N
N

N

HAL

open science

PLAGRAM: un algorithme de fouille de graphes plans
efficace

Adriana Prado, Baptiste Jeudy, Elisa Fromont, Fabien Diot

» To cite this version:

Adriana Prado, Baptiste Jeudy, Elisa Fromont, Fabien Diot. PLAGRAM : un algorithme de fouille de
graphes plans efficace. Conférence d’Apprentissage (CAp), 2011, France. pp.342-360. hal-00618764

HAL Id: hal-00618764
https://hal.science/hal-00618764

Submitted on 2 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00618764
https://hal.archives-ouvertes.fr

PLAGRAM : un algorithme de fouille de
graphes plans efficace

Adriana Prado, Baptiste Jeudy, Elisa Fromont, Fabien Diot

Université de Lyon, Université de St-Etienne F-42000,
UMR CNRS 5516, Laboratoire Hubert-Curien, France.

Résumé : Larecherche de sous-graphes fréquents dans une base de données de graphes
est trés coliteuse notamment a cause de I’utilisation massive de tests d’isomorphismes
NP-complets. Pourtant, pour certains types de graphes, comme les graphes plans, la
complexité de ces tests d’isomorphisme de sous-graphes peut étre énormément réduite.
Nous proposons un algorithme efficace de fouille de graphes plans 2-connectés qui
exploite la propriété planaire des graphes en utilisant un test d’isomorphisme de com-
plexité linéaire et en permettant de réduire drastiquement le nombre de candidats a
envisager pendant la recherche. Nous montrons dans le cadre d’applications vidéo I’in-
térét d’un tel algorithme non seulement en termes d’efficacité mais aussi en termes de
pertinence des résultats obtenus dans le cadre de notre application. Mots-clés : Appren-
tissage de Graphes

1. Introduction

Graph mining is an important data mining process with many applications
in, for example, molecular biology, analysis of (social) networks, etc. Typical
frequent graph mining algorithms generate plausible pattern subgraphs and
then compute their frequency (w.r.t. a user-defined frequency threshold also
referred to as minimum support) while finding all their occurrences in a data-
base of target graphs. Afterwards, the found frequent patterns are extended in
a valid way such that bigger patterns can also be evaluated. All those subtasks
are computationally expensive due to the numerous possibilities of extending
a pattern, the isomorphism tests between all candidate common subgraphs and
all target graphs, and, naturally, the huge number of possible frequent patterns
that can be found in reasonably large databases.

CAp 2011

The subgraph isomorphism problem, for example, is known to be NP-
complete. Current graph mining approaches (e.g., Kuramochi & Karypis (2001);
Yan & Han (2002); Nijssen & Kok (2004)) can deal with applications where
the subgraph isomorphism test is not too costly or when there are not too many
such tests. For example, when the graphs in the database are small, have low
degrees, have many node (or edge) labels, have a low number of cycles, etc.

For some kinds of graphs, however, the complexity of such tests can be
drastically improved. This is the case for plane graphs. A planar graph is a
peculiar graph that can be drawn on the plane in such a way that its edges
intersect only at their endpoints. The complexity of the isomorphism test bet-
ween two planar graphs has been extensively studied Kukluk et al. (2004). A
planar graph already drawn in the plane without edge intersections is called a
plane graph or a planar embedding of the graph. Plane graphs are particularly
interesting since it has been recently shown that the subgraph isomorphism
test is polynomial for these type of graphs (see for example Damiand et al.
(2009)). It should be noted however, that Gosselin et al. (2011) independently
proposed an algorithm to mine combinatorial maps that can be used to re-
present plane graphs.

Planar and plane graphs can be found in several useful applications. For
example, in the popular National Cancer Institute (NCI) dataset, graphs re-
presenting molecules are outerplanar in 94.3% of the cases Horvith et al.
(2006). They can also be used to describe molecules for which the different
conformations may lead to different molecular properties. Moreover, and this
is the application we tackle in this paper, a video could be represented by a
set of plane graphs (one for each frame) by means of, e.g., region adjacency
relationships or interest point triangulation (Chang et al. (2004)). Using these
representations, interesting objects in the video may be frequent subgraphs
in the corresponding set of plane graphs and, thus, following an object in a
video could be related to the frequent graph mining problem when sufficient
information (for example, spatial information) is associated to the graphs.

