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ABSTRACT

In this paper we present a method for hyper-spectral image

restoration for integral field spectrographs (IFS) data. It takes

advantage of all the spectral and spatial correlations in the

observed scene to enhance the spatial resolution. We illus-

trate this method with simulations coming from the Multi

Unit Spectroscopic Explorer (MUSE) instrument. It shows

the clear increase of the spatial resolution provided by our

method as well as its denoising capability.

Index Terms— Inverse problems, Deconvolution, Image

restoration, ntegral field spectrograph,Astronomy.

1. INTRODUCTION

In the last decade, the integral field spectrographs (IFS) have

become a popular tool for astronomical observation. Such in-

struments are now installed on all the main optical telescope

facilities around the world. They provide spatially resolved

spectra of a whole region of the sky, yielding (θ, λ) data cubes

— with θ the 2D angular position and λ the wavelength —

that have several hundreds of wavelength bins. With IFS, as-

tronomical data enters the hyper-spectral era. Dedicated im-

age reconstruction techniques are thus needed to take full ad-

vantage of the data gathered by these instruments. Because

the light is spread out on multiple channels instead of being

integrated on a single image, the information content is in-

creased at the cost of a lower signal to noise or achievable

resolution for the same exposure time. Furthermore, atmo-

spheric turbulence and instrumental response often spatially

blur the observations, degrading the spatial resolution.

First attempts to restore multi-channel images consisted in

applying classical 2D restoration techniques like Wiener fil-

ter or Richardson-Lucy algorithm on each individual channel.

The caveat of these approaches is to ignore the natural spectral

correlations present in the data. The first restoration technique

specifically dedicated to multichannel data [?] was a MMSE

restoration filter based on the assumption that signal auto-

correlation is spatially and spectrally separable. This assump-

tion was later relaxed[?] and many other multichannel linear

restoration filters have been proposed since. More recently,

Fourier/Wavelet restoration techniques have been adapted to

multispectral data[?, ?]. Combining demixing and restoration

some authors[?, ?] achieve enhanced spatial resolution given

the strong assumption that the observed scene is composed of

only a few materials with unknown spectrum.

Most of the work on restoration of multi-spectral im-

ages is dedicated to remote sensing and color (RGB) images.

Those methods can’t easily be directly applied to astronom-

ical data with its specific features like large dynamic range

and strong sharp features (for example narrow emission lines

or peaked sources). To the best of our knowledge, restoration

techniques for multi-spectral astronomical images have only

been proposed for (x, λ) data (slit spectrography) [?, ?] or

(x, y, λ) data composed of slit spectrography scans [?]. At the

current time, no similar techniques have been proposed for

hyperspectral data observed simultaneously via an Integral

Field Spectrograph (IFS).

We propose a new deconvolution method based on an in-

verse problem approach. It is very generic and exploits in-

trinsic continuities of hyper-spectral data. We suppose that

a good estimation of the point spread function (PSF) is pro-

vided by other means (e.g. by calibration on the telescope

guiding stars or on information from the adaptive optics sys-

tem) and defer the blind deconvolution problem to a later

time.

Our approach will be illustrated on data provided by the

MUSE IFS simulator. Still in construction, the MUSE IFS[?]

will be installed on the ESO Very Large Telescope (VLT). It

is a “slicer” based IFS that covers in its wide field mode a

60′′ × 60′′ spectroscopic field-of-view subdivided into a grid

of about 300× 300 spatial elements (spaxels). To each spaxel

corresponds a spectrum, obtained by dispersing the light on

3463 equally spaced spectral bins from 480 nm to 930 nm.

2. PROBLEM FORMULATION

We consider an observed data cube y of Nλ monochromatic

images of NΩ pixels. We model it from the parameters x



following the equation:

y = H · x+ e . (1)

with e the noise vector, and H the linear operator which ap-

proximates the convolution by the effective PSF and the sam-

pling by the detector.

The PSF is assumed to be spatially shift invariant but its

shape may vary with the wavelength. Similarly wavelength-

wise PSF’s may be centered at a location θλ which depends

on the wavelength so as to account for imperfect instrumen-

tal alignment and atmospheric differential refractive index

(ADR). Furthermore PSF is not necessarily normalized in

order to account for the variable throughput (atmospheric and

instrumental transmission).

