrector
Machines (SVM) have been used respectively in [ 8]
However, these studies do not allow to conclude tlom
optimal inversion method since data, speakers andulages
are not comparable.

Since our goal is to provide “any” speaker withuabk
articulatory feedback, the inversion system neetieaobust
and easy to adapt. With that in mind, we presemn hecent
developments on our HMM-based inversion system hbat
lead to significant improvements. Among them, weoduce
a new training procedure based on the optimizatibrihe
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Minimum Generation criterion (MGE). We also presarfirst
approach to address the speaker adaptation proSipeaker
adaptation can be done in both acoustic and aatimyl
domains. In the present work, we propose to adapt o
multimodal HMM models in the acoustic domain by ngsi
maximum likelihood linear regression.

This article is organized as follows. The HMM-based
acoustic-to-articulatory inversion system is ddsali in
Section 2. The proposed speaker adaptation teahnigu
presented in Section 3. The methodology used faluation
and experimental results are presented in section 4
Conclusions and perspectives are presented inghedation.

2. HMM-based speech inversion system

2.1. Basdline system

In the proposed HMM-based mapping approach (prelyou
published by Ben Youssef et al. in [2]), the seqeent
articulatory vectors, predicted from the given satpe of
acoustic vectors x, is defined g argma>{ o %X)} with

y

p(y | x) = p(y | 4, a)P(4,q]x) 1)

where A represents the parameters set of the HMM itk
HMM state sequence. By applying the Bayes rulepbtain

p(y [ x) = p(y | A, a)p(x | A, q)P(A) @)

As shown in Equation 2, the HMM-based mapping can b
achieved by a recognition stage followed by a sgsithstage,
which means: (1) finding the most likely phonetitdastate
sequence for a given source vector (and a set pfidi
information provided by a statistical language npdnd (2)
inferring the target vector from the decoded statguence.

In the training stage, a left-to-right, 3-state thstream
HMM is trained on articulatory-acoustic data for clea
phonetic class. The first stream is dedicated eéontlodeling of
acoustic feature; the second stream is used to Inthee
articulatory features. For each stream, the enmisgiobability
density of each state is modeled by a GMM with die
covariance matrix. HMM were initialised and trainky the
Baum Welch algorithm based on the Maximum Likeliloo
(ML) criterion.

Due to coarticulatory effects, it is unlikely thatsingle
context-independent HMM could optimally representy a
given allophone. Contexts were therefore groupedoimtext
classesfor both vowels and consonants separately. Based o
the matrix of Mahalanobis distances of the coilsrdmates
between the centre frame of each pair of phonemansye
hierarchical clustering generated six coherent selssfor

vowels (h € €/, /o ¢ &/, /e i/, /o 0 d 3/, /y/, and /u/), and ten
coherent classes for consonangsb(im/, t d n/, /s z/, /§ 3/, /k
e/, If v/, I, /¥/, Ij yl, and /w/). Context-dependent HMMs

were then trained, using various contextual schemes
phonemes without context (no-ctx), with left (L-ctar right
context (ctx-R), and with both left and right coxtte (L-ctx-



R). A tree-based state-tying strategy based on themdm
Description Length (MDL) criterion, was adopted &ddress
the problem of data sparsity (biphones or triphohasing
only a few occurrences in the training dataset).

Each resulting multi-stream HMM were then splibitivo
distinct HMMs: an “acoustic HMM” and an “articulato
HMM”. Acoustic HMMs were finally refined by increasy
incrementally the number of Gaussian mixture conepés

The prediction of the sequence of articulatory deat
vectors for a given test sequence of acoustic feature vgcto
was achieved in two stages. First, phonetic arte skacoding
was performed by the Viterbi algorithm using theowstic
HMMs. A bigram phonetic language model trained awe o
year of the newspaper “Le Monde” (year 2003) wasdus
(thus, the recognised phoneme sequences respenthFre
phonotactics). Second, given the predicted sequeipbones
and the decoded HMM state sequence, the targebrvect
sequence was inferred by the maximum-likelihoocapeater
generation algorithm (MLPG) [9], using the artidoky
HMMs.