Current general-purpose graph mining algorithms do not computationally
benefit from the plane property of target graphs and therefore cannot tackle
in a satisfactory way the aforementioned video application. In fact, as pointed
out in our experimental section, the popular general-purpose graph mining
algorithm GSPAN by Yan & Han (2002) could not finish its executions on our
video datasets within 3 days of computation.

In this context, we propose an efficient graph mining algorithm, called
PLAGRAM (Plane Graph Mining), which is dedicated to mining plane graphs

and has the particularity of extending patterns using complete faces. This dras-
tically reduces the complexity of the extension building phase (in which the
patterns are extended) and, as we show in the experiments, it does not limit
the quality of the found patterns.

PLAGRAM borrows many features from the algorithm GSPAN. GSPAN per-
forms a depth-first search in a space of canonical codes, which are computed
such that two isomorphic graphs are not evaluated twice. One of the most
acknowledged bottleneck of this algorithm comes from the subgraph isomor-
phism tests. In particular, GSPAN is not well suited to mine graphs with many
cycles as their presence increases exponentially the number of frequent sub-
graphs. However, the particular plane subgraphs considered in this paper are
far less numerous than the subgraphs considered by GSPAN, which makes
our approach not only faster, but also capable of dealing with more complex
graphs (in terms of degrees and size) than GSPAN.

We have therefore divided the paper in the following way : next, we give
some definitions. In Section 3., we introduce the (canonical) codes we use
to represent plane graphs and then, in Section 4., we present the PLAGRAM
algorithm. In Section 5., we report on some experiments on the efficiency
of the proposed algorithm. We also discuss its usefulness in tackling video
application problems. We conclude in Section 6..

2. Definitions

A graph is generally defined by its set of nodes and its set of edges. One
way to extend this definition to plane graphs is to define them as a set of nodes
where each node has a circular list of its neighbors in anticlockwise order. The
infinite face of a plane graph is called the outer face of the graph. The other
faces are called internal faces. The plane graphs that we consider can also
have labels on their edges and/or nodes (denoted by functions L. and L,).
A graph is 2-connected if for every pair of nodes (x,y) there is a cycle that
contains both.

Figure 1 presents three 2-connected plane graphs. The neighbor list of
node 5 of graph G is N(5) = (2,4,7) (or any circular permutation of it).
Face (3,6,7,4) of G is an internal face and (1, 2, 7, 6) is its outer face.

Graph G’ is plane subgraph isomorphic to G (or G’ is a plane subgraph of
(7), denoted G’ C @, if there is an injective function f which maps the nodes
of G’ to nodes of GG and which preserves the labels, the edges, and the internal
faces (if it also preserves the outer face, G’ and GG are plane isomorphic). The

CAp 2011

FIG. 1: Plane graphs. The edge labels are in {a, b, ¢} and we assume that all
node labels are equal to a.

function f is an occurrence of G’ in G.

In Figure 1, graph g, is a subgraph of G. The internal faces (1,2, 3) and
(2,4,5,3) of g1 correspond respectively to faces (2, 3,4) and (3,6, 7,4) of G,
with f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 6 and f(5) = 7. Graph g, has
three internal faces mutually adjacent, one with four edges and two with three
edges. Since this configuration of faces does not exist in (G, g is not a plane
subgraph of G.

The frequency (or support) of a plane graph g in a database D = {G1, ..., G, }
of plane graphs is the number of these graphs which contain ¢ as a plane sub-
graph, ie., | {i | g C G;}|.

Problem Definition : Given a frequency threshold o, the problem we ta-
ckle in this paper is to compute the set of all 2-connected plane subgraphs
with a frequency greater than o in a database D.

3. Graph Codes

As GSPAN, the algorithm PLAGRAM represents the pattern graphs by graph
codes and actually explores a code search space to find the frequent ones. In
this section, we define these new codes and we present important properties
of the code search space.

