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Abstract. The log-rank test is often used to compare randomized treatment groups with re-
spect to the distribution of a failure time outcome. The so-called stratified log-rank test can
be used when it is necessary to adjust for the effect of some discrete covariate that may be
predictive of the outcome. In many applied situations, this discrete covariate is missing for
some of the patients and moreover, the distribution of the censoring time depends on the treat-
ment group. In this paper, we introduce a modified version of the stratified log-rank test, which
accommodates both these problems simultaneously. The asymptotic distribution of this new
test under the null hypothesis of equality of the randomized treatment groups is established. A
numerical study is conducted to examine the finite-sample behavior of this test under both the
null and alternative hypotheses.

1. Introduction

The log-rank test is widely used to compare randomized treatment groups with respect
to the distribution of some failure time outcome. If one needs to control for a covariate
that may be predictive of the outcome, and if this covariate is discrete, the log-rank can be
generalized to the so-called stratified log-rank test (see, for example, Klein and Moeschberger
(1997) and Martinussen and Scheike (2006)). Consider a clinical trial where n patients are
randomly assigned to K different treatment groups. We wish to compare survival between
groups, while adjusting for some discrete factor S with L modalities (also called strata, such
as income groups or disease stages for example). If λk,l is the instantaneous hazard function
for a patient in the kth treatment group and lth stratum, then the test for treatment effect
can be formulated as

H0 : λ1,l = . . . = λK,l for every l = 1, . . . , L

versus Ha: ”there exists j and j′ such that λj,l 6= λj′,l for some l”. Let T 0
1 , . . . , T 0

n be the
times from randomization to failure observed in the K pooled groups. Let C1, . . . , Cn be
right-censoring times (the Ci are assumed to be independent of the T 0

i and non-informative).
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For each patient i, we observe Ti = min(T 0
i , Ci) and ∆i = 1(T 0

i ≤ Ci), where 1(·) is
the indicator function. Assume that the data consist of n independent and identically
distributed quadruplets (Ti,∆i, Gi, Si), i = 1, . . . , n, where Gi ∈ {1, . . . , K} and Si ∈
{1, . . . , L} respectively indicate the group and stratum of the ith patient. Let Ni(t) =
∆i1(Ti ≤ t), Yi(t) = 1(Ti ≥ t), and define

E
(n)
k,l (t) =

∑n
i=1 Yi(t)1(Gi = k)1(Si = l)∑n

i=1 Yi(t)1(Si = l)
.

Then the stratified log-rank statistic for the test of no randomized treatment effect is of the
form

U = (Z1, . . . , ZK−1)Θ̂−1(Z1, . . . , ZK−1)′,

where for every k = 1, . . . ,K − 1,

Zk =
n∑

i=1

∫ τ

0

{
1(Gi = k)−

L∑

l=1

1(Si = l)E(n)
k,l (t)

}
dNi(t), (1)

τ denotes the end of the study period, and Θ̂ is the estimated asymptotic covariance matrix
of (Z1, . . . , ZK−1)′. Under H0, U is asymptotically distributed as a χ2 distribution with
K − 1 degrees of freedom (see, for example, Martinussen and Scheike (2006)).

In some applications, the stratum S may be missing for some patients. For example,
consider the case where S represents the histological stage of patients included in a cancer
clinical trial. The determination of S may require a biopsy, which due to expensiveness may
not be performed on all the study subjects. One simple solution to handle such incomplete
stratum information is to perform a complete-case analysis that is, to discard patients
with unobserved stratum. This, however, may induce a substantial loss of power, as will
be illustrated in our simulation study. Dupuy and Leconte (2008, 2009) considered the
distinct but related problem of estimation in the stratified proportional hazards model with
missing strata. The authors proposed a modified version of the maximum partial likelihood
estimator, in which the unobserved stratum indicators are replaced by an estimate of their
conditional expectation given available auxiliary covariates (this is the so-called regression
calibration idea, see for example Carroll et al. (1995)). Simulation results provided some
evidence that such a replacement substantially improves on the complete-case analysis.

In many applications, it also happens that the distribution of censoring time depends on
the treatment group. This arises, for example, when censoring follows from a study dropout
caused by treatment toxicity. The treatment group with the heaviest toxicity will be more
likely to have a higher dropout rate, and thus a higher censoring rate, than the other groups.
Inverse probability of censoring weighted (IPCW) procedures have been proposed to remedy
this problem (see for example Robins and Finkelstein (2000), Yoshida et al. (2007), Cain
and Cole (2009)).

In this paper, we propose and investigate a test of no randomized treatment effect, when
the patients stratum information is only partially available and the distribution of censor-
ing time depends on the treatment group. The test we propose combines the regression
calibration and IPCW principles.