The parameters x describe the object 3-D distribution

Iobj(θ, λ) with a finite number of coefficients by means of ex-

pansion onto a basis of interpolation functions. The angular

and spectral step sizes can be chosen to match the effective

angular and spectral resolutions, in order to reduce the num-

ber of model parameters. We chose to control the effective

number of free parameters by means of regularization and to

take the same angular and spectral grid resolution than the

data. The model parameters then simplify after discretization:

xk,ℓ = Iobj(θk, λℓ) , (2)

where λℓ is the effective wavelength in the ℓ-th spectral chan-

nel and θk is the k-th angular position in an evenly spaced

rectangular grid of pixels.

3. MAXIMUM A POSTERIORI APPROACH

Deconvolution is a typical ill-posed problem [?] which can be

solved by adding priors in a classical Maximum A Posteriori

(MAP) approach. This is achieved by estimating the object

x+ that minimizes the cost function f(x):

x+ = argmin
x

f(x) , (3)

f(x) = fdata(x) + fprior(x) . (4)

This cost function f(x) is the sum of a likelihood penalty

fdata(x) ensuring the agreement between the model and the

data y, and a regularization penalty fprior(x) introducing sub-

jective a priori knowledge about the object.

3.1. Likelihood and Noise Statistics

Assuming Gaussian noise, the likelihood penalty reads:

fdata(x) = [y −H · x]T ·Werr · [y −H · x] , (5)

where the weighting matrix Werr = C
−1
err is the inverse of the

angular-spectral covariance of the noise and approximations.

Assuming uncorrelated noise, Werr is diagonal and Eq. (5)

simplifies to:

fdata(x) =
∑

j,ℓ

wj,ℓ [y −H · x]2j,ℓ

where 1/wj,ℓ is the noise variance of the measurements

at pixel j and channel ℓ. This model can cope with non-

stationary noise and can be used to express confidence on

measurements on each pixel of the data. Since unmeasured

data can be considered as having infinite variance, we can

readily deal with missing or bad pixels as follows:

wj,ℓ
def
=

{

Var(yj,ℓ)
−1 if yj,ℓ is measured,

0 otherwise.
(6)

This treatment of missing data is consistent because (i) it con-

sistently accounts for unmeasured data and bad pixels, and (ii)

it allows to properly expand the synthesized f.o.v. to avoid

field aliasing and border artifacts caused by convolution us-

ing Fourier transform.

Except for very low detector noise (< few e− per pixel),

we can approximate the total noise (Gaussian detector noise

plus Poisson noise) by a non stationary uncorrelated Gaussian

noise [?]:

wj,ℓ
def
=

{

(

γmax(yj,ℓ, 0) + σ2
j,ℓ

)

−1

if yj,ℓ is measured,

0 otherwise,

(7)

where γ accounts for the quantization factor of the detector

and σ2
j,ℓ is the variance of other approximately Gaussian noise

on the pixel (j, ℓ), like for example read-out noise.

3.2. Regularization

Astronomical data is mainly composed of bright objects

(stars, galaxy) over a flat background. Most of the quite large

MUSE field of view will thus contain only background. As

a consequence, the data will be intrinsically spatially sparse.

This spatial sparsity prior can be enforced by means of mixed

norms[?, ?]:

fsparsity(x) =
∑

k





√

∑

ℓ

x2
k,ℓ + ǫ2 − ǫ



 (8)

where ǫ is a small real number (ǫ ≈ 10−9) that ensures the

derivability in 0 (hyperbolic approximation of the ℓ1 norm).

This regularization enforces spatial sparsity and spectral cor-

relation since it favors when bright spaxels in each spectral

channel are at the same spatial location.

The regularization defined in Eq. (8) does not ensure the

spectral continuity of the solution whereas in practice this so-

lution should be relatively smooth along the spectral dimen-

sion excepted near emission and absorption lines. For that



reason we introduce an additional regularization function:

fspectral(x) =
∑

k,ℓ

[

√

(xk,ℓ − xk,ℓ−1)
2
+ ζ2 − ζ

]

(9)

This regularization tends to smooth the spectra xk but pre-

serve discontinuity where |xk,ℓ − xk,ℓ−1| ≫ ζ. This situ-

ation is for example encountered at absorption or emission

lines, which shall not be smoothed.