Definition 1 (valid extension)

Given a plane graph g and two nodes v and v on the outer face of g, we
can extend g by adding a new path P = (u = x1,29,...,2, = v) to g
between u and v. This path must lie in the outer face of g. Nodes xs,..., Tj_1
are (k —2) > 0 new nodes with N(x;) = (x;_1,2;+1). This new graph is
denoted g U P. Given a plane graph G such that g C G, P is a valid extension
ofginGifguUP CG.

b b b b
4 a 1 1 a 3 3 a 4 1 a 2
a b a b a b a b
3 b 2 5 b 4 2 b 1 4 b 3
Edge «a 8 v 9

1 (1,2,a,b,a) | (1,2,a,b,a) | (1,2,a,b,a) | (1,2,a,a,a)
2 (2,3,ab,a) | (2,3,a,b,a) | (2,3,a,3,a) | (2,3,a,b,a)
3 (3,4,a,a,a) (3,1,a,a,a) (3,4,a,a,a) | (3,4,a,b,a)
4 (4,1,a,a,a) | (3,4,ab,a) | (4,1,ab,a) | (4,1,a,a,a)
5 (4,5,ab,a) | (4,5,ab,a) | (3,5,a,b,a) | (1,5,a,b,a)
6 (5,1,ab,a) | (5,1,a,a,a) | (5,4,ab,a) | (5,2,a,b,a)

F1G. 2: Four codes «, /3, v and ¢ of graph g, of Figure 1.

In other words, this definition states that any pattern graph g constituted
of aggregated faces can only be extended by the addition another complete
face lying in the outer face of g. This restriction is related to that of GSPAN,
where a graph is extended by the addition of a single edge only to nodes of
the rightmost path of the depth-first search tree.

In Figure 1, there are three valid extensions of g, in the target graph G.
These three extensions have 2 edges and thus a new node 6 must be added in
the outer face of ¢;. These extensions are : P, = (1,6,3) and P, = (3,6,5)
with f(6) = 5, and P3 = (4,6, 1) with f(6) = 1.

A code for a plane graph g is a sequence of its edges. Each edge is repre-
sented by a 5-tuple (4, 7, L, (2), Le(4,j), L, (j)), where i and j are the indices
of the nodes (from 1 to n, where n is the number of nodes in g). The nodes are
numbered as they first appear in the code. The following definition describes
the order in which the edges must appear for a code to be valid.

Definition 2 (valid code)

If ¢ = (V,N,L,,L.) is a plane graph with only one inter-
nal face (vg,...,v,_1) (ie., g 1is a cycle), then a valid code
for g is (1,2,L,(1),L.(1,2),L,(2)).(2,3,...), (3,4,...) ...,
(n — 1,n,...).(n,1,...). We use a “dot” to denote the concatenation
of each 5-tuple representing an edge of g. If g = ¢’ U P and P is a valid
extension of ¢’ in g, then a valid code for g is the concatenation of a valid
code for ¢’ and the code of P.

It is not obvious from this definition that every plane graph g has at least
one valid code. This is actually a consequence of the fact that every ¢’ C g
has at least one valid extension in g (proof omitted ; the 2-connectedness of g

CAp 2011

5 (1,2,a,b,2)

, (2,3,a,b,a)

4 (34aaa)
! @ (4,1,a,2,2)

(5,1,a,b,a)

A (5.6,a,a,2)

'(6,1,a,a,2) L6aam)

'(6,2,a,a,a)

=\
g ¢ N o .
3 b 3 A 2 3 (3 23 b 2
. A,7,0,0 F/s,ﬁ,a}.\a) /3.7.00Na)
D:62aa3) E <7,5,a,:3 (7.520%)

FIG. 3: Part of the code tree starting from code « of Figure 2. In each pattern,
the gray face correspond to the last added extension. The extension
codes are A, ..., G (the complete code of the last line leftmost pattern
is thus a. A. D). Non-canonical codes are crossed.

a

is needed). Therefore, it is possible to construct a valid code by choosing an
internal face of g and then iteratively adding valid extensions to it.

Figure 2 shows four valid codes of graph ¢; in Figure 1 (among seven valid
codes) and the corresponding node numbering on graph g; (recall that there
is a different numbering of the nodes for each code). Codes «, v, o start with
the 4-edge face and then a 2-edge extension is added to build the second face.
Code [starts with the 3-edge face and then a 3-edge extension is added. In
each column, the line separates the edges of the first face from the edges of
the valid extension. A valid code for this graph can start with any of the six
edges. For the edge that belongs to the two internal faces, the code can start
with any of the two faces, hence the seven possible codes.