The rest of the article is organized as follows. In Section 2, we introduce the new test
statistic and we derive its asymptotic distribution under H0. In Section 3, we describe a
short simulation study investigating the finite-sample behaviour of the proposed test. A
discussion concludes the paper in Section 4. An appendix contains the proofs of some
intermediate technical results.
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2. The test statistic

Assume that n independent patients are randomly assigned to K treatment groups. Assume
that the stratum value is missing for some of these patients. Thus, a subsample is available
where all variables (T, ∆, G, S) are observed, while only (T, ∆, G) are observed for the other
patients. We assume that some auxiliary variables W ∈ Rp are observed for all patients, and
that W provides a partial information about S when S is missing. Let R be the indicator
variable which is 1 if S is observed and 0 otherwise. Throughout the paper, we assume that
T 0 and C are independent given G,S,W and R, and that C is independent of S and W
given G. However as mentioned above, the distribution of the censoring time depends on the
treatment group. We assume that T 0 is independent of W given S (that is, the auxiliary
variables W provide no additional information about failure when the true stratum S is
known), and that G is independent of S and W , as is the case in randomized clinical trials.
We assume that R is independent of T 0, C and G, and that 0 < P(R = 1) < 1. Finally, we
assume that R and S are independent given W , which is the so-called missing-at-random
assumption. In the sequel, this set of assumptions will be denoted by C1.

We consider the problem of implementing the stratified log-rank test of H0 based on
n independent vectors (Ti, ∆i, Gi,Wi, Ri, RiSi), i = 1, . . . , n of possibly incomplete data
when moreover, the distribution of censoring time depends on the treatment group. To
tackle simultaneously the missing strata and dependent censoring problems, we introduce
a modified version of U , which is obtained by:

(a) replacing any missing stratum indicator 1(Si = l) in (1) by its conditional expectation
given the auxiliary W (this idea is related to regression calibration methods, see, for
example, Thurston et al. (2003), Weller et al. (2007), Dupuy and Leconte (2009)),
and

(b) weighting every patient by the inverse of the conditional (given the patient’s treatment
group) survival function of the censoring time (this idea is related to the inverse prob-
ability of censoring weighted principle, e.g., Robins and Finkelstein (2000), Yoshida
et al. (2007), Cain and Cole (2009)).

Precisely, we propose to base our test statistic on the following modified version of (1):

Z̃k =
n∑

i=1

∫ τ

0

µ(Gi, t)

{
Gk

i −
L∑

l=1

Dl
iẼ

(n)
k,l (t)

}
dNi(t), (2)

where for every i = 1, . . . , n, k = 1, . . . ,K, l = 1, . . . , L, and t ∈ [0, τ ], Gk
i = 1(Gi = k),

Dl
i = Ri1(Si = l) + (1 − Ri)E[1(Si = l)|Wi], µ(Gi, t) = 1/P(C ≥ t|Gi) (where P(C ≥ t|G)

is the survival function of the censoring time in group G), and Ẽ
(n)
k,l (t) = S̃

(n)
k,l (t)/S̃

(n)
l (t),

with

S̃
(n)
k,l (t) =

1
n

n∑

i=1

Yi(t)Gk
i Dl

iµ(Gi, t) and S̃
(n)
l (t) =

1
n

n∑

i=1

Yi(t)Dl
iµ(Gi, t).

Before stating our result, we need to introduce some further notations and some regularity
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conditions. For every i = 1, . . . , n and k = 1, . . . ,K, let

Vi,k =
∫ τ

0

µ(Gi, t)

{
Gk

i −
L∑

l=1

Dl
iẼ

(n)
k,l (t)

}
dNi(t)

− 1
n

n∑

j=1

L∑

l=1

∫ τ

0

Yi(t)Dl
iD

l
jµ(Gi, t)µ(Gj , t)

S̃
(n)
l (t)

{
Gk

i − Ẽ
(n)
k,l (t)

}
dNj(t) (3)

and define Vi = (Vi,1, . . . , Vi,K−1)′ and Σ̂ =
∑n

i=1 ViV′i. For every k = 1, . . . , K, l =
1, . . . , L, and t ∈ [0, τ ], define

s̃k,l(t) = E[Y (t)GkDlµ(G, t)], s̃l(t) = E[Y (t)Dlµ(G, t)],

and let ẽk,l(t) = s̃k,l(t)/s̃l(t). The following regularity conditions will be needed in the
proofs:

C2 There exists a positive constant c0 such that P(C ≥ τ |G) > c0 for every G ∈ {1, . . . , K},
and the survival function t 7−→ P(C ≥ t|G) is continuous on [0, τ ].

C3 For every k = 1, . . . , K and l = 1, . . . , L, supt∈[0,τ ] λk,l(t) < c1 for some finite positive
constant c1.

C4 There exists a positive constant c2 such that inft∈[0,τ ] s̃l(t) > c2 for every l = 1, . . . , L.

