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ABSTRACT

Image deblurring is essential to high resolution imaging and

is therefore widely used in astronomy, microscopy or com-

putational photography. While shift-invariant blur is modeled

by convolution and leads to fast FFT-based algorithms, shift-

variant blurring requires models both accurate and fast. When

the point spread function (PSF) varies smoothly across the

field, these two opposite objectives can be reached by inter-

polating from a grid of PSF samples.

Several models for smoothly varying PSF co-exist in the

literature. We advocate that one of them is both physically-

grounded and fast. Moreover, we show that the approximation

can be largely improved by tuning the PSF samples and inter-

polation weights with respect to a given continuous model.

This improvement comes without increasing the computa-

tional cost of the blurring operator.

We illustrate the developed blurring model on a deconvo-

lution application in astronomy. Regularized reconstruction

with our model leads to large improvements over existing re-

sults.

Index Terms— deconvolution, shift-variant PSF

1. INTRODUCTION

Image deconvolution is widely used to enhance the resolu-

tion, signal-to-noise ratio and contrast of blurred images. In

many cases, blur is space-variant and thus can no longer be

modeled by a convolution. Accurate modeling of the point

spread function (PSF) is essential for restoration. Depend-

ing on whether PSF variations across the field are smooth or

discontinuous, PSF are either interpolated, or the field is seg-

mented into regions inside which PSF are invariant. In the

former case, effort is put in finding a good tradeoff between

approximation quality and speed. The most challenging as-

pect of the latter case is the segmentation step.

In astronomy, blurring due to atmospheric turbulence

varies in the field of view. Even after adaptive optics cor-

rection, the PSF is shift-variant since the correction quality
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decreases away from the guiding star[1]. Optical aberrations

and obstructions also lead to space-variant degradations[2].

In 3D microscopy, the 3-D PSF varies with the depth from

the coverslip[3]. In all these applications, PSF vary smoothly.

Except for very compact PSF, the storage and applica-

tion of a different PSF for each pixel[4] is not computa-

tionally tractable for iterative deblurring methods. It has

then been proposed[5] to decompose the image into patches

where blur can be considered approximatively invariant (iso-

planatic regions). After deconvolution of each patch, the

reconstructed regions must be tied together which leads to

border artifacts[6, 3, 7]. It is therefore preferable to model

smooth blur variations and then, to deblur the whole image.

Smooth PSF variations can be decomposed on a subspace

of PSF[8, 9]. The cost of this modeling increases linearly

with the number of basis PSF used. It has been noticed

independently by several authors that PSF variations could

be modeled by interpolation and yet lead to a fast blurring

model[10, 11, 12]. Two formulations have been proposed,

equivalent in terms of computational complexity but leading

to different PSF models. We discuss in section 2.1 these two

approximations and their implications in terms of PSF model-

ing. We show that one of them is superior both in approxima-

tion quality and modeling properties. In section 2.2, we fur-

ther improve PSF approximation error by tuning the PSF sam-

ples and interpolation weights for a target PSF model. The

space-variant blurring model is then applied to deconvolution

of Hubble Space Telescope (HST) simulated data. We show

improved reconstructions compared to the results reported on

the same dataset in [10].

2. APPROXIMATION OF SMOOTHLY VARYING PSF

During the formation of an image g, the original (crisp) distri-

bution f undergoes distortions due to atmosphere turbulence,

object/camera relative motion, the instrument (limited aper-

ture, optical aberrations). These degradations are typically

modeled by a linear transform:

g(r) =

∫

h(r, s) f(s) ds, (1)



Fig. 1. Comparison of (a) H and (b) H† for PSF approximation (blue: target PSF, red: PSF sample locations, green: approxi-

mation error).

where h denotes the point spread function (PSF). When the

PSF does only depend on the difference r− s, equation (1) is

a convolution and the system is said isoplanatic.

2.1. PSF interpolation

Smoothly varying PSF can be approximated by interpolating

PSF at locations si with interpolation kernel ϕint:

h(r, s) ≈
∑

i
hi(r − s)ϕint(s− si), (2)

with hi(u) ≡ h(si + u, si) the PSF for a source located at

si. The image formation model is then approximated by:

g(r) ≈
∑

i

∫

hi(r − s)ϕi(s) f(s) ds ≡ [H◦f ](r), (3)

where ϕi(s) = ϕint(s − si) and H denotes the linear oper-

ator of our approximate model. This operator and its adjoint

(which is needed for image reconstruction) expand as:

H =
∑

i
Hi◦Wi and H♯ =

∑

i
Wi◦H

♯
i , (4)

with Wi a scaling operator corresponding to the pointwise

multiplication by ϕi, Hi and H♯
i a convolution and a corre-

lation by the ith sampled PSF. In words, Eq. (3) expresses

the degraded image as the sum of convolutions between PSF

samples and weighted versions of the crisp image.

An alternative model has been proposed by [10] who in-

terpolate the result of convolving the original image by the

PSF samples. The corresponding operator writes:

H† =
∑

i
Wi◦Hi . (5)

[12] uses formulation H and [11] give both. Note that H†

is similar to the adjoint H♯ of our operator (using convolu-

tions instead of correlations); hence the computational burden

are the same for both. Though closely related, the operators

H and H† are however different in their ability to correctly

approximate the shift-variant PSF. Figure 1 gives a mono-

dimensional illustration of the difference between the two.

We consider a system with Gaussian PSF whose standard de-

viation increases linearly with the position from left to right.