The set of valid codes is organized in a code tree. A code C'is a child of
C" if there is a valid extension P of C’ such that C' is the concatenation of
(" with the code of P. The root of the code tree is the empty code. A part of
this tree rooted at code « is represented in Figure 3. Notice that the codes at a
given level of the tree represent graphs that have one more face than the codes
of the level just above (in GSPAN, codes at one level have exactly one more
edge than those at the level above).

In this code tree, each graph is represented by several codes (for instance,
we already saw that graph g, has seven valid codes). In Figure 3 we also see
that codes aw.A.D and o.C'F represent the same graph. Of course, exploring
several codes that represent the same graph is not efficient. We therefore de-
fine canonical codes such that each graph has exactly one canonical code.

We start by defining an order on the valid codes. We suppose that
there exists an order on the labels. Then, we define an order on the edges
by taking the lexicographic order derived from the natural order on in-
dices and the order on labels. It means that (i, 7, L,,(7), Lc(7,7), Ln(j)) <
(,y, Ly(z), Le(z,y), Ln(y)) if i < xor (i = xand j < y) or (i = x and
j =wvyand L,(i) < L,(x)), and so on. Afterwards, we extend this order on
edges to a lexicographic order on the codes. In the figures and examples, we
assume the order on the labels is a < b < c. Therefore, in Figure 2, a > (3
because they have the same first two edges and the third edge of (3 is smaller
than the third edge of «.. Because of the second edge, 3 > ~ and finally v > ¢
because the first edge of ~ is bigger than the first edge of 4. Actually, code «
is the biggest code that exists for graph g;. We thus define the canonical code
of a graph as the biggest code of this graph.

PLAGRAM does a depth-first exploration of this code tree. The next theo-
rem states that, if C' is a non-canonical code, then it is not necessary to explore
the children of C'; the whole subtree rooted at C' can safely be pruned.

Theorem 1
In the code tree, if a code is not canonical, then none of its descendants are.

For instance, in Figure 3, a.A.D and «.C.F represent the same graph.
Since a.A.D > «.C.F, any extension of a.A.D will be bigger than any ex-
tension of a.C.F'. Thus, the latter code can be pruned.

4. PLAGRAM algorithm

The pseudo-code of PLAGRAM is shown in Figure 4. Its outline is similar
to that of GSPAN. The main differences are the graph code used to represent a
plane graph and the way extensions are generated. It is a depth-first recursive
exploration of the code tree. Although the first level of this tree contains codes
of graphs with one face, for efficiency reasons, PLAGRAM starts its explora-
tion with frequent edges (Figure 4, line 1). Function mine explores the part of
the code tree rooted at a code given by its parameter. If this code is canonical

CAp 2011

Algorithm : PLAGRAM(D)
Input : a graph database D
Output : frequent plane subgraphs in D.

1 Find all frequent edge codes in D
2 for all frequent edge code E do
3 mine(E,D)

mine(P,D)
Input : the code of a pattern P and the graph database D.

4 if P is not canonical then return

5 LE=(//list of extensions of P
6 for all graph G; € D do

7 for all occurrences f of P in G; do

8 LE = LE U build_extensions(P, G4, f)

9 for all extensions ' in LE do

10 if E is frequent then

11 print(P. E)

12 mine(P.E)

FI1G. 4: PLAGRAM algorithm

(line 4), then the algorithm computes its extensions on every target graph in
D (lines 6-8) and makes a recursive call on the frequent ones (line 12).

In the next subsections, the sizes (expressed in number of edges) are deno-
ted m for the pattern code P and m; for each of the target graphs GG;. We use
these notations to express the complexity of function mine.

4.1. Canonical test (line 4)

This test is done by comparing code P with the canonical code of the
graph represented by P. Since two plane graphs are isomorphic if their ca-
nonical codes are equal, the complexity of this test is at least as high as an
isomorphism test. The complexity of graph isomorphism, in the general case,
is unknown, but for plane graphs, polynomial algorithms exist (see for ins-
tance Damiand et al. (2009) for a quadratic algorithm). Here is a sketch of
our algorithm : it constructs the canonical code of a graph by first choosing
a starting face and a starting edge (in this face) for the code. Since P has m
edges and considering that each edge belongs to at most 2 faces, there are at
most 2m such choices. Then, it iteratively extends the code by concatenating
to it the code of the valid extension with the biggest code. Each of these steps
has a complexity of O(m) and must be repeated as many times as the num-
ber of faces in the graph (which is less than m). Therefore, the complexity of
finding the canonical code of a graph is in the worst case O(m?). However,

experiments show that this canonical test is not the bottleneck of PLAGRAM.