We are now in position to state the following result for the new test statistic

Ũ := (Z̃1, . . . , Z̃K−1)Σ̂−1(Z̃1, . . . , Z̃K−1)′.

Theorem 1. Assume conditions C1-C4. Then under H0, as n → ∞, Ũ converges in
distribution to a χ2 distribution with K − 1 degrees of freedom.

Based on this theorem, the proposed test rejects H0 if Ũ ≥ χ2
1−α(K−1), where χ2

1−α(K−1)
is the quantile of order 1− α of χ2(K − 1).

Remark. The key to derive the null asymptotic distribution of the usual stratified log-rank
test U is to represent Zk as a martingale process and to use a central limit theorem for
martingales (see Fleming and Harrington (1991) for example). This is not possible in our
case, since the sum across strata in Zk has been replaced, in Z̃k, by a sum where each
patient i such that Ri = 0 contributes to each of the strata. Therefore, in order to obtain
the null asymptotic distribution of Ũ , we rather prove that Z̃k is asymptotically linear, and
we use a central limit theorem for sums of i.i.d. terms.

Proof of Theorem 1.

Assume that all random variables are defined on a probability space (Ω, C,P), and define
Ft,i = σ {Ni(s), (1−∆i)1(Ti ≤ s), Gi, Si,Wi : 0 ≤ s ≤ t} as the σ-algebra generated by the
event time and censoring histories of the ith patient over [0, t], and by the group, stratum,
and auxiliary informations for this patient. Then by assumption, the Ft,i-intensity of the
counting process Ni(t) is given by

Yi(t)λi(t) = Yi(t)
K∑

k=1

L∑

l=1

λk,l(t)Gk
i 1(Si = l).
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If Si is missing, the information for the ith patient is represented by the smaller σ-algebra
Gt,i = σ {Ni(s), (1−∆i)1(Ti ≤ s), Gi,Wi : 0 ≤ s ≤ t} ⊆ Ft,i. By the innovation theorem,
the intensity of Ni(t) with respect to Gt,i is Yi(t)γi(t) := E[Yi(t)λi(t)|Gt−,i], where γi(t) =∑K

k=1

∑L
l=1 λk,l(t)Gk

i E[1(Si = l)|Gt−,i]. Finally, letting Ht,i = (Ft,i)Ri(Gt,i)1−Ri be the
observed filtration, Ni(t) has intensity Yi(t)ζi(t) := Yi(t)[λi(t)Ri+γi(t)(1−Ri)] with respect
to Ht,i. It follows that Mi(t) = Ni(t) −

∫ t

0
Yi(s)ζi(s) ds is a martingale with respect to

(Ht,i)t≥0. In the sequel, we shall note κl(t) = E[Y (t)ζ(t)Dlµ(G, t)], l = 1, . . . , L (note that
under the conditions stated above, κl(t) < ∞ for every t).

The following lemma establishes a useful approximation of n−
1
2 Z̃k. Its proof is given in the

Appendix A.

Lemma 1. For every i = 1, . . . , n and k = 1, . . . ,K, let

Qi,k =
∫ τ

0

L∑

l=1

Dl
iµ(Gi, t)

(
Gk

i − ẽk,l(t)
) [

dNi(t)− Yi(t)
κl(t)
s̃l(t)

dt

]
.

Then under C1-C4, n−
1
2 Z̃k = n−

1
2

∑n
i=1 Qi,k + op(1). Moreover, if H0 holds, E[Qi,k] = 0.

It follows from Lemma 1, from the multivariate central limit theorem, and Slutsky’s theorem
that under H0, n−

1
2 (Z̃1, . . . , Z̃K−1)′ converges in distribution, as n → ∞, to a (K − 1)-

dimensional Gaussian vector with mean 0 and covariance matrix Σ = E[Q1Q′1], where Qi =
(Qi,1, . . . , Qi,K−1)′. Consequently, under H0, n−1(Z̃1, . . . , Z̃K−1)Σ−1(Z̃1, . . . , Z̃K−1)′

d−→
χ2(K − 1) as n → ∞. Σ however involves several unknown expectations. A consistent
estimator of Σ is n−1Σ̂ := n−1

∑n
i=1 ViV′i, where Vi = (Vi,1, . . . , Vi,K−1)′ and Vi,k is given

by (3). To see this, since n−1Σ̂ = n−1
∑n

i=1(ViV′i−QiQ′i)+n−1
∑n

i=1QiQ′i, it is sufficient to
prove that Vi,k−Qi,k

p−→ 0 as n →∞. This follows from similar arguments and calculations
as in the detailed proof of Lemma 2 (Appendix B). The details are therefore omitted.
Finally, it follows from Slutsky’s theorem that Ũ := (Z̃1, . . . , Z̃K−1)Σ̂−1(Z̃1, . . . , Z̃K−1)′

d−→
χ2(K − 1) as n →∞.