Owing to the large difference of dynamical range be-

tween spectral channel of astronomical images, these regu-

larizations lead to over-regularization of bright features or

under-regularization of fainter ones. For that reason, we

rather suggest to apply these regularization functions to an

spectrally whitened object x′:

x′

k,ℓ = xk,ℓ/sℓ (10)

with sℓ = 〈xk,ℓ〉k the spatially averaged object spectrum —

〈 〉k denotes averaging over pixel index k. To avoid dealing

with non-linear regularization, we estimate the mean object

spectrum directly from the data:

sℓ = 〈yj,ℓ〉j/ηℓ (11)

with ηℓ = η(λℓ) the effective throughput in ℓ-th spectral

channel. Note that this approximation is justified because we

do not attempt to perform spectral deconvolution and because

we use the same wavelengths grid for the sought distribution

and the data.

Finally our regularization penalty writes:

fprior(x) = αfsparsity(x
′) + βfspectral(x

′) . (12)

where α and β are the hyper-parameters that have to be tuned

to set the importance of the priors.

4. ALGORITHM DESCRIPTION

In the presented experiments, we suppose that there is no

cross-talk between spectral channels, the matrix H is block

diagonal, and since the PSF is isoplanatic, applying H con-

sists in Nλ discrete spatial convolutions, one for each spectral

channel. Due to the convolution process, flux from the ob-

ject just outside of the field of view is measured inside data.

To take this fact correctly into account, the estimated object

has to be spatially larger than the observed field of view. At

least half of the PSF support must be added on each side of

the observed field of view to form the restored field of view.

Furthermore, as in practice the convolution is computed using

FFT, the same field extrapolation prevents border artifacts due

to the circulant approximation. In the end, the application of

H requires Nλ spatial FFTs.

The hyper-parameters α and β are estimated by trial

and error. The deconvolved data cube x+ is the solution

of Eq. (3). It requires the minimization of the cost function

f(x) that involves a large number of parameters (> 1× 106).

To that end, we use the VMLM-B algorithm[?] which is a

limited memory variant of the variable metric method with

BFGS updates[?]. This algorithm has proved its effectiveness

for image reconstruction and only requires the computation

of the penalty function being minimized together with its

gradient. The memory requirement is a few times the size of

the problem.

5. RESULTS
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Fig. 1. Images from the data, the deconvolution and the

ground truth summed along the spectral dimension.

The quality of the presented algorithm was assessed on

data from the MUSE IFS simulator. This data is a part of

51× 36 spaxels (pixels size: 0′.′2× 0′.′2) of the whole MUSE

data cube. It contains 3463 spectral channels comprised be-

tween 480 nm and 930 nm. The PSF, shown on Fig. 1(a) is a

Gaussian with a full width at half maximum that varies from

0′.′75 (3.75 pixels) at the red end to 0′.′92 (4.6 pixels) at the

blue end. In Fig. 1(b), the data summed all over the chan-

nels is displayed so that it can be compared with the ground

truth in Fig. 1(d). The corresponding deconvolution presented

in Fig. 1(c), clearly illustrates the gain of resolution provided

by our method. Both the shapes of the central galaxy and of

the one near the upper left corner are recovered. Figure ??

displays the spectra of the central spaxel of the galaxy from

the data (blue), the deconvolution (dashed red) and the ground

truth (black). Even though regularizations introduce some ex-



pected bias, the restored spectra are close to the ground truth:

most of the spectral features are preserved. We display in

Figures ??(b–c) spectral cuts through the heart of the central

galaxy materialized by the yellow line in Fig.1(d). These fig-

ures show (θ, λ) images zoomed between 568 nm and 576 nm

for the data, the restoration and the ground truth. These plots

show the resolution gain provided by our algorithm: both

brighter structures are separated, with the spectrum at θ = 43-

th column visible in the restoration that was not visible in the

data. Futhermore, the noise observed around the galaxy has

been drasticaly reduced by our method.
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(a) Spectra of the spaxel materialized by the green ’x’ in Fig. 1(d) for the

data (blue), the deconvolution (red) and the ground truth (black).
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Fig. 2. (θ, λ) images of the cut materialized by the yellow

line in Fig. 1(d) magnified between 568 nm and 576 nm.

6. CONCLUSION

We present a new method for deconvolving hyperspectral

data. By exploiting both spatial and spectral correlations

present in the data, our method provides a strong spatial res-

olution enhancement and an effective denoising along the

spectral dimension (given that we suppose the absence of

channel cross-talk). Its deblurring performance is assessed

on simulations. The results clearly demonstrate the advan-

tages to process the whole data-cube instead of processing

each wavelength channel independently. This increase of

the spatial resolution would be of special interests for many

astronomical subject such as the study of the kinematics of

galaxies or weak lensing surveys, for which the true shape

of the galaxy uncontaminated by the observational blur is of

special interest.
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