4.2. Pattern matching (line 7)

For each pattern P, the algorithm must find all its occurrences in every
target graph G;. Each of these operations involves a subgraph isomorphism
test, which works as follows : for every edge e of (5;, it tries to match e with
the first edge of P. Once this match is done, the complexity for matching the
rest of P is O(m). So, the total complexity is, in the worst case, O(m.m;).

PLAGRAM uses an optimization that makes this subgraph isomorphism test
linear : it stores with each pattern P a list of the matches of the first edge of
P in every target graph G;. This list is updated in line 8 when generating the
extensions. Thus, when the algorithm needs to find the occurrences of P in
G, it does not need to try every edge of (5;, but only those that are in this
list. Therefore, for each occurrence, the cost of the matching is O(m). The
number of occurrences of a pattern in a target graph G; cannot be larger than
2m,; (the first edge of P can match each edge of &; in two “directions”). The-
refore, the complexity of computing all occurrences of P in all target graphs
is O(m X" m;) (which we will bound later with O(}" m?) in Theorem 2).

We show in the experimental section that this complexity improvement
over GSPAN is visible in the measured matching times.

4.3. Extension building (line 8)

For every occurrence of P in a target graph G, the algorithm builds pos-
sible extensions. This is done by trying to find a valid extension starting from
every node of the outer face of P. The complexity of this operation is linear in
the total size of P plus the extensions. This is less than 2m; since one edge of
(3, is either in an occurrence of P or in at most two extensions. Since there are
at most 2m,; occurrences of P in G;, the complexity of building all extensions
of all occurrences of P in all target graphs G; is O(>. m?).

Every time a new extension is added to the list L F/, its frequency is upda-
ted. This enables the test in line 10. The L E list is implemented in a way such
that the addition of a new extension (together with its frequency counting) is
done with a logarithmic complexity (as a function of the number of edges of
the extension). Thus, for a fixed pattern P, we can bound this complexity by
the total size of all extensions, i.e, O(> m?).

According to the conducted experiments, the extension building part of the
algorithm was found to be the most expensive one.

CAp 2011

Theorem 2 (Complexity)

The total complexity of function mine(P, D) (excluding the complexity of
recursive calls in line 12) is O(m?> + Y m?), where m is the size of the pattern
P and m; is the size of the target graph G; (in number of edges).

A consequence of this theorem is that, contrary to general graph mining
algorithms as GSPAN, PLAGRAM has a polynomial output delay, i.e., the time
between two outputs is polynomial in the size of the input > m,.

Theorem 3 (Correctness)
PLAGRAM finds and outputs exactly once all frequent 2-connected plane sub-
graphs in D.

S. Experiments

We now present the computational results obtained by PLAGRAM. Since,
to the best of our knowledge, PLAGRAM is the first plane graph mining algo-
rithm, we could not compare it with any other algorithm with the same pur-
pose. Nevertheless, to check how efficient our dedicated plane graph mining
algorithm is in comparison with a general-purpose graph mining algorithm,
we report here a comparison between PLAGRAM and GSPAN.

The conducted experiments aimed to answer three main questions :

1. How do PLAGRAM and GSPAN scale on video data ?

2. How efficient is PLAGRAM in finding the patterns we are interested in,
in comparison with GSPAN ?

3. Can PLAGRAM find meaningful patterns on video data ?

For GSPAN, we asked the authors of Bringmann & Nijssen (2008) for their
C++ code. For PLAGRAM, we adapted the source code of GSPAN to imple-
ment its features and to allow a fair comparison between them.

The experiments were carried out on a 3.16GHz Xeon X5460 CPU with
16 GB of RAM memory under Debian GNU/Linux (2.6.26-2-amd64 x86_64)
operating system.

5.1. Video datasets

The datasets we used for our experiments were created from a set of frames
of a synthetic video. The choice of making a synthetic video was beneficial to
our experiments, since we did not have to deal with common video artefacts

that occasionally disturb the segmentation process. The video had 721 frames
in total, with an object (an airplane) appearing in every frame (this helped us
to evaluate whether the results of PLAGRAM could be used to track an object
in the video, as reported at the end of this section).