2

Remark. In practice, the weighting functions µ(Gi, ·) and/or the conditional probabilities
E[1(Si = l)|Wi] may be either known from previous studies or completely unknown. In this
latter case, estimated functions and probabilities have to be substituted in Ũ . We come
back to this issue in the simulation study.

3. A simulation study

We conducted a simulation study to evaluate the small to large-sample size behavior of
the proposed test under various conditions. We considered the case of K = 2 randomized
treatment groups and L = 2 strata. In each group and stratum, the event times T 0

i were
generated from a Weibull distribution W (α, λ) with hazard rate λ(t) = αλtα−1 (the Weibull
distribution is flexible and has a wide range of applications in survival analysis, see Klein and
Moeschberger (1997) for example). The failure times of stratum 1 in group 1 were generated
from W (α1, λ1), and those of stratum 1 in group 2 from W (α1, λ1r1), where ‘r1’ denotes the
hazard rates ratio of two patients in stratum 1 of groups 1 and 2 respectively. The failure
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times of stratum 2 in group 1 were generated from W (α2, λ2) and those of stratum 2 in
group 2 from W (α2, λ2r2), with ‘r2’ being the hazard rates ratio of two patients in stratum
2 of groups 1 and 2 respectively.

We used α1 = .5, α2 = .75, λ1 = .75, and λ2 = 1.5. Three cases were considered
for the pairs (r1, r2) of hazard ratios: (a) (r1, r2) = (1, 1), (b) (r1, r2) = (1.5, 1.5), (c)
(r1, r2) = (1.25, 2). Case (a) corresponds to the null case of no difference between treat-
ment groups, within each stratum. Cases (b) and (c) correspond to various magnitudes of
difference between groups. In each case, the censoring times were generated from exponen-
tial distributions with parameters θ1 in group 1 and θ2 in group 2, with θ1 and θ2 chosen to
yield censoring percentages equal to c1 in group 1 and c2 in group 2 (letting θ1 6= θ2 ensures
that the distribution of censoring depends on the treatment group).

Let n1 and n2 denote respectively the sample size in group 1 and 2 (with n = n1 + n2).
We considered various values for (n1, n2): (n1, n2) = (50, 50), (n1, n2) = (100, 100), and
(n1, n2) = (150, 150). The auxiliary variable W was taken to be 2-dimensional (W =
(W1,W2)′) with W1 (respectively W2) generated from the uniform distribution on [−1, 1]
(respectively the normal distribution with mean 0 and standard deviation 0.5). A logistic
regression model

P(S = 1|W ) =
exp(b0 + b1W1 + b2W

2
2 )

1 + exp(b0 + b1W1 + b2W 2
2 )

was taken for the relationship between S and W , with (b0, b1, b2) chosen so that within each
treatment group, each stratum contains approximately half of the patients.

The following stratum missingness percentages were considered: 20%, 40%. For each
patient, the missingness indicator R was obtained by randomly drawing a Bernoulli random
variable, with parameter chosen to yield the prescribed overall missingness percentage. The
design parameters and their values are summarized in Table 1.

Table 1. Design parameters and values included in the simulations

Parameter Values Description

(r1, r2) (1,1), (1.5,1.5), (1.25,2) Ratios of hazard rates
(c1, c2) (5,20), (20,50), (30,20), (40,10) Censoring percentages
n 100, 200, 300 Total sample size

As mentioned previously, in practical situations the weighting functions µ(Gi, ·) and/or
the conditional probabilities P(Si = l|Wi) = E[1(Si = l)|Wi] may either be known (from
previous studies, for example), or completely unknown. In this latter case, one would esti-
mate them and substitute the estimated values in the proposed test statistic Ũ (the resulting
statistic will be denoted by Û in the sequel). However, the null asymptotic distribution of
Û may be somewhat distorted from the χ2(K − 1) distribution. This, in turn, may affect
the size and power of the test based on Û . In fact, our simulation results show that as long
as the µ(Gi, ·) and P(Si = l|Wi) are reasonably estimated, the prescribed level of the test
is nearly maintained by Û , and that Û outperforms the complete-case log-rank test in term
of power.
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Various methods may be used to estimate P(Si = l|Wi). First, one may assume that
there exists a known function h depending on an unknown parameter b, such that P(Si =
l|Wi) = h(Wi,b). Under the missing-at-random assumption, P(S = l|W,R = 0) = P(S =
l|W,R = 1) = P(S = l|W ). One may thus obtain a consistent estimator b̂ of b based
on the patients {i : Ri = 1} with observed stratum, and estimate h(Wi,b) by h(Wi, b̂).
An alternative solution is, for example, to use the less restrictive local logistic regression
approach (e.g., Loader (1999)).

Similarly, various approaches may be used to estimate µ(Gi, t) = 1/P(C ≥ t|Gi). These
include parametric and non-parametric methods.