2.2. Minimum Generation Error (M GE) criterion

In this paper, we introduce a new training procedbased on
the MGE approach (Minimum Generation Error) inltial
proposed by Wt al. in [10] for HMM-based text-to-speech
synthesis. We propose to adapt this techniqueg@doustic-
to-articulatory mapping problem. The training prdgee is
performed as follows. The parameters of single &ans
articulatory HMMs are first estimated by maximisirlge
likelihood of the model given the training data ifgs the
standard Baum-Welch algorithm). Then, the articuiato
trajectories which maximize the likelihood of tharent set of
articulatory HMMs are generated using the MLPG &tho.
The state sequence used to drive this intermediatéhesis
stage is obtained by forced-alignment of the adousta at
the phonetic level. Thgeneration erroris defined as the
Euclidean distance between the generated and tlasumesl
articulatory trajectories. Given this error, thagmaeter of the
articulatory HMMs (mean and variance) are finallydated
using the equations detailed in [10]. In our impéeration,
this procedure is iterated 5 times.

3. Speaker adaptation

Compared to other approaches (based on ANNs or GfdMs
instance), the mapping between acoustic and aatimyl
modalities is not performed at the feature levelf bt the
phonetic level. Based on this consideration, we stigated
the possibility to perform the inversion by dirgctlecoding
the new speaker’s speech at this level. Becausacthegacy of
the inversion process depends strongly on the peaioce of
this decoding stage, it is crucial to adapt thenezice speaker
models {.e. the speaker used to build the original speech
inversion system). This additional stage makesntloelels of
the reference speaker compatible with the new spak
voice, but also with a different acoustic enviromte

To build the adaptation database, the new speakaskied
to utter a corpus of adaptation sentences. The tatilap
procedure is performed as follows. First, the sheggnal is
automatically segmented at the phonetic level usarged-
alignment and the acoustic models trained on tlereece
subject. Second, Maximum Likelihood Linear Regrassio
(MLLR) technique is used to adapt each acoustic HMMs
MLLR estimates linear transformations for modelsapagters
to maximise the likelihood of the adaptation dath]]

4. Evaluation

4.1. Databases

The database used in this study (and also in @wigurs study
[5]) consists of two repetitions of 224 VCVs (whe&es one

of the 16 French consonants and V is one of 14 dfremal
and nasal vowels), two repetitions of 109 pairsCdfC real
French words, and 88 sentences, uttered by a naleen
French speaker (referred to as tteference speaker BB
(approximately 5100 phones). Articulatory movemewere
recorded synchronously with the audio signal ustheg
Carstens 2D EMA system (AG200). Six coils were used
measure articulators kinetics: a jaw coil was &talcto the
lower incisors, whereas three coils were attacheatie tongue
tip, the tongue middle, and the tongue back; upmer lower

lip coils were attached to the boundaries betweba t
vermilion and the skin in the midsagittal plane.dTeoils were
used for head alignment. The audio-speech signad wa
recorded at a sampling frequency of 22 kHz and was
parameterized by 13 MFCC (Blackman window, 25 frame
length, 10 ms frame shift). EMA coordinates wereorded at
500 Hz, low-pass filtered at 20 Hz in order to me&lwnoise,
and down sampled to 100 Hz to fit the analysis cftehe
acoustic signal. The database, which consists mfoxpmately

17 minutes of speech, long pauses being excluded w
labelled at the phonetic level (using a force-adigient
procedure and a manual check).

In order to evaluate the proposed speaker adaptatio
technique, audio database were recorded from thetiee
French speakers: male speaker TH recorded the speseh
material as the reference speaker PB; anotherspakiker GB
and female speaker AC recorded a different corpussisting
of 240 sentences initially designed for speech lmgis
purpose.

4.2. Evaluation

The accuracy of the inversion was measured inrdiffeways.
First, we calculated the root mean square (RMSY éetween
the measured and the estimated EMA parameters,astch

1 1 D T
RMS=[— =2 0.(7, - y.)
DT

d=1 t=1

©)

where T is the number of frames in the test dBt,is the
number of EMA parameters (12 in this stud)?), andy are

respectively the estimated and the measured posifithed”
EMA parameters at time A different formulation of the RMS
error, in which the RMS is averaged over all thatdees, can
be found in the literature (as in [3], [4], [5] []). This RMS
is called heregRMS and is defined as:

18 ,1 :
RMS=—) . [— 2 (5 - V)
U DUZ::, T‘Z::,(y‘ y,)

We also calculated the “Pearson Product-MomenteCation
Coefficient” (PMCC) which measures the level of ditnge
similarity and synchrony of the trajectories. Fipalwe
calculated the “recognition accuracy” to assessifipally the
phonetic decoding stage.