After generating the video, we represented each frame as a plane graph.
For this task, we used 2 different methods, which led to 2 different datasets of
such graphs, as described below :

— Triangulation : assuming that the video frames were already segmented
by ther different pexel colors, for each video frame, the barycenters of
the segmented regions became nodes and a Delaunay triangulation of
this set of nodes was constructed'. The final graphs had, on average,
87.58 nodes with an average degree of 2.88. The labels of the nodes
were generated based on the size of the regions (in number of pixels).
Initially, there were in total 8,293 different sizes. Those were discretized
into 10 equal bins, which led to 10 possible node labels. The final set of
graphs formed the Triangulated dataset.

— RAG (Region Adjacency Graphs) : we also represented each frame as
a RAG. More precisely, the nodes are the same as in the Triangulated
dataset, except that there is one more node representing the outer region.
An edge exists between 2 regions (or nodes) if these regions are adjacent
in the frame. On average, each frame led to a graph with 88.58 nodes,
with an average degree of 2.48, and the labels of the nodes were discre-
tized in the same way as for the Triangulated dataset. Here, the final set
of graphs formed the RAG dataset.

An example frame (left) along with its triangulated (middle) and RAG

(right) representations is illustrated in Figure 5.

5.2. Efficiency

Here, we evaluate how efficient our dedicated algorithm is in comparison
with the general-purpose one, GSPAN. Several factors may influence the ef-
ficiency of our algorithm. As PLAGRAM is dedicated to plane graphs, two
patterns that are different for PLAGRAM (due to the order of their edges) may
be only one pattern for GSPAN. In this way, our algorithm would find more
patterns than GSPAN. However, since our extension building step is restricted
to complete faces instead of single graph edges as in GSPAN, we would expect

"For this task, we used the program available at http: //www.cs.cmu.edu/~quake/
triangle.html.

CAp 2011

—

FIG. 5: Example video frame (left) along with its corresponding triangulated
(middle) and RAG (right) representations. In the latter, the upper-left
node represents the outer region.

to generate fewer extensions as well as patterns. In any cases, the complexity
of our isomorphism test is lower. Therefore, in order to understand the most
important of these factors, we considered the following in our experiments :

— The total execution time.

— The number of output patterns.

— The number of generated extensions.

Since we detected that the number of patterns and extensions produced by
the algorithms were indeed different, we also considered the following ratios
in order to make a fair comparison between the pattern matching and the
extension building steps of PLAGRAM and those of GSPAN :

— The ratio of the total pattern matching step time to the total size of the

output patterns (in number of edges).

— The ratio of the total extension building step time to the total size of the

generated extensions (in number of edges).

Figure 6 presents the results we obtained on the Triangulated dataset. In
each graph, the x-axis represents absolute minimum supports, which were lo-
wered in units of 10 until the computation times of PLAGRAM reached around
2 hours.

Graph (a) presents the total execution time of PLAGRAM. GSPAN could
not finish its executions, even for the highest tested minimum support (in fact,
it was interrupted after 3 days of computation). To understand its behaviour,
however, we stopped it after 2 hours of execution and plotted here its intermi-
diate results. The 2-hour executions of GSPAN is referred to here as GSPAN2.
Graphs (b) and (c) present, respectively, the number of extensions and the
number of output patterns of PLAGRAM and GSPAN2.

(@) (b)

% 100000 le+l1l
S Plagram —+—
S 10000 1e+10 %
g £ 1er0o T
< 1000 s .
E S le+08 .
= 100 g
5 o le+07 .
§ 10 1e+06 gSpan (2 hours) —+x._
Pl e
B 1 100000 30r3m
651 661 671 681 691 701 711 721 651 661 671 681 691 701 711 721
minimum support (absolute) minimum support (absolute)
© (d)
1e+07 0.1
€ gSpan (2 hours) —+— o
1e+06 F Plagram - g L~]
R = 001 Span (2 hours) —+—
2 100000 . £ 9P
5 .. £ Plagram -~
£ 10000 “x. £ 0001
o w g X
1 1000 % £ o000
i X X
100 fay g R
S
10 1le-05
651 661 671 681 691 701 711 721 651 661 671 681 691 701 711 721
minimum support (absolute) minimum support (absolute)

F1G. 6: Efficiency of PLAGRAM and the 2-hour executions of GSPAN on the
Triangulated dataset.