The choice between competing estimation methods may be guided by the investigator’s
prior knowledge of the relationship between S and W , and of the censoring mechanism. In
our simulation study, we considered the least favorable case where both P(Si = l|Wi) and
µ(Gi, ·) are unknown. We estimated the P(Si = l|Wi) by local logistic regression, using the R
package locfit (available at http://cran.r-project.org/web/packages/locfit/). We
used non-parametric Kaplan-Meier estimators within each treatment group to estimate the
censoring survival functions P(C ≥ t|Gi).

For each configuration of the design parameters, 1000 replications were obtained using
the software R. Based on these 1000 repetitions, we obtained the empirical size (case (a))
and power (cases (b) and (c)) of the ”estimated version” Û of the proposed test Ũ , at the
significance level 0.05. For comparison, we included the results of the stratified log-rank
test based on complete cases only (i.e. on individuals with known stratum). In the sequel,
we shall refer this latter test to as Ucc for short. Table 2 summarizes the results for an
overall stratum missingness percentage equal to 40% (the results for 20% are similar and
are therefore not presented).

Table 2. Empirical size and power of Û and Ucc, based on 1000 replicates.

Censoring percentages (c1, c2)

(5,20) (20,50) (30,20) (40,10)

n (r1, r2) Û Ucc Û Ucc Û Ucc Û Ucc

100 (1, 1) .067 .045 .070 .067 .057 .045 .061 .057
(1.5, 1.5) .354 .228 .272 .204 .401 .258 .360 .221
(1.25, 2) .349 .227 .303 .220 .361 .231 .314 .216

200 (1, 1) .074 .055 .065 .051 .067 .049 .051 .047
(1.5, 1.5) .692 .440 .565 .369 .651 .381 .574 .423
(1.25, 2) .592 .386 .605 .418 .603 .403 .465 .401

300 (1, 1) .060 .046 .076 .048 .078 .052 .073 .048
(1.5, 1.5) .823 .596 .762 .472 .822 .566 .698 .568
(1.25, 2) .772 .535 .813 .527 .746 .522 .611 .583
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From these results, it appears that the proposed test Û performs well and clearly out-
performs the stratified test based on the complete cases (which was the only alternative test
available so far for the problem considered in this paper). The empirical level of Û tends
to exceed (but only slightly) 0.05 in all cases. This may be due to the replacement of the
unknown P(Si = l|Wi) and µ(Gi, ·) by their estimations, which causes the null asymptotic
distribution of Û to be slightly distorted from the χ2(K − 1). But as expected, in cases (b)
and (c), the powers of Û are greater than those of Ucc for every sample size and censoring
percentages. In particular, Û maintains a high power even when the censoring percentage
heavily depends on the treatment group (20% in group 1, 50% in group 2), while at the
same time the powers of Ucc substantially decrease.

4. Discussion

We have constructed and investigated a modified version of the stratified log-rank test of no
randomized treatment effect. This new test statistic is useful when the stratum information
is missing at random for some patients and the distribution of the censoring time depends
on the treatment group. From our simulations, we have found that this test performs well
compared to the only alternative available so far, namely a complete-case based stratified
log-rank test. Now, several questions still deserve attention.

First, we have assumed a missing-at-random mechanism for the stratum missingness.
Investigating the robustness of the proposed test to a deviation to this assumption con-
stitutes a topic for further numerical investigations. Extending the proposed method to
non-ignorable missingness may be a non-trivial task however: the missing-at-random as-
sumption is central in our proofs and for estimating the stratum belonging probabilities
P(Si = l|Wi) when they are unknown. One may also investigate the case where the stratum
missingness depends on the treatment group.

Second, in order to accommodate group-dependent censoring, we have used the inverse
probability of censoring weighted principle, with weight function µ(Gi, t) = h(P(C ≥ t|Gi))
and h(x) = 1/x. Alternative test statistics Z̃k may be obtained by choosing other forms for
h (we refer to DiRienzo and Lagakos (2001) for alternative forms of weighting functions in
the different context of bias correction for score tests arising from misspecified proportional
hazards regression models). Searching for the function h which yields the most efficient
testing procedure constitutes another non-trivial but very interesting task.

Another interesting future research direction is as follows. The stratified log-rank test
can be viewed as a score test in a stratified Cox regression model. Therefore, the problem
we considered in this paper can be viewed as the problem of implementing a score test of no
randomized treatment effect in a stratified Cox model with missing stratum information.
In the past two decades, a large amount of literature has been devoted to the problems
of estimation and testing in the unstratified proportional hazards Cox model with missing
covariates, but this literature has essentially focused on the case where the missing covariate
has a proportional effect on the hazard of failure. As far as we know, the case where the
missing covariate has a non-proportional effect and therefore is used to stratify was only
few investigated. Dupuy and Leconte (2008, 2009) have considered this problem, but no
treatment-dependent censoring was assumed. We hope that the present work can constitute
a first step in the direction of relaxing this hypothesis.
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Appendix A. Proof of Lemma 1.