A 5-fold cross-validation procedure was used foe th
evaluation: the database was split into 5 parttion
approximately homogeneous from the point of viewphbbne
distribution. Each partition was used once as ¢éisé et while
the other 4 partitions composed the training s8SRURMS

(4)



Table 1 /RMSE, RMSE (mm) and PMCC for the HMM-based invergarinversion from audio and labels input (perfect
recognition); (b) inversion from audio only.

no-ctx L -ctx ctx-R L-ctx-R
uRMSE| RMSE | PMCC] uRMSE| RMSE | PMCC uRMSE| RMSE | PMCC uRMSE|] RMSE | PMCC
@) MLE 1,80 1,87 0,89 1,49 1,54 0,9 1,50 1,5p 0,93 1,89 1,44 0Jo4
MGE 1,55 1,61 0,92 1,34 1,38 0,94 1,3 1,3p 0,p4 1,B1 1,84 0]94
(b) MLE 1,88 1,96 0,78 1,64 1,70 0,91 1,59 1,6p 0,92 1,63 1,69 091
MGE 1,71 1,78 0,90 1,54 1,60 0,92 1,48 1,53 0,93 1,57 1,63 0,92
PMCC, and recognition rates were averaged overiteetdst
partitions. 4.3.1. Evaluation of the predicted articulatory

In order to estimate the contribution of the new BAG
based training procedure, it is needed to evalin#tasynthesis
stage independently from the recognition stage. that
purpose, we simulated a “perfect recognition” bigrdahg the
original phonetic labels on the acoustic wavefofirable 1la

shows that using MGE decreases the RMSE by an amount

between 0.08 mm and 0.26 mm, depending on the xtonte
type.

Table 1.b displays the performances of the invariom
audio signal alone. Best results were obtained withtext-
dependant models including information about thghtri
phonetic context (ctx-R). In this caggRMSE was found to be
1.48 mm (RMSE 1.53 mm, PMCC = 0.93, recognition
accuracy = 86.20%).

4.3. Articulatory recognition

Since no articulatory data were acquired for 3 loé @
speakers used in this study, it is impossible terdgne the
RMSE between the measured and the predicted atticyla
trajectories. Therefore, we have based the evaluain the
automatic “articulatory recognition” of the predidt
trajectories. In that purpose, we have trained &ivi-based
phonetic decoder on the articulatory data of thieremce
speaker PB.

Contrarily to the acoustic recognition stage which
determinegphonemesthis articulatory recognition procedure
was designed to recognisphoneme classeggroups of
phonemes). As the context classes, described tiose?.1,
were established based on articulatory distandesy take
naturally into account the fact that all feature® aot
exhaustively present in the EMA data (voicing canbe
measured; no velum coil was available in our reicgrdetup).
Therefore, these 16 context classes have been ased
phoneme classefor the articulatory recognition. Note that
phonemes differing only by voicing or velum positi@re
grouped in the same classegy(/p b m/, /td n/, /k g/, etc.). In
addition, two extraphoneme classesere used: one for the
schwa and the short pause, and the other for tigepause at
the boundaries of sentences. Finally, these 1&udatory
phoneme classewere used to train and to recognize the
articulatory trajectories.

The HMM-based articulatory recognition system waith
using a procedure similar to the one describeckatian 2.1.

The performance of this system was evaluated on the

articulatory data of the reference speaker PB, utfirgsame
5-fold cross-validation procedure that the one desd

previously. Best performance was obtained usingtectn
dependent model (with right context) and 8 Gaussiper

state. In this case, the recognition accuracy wasd to be
84.84 %. These articulatory HMMs are used to evalihe

articulatory trajectories generated from the adousignal of
any new speaker.