Contrary to GSPAN, PLAGRAM finished its executions for every tested sup-
port. As presented in graphs (b) and (c), the total execution times increased
along with the number of extensions and patterns, respectively. Considering
GSPAN2, even for the highest minimum support, the number of extensions
was several orders of magnitude higher than that of PLAGRAM (because PLA-
GRAM only considers plane 2-connected graphs). In addition, for the mini-
mum supports of, e.g., 661 and 651, the biggest pattern output by PLAGRAM
had, respectively, 45 and 48 edges, while, in the same period of time (two
hours), GSPAN2 output fewer patterns with at most 12 edges.

What is worth observing as well are the results given by graph (d). It pre-
sents the ratio of the total matching step time to the total size of the output
patterns, in number of edges. The ratios were lower for PLAGRAM than for
GSPAN?2, for every tested minimum support, due to its linear isomorphism test
(in the size of the patterns).

Regarding the ratio of the total extension step time to the total size of the
generated extensions (in number of edges), PLAGRAM had slightly better re-
sults in comparison with GSPAN2.

Concerning the results on the RAG dataset, the behaviors of PLAGRAM
and GSPAN2 were quite similar to those on the Triangulated one. The biggest

CAp 2011

pattern generated by PLAGRAM had 84 edges for the lowest tested minimum
support (around 2 hours of execution), while for GSPAN2 it had only 12 edges.

5.3. Step Times

On our datasets, the extension building step of GSPAN2 was on average
90% of the total execution time, whereas the matching step was always less
than 5%, and the canonical-test step was negligible. For PLAGRAM, the most
expensive step was also the extension building step, which varied from 50%
to 75% of the the execution time. The pattern matching step, in its turn, varied
from 20% to 40%, while the canonical-test step was always less than 5%.

In conclusion, we believe that the main reason why PLAGRAM is more ef-
ficient than GSPAN is the lower number of extensions produced by PLAGRAM
rather than only the faster pattern matching as one could expect.

5.4. Meaningfulness of Obtained Patterns

Computer vision researchers are struggling for more than 30 years with the
problem of recognizing objects in images and more recently with the problem
of tracking objects in videos (A. Yilmaz & Mubarak (2006)). In this context,
to evaluate how meaningful the patterns found by PLAGRAM are, we study
here whether they can be used to track an object in a video. We start by in-
troducing two measures which assess how precise a pattern p corresponds to
a given object o in the video frames. These measures are adaptations of the
popular measures precision and recall, as described below :

— precision : fraction of the occurrences of p (in the target graphs) of
which every node maps to o in the corresponding video frames. The
intuition behind this measure is to evaluate the purity of p, that is, p has
the maximum precision if it maps only to o and nothing else.

— recall : Let n be the number of frames in which o is present. The recall
is defined as the fraction of n in which every node of p maps to o. Here,
the intuition is to evaluate the completeness of p. The idea is to check
whether p maps to all occurrences of o in the set of video frames.

Since PLAGRAM is an exhaustive algorithm, that is, it mines for all frequent
patterns in the graph database, the mining result may consist of different pat-
terns corresponding to different objects, or even to any specific one (w.r.t. to
the proposed measures). Therefore, to follow a specific object in the video,
the user should be able to select from the entire set of output patterns those
that correspond to this object. A basic strategy for this task is the following :

Triangulated RAG
Support | precision (%) | recall (%) | precision (%) | recall (%)
721 96.2 99.8 97.1 99.9
711 97.6 98.9 97.2 99.8
701 99.3 97.7 96.5 99.0
691 99.7 96.3 93.9 95.6
681 99.8 95.0 92.8 93.9
671 99.8 93.7 92.5 93.5
661 99.9 92.5 92.5 93.5
651 99.9 91.0 91.8 92.6

TAB. 1: Average precision and recall (in percentage) computed for the pat-
terns selected at step 3 of the proposed object tracking strategy.

1. First, the user selects a frame area where there exists an object he or she
is interested in tracking. This is done in the first frame, referred to here
as f, where this object occurs.

2. Afterwards, the user starts the graph mining process (by executing PLA-
GRAM with a given minimum support as input).

3. Next, the idea is to post-process the results by selecting the frequent
patterns of which every node maps to the user-selected area in f.