We have

n−
1
2 Z̃k = n−

1
2

n∑

i=1

∫ τ

0

µ(Gi, t)Gk
i dNi(t)− n−

1
2

n∑

i=1

L∑

l=1

∫ τ

0

µ(Gi, t)Dl
iẼ

(n)
k,l (t) dNi(t)

:= A
(n)
1,k −A

(n)
2,k ,

and A
(n)
2,k can be written as

A
(n)
2,k = n

1
2

L∑

l=1

∫ τ

0

ẽk,l(t)

[
1
n

n∑

i=1

µ(Gi, t)Dl
idNi(t)− κl(t)dt

]

+n
1
2

L∑

l=1

∫ τ

0

v
(n)
k,l (t)

[
1
n

n∑

i=1

µ(Gi, t)Dl
idNi(t)− κl(t)dt

]
+ n

1
2

L∑

l=1

∫ τ

0

Ẽ
(n)
k,l (t)κl(t)dt,

where v
(n)
k,l (t) := Ẽ

(n)
k,l (t) − ẽk,l(t). We let the first term in A

(n)
2,k unchanged. The second

and third terms satisfy respectively the following two technical lemmas, whose proofs are
postponed to the Appendix B:

Lemma 2. Under conditions C1-C4,

n
1
2

L∑

l=1

∫ τ

0

v
(n)
k,l (t)

[
1
n

n∑

i=1

µ(Gi, t)Dl
idNi(t)− κl(t)dt

]
p−→ 0 as n →∞.

Lemma 3. Under conditions C1-C4, as n →∞,

n
1
2

L∑

l=1

∫ τ

0

Ẽ
(n)
k,l (t)κl(t)dt = n

1
2

L∑

l=1

∫ τ

0

{
ẽk,l(t) +

S̃
(n)
k,l (t)
s̃l(t)

− s̃k,l(t)S̃
(n)
l (t)

s̃l(t)2

}
κl(t)dt + op(1).

Using these lemmas, we can re-write n−
1
2 Z̃k as: n−

1
2 Z̃k =

n−
1
2

n∑

i=1

∫ τ

0

µ(Gi, t)Gk
i dNi(t)− n

1
2

L∑

l=1

∫ τ

0

ẽk,l(t)

[
1
n

n∑

i=1

µ(Gi, t)Dl
idNi(t)− κl(t)dt

]

−n
1
2

L∑

l=1

∫ τ

0

1
s̃l(t)

{
s̃k,l(t) + S̃

(n)
k,l (t)− s̃k,l(t)S̃

(n)
l (t)

s̃l(t)

}
κl(t)dt + op(1).

Rearranging the terms in this expression concludes the proof of the first statement in Lemma
1. We now turn to the expectation of Qi,k under H0.

For every i = 1, . . . , n, k = 1, . . . , K, and t ∈ [0, τ ], µ(Gi, t)Gk
i is Ht,i-measurable, hence

the process (
∫ t

0
µ(Gi, s)Gk

i dMi(s))t≥0 is a zero-mean martingale. It follows that

E

[∫ τ

0

L∑

l=1

Dl
iµ(Gi, t)Gk

i dNi(t)

]
= E

[∫ τ

0

µ(Gi, t)Gk
i dNi(t)

]

=
∫ τ

0

E
[
µ(Gi, t)Gk

i Yi(t)ζi(t)
]

dt,
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where the first equality follows by noting that
∑L

l=1 Dl
i = 1. Similarly, we have

E

[∫ τ

0

L∑

l=1

Dl
iµ(Gi, t)ẽk,l(t) dNi(t)

]
=

L∑

l=1

∫ τ

0

ẽk,l(t)κl(t) dt,

E

[∫ τ

0

L∑

l=1

Dl
iµ(Gi, t)Gk

i Yi(t)
κl(t)
s̃l(t)

dt

]
=

L∑

l=1

∫ τ

0

ẽk,l(t)κl(t) dt,

and

E

[∫ τ

0

L∑

l=1

Dl
iµ(Gi, t)ẽk,l(t)Yi(t)

κl(t)
s̃l(t)

dt

]
=

L∑

l=1

∫ τ

0

ẽk,l(t)κl(t) dt.

Thus

E[Qi,k] =
∫ τ

0

E
[
µ(Gi, t)Gk

i Yi(t)ζi(t)
]

dt−
L∑

l=1

∫ τ

0

ẽk,l(t)κl(t) dt

:= B1,k −B2,k.