Several of these Gaussian PSF are drawn in light gray on last

row of the figure. The target PSF at the center of the field is

drawn in thick blue stroke. This PSF is approximated using

PSF samples at locations depicted by red dots: coarse sam-

pling at the top row, and refined sampling at the next rows

until continuous sampling for the last but one. A linear in-

terpolation kernel is used. The formulation of H is used for

sub-figure 1(a), while H† is used for sub-figure 1(b). Approx-

imation errors are drawn in green, and the relative norm of the

error is given at the right of each curve. Several properties of

the approximations are noticeable: (i) PSF interpolation (H)

preserves PSF symmetry, while interpolation of convolution

results (H†) does not; (ii) when the PSF supports are small

compared to the distance between two PSF sample locations,

the two approximations are comparable; (iii) H achieves ex-

act interpolation (i.e., PSF approximation error tends to zero

when the PSF grid is ever more refined) while H† does not;

(iv) PSF positivity and normalization are preserved by linear

interpolation (which is not the case with H†, even when a lin-

ear interpolation kernel is used). Based on the difference be-

tween the two models, we recommend the use of formulation

H rather than H† for smoothly varying blurs.



Fig. 2. PSF approximation: (a)-(c) using bilinear interpolation; (d)-(f) generalized interpolation with optimal PSF and weights;

(a), (d): PSF grid; (b), (e): interpolation weights on each of the 9 patches; (c), (f): rms error with respect to target PSF.

As noted in [10, 11, 12], operators H and H† can be ef-

ficiently computed using fast Fourier transforms (FFT). Each

term of the sum in Eq. (4) is a convolution of a PSF (size H2)

with a patch whose size B2 corresponds to the support of the

interpolation kernel (for a grid of K2 PSF samples, an N2

image, and linear interpolation, B = 2N/K). Each discrete

convolution requires O[(B + H)2 log(B + H)] operations,

thus the whole operator requires O[K2(B+H)2 log(B+H)]
operations. If the PSF support H is much smaller than the

support of the interpolation kernel, the computational cost is

O[4N2 logN ] operations, i.e., 4 times the cost of a single

convolution of the whole image. Table 1 reports the computa-

tion time of our parallel implementation of operator H (based

on FFTW and Linux pthread libraries, running on an Intel

Xeon 3.3GHz with 6 cores). When the PSF support is large

compared to the support of the interpolation kernel, most of

the computational effort is spent computing the boundaries of

each patch and the complexity raises as illustrated by the last

rows of table 1.

2.2. Improvement of the approximation

There are several options to improve the approximation er-

ror: (i) refine the interpolation grid (costly when the PSF sup-

port is large); (ii) increase the interpolation order (huge cost

since the support of the interpolation kernel is proportional

to the interpolation order); (iii) use generalized interpolation,

i.e., refine interpolation weights ϕi (with constant interpola-

tion support) and PSF samples hi to fit a target PSF.

nb of threads 1 2 4 6

PSF grid time in ms (relative to a convolution)

5× 5 71 (3.7) 37 (1.9) 19 (1) 14 (0.7)

(a) 10× 10 46 (2.4) 22 (1.2) 11 (0.6) 8 (0.4)

20× 20 60 (3.2) 30 (1.6) 15 (0.8) 11 (0.6)

5× 5 182 (4.2) 97 (2.3) 57 (1.3) 47 (1.1)

(b) 10× 10 636 (15) 325 (7.6) 170 (4) 117 (2.7)

20× 20 1680 (39) 850 (20) 435 (10) 293 (6.8)

Table 1. Average time to compute operator H: (a) 5122 pixels

image, with 31× 31 pixels PSF; (b) 10002 pixels image, with

101× 101 pixels PSF (Intel Xeon Processor with 6 cores).

Option (iii) is the most interesting since it improves the

approximation without increasing the computational cost of

H. We achieve this by minimizing the quadratic difference:

ǫ2 =
1

N2

∫∫

[

h(r, s)−
∑

i
hi(r − s)ϕi(s)

]2

dr ds (6)

with respect to the PSF {hi}
K2

i=1
and the weights {ϕi}

K2

i=1
.

Starting with the PSF samples, we alternately solve for the

best weights, and then for the best PSF samples. Using this

algorithm, the approximation can be largely improved (the

rms error ǫ is divided by 4, which is better than when using a

6× 6 grid with linear interpolation), as illustrated by figure 2.



Fig. 3. Deconvolution with shift-variant PSF: (a) simulation of an observation of a star field with Hubble’s Wide Field Camera

before corrective optics; (b) provided 5× 5 grid of PSF; (c) recovered stars after deconvolution with sparsity prior, gray: good

detection, blue: non-detected star (4.9%), red: false-detection (7.2%)

2.3. Application to deconvolution in astronomy

We used the same dataset as in [10] to illustrate the applica-

tion of our model on a realistic astronomical case. Contrary

to [10] who used truncated preconditioned conjugate gradi-

ents, we performed regularized inversion with an ℓ1 sparsity-

inducing prior and a positivity constraint (minimization done

with FISTA algorithm [13]). Figure 3 presents the obtained

results: rms error is 3.6% when using 5 × 5 PSF grid, 6.2%

when using the mean PSF, to be compared with the 16% error

reported in [10]. The use of a regularization largely improves

the reconstruction. The spatially-variant PSF model further

improves the results.

3. CONCLUSION

We have shown that PSF interpolation is physically more jus-

tified and leads to a better approximation of space-variant

PSF. The computational cost remains modest (4× that of

a single convolution). We proposed to further improve the

model accuracy while keeping the same computational cost.

We applied our model to a realistic astronomical case. Our

next step will be to extend our approach to blind or myopic

deconvolution, in wide-field adaptive optics and microscopic

imaging.
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