trajectories of the reference speaker

In order to establish a baseline for the assessofénversion
of new speakers by automatic articulatory recognitiwe
have computed the articulatory recognition rates tioe
original speaker. It was also deemed important écide
which data should be used for training this refeeen
articulatory recognition system: (1) original adfiatory
trajectories, (2) articulatory trajectories recacbby inversion
from the audio signal alone, or (3) articulatorgpjéctories
recovered by inversion from both audio signal aabels
(perfect acoustic recognition). All combinationsrevdinally
evaluated, for cxt-R contexts, using 5-fold crosédesion for
each combination, as can be seen in Table 2. bitegty, we
observed that recognition rate were always higher f
synthesised trajectories than for measured oneatewér the
training corpus: this might be ascribed to the facat
synthesised articulatory trajectories are more l&ef regular
than measured ones, since they are produced bylsntbde
constitute simplified representations of data, gthamigh they
can be. We observe also that rates are higher fudels
trained on measured data (except in the case tiigeand
training with data obtained by perfect recognitioit) was
therefore decided to use models trained on measiatad

Table 2.“Phoneme class” articulatory recognition
accuracy (with 5-fold cross-validation) for spealkB
using ctx-R; measured EMA (1), EMA synthesized
from audio only (2), and from both audio and labels
(perfect recognition) (3).

Test
Context «ctx-R »
(1) (2) (3)
c (1) 84.84 84.56 88.39
3 ) 5812 | 79.25 | 83.78
= 3) 57.06 | 84.44 | 90.04
4.3.2. Evaluation of the predicted articulatory

trajectories of new speakers

The acoustic adaptation technique described aibse8twas
applied to the acoustic HMMs trained on 4/5 of tr@inal
speaker’s corpus using 4/5 of the new speaker'pusprthe
remaining 1/5 of the new speaker’'s corpus was useigdst
both acoustic recognition and articulatory recdgnit Note
that in order to avoid the complexity and possiblertraining
that may occur when using 5-fold cross-validationtfoth the
reference articulatory training and the new speakiaptation,
all the test have been applied using the firstof/the corpus
for training or adaptation and the last 1/5 fortites For
subject TH, the sentences used for the adaptatiene the
same as those used for training the initial acousMs on
PB.



Table 3 shows the various acoustic recognitionsrated
articulatory recognition rates of the inversedectpries. We
observe that subject TH has performances very tms$kose
of reference PB; this could be explained by the faat his
corpus was recorded in an imitation mode: he imitatach
sentence after being prompted by the audio recgrétiom
PB, which would favour similar dynamics. Oppositetiie
worst performances are obtained for female speakerboth
at acoustic and articulatory levels, which may berihed to
the sex difference, and the difference in size @rent of the
corpus — allowing only 192 adaptation sentencesrimediary
results are obtained for speaker GB, with the intrig
degradation of the articulatory score comparedht® fairly
good acoustic one. However, a more thorough arsabyfsthe
acoustic recognition has shown that the accuraes far the
set of 631 allophones in right context (ctx-R) wenach lower
than for the 36 French phonemes for this spealer T@ble
3). This was confirmed by the observation of theaitked
recognition rates for vowels which showed some wsioh
between different contexts.

Table 3. Acoustic and articulatory recognition
accuracy for all the speakers, using 1/5 of theposr
for testing.

Accuracy| PB | TH | GB | AC

Acoust. Phonemes|85.92 | 83.77| 79.13 62.8
Articulation|83.70 | 82.23| 69.44 56.7f
Acoust. Allophones |79.88| 76.53| 66.71 48.0L

=

5. Conclusions and per spectives

This paper presents latest developments on our Hidkéd
acoustic-to-articulatory inversion system that weelop for a
“visual articulatory feedback” system. The introtioc of a
new training procedure based on the optimizationthaf
Minimum Generation Error (MGE) criterion has lead t
significant improvements (about 10%). As a firgjpstoward a
multi-speaker system, we also investigated theofiseMLLR
model adaptation technique. The quality of thecalétory
trajectories was evaluated by measuring the pegoom of an
“articulatory HMM-based phonetic decoder”. Recogmniti

accuracies range between 56.8 % and 82.2 % fore thre

speakers, compared to 83.7 % for the original speak
demonstrating the interest of the method.

The next step of our development will be to testrano
speakers, and to study more explicitly the inflleeraf the
nature and size of the adaptation corpus. It usth &e of great
importance to investigate adaptation methods incdme of
non-native speaker adaptatiang.[12]).

Finally, in the framework of Computer Aided
Pronunciation Training (CAPT), we aim to use thigaer
adaptation approach in our visual articulatory ek
system, based on acoustic-to-articulatory spee@rsion.
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