We now prove that under H0, B2,k =
∫ τ

0
E[Gk]E[Y (t)ζ(t)µ(G, t)] dt. First, remark that

s̃k,l(t) = E
[
Y (t)GkDlµ(G, t)

]

= E
[
E

[
Y (t)GkDlµ(G, t)|G,S, W,R

]]

= E
[
GkDlµ(G, t)E [Y (t)|G,S,W,R]

]

H0= E
[
GkDlµ(G, t)E

[
1(T 0 ≥ t)|S]

E [1(C ≥ t)|G]
]

where the third to last line follows from the assumptions C1 and from the fact that under
H0, the distribution of T 0 does not depend on G. Then, by the independence of G and
(S, W,R), we get that

s̃k,l(t) = E
[
GkDlE

[
1(T 0 ≥ t)|S]]

= E
[
Gk

]
E

[
DlE

[
1(T 0 ≥ t)|S]]

.

Finally, using the same arguments as above, and the properties of conditional expectation,
we have:

s̃k,l(t) = E
[
Gk

]
E

[
DlE

[
1(T 0 ≥ t)|S]

µ(G, t)E [1(C ≥ t)|G]
]

= E
[
Gk

]
E

[
Dlµ(G, t)E [Y (t)|G, S,W,R]

]

= E
[
Gk

]
s̃l(t).

Thus, under H0,

B2,k =
L∑

l=1

∫ τ

0

E
[
Gk

]
κl(t) dt

=
∫ τ

0

E
[
Gk

]
E[Y (t)ζ(t)µ(G, t)] dt.

Using similar arguments, we get that B1,k =
∫ τ

0
E

[
Gk

]
E[Y (t)ζ(t)µ(G, t)] dt under H0 and

thus, E[Qi,k] = 0.

2
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Appendix B. Proofs of Lemma 2 and Lemma 3.

Proof of Lemma 2. Let l ∈ {1, . . . , L}, and decompose

n
1
2

∫ τ

0

v
(n)
k,l (t)

[
1
n

n∑

i=1

µ(Gi, t)Dl
idNi(t)− κl(t)dt

]

as C
(n)
1,k,l + C

(n)
2,k,l, where

C
(n)
1,k,l := n

1
2

∫ τ

0

v
(n)
k,l (t)

[
1
n

n∑

i=1

µ(Gi, t)Dl
idNi(t)− 1

n

n∑

i=1

µ(Gi, t)Dl
iYi(t)ζi(t) dt

]

and

C
(n)
2,k,l :=

∫ τ

0

v
(n)
k,l (t) · n 1

2

[
1
n

n∑

i=1

µ(Gi, t)Dl
iYi(t)ζi(t) dt− κl(t)dt

]
.

In the following development, we first show that C
(n)
1,k,l

p−→ 0 as n →∞. Note that C
(n)
1,k,l is

of the form:

C
(n)
1,k,l = n−

1
2

n∑

i=1

∫ τ

0

H
(n)
i,k,l(t)dMi(t),

where Mi(t) = Ni(t) −
∫ t

0
Yi(s)ζi(s)ds and H

(n)
i,k,l(t) := v

(n)
k,l (t)µ(Gi, t)Dl

i is a predictable

process with respect to Ht :=
∨n

i=1Ht,i. Moreover, H
(n)
i,k,l(t) is bounded on [0, τ ] since

|H(n)
i,k,l(t)| ≤ |v(n)

k,l (t)| · 1
c0
≤ 2

c0
. Define the process (C(n)

1,k,l(t))t≥0 by

C
(n)
1,k,l(t) = n−

1
2

n∑

i=1

∫ t

0

H
(n)
i,k,l(s)dMi(s).

Then (C(n)
1,k,l(t))t≥0 is an Ht-martingale, and C

(n)
1,k,l := C

(n)
1,k,l(τ). Now, the predictable

variation process < C
(n)
1,k,l > (t) of C

(n)
1,k,l(t) is

< C
(n)
1,k,l > (t) =

∫ t

0

1
n

n∑

i=1

{
H

(n)
i,k,l(s)

}2

Yi(s)ζi(s)ds :=
∫ t

0

X(n)(s)ds.

Under the regularity conditions stated in Section 2, it is not difficult to check that X(n)(s)
p−→

0 as n →∞ for every s ∈ [0, τ ]. Moreover, for any s ∈ [0, τ ] and n ≥ 1,

|X(n)(s)| =

∣∣∣∣∣
1
n

n∑

i=1

{
H

(n)
i,k,l(s)

}2

Yi(s)ζi(s)

∣∣∣∣∣

≤ 1
n

n∑

i=1

{
H

(n)
i,k,l(s)

}2

ζi(s)

≤ 4
c2
0

c1
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hence by Proposition II.5.3 of Andersen et al. (1993), < C
(n)
1,k,l > (t)

p−→ 0 as n → ∞.
Next, for any ε > 0 and t ∈ [0, τ ], let

C
(n)
1,k,l,ε(t) = n−

1
2

n∑

i=1

∫ t

0

H
(n)
i,k,l(s)1(n−

1
2 |H(n)

i,k,l(s)| ≥ ε)dMi(s).