4. Finally, all occurrences of the patterns selected in the previous step are
mapped to the video frames after f, allowing the user to detected the
position of the selected object through the video.

To evaluate this strategy, we checked whether it would be possible to fol-
low the airplane in our video, by considering the patterns obtained in the ex-
periments of Section 5.2. As might be expected, those patterns had different
precision and recall w.r.t to the airplane. After executing step 3, we got the pat-
terns whose average precision and recall (in percentage) are shown in Table 1.

Observe that the selected patterns had, on average, very good quality, ma-
king step 4 successful. Considering the Triangulated dataset, the average pre-
cision increased in inverse proportion to the minimum supports, while the
average recall decreased with the minimum supports. Here, lower minimum
supports led to bigger patterns with higher precision and lower recall. In the
RAG dataset, the behavior was different : big patterns had nodes that did not
map to the airplane. In addition, small patterns with low support did not have
good precision nor recall. As a consequence, the average precision and recall
decreased with the minimum support.

CAp 2011

6. Conclusions

We presented PLAGRAM, an efficient frequent graph mining algorithm that
is dedicated to mining plane 2-connected patterns. Conducted experiments
showed that PLAGRAM is able to efficiently run on graph-based video data-
sets, on which a general-purpose graph mining algorithm failed to finish its
computations. The experiments also showed that besides providing an effi-
cient algorithm, the 2-connectedness restriction does not limit the meaning-
fulness of the final patterns. On the contrary, we believe that PLAGRAM may
be a useful tool to track objects in videos.

Having the example video applications in mind, we have identified three
directions for further work : first, the idea is to use graphs where each node
is associated with one or more labels (also referred to as attribute graphs).
Two nodes will then be considered equivalent if at least a given fraction of
their labels are equal. The same can be applied to edges. Second, to track an
object in a video, we proposed a strategy in which one should post-process
the entire set of frequent patterns to select those that map to the object of
interest. An interesting way to enhance the efficiency of this strategy is to
have these patterns as a constraint to the mining process. Finally, we currently
represent a video as a set of graphs, not taking into account the order in which
these graphs (frames) appear in a video. By considering this order, interesting
constraints on the trajectory of objects or simply on their positions can be
considered during the mining process.

Aknowledgments

This work has been supported by the BINGO?2 project (ANR-07-MDCO
014-02). The authors thank Siegfried Nijssen for providing an implementation
of GSPAN and for some constructive comments on ealier version of the paper.

Références

A. YILMAZ O. J. & MUBARAK S. (2006). Object tracking : A survey. ACM
Comput. Surv., 38(4), 13+.

BRINGMANN B. & NIJSSEN S. (2008). What is frequent in a single graph ?
In PAKDD, p. 858-863.

CHANG R.-F., CHEN C.-J. & L1a0o C.-H. (2004). Region-based image re-
trieval using edgeflow segmentation and region adjacency graph. In IEEE
ICME, p. 1883-1886.

DAMIAND G., DE LA HIGUERA C., JANODET J.-C., SAMUEL E. & SOL-
NON C. (2009). Polynomial algorithm for submap isomorphism : Applica-
tion to searching patterns in images. In Workshop on Graph-based Repre-
sentation in Pattern Recognition (GBR), volume 5534, p. 102—-112.

GOSSELIN S., DAMIAND G., & SOLNON C. (2011). Frequent submap dis-
covery. In Annual Symposium on Combinatorial Pattern Matching (CPM).

HORVATH T., RAMON J. & WROBEL S. (2006). Frequent subgraph mining
in outerplanar graphs. In ACM SIGKDD, p. 197-206.

KUKLUK J. P., HOLDER L. B. & CooKk D. J. (2004). Algorithm and ex-
periments in testing planar graphs for isomorphism. J. Graph Algorithms
Appl., 8(2), 313-356.

KURAMOCHI M. & KARYPIS G. (2001). Frequent subgraph discovery. In
IEEE ICDM, p. 313-320.

N1JSSEN S. & KoK J. N. (2004). A quickstart in frequent structure mining
can make a difference. In ACM SIGKDD, p. 647-652.

YAN X. & HAN J. (2002). gspan : Graph-based substructure pattern mining.
In IEEE ICDM, p. 721-724.