Then the nonnegative < C
(n)
1,k,l,ε > (t) satisfies the following:

< C
(n)
1,k,l,ε > (t) =

∫ t

0

1
n

n∑

i=1

{
H

(n)
i,k,l(s)

}2

1(n−
1
2 |H(n)

i,k,l(s)| ≥ ε)Yi(s)ζi(s)ds

≤ < C
(n)
1,k,l > (t),

and therefore < C
(n)
1,k,l,ε > (t)

p−→ 0 as n → ∞. It follows (see Theorem 5.1.1 in Fleming

and Harrington (1991)) that C
(n)
1,k,l(t)

d−→ 0 as n → ∞ for every t ∈ [0, τ ]. Therefore,

C
(n)
1,k,l(t)

p−→ 0 as n →∞ and in particular, if t = τ , C
(n)
1,k,l

p−→ 0 as n →∞.

We now prove that C
(n)
2,k,l

p−→ 0 as n → ∞. To this end, we show that the integrand of

C
(n)
2,k,l converges to 0 uniformly in probability on [0, τ ]. We have:

sup
t∈[0,τ ]

∣∣∣∣∣v
(n)
k,l (t) · n 1

2

(
1
n

n∑

i=1

µ(Gi, t)Dl
iYi(t)ζi(t)− κl(t)

)∣∣∣∣∣

≤ sup
t∈[0,τ ]

∣∣∣v(n)
k,l (t)

∣∣∣ · sup
t∈[0,τ ]

∣∣∣∣∣n
1
2

(
1
n

n∑

i=1

µ(Gi, t)Dl
iYi(t)ζi(t)− κl(t)

)∣∣∣∣∣ . (4)

Somewhat straightforward Glivenko-Cantelli arguments yield that Ẽ
(n)
k,l (t) is uniformly con-

sistent (on [0, τ ]) for ẽk,l(t). It follows that as n →∞,

sup
t∈[0,τ ]

∣∣∣v(n)
k,l (t)

∣∣∣ p−→ 0. (5)

Then, the classes {Y (t), t ∈ [0, τ ]} and {µ(G, t), t ∈ [0, τ ]} are both Donsker (by Lemma
4.1 in Kosorok (2008)), and thus so is {µ(G, t)Y (t), t ∈ [0, τ ]} since products of bounded
Donsker classes are Donsker. Similarly, {ζ(t), t ∈ [0, τ ]} is Donsker (Corollary 9.32 in
Kosorok (2008)) and {Dl} is Donsker. Finally, the class {µ(G, t)DlY (t)ζ(t), t ∈ [0, τ ]}
is Donsker (as a product of bounded Donsker classes) and therefore, the process Gn(·) :=
n

1
2

(
n−1

∑n
i=1 µ(Gi, ·)Dl

iYi(·)ζi(·)− κl(·)
)

converges weakly to some mean zero Gaussian
process G. By the continuous mapping theorem, supt∈[0,τ ] |Gn(t)| converges weakly to
supt∈[0,τ ] |G(t)| and therefore supt∈[0,τ ] |Gn(t)| = Op(1). Combining this result and result
(5), in (4), yields that

sup
t∈[0,τ ]

∣∣∣∣∣v
(n)
k,l (t) · n 1

2

(
1
n

n∑

i=1

µ(Gi, t)Dl
iYi(t)ζi(t)− κl(t)

)∣∣∣∣∣
p−→ 0

as n →∞. This implies that C
(n)
2,k,l

p−→ 0 as n →∞.
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Hence, for any l ∈ {1, . . . , L}, C
(n)
1,k,l + C

(n)
2,k,l

p−→ 0 as n → ∞, and thus
∑L

l=1 C
(n)
1,k,l +

C
(n)
2,k,l

p−→ 0. This concludes the proof of Lemma 2.

2

Proof of Lemma 3. Decompose

n
1
2

L∑

l=1

∫ τ

0

Ẽ
(n)
k,l (t)κl(t)dt

as

n
1
2

L∑

l=1

∫ τ

0

{
ẽk,l(t) +

S̃
(n)
k,l (t)
s̃l(t)

− s̃k,l(t)S̃
(n)
l (t)

s̃l(t)2

}
κl(t)dt

+
L∑

l=1

∫ τ

0

{
S̃

(n)
k,l (t)
s̃l(t)

− s̃k,l(t)S̃
(n)
l (t)

s̃l(t)2

}
· n 1

2

(
s̃l(t)

S̃
(n)
l (t)

− 1

)
κl(t)dt. (6)

The second term on the right-hand side of (6) can be shown to converge to 0 in probability
as n → ∞. The arguments are similar to the ones used in the proof of Lemma 2 and are
therefore omitted.

2
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